JP2019035922A - 照明装置およびプロジェクター - Google Patents

照明装置およびプロジェクター Download PDF

Info

Publication number
JP2019035922A
JP2019035922A JP2017158838A JP2017158838A JP2019035922A JP 2019035922 A JP2019035922 A JP 2019035922A JP 2017158838 A JP2017158838 A JP 2017158838A JP 2017158838 A JP2017158838 A JP 2017158838A JP 2019035922 A JP2019035922 A JP 2019035922A
Authority
JP
Japan
Prior art keywords
light
optical system
lens
lens surface
light beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017158838A
Other languages
English (en)
Inventor
秋山 光一
Koichi Akiyama
光一 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2017158838A priority Critical patent/JP2019035922A/ja
Priority to US16/105,399 priority patent/US10649324B2/en
Publication of JP2019035922A publication Critical patent/JP2019035922A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B33/00Colour photography, other than mere exposure or projection of a colour film
    • G03B33/10Simultaneous recording or projection
    • G03B33/12Simultaneous recording or projection using beam-splitting or beam-combining systems, e.g. dichroic mirrors

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Projection Apparatus (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

【課題】光の太さや断面の形状を調整することができる小型の照明装置を提供する。【解決手段】本発明の照明装置は、平行化された第1の色光を射出する少なくとも一つの第1の発光素子を含み、第1の色光を含む第1の光を射出する第1の光源部と、第1の光を拡大する光線束拡大光学系と、を備える。光線束拡大光学系は、第1の光の入射側から順に配置された第1〜第4のレンズ面を含み、第1のレンズ面は、パワーを有する球面からなり、第2のレンズ面は、第1のレンズ面のパワーの符号と同じ符号のパワーを有する第1のアナモフィック面からなり、第3のレンズ面は、正のパワーを有する第2のアナモフィック面からなり、第4のレンズ面は、正のパワーを有する球面からなる。【選択図】図2

Description

本発明は、照明装置およびプロジェクターに関する。
例えばプロジェクターに用いる照明装置として、レーザー素子と蛍光体とを利用した照明装置が提案されている。下記の特許文献1に、青色レーザー光源と赤色レーザー光源と緑色蛍光体とを有する照明光学系と、照明光学系からの青色光、赤色光および緑色光の各々を変調する液晶パネルと、投射光学系と、を備えた投射装置が開示されている。
この投射装置において、青色レーザー光源からの青色光は、ハーフミラーで分岐され、分岐された青色光の一方が青色光用液晶パネルに入射し、他方が励起光として緑色蛍光体に入射する。緑色蛍光体で発生した緑色の蛍光光は、緑色光用液晶パネルに入射する。赤色レーザー光源からの赤色光は、赤色光用液晶パネルに入射する。
特開2013−65414号公報
特許文献1の投射装置において、蛍光光からなる緑色光は、ランバートな配光分布を有しており、レーザー光からなる赤色光や青色光よりも太い。また一般的に、青色レーザー素子と赤色レーザー素子とでは出力パワーが異なるため、光量バランスを取るためには、用いるレーザー素子の個数を互いに異ならせる必要がある。そのため、赤色光と青色光の太さが互いに異なる。このように、互いに太さが異なる色光を集光して表示パネルに照射し、画像を投射すると、色ムラが生じるという問題点がある。
色ムラを解消するためには、各色光の太さを揃える必要がある。例えば細い色光を他の色光に合わせて太くすればよい。また、照明装置を用いて液晶パネルを照明する場合、各色光の太さや断面形状を、液晶パネルの形状や大きさに合わせて調整する必要がある。ところが、光の太さを調整するための光学系と光の断面形状を調整するための光学系とを直列に配置すると、照明装置が大型化するという問題点がある。
本発明の一つの態様は、上記の課題を解決するためになされたものであり、光の太さや断面の形状を調整することができる小型の照明装置を提供することを目的の一つとする。また、本発明の一つの態様は、前記照明装置を備えたプロジェクターを提供することを目的の一つとする。
上記の目的を達成するために、本発明の一つの態様の照明装置は、平行化された第1の色光を射出する少なくとも一つの第1の発光素子を含み、前記第1の色光を含む第1の光を射出する第1の光源部と、前記第1の光を拡大する光線束拡大光学系と、を備えている。前記光線束拡大光学系は、前記第1の光の入射側から順に配置された第1のレンズ面、第2のレンズ面、第3のレンズ面、および第4のレンズ面を含み、前記第1のレンズ面は、パワーを有する球面からなり、前記第2のレンズ面は、前記第1のレンズ面の前記パワーの符号と同じ符号のパワーを有する第1のアナモフィック面からなり、前記第3のレンズ面は、正のパワーを有する第2のアナモフィック面からなり、前記第4のレンズ面は、正のパワーを有する球面からなる。
本発明の一つの態様の光線束拡大光学系において、ともに球面からなる第1のレンズ面と第4のレンズ面とは、光の太さを調整する機能、すなわち、アフォーカル光学系としての機能を有する。また、ともにアナモフィック面からなる第2のレンズ面と第3のレンズ面とは、光の断面の形状を調整する機能、すなわち、形状変換光学系としての機能を有する。なお、本明細書において、「光の断面」は、「光の主光線に垂直な断面」を意味する。
すなわち、光線束拡大光学系においては、アフォーカル光学系を構成する第1のレンズ面と第4のレンズ面との間に、形状変換光学系を構成する第2のレンズ面と第4のレンズ面とが配置されている。そのため、アフォーカル光学系と断面の形状を調整するための光学系とが直列に配置された場合と比べて、照明装置を小型化することができる。これにより、光の太さや断面の形状を調整できる小型の照明装置を提供することができる。
本発明の一つの態様の照明装置において、前記第1のアナモフィック面は、第1のシリンドリカル面から構成され、前記第2のアナモフィック面は、第2のシリンドリカル面から構成されていてもよい。
この構成によれば、照明装置のコストを低減することができる。
本発明の一つの態様の照明装置において、前記第1の発光素子は、半導体レーザー素子からなり、前記第1のシリンドリカル面の母線および前記第2のシリンドリカル面の母線は、前記半導体レーザー素子の光射出領域の短手方向と平行であってもよい。
一般に半導体レーザー素子から射出される光の断面形状は楕円であるが、この構成によれば、半導体レーザー素子の光射出領域の短手方向が第1のシリンドリカルレンズの母線および第2のシリンドリカルレンズの母線と垂直である場合と比べて、第1の光の断面形状を円に近付けることができる。
本発明の一つの態様の照明装置において、前記光線束拡大光学系は、前記第1のレンズ面と前記第2のレンズ面とを有する第1のレンズと、前記第3のレンズ面と前記第4のレンズ面とを有する第2のレンズと、を備えていてもよい。
この構成によれば、第1〜第4のレンズ面のそれぞれが別のレンズに設けられた場合に比べて、照明装置を小型化することができる。
本発明の一つの態様の照明装置は、前記第1の色光とは異なる色の第2の色光を射出する複数の第2の発光素子を有し、前記第2の色光を含む平行化された第2の光を射出する第2の光源部をさらに備えていてもよい。この場合、前記複数の第2の発光素子の個数は、前記第1の発光素子の個数よりも多く、前記第2の光は前記第1の光よりも太く、前記光線束拡大光学系は、前記第2の光と前記光線束拡大光学系の後段での前記第1の光との太さの差が、前記第2の光と前記光線束拡大光学系の前段での前記第1の光との太さの差よりも小さいように、前記第1の光を太くする機能を有していてもよい。
この構成によれば、太さの差が小さい第1の光と第2の光とが照明装置から射出される。
本発明の一つの態様の照明装置は、前記光線束拡大光学系を通過した前記第1の光と前記第2の光とを合成する機能を有する第1の光線合成光学系と、前記第1の光線合成光学系から射出された光が入射する拡散素子と、をさらに備えていてもよい。
この構成によれば、第1の光と第2の光との各々に対応させて別の拡散素子を設ける必要がない。また、第1の光と第2の光とに起因する色ムラが少ない照明光が得られる。
本発明の一つの態様のプロジェクターは、本発明の一つの態様の照明装置と、前記照明装置からの前記第1の光を画像情報に応じて変調することにより画像光を形成する光変調部と、前記画像光を投射する投射光学系と、を備える。
本発明の一つの態様のプロジェクターは、小型の照明装置を備えているため、小型化が容易である。
第1実施形態のプロジェクターの概略構成図である。 第1実施形態の照明装置の概略構成図である。 第1の光源部および光線束拡大光学系の斜視図である。 第2の光源部の斜視図である。 第2の光源部を−X方向から見た側面図である。 照明装置をZ方向から見た場合の青色光の光路を説明するための図である。 照明装置をYZ平面と垂直な方向から見た場合の青色光の光路を説明するための図である。 半導体レーザー素子の斜視図である。 照明装置をZ方向と垂直な方向から見た場合の赤色光の光路を説明するための図である。 照明装置をZ方向と垂直な方向から見た場合の緑色光の光路を説明するための図である。 比較例の照明装置をZ方向から見た場合の青色光の光路を説明するための図である。 比較例の照明装置をZ方向と垂直な方向から見た場合の青色光の光路を説明するための図である。 第2実施形態の光線束拡大光学系をZ方向から見た図である。 第2実施形態の光線束拡大光学系をZ方向と垂直な方向から見た図である。 第3実施形態の光線束拡大光学系をZ方向から見た図である。 第3実施形態の光線束拡大光学系をZ方向と垂直な方向から見た図である。
[第1実施形態]
以下、本発明の第1実施形態について、図1〜図12を用いて説明する。
本実施形態のプロジェクターは、半導体レーザーを用いた光源装置を備えた液晶プロジェクターの一例である。
なお、以下の各図面においては各構成要素を見やすくするため、構成要素により寸法の縮尺を異ならせて示すことがある。
図1は、本実施形態のプロジェクター1の概略構成図である。
図1に示すように、プロジェクター1は、照明装置100と、色分離導光光学系200と、赤色光用光変調装置400Rと、緑色光用光変調装置400Gと、青色光用光変調装置400Bと、クロスダイクロイックプリズム500と、投射光学系600と、を備えている。本実施形態の赤色光用光変調装置400R、緑色光用光変調装置400G、および青色光用光変調装置400Bは、特許請求の範囲の光変調部に対応する。
本実施形態において、照明装置100は、赤色光LR、緑色光LG、および青色光LBを含む白色の照明光WLを射出する。
色分離導光光学系200は、ダイクロイックミラー210と、ダイクロイックミラー220と、反射ミラー230と、反射ミラー240と、反射ミラー250と、リレーレンズ260と、リレーレンズ270と、を備えている。色分離導光光学系200は、照明装置100からの照明光WLを、赤色光LRと緑色光LGと青色光LBとに分離し、赤色光LR、緑色光LG、および青色光LBをそれぞれ対応する赤色光用光変調装置400R、緑色光用光変調装置400G、および青色光用光変調装置400Bに導く。
色分離導光光学系200と赤色光用光変調装置400Rとの間には、フィールドレンズ300Rが配置されている。色分離導光光学系200と緑色光用光変調装置400Gとの間には、フィールドレンズ300Gが配置されている。色分離導光光学系200と青色光用光変調装置400Bとの間には、フィールドレンズ300Bが配置されている。
ダイクロイックミラー210は、赤色光LRを透過させ、緑色光LGおよび青色光LBを反射する。ダイクロイックミラー220は、緑色光LGを反射して、青色光LBを透過させる。反射ミラー230は、赤色光LRを反射する。反射ミラー240および反射ミラー250は、青色光LBを反射する。
赤色光用光変調装置400R、緑色光用光変調装置400G、および青色光用光変調装置400Bのそれぞれは、入射された色光を画像情報に応じて変調して画像を形成する液晶パネルから構成されている。
なお、図示を省略したが、フィールドレンズ300Rと赤色光用光変調装置400Rとの間には、入射側偏光板が配置されている。フィールドレンズ300Gと緑色光用光変調装置400Gとの間には、入射側偏光板が配置されている。フィールドレンズ300Bと青色光用光変調装置400Bとの間には、入射側偏光板が配置されている。赤色光用光変調装置400Rとクロスダイクロイックプリズム500との間には、射出側偏光板が配置されている。緑色光用光変調装置400Gとクロスダイクロイックプリズム500との間には、射出側偏光板が配置されている。青色光用光変調装置400Bとクロスダイクロイックプリズム500との間には、射出側偏光板が配置されている。
クロスダイクロイックプリズム500は、赤色光用光変調装置400R、緑色光用光変調装置400G、青色光用光変調装置400Bから射出された各画像光を合成してカラー画像を形成する。クロスダイクロイックプリズム500は、4つの直角プリズムを貼り合わせた平面視略正方形状をなし、直角プリズム同士を貼り合わせた略X字状の界面に、誘電体多層膜が設けられている。
クロスダイクロイックプリズム500から射出されたカラー画像は、投射光学系600によってスクリーンSCR上に拡大投射される。
図2は、照明装置100の概略構成図である。図3は、第1の光源部10および光線束拡大光学系15の斜視図である。
以下の説明では、照明装置100から照明光WLが射出される方向をY方向とし、第2の光源部20から赤色光LRが射出される方向をX方向とし、X方向およびY方向と垂直で、紙面の手前から奥へ向かう方向をZ方向とする直交座標系を用いる。
図2に示すように、照明装置100は、第1の光源部10と、光線束拡大光学系15と、第2の光源部20と、第1の光線合成光学系25と、第3の光源部30と、光線合成素子35と、集光光学系40と、拡散素子50と、ピックアップ光学系60と、インテグレーター光学系70と、重畳レンズ80と、を備えている。
第1の光源部10、光線束拡大光学系15、および第1の光線合成光学系25は、光軸AX1上に設けられている。第2の光源部20、第1の光線合成光学系25、および光線合成素子35は、光軸AX1と直交する光軸AX2上に設けられている。第3の光源部30、光線合成素子35、集光光学系40、拡散素子50、ピックアップ光学系60、インテグレーター光学系70、および重畳レンズ80は、光軸AX1と平行な光軸AX3上に設けられている。
図3に示すように、第1の光源部10は、一つの第1の発光素子101を備えている。第1の発光素子101は、CANパッケージタイプの半導体レーザーから構成されている。第1の発光素子101は、台座102と缶体103とからなるパッケージ104と、パッケージ104に収容された第1の半導体レーザー素子105と、コリメートレンズ106と、を備えている。第1の半導体レーザー素子105は、例えばピーク波長が460〜480nmの青色光線LB0を射出する。パッケージ104の光射出口には、コリメートレンズ106が設けられている。コリメートレンズ106は、第1の半導体レーザー素子105から射出された青色光線LB0を略平行化する。なお、平行化された青色光線LB0を青色光線LB1と称する。このように、第1の発光素子101は、平行化された青色光線LB1を射出する。青色光線LB1は請求項に記載の第1の色光および第1の光に相当する。
なお、第1の光源部10は、複数の第1の発光素子101を備えていてもよい。第1の光源部10が複数の第1の発光素子101を備えている場合、第1の光源部10からは複数の青色光線LB1が射出される。複数の青色光線LB1各々の主光線は互いに平行である。この場合、青色光線LB1が請求項に記載の第1の色光に相当し、複数の青色光線LB1の束が請求項に記載の第1の光に相当する。
図2および図3に示すように、光線束拡大光学系15は、青色光線LB1の入射側から順に配置された第1のレンズ面151a、第2のレンズ面152a、第3のレンズ面153a、および第4のレンズ面154aを含んでいる。また、光線束拡大光学系15は、青色光線LB1の入射側から順に配置された第1のレンズ151、第2のレンズ152、第3のレンズ153、および第4のレンズ154を備えている。第1のレンズ面151aは、第1のレンズ151に設けられている。第2のレンズ面152aは、第2のレンズ152に設けられている。第3のレンズ面153aは、第3のレンズ153に設けられている。第4のレンズ面154aは、第4のレンズ154に設けられている。光線束拡大光学系15を通過した青色光線LB1は青色光LBに対応する。
第1のレンズ151は、凹面からなる第1のレンズ面151aと平面151bとを有する平凹レンズから構成されている。また、第1のレンズ面151aは、負のパワーを有する球面から構成されている。
第2のレンズ152は、凹面からなる第2のレンズ面152aと平面152bとを有する平凹レンズから構成されている。また、第2のレンズ面152aは、負のパワーを有する第1のアナモフィック面から構成されている。すなわち、第2のレンズ面152aのパワーの符号は、第1のレンズ面151aのパワーの符号と同じである。さらに、第1のアナモフィック面は、第1のシリンドリカル面から構成されている。
第3のレンズ153は、凸面からなる第3のレンズ面153aと平面153bとを有する平凸レンズから構成されている。また、第3のレンズ面153aは、正のパワーを有する第2のアナモフィック面から構成されている。さらに、第2のアナモフィック面は、第2のシリンドリカル面から構成されている。
第1のシリンドリカル面の母線の方向と第2のシリンドリカル面の母線の方向とは、X軸方向と平行である。
第4のレンズ154は、凸面からなる第4のレンズ面154aと平面154bとを有する平凸レンズから構成されている。また、第4のレンズ面154aは、正のパワーを有する球面から構成されている。
この構成において、第1のレンズ151と第4のレンズ154とは、アフォーカル光学系155を構成している。アフォーカル光学系155は、青色光線LB1が太くなるように青色光線LB1の太さを調整する。つまり、光線束拡大光学系15の後段における青色光LBは、光線束拡大光学系15の前段における青色光線LB1よりも太い。
第2のレンズ152と第3のレンズ153とは、形状変換光学系156を構成している。形状変換光学系156については後で詳述するが、形状変換光学系156は、青色光線LB1の断面形状を調整する。光線束拡大光学系15においては、アフォーカル光学系155を構成する第1のレンズ151と第4のレンズ154との間に、形状変換光学系156が配置されている。このように、照明装置100は、アフォーカル光学系と断面の形状を調整するための光学系とが直列に配置されている照明装置よりも小型である。
なお、本明細書において、光が複数の光ビームで構成されている場合には、光の太さは、各光ビームの断面を全て包含する最小の円の直径と定義される。光が一つの光ビームで構成されている場合には、光の太さは、光の断面を包含する最小の円の直径と定義される。
図4は、第2の光源部20の斜視図である。図5は、第2の光源部20を−X方向から見た側面図である。なお、後述する第3の光源部30の構成は、第2の光源部20の構成と略同様である。そのため、第2の光源部20と第3の光源部30については、第2の光源部20で代表して詳細な構成を説明し、第3の光源部30の説明を省略する。
図4および図5に示すように、第2の光源部20は、複数の第2の発光素子201を備えている。本実施形態では、第2の光源部20は、7個の第2の発光素子201を備えている。7個の第2の発光素子201は、中央に位置する1個の第2の発光素子201と、この第2の発光素子201の周辺を取り囲むように設けられた6個の第2の発光素子201と、を含んでいる。このように、周辺の6個の第2の発光素子201は、赤色光LRの中心軸CRの周りに実質的に回転対称に設けられている。7個の第2の発光素子201は、支持部材207によって支持されている。
各第2の発光素子201は、CANパッケージタイプの半導体レーザーから構成されている。第2の発光素子201は、台座202と缶体203とからなるパッケージ204と、パッケージ204に収容された第2の半導体レーザー素子205と、コリメートレンズ206と、を備えている。第2の半導体レーザー素子205は、例えばピーク波長が610〜680nmの赤色光線LR0を射出する(図9参照)。パッケージ204の光射出口には、コリメートレンズ206が設けられている。コリメートレンズ206は、第2の半導体レーザー素子205から射出された赤色光線LR0を略平行化する。なお、平行化された赤色光線LR0を赤色光線LR1と称する。
このように、第2の発光素子201は、平行化された赤色光線LR1を射出する。第2の光源部20は、青色光線LB1(第1の色光)とは異なる色の7本の赤色光線LR1からなる赤色光LRを射出する。複数の赤色光線LR1各々の主光線は互いに平行である。本実施形態の赤色光線LR1は、特許請求の範囲の第2の色光に対応する。本実施形態の赤色光LRは、特許請求の範囲の第2の光に対応する。
図2に示すように、第1の光線合成光学系25は、赤色光LRと光線束拡大光学系15からの青色光LBとを合成して光BRを生成する。第1の光線合成光学系25は、赤色光LRを透過し、青色光LBを反射するダイクロイックミラーで構成されている。ダイクロイックミラーは、光軸AX1および光軸AX2のそれぞれに対して45°の角度をなすように配置されている。
第3の光源部30は、7個の第3の発光素子301を備えている。第3の光源部30の構成は、図4および図5に示した第2の光源部20の構成と同様、6個の第3の発光素子301が1個の第3の発光素子301の周辺を取り囲むように、実質的に回転対称に設けられている。
各第3の発光素子301は、CANパッケージタイプの半導体レーザーから構成されている。第3の発光素子301は、第2の発光素子201と同様、パッケージと、パッケージに収容された第3の半導体レーザー素子305と、コリメートレンズ306と、を備えている(図10参照)。第3の半導体レーザー素子305は、例えばピーク波長が500〜590nmの緑色光線LG0を射出する。パッケージの光射出口には、コリメートレンズ306が設けられている。コリメートレンズ306は、第3の半導体レーザー素子305から射出された緑色光線LG0を略平行化する。なお、平行化された緑色光線LG0を緑色光線LG1と称する。
このように、第3の発光素子301は、平行化された緑色光線LG1を射出する。複数の緑色光線LG1各々の主光線は互いに平行である。第3の光源部30は、青色光線LB1とは異なる色の7本の緑色光線LG1からなる緑色光LGを射出する。
光線合成素子35は、緑色光LGを光BRと合成する。光線合成素子35は、緑色光LGを透過し、光BRを反射するダイクロイックミラーで構成されている。ダイクロイックミラーは、光軸AX2および光軸AX3のそれぞれに対して45°の角度をなすように配置されている。これにより、光線合成素子35から、青色光LBと赤色光LRと緑色光LGとが合成された白色光Wが射出される。
半導体レーザー素子の発光効率は発光色毎に異なるため、半導体レーザー素子の光出力も発光色毎に異なる。青色半導体レーザー素子の発光効率は、緑色半導体レーザー素子の発光効率および赤色半導体レーザー素子の発光効率よりも高い。そのため、青色半導体レーザー素子の光出力は、緑色半導体レーザー素子の光出力および赤色半導体レーザー素子の光出力よりも高い。
なお、一つの半導体レーザーが複数の半導体レーザー素子を備えている場合、半導体レーザーの光出力は、複数の半導体レーザー素子の光出力の合計と等しい。
一例を示すと、日亜化学工業株式会社、ホームページ、製品情報、「レーザーダイオード(LD)」[online]、[平成29年06月14日検索]、インターネット〈URL:http://www.nichia.co.jp/jp/product/laser.html〉によれば、青色半導体レーザー(型番:NDB7K75)の光出力は例えば3.5W(25℃)であり、緑色半導体レーザー(型番:NDG7K75T)の光出力は例えば1W(25℃)である。上記のホームページには記載されていないが、型番:NUBM08-02の青色半導体レーザーアレイは、光出力が4.5W(25℃)の青色半導体レーザーを複数備えている。
三菱電機株式会社、ホームページ、ニュースリリース、「プロジェクター用639nm赤色高出力半導体レーザー発売のお知らせ」[online]、[平成29年06月14日検索]、インターネット〈URL:http://www.mitsubishielectric.co.jp/news/2016/1214.html〉によれば、赤色半導体レーザー(型番:ML562G85)の光出力は例えば2.1W(25℃)である。
上記の温度25℃での光出力を実使用温度45℃での光出力に換算すると、各色の半導体レーザーの光出力は、下記の表1の通りである。
Figure 2019035922
すなわち、1個の青色半導体レーザー(型番:NDB7K75)の光出力は2.8Wとなり、青色半導体レーザーアレイ(型番:NUBM08-02)が備えている青色半導体レーザー1個の光出力は4.1Wとなり、1個の緑色半導体レーザー(型番:NDG7K75T)の光出力は0.8Wとなり、1個の赤色半導体レーザー(型番:ML562G85)の光出力は1.26Wとなる。
一方、明るさが1000lm、2000lm、3000lmのそれぞれの白色光を得るのに必要な各半導体レーザーの光出力、およびこの白色光を得るのに必要な各半導体レーザーの個数は、下記の表2の通りである。
Figure 2019035922
表2に示すように、例えば明るさが2000lmの白色光を得るのに必要な各半導体レーザーの光出力は、青色半導体レーザーが2.46Wであり、緑色半導体レーザーが4.06Wであり、赤色半導体レーザーが5.83Wである。これらの光出力値と上記の1個あたりの半導体レーザーの光出力とから算出すると、明るさが2000lmの白色光を得るのに必要最小限の半導体レーザーの個数は、青色光用半導体レーザー(型番:NDB7K75)が1個、緑色光用半導体レーザーが6個、赤色光用半導体レーザーが6個となる。したがって、本実施形態の照明装置100は少なくとも2000lmまでの白色光を射出することができる。ただし、表2において、明るさ3000lmに対しては、青色半導体レーザーアレイ(型番:NUBM08-02)が備えている青色半導体レーザー1個を用いている。
本発明者の推察によれば、今後、半導体レーザー技術の進歩により各半導体レーザーの光出力が上記の数値よりも増加する可能性はあるが、白色光を得るのに必要な各半導体レーザーの個数の比率は変わらない。したがって、本実施形態の照明装置100は、1個の青色半導体レーザーからなる第1の発光素子101、7個の赤色半導体レーザーからなる第2の発光素子201、および7個の緑色半導体レーザーからなる第3の発光素子301を備えているが、各発光素子101,201,301の個数はこの例に限定されない。
集光光学系40は、光線合成素子35から射出された白色光Wを集光して拡散素子50に入射させる。集光光学系40は、凸レンズ401で構成されている。
拡散素子50は、拡散板501と、回転軸502を中心として拡散板501を回転させるためのモーター503と、を備えている。拡散素子50は、拡散板501に入射した白色光Wを拡散させる。
ピックアップ光学系60は、拡散素子50から射出された白色光Wを略平行化する。ピックアップ光学系60は、凸レンズ601から構成されている。
インテグレーター光学系70は、第1のレンズアレイ71と、第2のレンズアレイ72と、を備えている。第1のレンズアレイ71は、ピックアップ光学系60から射出された白色光Wを複数の部分光線束に分割するための複数のレンズ711を有する。複数のレンズ711は、光軸AX3と直交する面内にマトリクス状に配列されている。
第2のレンズアレイ72は、第1のレンズアレイ71の複数のレンズ711に対応する複数のレンズ721を備えている。第2のレンズアレイ72は、重畳レンズ80とともに、第1のレンズアレイ71の各レンズ711の像を赤色光用光変調装置400R、緑色光用光変調装置400G、および青色光用光変調装置400Bの各々の画像形成領域の近傍に重畳させる。複数のレンズ721は、光軸AX3に直交する面内にマトリクス状に配列されている。
図8は、第1の半導体レーザー素子105の斜視図である。
図8に示すように、第1の半導体レーザー素子105は、青色光線LB0を射出する光射出領域105aを有する。光射出領域105aの平面形状は、光の主光線Bcの方向から見て、長手方向W1と短手方向W2とを有する略矩形状である。第2の半導体レーザー素子205および第3の半導体レーザー素子の形状も、第1の半導体レーザー素子105と同様である。
第1の半導体レーザー素子105において、光射出領域105aの長手方向W1はZ方向と一致し、光射出領域111aの短手方向W2はX方向と一致する。
第1の半導体レーザー素子105から射出された青色光線LB0は、長手方向W1と平行な偏光方向を有する直線偏光である。短手方向W2における青色光線LB0の発散角θ1は、長手方向W1における青色光線LB0の発散角θ2よりも大きい。これにより、青色光線LB0の断面の形状BSは、X方向を長軸方向とし、Z方向を短軸方向とした楕円形状となる。
図6,7を用いて形状変換光学系156について説明する。
図6は、照明装置100をZ方向から見た場合の青色光線LB0の光路を説明するための図である。図7は、照明装置100をX方向から見た場合の青色光線LB0の光路を説明するための図である。図6および図7では、説明を理解しやすくするため、青色光線LB0の光路上にある第1の光線合成光学系25および光線合成素子35の図示を省略し、図2に示すように折れ曲がった青色光LBの光路を直線状に描いている。
図6および図7に示すように、第1の半導体レーザー素子105から射出された青色光線LB0は、コリメートレンズ106によって平行化される。平行化された青色光線LB1は、主にアフォーカル光学系155の作用によって太くなる。
光線束拡大光学系15は、形状変換光学系156をさらに備えている。第2のレンズ152および第3のレンズ153は、第1のシリンドリカル面の母線152cおよび第2のシリンドリカル面の母線153cが第1の半導体レーザー素子105の光射出領域105aの短手方向W2と平行になるように設けられている。この構成が好ましい理由について、以下説明する。
上述したように、第1の半導体レーザー素子105の光射出領域105aの短手方向W2における青色光線LB0の発散角θ1は、長手方向W1における青色光線LB0の発散角θ2よりも大きい。
図6に示すように、XY平面内において、第2のレンズ面152aおよび第3のレンズ面153aはパワーを持っていないため、形状変換光学系156は青色光線LB1を屈折させない。一方、図7に示すように、YZ平面内においては、第2のレンズ面152aおよび第3のレンズ面153aはパワーを持っているため、形状変換光学系156は青色光線LB1を屈折させる。よって、形状変換光学系156は、青色光線LB1の断面の形状を第1のシリンドリカル面の母線152cと平行な方向に拡張(調整)する。
このように、青色光線LB1は、XY平面内においてはアフォーカル光学系155によって拡大され、YZ平面内においてはアフォーカル光学系155と形状変換光学系156とによって拡大される。
そのため、光線束拡大光学系15においては、発散角が小さいYZ面内における拡大倍率が、発散角が大きいXY面内における拡大倍率よりも大きい。これにより、青色光LBの断面形状を楕円形から円に近付けることができるため、後述する色ムラを低減しやすくなる。
図9は、照明装置100をZ方向と垂直な方向から見た場合の赤色光LRの光路を説明するための図である。図9では、説明を理解しやすくするため、赤色光LRの光路上にある第1の光線合成光学系25および光線合成素子35の図示を省略し、図2に示すように折れ曲がった赤色光LRの光路を直線状に描いている。
図10は、照明装置100をX方向から見た場合の緑色光LGの光路を説明するための図である。図10では、説明を理解しやすくするため、緑色光LGの光路上にある光線合成素子35の図示を省略している。
図9に示すように、第2の半導体レーザー素子205の各々から射出された赤色光線LR0のXZ面内における発散角θ3は青色光線LB0の発散角θ1と同レベルである。赤色光線LR1の断面の形状は、Z方向を長軸方向とした楕円形状である。図9には3本の赤色光線LR0が図示されているが、実際には7本の赤色光線LR0が集光光学系40に入射する。図10に示すように、緑色光線LG0についても赤色光線LR0と同様である。
本実施形態では、前述したように、赤色光LRは7本の赤色光線LR1からなり、緑色光LGは7本の緑色光線LG1からなる。よって、集光光学系40に入射するときの赤色光LRは、光線束拡大光学系15に入射するときの青色光線LB1よりも太い。また、集光光学系40に入射するときの緑色光LGは、光線束拡大光学系15に入射するときの青色光線LB1よりも太い。
ここで、本実施形態の照明装置100から光線束拡大光学系15を取り除いた比較例の照明装置900について説明する。
図11は、比較例の照明装置900をZ方向から見た場合の青色光線LB1の光路を説明するための図である。図12は、比較例の照明装置900をYZ平面と垂直な方向から見た場合の青色光線LB1の光路を説明するための図である。
図11および図12に示すように、比較例の照明装置900の場合、青色光線LB1は、光線束拡大光学系15によって太くされることなく、集光光学系40に入射する。青色光線LB1が拡散素子50に入射する際の入射角の分布範囲は、集光光学系40に入射する前の青色光線LB1が太いほど広い。
赤色光LRおよび緑色光LGについては、比較例の照明装置900は、本実施形態の照明装置100と同一の構成を有している。したがって、図9および図10に示すように、赤色光LRおよび緑色光LGは、青色光線LB1よりも太い状態で集光光学系40に入射し、集光されて拡散素子50に入射する。よって、赤色光LRが拡散素子50に入射する際の入射角の分布範囲α5と緑色光LGが拡散素子50に入射する際の入射角の分布範囲α6とは、青色光線LB1が拡散素子50に入射する際の入射角の分布範囲α3,α4のいずれよりも大きい。本実施形態の構成では、全ての色光が共通の集光光学系40に入射するため、入射角の分布範囲を反映して、赤色光LRが拡散素子50から射出される際の拡散角β5と緑色光LGが拡散素子50から射出される際の拡散角β6とは、青色光LBが拡散素子50から射出される際の拡散角β3,β4のいずれよりも大きい。
このように、比較例の照明装置900においては、拡散角が互いに異なる複数の色光がインテグレーター光学系等の後段の光学系に入射することによって、色ムラが生じる。
これに対し、図6および図7に示すように、本実施形態の照明装置100は光線束拡大光学系15を備えているため、青色光LBは青色光線LB1よりも太い。つまり、光線束拡大光学系15は、集光光学系40に入射するときの赤色光LRと集光光学系40に入射するときの青色光LBとの太さの差が、集光光学系40に入射するときの赤色光LRと光線束拡大光学系15に入射するときの青色光線LB1との太さの差よりも小さいように青色光線LB1を太くする。
さらに、光線束拡大光学系15による青色光線LB1の拡大倍率を適宜調整することにより、集光光学系40に入射するときの青色光LBと赤色光LRとの太さを略同じにすることができる。なお、上では青色光LBと赤色光LRとの関係について説明したが、青色光LBと緑色光LGとの関係も同様である。
この場合、各色光が拡散素子50に入射する際の入射角の分布範囲が互いに略等しくなるため、各色光が拡散素子50から射出される際の拡散角も互いに略等しくなる。そのため、第1のレンズアレイ71上に形成される赤色光LRのスポットと緑色光LGのスポットと青色光LBのスポットとは、互いに大きさが略同じである。よって、本実施形態の照明装置100を備えたプロジェクター1によれば、色ムラが低減された画像を表示することができる。
また、光線束拡大光学系15においては、アフォーカル光学系155を構成する第1のレンズ面151aと第4のレンズ面154aとの間に、形状変換光学系156が配置されているため、アフォーカル光学系と形状を調整するための光学系とが直列に配置されている場合と比べて、照明装置100を小型化することができる。これにより、光の断面の形状を調整しつつ、かつ、光の平行度を低下させずに光を太くすることができる小型の照明装置100を提供することができる。
また、本実施形態の光線束拡大光学系15においては、第1のレンズ面151aと第2のレンズ面152aとが負のパワーを有し、第3のレンズ面153aと第4のレンズ面154aとが正のパワーを有しているため、これらのレンズ面の全てが正のパワーを有している場合に比べて、光線束拡大光学系15内の光路長を短くすることができる。
また、光線束拡大光学系15を備えていない比較例の照明装置900において、複数の色光の拡散角の違いを小さくするためには、赤色光用もしくは緑色光用の拡散素子よりも拡散力が大きい青色光用の拡散素子を別途備える必要がある。その場合、青色光の損失増大、部品点数の増大、照明装置の大型化等の不具合が生じる。これに対して、本実施形態の照明装置100においては、全ての色光で1つの拡散素子50を共用することができるため、上記の不具合が生じることがない。
[第2実施形態]
以下、本発明の第2実施形態について、図13および図14を用いて説明する。
第2実施形態のプロジェクターおよび照明装置の基本構成は第1実施形態と同様であり、光線束拡大光学系の構成が第1実施形態と異なる。そのため、プロジェクターおよび照明装置の全体の説明は省略し、光線束拡大光学系についてのみ説明する。
図13は、第2実施形態の光線束拡大光学系をZ方向から見た図である。図14は、第2実施形態の光線束拡大光学系をX方向から見た図である。
図13および図14において、第1実施形態で用いた図面と共通の構成要素には同一の符号を付し、説明を省略する。
図13および図14に示すように、本実施形態の光線束拡大光学系16は、青色光線LB1の入射側から順に配置された第1のレンズ面161a、第2のレンズ面162a、第3のレンズ面153a、および第4のレンズ面154aを含んでいる。また、光線束拡大光学系16は、青色光線LB1の入射側から順に配置された第1のレンズ161、第2のレンズ162、第3のレンズ153、および第4のレンズ154を備えている。第1のレンズ面161aは第1のレンズ161に設けられ、第2のレンズ面162aは第2のレンズ162に設けられ、第3のレンズ面153aは第3のレンズ153に設けられ、第4のレンズ面154aは第4のレンズ154に設けられている。
第1のレンズ161は、凸面からなる第1のレンズ面161aと平面161bとを有する平凸レンズから構成されている。また、第1のレンズ面161aは、正のパワーを有する球面から構成されている。
第2のレンズ162は、凸面からなる第2のレンズ面162aと平面162bとを有する平凸レンズから構成されている。また、第2のレンズ面162aは、正のパワーを有する第1のアナモフィック面から構成されている。すなわち、第2のレンズ面162aのパワーの符号は、第1のレンズ面161aのパワーの符号と同じである。さらに、第1のアナモフィック面は、第1のシリンドリカル面から構成されている。
第3のレンズ153および第4のレンズ154は、第1実施形態と同様である。
本実施形態においても、光の断面の形状を調整しつつ、かつ、光の平行度を低下させずに光を太くすることができる小型の照明装置を提供できる、画像の色ムラが少ないプロジェクターを提供できる、といった第1実施形態と同様の効果が得られる。
[第3実施形態]
以下、本発明の第3実施形態について、図15および図16を用いて説明する。
第3実施形態のプロジェクターおよび照明装置の基本構成は第1実施形態と同様であり、光線束拡大光学系の構成が第1実施形態と異なる。そのため、プロジェクターおよび照明装置の全体の説明は省略し、光線束拡大光学系についてのみ説明する。
図15は、第3実施形態の光線束拡大光学系をZ方向から見た図である。図16は、第3実施形態の光線束拡大光学系をX方向から見た図である。
図15および図16において、第1実施形態で用いた図面と共通の構成要素には同一の符号を付し、説明を省略する。
図15および図16に示すように、本実施形態の光線束拡大光学系17は、青色光線LB1の入射側から順に配置された第1のレンズ面171a、第2のレンズ面171b、第3のレンズ面172c、および第4のレンズ面172dを含んでいる。光線束拡大光学系17は、青色光線LB1の入射側から順に配置された第1のレンズ171と、第2のレンズ172と、を備えている。第1のレンズ面171aと第2のレンズ面171bとは、第1のレンズ171に設けられている。第3のレンズ面172cと第4のレンズ面172dとは、第2のレンズ172に設けられている。
第1のレンズ171は、第1の発光素子101に対向する第1のレンズ面171a(凹面)と、第2のレンズ172に対向する第2のレンズ面171b(凹面)と、を有する両凹レンズから構成されている。第1のレンズ面171aは、負のパワーを有する球面から構成されている。第2のレンズ面171bは、負のパワーを有する第1のアナモフィック面から構成されている。さらに、第1のアナモフィック面は、第1のシリンドリカル面から構成されている。
第2のレンズ172は、第1のレンズ171に対向する第3のレンズ面172c(凸面)と、第1の光線合成光学系25(図2参照)に対向する第4のレンズ面172d(凸面)と、を有する両凸レンズから構成されている。第3のレンズ面172cは、正のパワーを有する第2のアナモフィック面から構成されている。また、第2のアナモフィック面は、第2のシリンドリカル面から構成されている。第4のレンズ面172dは、正のパワーを有する球面から構成されている。
本実施形態においても、光の断面の形状を調整しつつ、かつ、光の平行度を低下させずに光を太くすることができる小型の照明装置を提供できる、画像の色ムラが少ないプロジェクターを提供できる、といった第1実施形態と同様の効果が得られる。
さらに本実施形態の場合、光線束拡大光学系17が第1のレンズ171と第2のレンズ172とで構成されているため、部品点数を削減することができ、第1、第2実施形態に比べて、光線束拡大光学系17内の光路長を短くすることができる。
なお、本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば上記実施形態では、光線束拡大光学系の第1のアナモフィック面および第2のアナモフィック面のそれぞれがシリンドリカル面で構成されていたが、この構成に代えて、第1のアナモフィック面と第2のアナモフィック面のうち少なくとも一方が、XY平面内、YZ平面内の双方で屈折力を有していてもよい。この場合、YZ平面内の屈折力は、XY平面内の屈折力よりも大きいことが望ましい。この構成によれば、アフォーカル光学系155のパワー不足を補うことができる。
また、上記実施形態で例示した光源部、照明装置、およびプロジェクターの各構成要素の数、配置、形状、材料、寸法等については、適宜変更が可能である。
上記実施形態では、3つの光変調装置を備えるプロジェクターを例示したが、一つの光変調装置でカラー画像を表示するプロジェクターに本発明を適用することも可能である。また、光変調装置として、デジタルミラーデバイスを用いてもよい。
また、上記実施形態では、本発明による照明装置をプロジェクターに応用する例を示したが、これに限られない。本発明による照明装置を自動車用ヘッドライト等の照明器具にも適用することができる。
1…プロジェクター、10…第1の光源部、15,16,17…光線束拡大光学系、20…第2の光源部、25…第1の光線合成光学系、50…拡散素子、100…照明装置、101…第1の発光素子、105…第1の半導体レーザー素子、151,161,171…第1のレンズ、151a,161a,171a…第1のレンズ面、152,162,172…第2のレンズ、152a,162a,171b…第2のレンズ面、153…第3のレンズ、153a,172c…第3のレンズ面、154…第4のレンズ、154a,172d…第4のレンズ面、400B…青色光用光変調装置(光変調部)、400G…緑色光用光変調装置(光変調部)、400R…赤色光用光変調装置(光変調部)、600…投射光学系。

Claims (7)

  1. 平行化された第1の色光を射出する少なくとも一つの第1の発光素子を有し、前記第1の色光を含む第1の光を射出する第1の光源部と、
    前記第1の光を拡大する光線束拡大光学系と、
    を備え、
    前記光線束拡大光学系は、前記第1の光の入射側から順に配置された第1のレンズ面、第2のレンズ面、第3のレンズ面、および第4のレンズ面を含み、
    前記第1のレンズ面は、パワーを有する球面からなり、
    前記第2のレンズ面は、前記第1のレンズ面の前記パワーの符号と同じ符号のパワーを有する第1のアナモフィック面からなり、
    前記第3のレンズ面は、正のパワーを有する第2のアナモフィック面からなり、
    前記第4のレンズ面は、正のパワーを有する球面からなる、照明装置。
  2. 前記第1のアナモフィック面は、第1のシリンドリカル面からなり、
    前記第2のアナモフィック面は、第2のシリンドリカル面からなる、請求項1に記載の照明装置。
  3. 前記第1の発光素子は、半導体レーザー素子を備え、
    前記第1のシリンドリカル面の母線および前記第2のシリンドリカル面の母線は、前記半導体レーザー素子の光射出領域の短手方向と平行である、請求項2に記載の照明装置。
  4. 前記光線束拡大光学系は、前記第1のレンズ面と前記第2のレンズ面とを有する第1のレンズと、前記第3のレンズ面と前記第4のレンズ面とを有する第2のレンズと、を備える、請求項1から請求項3までのいずれか一項に記載の照明装置。
  5. 前記第1の色光とは異なる色の平行化された第2の色光を射出する複数の第2の発光素子を有し、前記第2の色光を含む第2の光を射出する第2の光源部をさらに備え、
    前記複数の第2の発光素子の個数は、前記第1の発光素子の個数よりも多く、
    前記第2の光は前記第1の光よりも太く、
    前記光線束拡大光学系は、前記第2の光と前記光線束拡大光学系の後段での前記第1の光との太さの差が、前記第2の光と前記光線束拡大光学系の前段での前記第1の光との太さの差よりも小さいように、前記第1の光を太くする機能を有する、請求項1から請求項4までのいずれか一項に記載の照明装置。
  6. 前記光線束拡大光学系を通過した前記第1の光と前記第2の光とを合成する機能を有する第1の光線合成光学系と、
    前記第1の光線合成光学系から射出された光が入射する拡散素子と、をさらに備える、請求項5に記載の照明装置。
  7. 請求項1から請求項6までのいずれか一項に記載の照明装置と、
    前記照明装置からの前記第1の光を画像情報に応じて変調することにより画像光を形成する光変調部と、
    前記画像光を投射する投射光学系と、を備える、プロジェクター。
JP2017158838A 2017-08-21 2017-08-21 照明装置およびプロジェクター Pending JP2019035922A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017158838A JP2019035922A (ja) 2017-08-21 2017-08-21 照明装置およびプロジェクター
US16/105,399 US10649324B2 (en) 2017-08-21 2018-08-20 Illumination device and projector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017158838A JP2019035922A (ja) 2017-08-21 2017-08-21 照明装置およびプロジェクター

Publications (1)

Publication Number Publication Date
JP2019035922A true JP2019035922A (ja) 2019-03-07

Family

ID=65360416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017158838A Pending JP2019035922A (ja) 2017-08-21 2017-08-21 照明装置およびプロジェクター

Country Status (2)

Country Link
US (1) US10649324B2 (ja)
JP (1) JP2019035922A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020036013A1 (ja) * 2018-08-16 2020-02-20 ソニー株式会社 光源装置及び投射型表示装置
US11513436B2 (en) 2020-09-30 2022-11-29 Canon Kabushiki Kaisha Light source apparatus and image projection apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024060421A (ja) * 2022-10-19 2024-05-02 セイコーエプソン株式会社 光源装置およびプロジェクター

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994022042A1 (en) * 1993-03-16 1994-09-29 Seiko Epson Corporation Projection type display device
JP3473335B2 (ja) * 1996-08-19 2003-12-02 セイコーエプソン株式会社 投写型表示装置
US6257726B1 (en) * 1997-02-13 2001-07-10 Canon Kabushiki Kaisha Illuminating apparatus and projecting apparatus
US6254237B1 (en) * 1999-04-30 2001-07-03 David K. Booth Multi-pixel microlens illumination in electronic display projector
JP3873845B2 (ja) * 2002-08-07 2007-01-31 三菱電機株式会社 映像表示装置
US20060023172A1 (en) * 2004-07-28 2006-02-02 Sanyo Electric Co. Illuminating device and projection type video display
JP2010152046A (ja) * 2008-12-25 2010-07-08 Seiko Epson Corp プロジェクタ
JP5816844B2 (ja) * 2010-06-22 2015-11-18 パナソニックIpマネジメント株式会社 レーザプロジェクタ
JP5673247B2 (ja) * 2011-03-15 2015-02-18 セイコーエプソン株式会社 光源装置及びプロジェクター
JP5861348B2 (ja) 2011-09-15 2016-02-16 株式会社リコー 照明光学系及び投射装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020036013A1 (ja) * 2018-08-16 2020-02-20 ソニー株式会社 光源装置及び投射型表示装置
US11490059B2 (en) 2018-08-16 2022-11-01 Sony Corporation Light source device and projection type display device
US11513436B2 (en) 2020-09-30 2022-11-29 Canon Kabushiki Kaisha Light source apparatus and image projection apparatus

Also Published As

Publication number Publication date
US20190056646A1 (en) 2019-02-21
US10649324B2 (en) 2020-05-12

Similar Documents

Publication Publication Date Title
JP5567844B2 (ja) 投写型映像表示装置
JP6750731B2 (ja) 照明装置およびプロジェクター
JP5673247B2 (ja) 光源装置及びプロジェクター
JP5361145B2 (ja) 照明光学系、画像投射用光学系及び画像投射装置
JP6578631B2 (ja) 照明装置およびプロジェクター
JP2014178464A (ja) 光源ユニット並びに照明装置及び画像投射装置
US10599024B2 (en) Light source apparatus including multiple light sources and optical characteristic conversion element, and image projection apparatus using light source apparatus
JP2018109747A (ja) 光源装置および画像投射装置
US10571788B2 (en) Light source device, illumination device, and projector
JP2019035922A (ja) 照明装置およびプロジェクター
EP3627221A1 (en) Projection display device
JP2015108758A (ja) 照明装置、投射型映像表示装置、照明方法、および投射型映像表示方法
CN113835288B (zh) 激光投影系统及光源装置
JP2019078947A (ja) 光源装置およびプロジェクター
US20170242266A1 (en) Illumination device and projector
JP2008165122A (ja) 投射型表示装置及び光学ユニット
JP3644313B2 (ja) 照明光学系およびこれを用いた投写型表示装置
JP2019061083A (ja) 光源装置およびプロジェクター
JP2018120025A (ja) 照明装置及びプロジェクター
JP6323072B2 (ja) 照明装置およびプロジェクター
JP2019032471A (ja) 照明装置およびプロジェクター
JP6428437B2 (ja) 多波長光源および光源装置
JP5515200B2 (ja) 照明光学系及びプロジェクタ装置
JP6696297B2 (ja) 投射装置
JP2021096381A (ja) 光源装置および投写型画像表示装置