JP2018533170A - 電気化学システム用セパレータプレート - Google Patents

電気化学システム用セパレータプレート Download PDF

Info

Publication number
JP2018533170A
JP2018533170A JP2018513621A JP2018513621A JP2018533170A JP 2018533170 A JP2018533170 A JP 2018533170A JP 2018513621 A JP2018513621 A JP 2018513621A JP 2018513621 A JP2018513621 A JP 2018513621A JP 2018533170 A JP2018533170 A JP 2018533170A
Authority
JP
Japan
Prior art keywords
bead
guide channel
separator plate
configuration
bead configuration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018513621A
Other languages
English (en)
Other versions
JP6769647B2 (ja
Inventor
クンツ、クラウディア
ウェンツェル、ステファン
Original Assignee
レインツ デッチタングス ゲー エム ベー ハー
レインツ デッチタングス ゲー エム ベー ハー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by レインツ デッチタングス ゲー エム ベー ハー, レインツ デッチタングス ゲー エム ベー ハー filed Critical レインツ デッチタングス ゲー エム ベー ハー
Publication of JP2018533170A publication Critical patent/JP2018533170A/ja
Application granted granted Critical
Publication of JP6769647B2 publication Critical patent/JP6769647B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • H01M8/0254Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form corrugated or undulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0265Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant the reactant or coolant channels having varying cross sections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

本発明は、媒体を供給または排出するための媒体チャネルを形成する少なくとも1つの通過口(10a〜10h)と、当該通過口(10a〜10h)の封止を目的として少なくとも1つの通過口(10a〜10h)の周りに配置される少なくとも1つのビード構成(14a〜14h)であって、ビード構成(14a〜14h)の側面(21、22)のうちの少なくとも一方は、媒体を導くための、ビード側面(21、22)を貫く少なくとも1つの開口部(25、26)を含む、ビード構成(14a〜14h)と、ビード構成(14a〜14h)の外部でビード側面(21、22)の開口部(25、26)に接続され、ビード側面(21、22)の開口部(25、26)を介してビード内部(24)と流体的に接続された少なくとも1つのガイドチャネル(27)とを備える電気化学システム(1)用のセパレータプレート(10)に関する。提案するセパレータプレート(10)は、セパレータプレート(10)の平らな表面に対して垂直に画定される、ガイドチャネル(27)の高さ(32'、32'')が少なくとも幾つかの区間において当該ビード構成(14a〜14h)の方向に向かって増大するように、ガイドチャネル(27)が設計されることを特徴とする。

Description

本発明は、電気化学システム用セパレータプレートに関する。例えば、電気化学システムは、燃料電池システム、電気化学コンプレッサ、燃料電池システム用加湿装置または電気分解装置であってよい。
既知の電気化学システムは通常、複数のセパレータプレートを含んでおり、これらのセパレータプレートは、隣接する2つのセパレータプレートごとに電気化学電池または加湿型電池を内包するように積み重ねて配置される。セパレータプレートは通常、それぞれが2つの個別プレートを含んでおり、これらの個別プレートは、電気化学電池または除湿型電池とは反対方向を向いたその裏面に沿って互いに接続される。例えば、セパレータプレートは、個別の電気化学電池(例えば、燃料電池)の電極を電気的に接触させるため、および/または隣接する電池を電気的に接続(電池を直列接続)するために使用され得る。セパレータプレートは、セパレータプレート間の電池において生成された熱を放散させるためにも使用され得る。この種の廃熱は、例えば、燃料電池における電気エネルギーまたは化学エネルギーの変換時に生成され得る。燃料電池の場合は、セパレータプレートとして双極プレートが使用されることが多い。
セパレータプレートまたはセパレータプレートの個別プレートは通常、それぞれが少なくとも1つの通過口を有する。積層されたセパレータプレートの通過口は、電気化学システムのセパレータプレート積層体内で互いに位置合わせされるか、または少なくとも部分的に重なり合っており、その結果、媒体を供給または排出するための媒体チャネルを形成する。セパレータプレートの通過口、または通過口により形成された媒体チャネルを封止するために、既知のセパレータプレートは、セパレータプレートの通過口それぞれの周りに1つずつ配置されるビード構成も有する。
セパレータプレートの個別プレートは、セパレータプレートの活性領域に1つまたは複数の媒体を供給するためのチャネル構造体、および/または媒体を離れた所に搬送するためのチャネル構造体を更に有し得る。活性領域は例えば、電気化学電池または加湿型電池を内包してもよいし、当該電池の境界を定めてもよい。例えば、媒体は燃料(例えば、水素またはメタノール)、反応ガス(例えば、空気または酸素)で構成されてもよいし、被供給媒体の形態をとる冷却剤として存在してもよいし、被排出媒体として反応生成物および被加熱冷却剤で構成されてもよい。燃料電池の場合は通常、反応媒体、すなわち燃料および反応ガスが、個別プレートの、互いに反対方向を向いた面上を誘導される一方で、冷却剤が個別プレートの間を誘導される。
セパレータプレートの通過口の周りに配置されるビード構成の側面は、1つまたは複数の開口部を有してよい。これらの開口部は、セパレータプレートの通過口とセパレータプレートの活性領域との間、またはセパレータプレートの通過口とセパレータプレートの個別プレート間に形成される空洞との間に流体接続を生成するのに使用される。空洞は、例えば、セパレータプレートの個別プレート間で冷却剤を誘導するのに使用される。
明細書DE10248531A1からは、セパレータプレートまたは少なくとも一方の個別プレートが、1つまたは複数のガイドチャネルを更に有してよく、このガイドチャネルがビード構成の外部でビード側面の開口部に接続され、ビード側面の開口部を介してビード内部と流体的に接続されることが分かる。より一層具体的に言うと、媒体はこの種のガイドチャネルを用いてビード構成を通過することができる。このようにして、電気化学システムの効率は高められ得る。
しかし、ビード側面に開口部があると、ビード構成の機械的安定性および弾性が必然的に低下する。この低下は、ビード構成が低い位置に配置されるほど著しくなる。しかしそれと同時に、ビード構成の高さを可能な範囲で最も低くすれば、セパレータプレート積層体のサイズを最小限に抑え、かつ、セパレータプレート積層体の高さを上げずにより多くの電池を収容するのに有利である。
このため、実現し得る最良の機械的安定性およびコンパクト性を有し、かつ、システムの、実現し得る最も効率的な媒体供給を保証する電気化学システム用セパレータプレートを作成するのが本発明の目的である。
この目的は、請求項1に記載の電気化学システム用セパレータプレートにより達成される。従属請求項では、特定の実施形態について説明する。
このように、提案するものは電気化学システム用セパレータプレートである。提案するセパレータプレートは、媒体を供給または排出するための媒体チャネルを形成する少なくとも1つの通過口と、当該通過口の封止を目的として少なくとも1つの通過口の周りに配置される少なくとも1つのビード構成であって、このビード構成の側面のうちの少なくとも一方は、媒体を導くための、ビード側面を貫く少なくとも1つの開口部を含む、少なくとも1つのビード構成と、ビード構成の外部でビード側面の開口部に接続され、ビード側面の開口部を介してビード内部と流体的に接続される少なくとも1つのガイドチャネルとを少なくとも備える。例えば、セパレータプレートは1つの開口部につきガイドチャネルを1つだけ有してよく、ガイドチャネルはこの開口部に接続される。
ここでのガイドチャネルは、セパレータプレートの平らな表面に対して垂直に画定される、ガイドチャネルの高さが、ビード構成の方向に向かって少なくとも部分的に増大するように設計される。ここでのガイドチャネルの高さは、セパレータプレートの個別プレートの、ビード頂部の方を向いた面にあたる平らな表面から、ガイドチャネル頂部の横断面において最も高い箇所までの距離を表す。ガイドチャネルは、この平らな表面に形成されるか、またはこの平らな表面に含まれる。
逆に言うと、このことは、ガイドチャネルの高さがビード構成から離れるにつれて少なくとも部分的に減少することを意味する。このように、ガイドチャネルの、ビードから離れた所にある端部の高さは、従来技術のものよりも低い。結果として、ビード構成が圧縮されるので、ガイドチャネルに対するテコの作用がごく限定的に働き、このため、ガイドチャネルの端部または別の部分がビード構成の圧縮方向とは反対方向へほんのわずかに変形し、このため、ガイドチャネルが圧縮状態においてビード頂部から一部たりとも突出しない。
ガイドチャネルは、ガイドチャネルのビード側面への移行部におけるガイドチャネルの断面領域がビード側面の開口面と同一であるように、かつ、それと一致するようにビード側面の開口部に接続されるのが好ましい。このように、ガイドチャネルを形成するチャネル壁は、一般的にはビード側面の開口部の縁部で直接、ビード側面へ移行する。ここでは通常、ガイドチャネルの斜め側面から関連するビード側面への移行部、更には、チャネル頂部からこのビード側面への移行部に半径が形成される。このため、本発明に関連する高さおよび幅を考慮するにあたっては、ガイドチャネルの広がる方向に沿って、ガイドチャネルの真ん中半分、好ましくは真ん中3分の1のみを考慮するのが好ましい。
とはいえ、ビードから、およびビードへと十分な媒体を誘導できるよう、更にはガイドチャネルの高さが、ガイドチャネルがビード構成の方向に狭まるのと同じ程度まで増大するのが好ましい。このようにして、媒体は依然としてビード側面を効率的に通過する。
このように、ガイドチャネルは、セパレータプレートの平らな表面と平行に画定される、ガイドチャネルの幅がビード構成の方向に向かって少なくとも部分的に減少するように設計され得る。ここでのガイドチャネルの幅は、いずれの場合も、ガイドチャネルの高さの半分の所で画定されるのが好ましい。ガイドチャネルの幅は、いずれの場合も、ガイドチャネルの長手方向に対して垂直に、または媒体がガイドチャネルを流れる方向に対して垂直に配向される、ガイドチャネルの断面領域に沿って決定されるのが好ましい。ガイドチャネルの幅は、ビード構成に直接接続されていないガイドチャネルの長さの少なくとも60%にわたり、ビード構成の方向に向かって単調に減少してよい。この領域におけるガイドチャネルの幅は、ビード構成の方向に向かって極めて単調に、連続的にまたは少なくとも部分的に縮小し得る。
特に、ガイドチャネルは、ガイドチャネルの断面領域が、ガイドチャネルの広がりの少なくとも真ん中25%、好ましくは真ん中3分の1に沿って、最大25%、好ましくは最大20%、好ましくは最大15%だけ変化するように設計され得る。
ガイドチャネルは通常、ビード構成とは反対方向を向いており、かつ、ガイドチャネルの入口および出口により形成されるガイドチャネルの端部からビード側面の開口部に至るまで延在する。ここで例えば、ガイドチャネルの入口または出口は、セパレータプレート層のセパレータプレートの開口部により形成されてもよいし、内縁部、例えば通過口の内縁部に形成されてもよい。ガイドチャネルの入口または出口が開口部として形成されない、または内縁部に形成されない場合は、他の構造体への移行部により形成されてもよく、この移行部を介して他のガイドチャネルと連通する。ビードの、通過口とは反対方向を向いた側にあるガイドチャネルは通常、ビードの、通過口の方を向いた側にあるガイドチャネルと同様の長さ、通常はビードの長さの50%から200%の長さを有する。言い換えれば、ガイドチャネルの長さは通常、ビードの高さの20倍である。ビードの、通過口とは反対方向を向いた側にある、ガイドチャネルの端部には、別の構造体への移行部を構成する段も設けられ得る。既に述べたように、ガイドチャネルのこれらの端部は、大きな半径を有するのが好ましく、隣接する構造体への移行部に使用される。このため、本発明に関連する高さおよび幅を考慮するにあたっては、ガイドチャネルの真ん中半分、好ましくは真ん中3分の1のみを考慮するのが好ましい。
ガイドチャネルは、ガイドチャネルの高さがガイドチャネルに沿って単調に、好ましくは極めて単調に増大するように設計され得る。このことは、ガイドチャネルの長さの真ん中3分の1に対して特に当てはまる。ガイドチャネルの高さは、ガイドチャネルの広がりに沿って直線的に増大してよい。例えば、ガイドチャネルは、ガイドチャネルの高さがビード構成の方向に向かって少なくとも10%、好ましくは少なくとも20%だけ増大するように設計され得る。
ビード構成の、ビード側面の開口領域における機械的安定性を十分に確保し、ビード構成の弾性変化を最小限に抑えるために、開口部はセパレータプレートの平らな表面に対して垂直に、ビード構成の高さの最大90%、好ましくは最大わずか85%、特に好ましくは最大わずか75%の高さにまで達してよい。ここでの高さは、いずれの場合も、未圧縮状態のビード構成に関するものであることが好ましく、いずれの場合も、個別プレートの、ビード頂部の方を向いた平らな表面からビード頂部の上側の最も高い箇所までの距離で示される。
ガイドチャネルの、ビード構成とは反対方向を向いた端部における、ガイドチャネルの入口または出口は、個別プレートの平らな表面に対して垂直に、ビード構成の高さの最大80%、好ましくは最大70%の高さにまで達してよい。ここでの高さ仕様はやはり、未圧縮状態のビード構成に基づくものであることが好ましく、いずれの場合も、個別プレートの平らな表面からの距離で示される。しかし、ガイドチャネルの、ビード構成とは反対方向を向いた端部における、ガイドチャネルの高さは、ビード構成の開口部の高さよりも常に低いことが好ましい。
ガイドチャネルは、長方形の横断面、台形の横断面、または少なくとも部分的に丸みのある横断面を、少なくとも部分的に、例えばガイドチャネルの広がりの少なくとも真ん中25%に沿って、または真ん中3分の1に沿って有してよい。例えば、ガイドチャネルの頂部は、ビード構成の方向へ少なくとも部分的に凸状に湾曲していてよい。一方、ガイドチャネルとビード構成との間の直接移行部は、一般的にわずかに凹状の湾曲を示す。
ビード構成の機械的安定性および弾性を高めるために、ビード構成は、少なくとも部分的に、特に肉眼で見て直線状に延在する領域において、プレートの平らな表面と平行して波状に延びるように設計され得る。こうすることにより、ビード全体の方向に応じて既に湾曲している領域に相当するこれらの領域、例えばコーナー領域の安定性および弾性が得られる。そのとき、波状の広がりにより波長が生じ得る。ビード構成の波状に延在する部分が少なくとも2つの波長にわたって延在するのが好ましい。
ビード構成の両側面で同等の条件が整う、特に弾性および安定性についても同等の条件が整うのは、波状に広がるビード構成の変曲点と直接隣接する領域のみである。このため、ビード側面の外部においてガイドチャネルで接続されるビード側面の開口部は、ビード構成の波状に延在する部分の変曲点の領域、例えば特にビード構成の波状に延在する部分であって、ビード構成が肉眼では直線状に延在する部分に、配置または形成されるのが有利である。
一方、ガイドチャネルの最大長が多くの設計可能性を伴って実現する場合、または、ガイドチャネルの最小長が低い圧力損失で実現する場合は、このように、ビード構成の波状に延在する部分の(ガイドチャネルから見て)最小または最大となる所に、ビード側面の開口部が配置または形成されるのが好ましい。
同様に、セパレータプレートの通過口の境界を定める、セパレータプレートの内縁部は、少なくとも部分的に波状に延びてよい。内縁部の波状に延在するこの部分は、ビード構成の波状に延在する部分と通過口との間に配置され得る。ここでは、内縁部の波状に延在する部分の第1の波長λ1、およびビード構成の波状に延在する部分の第2の波長λについて、λ=λまたはλ=2・λが成り立ち得る。λ=λの場合は、ガイドチャネルの長さがどこでも等しくなり、このため、非常に均一な状態が実現する。λ=2・λの場合は、内縁部と内縁部のビード側面との間の距離が直線コースと比べて短くなり、このため、ビード構成が圧縮された際に生じるテコの作用が低減する。
セパレータプレートは、互いに接続された2つの個別プレートを有する双極プレートとして形成されてよく、ビード構成およびガイドチャネルは、これらの個別プレートのうちの少なくとも一方に形成される。セパレータプレートおよび/または個別プレートは、金属、好ましくはステンレス鋼で形成され得る。伝導性を高め、かつ、腐食の危険性を減らすために、 個別プレートは少なくとも部分的にコーティングされ得る。セパレータプレートまたは個別プレートの平らな表面に対して垂直に画定される、個別プレートの厚みは、いずれの場合も、50μmから150μmの間、好ましくは70μmから110μmの間であってよい。ビード構成と、ガイドチャネルと、個別プレートとは一体成形されてよく、ビード構成およびガイドチャネルは個別プレートに形成される。例えば、ビード構成およびガイドチャネルは、個別プレートに一体的に形成、特に型打ちされ得る。
ビード構成の側面のうちの少なくとも一方が複数の開口部を有してよく、これらの開口部はそれぞれ、ビード構成の外部において前述のタイプのガイドチャネルで接続され、このガイドチャネルは、ビード構成から離れるにつれて少なくとも部分的に広がる。個別プレート間、直接隣接するガイドチャネルの間、または、互いに直接隣接して配置されるガイドチャネルのうちの少なくとも幾つかの間に、一体的に接合された接続部が形成され得る。一体的に接合された接続部は、半田付けされた接続部、接着接合された接続部、または、溶接された接続部、特にレーザ溶接で生成された接続部であってよい。接続部は、連続したラインもしくは個別の短いラインにわたって、または特定の箇所に設けられ得る。これらの接続部が一体的に接合されるということは、積層体のセパレータプレートがビード構成に沿ってセパレータプレートの平らな表面に対して垂直に圧縮されたときに、ビード構成の個別プレート同士が、セパレータプレートの、ビード構成に隣接する領域において、一体的に接合された接続部がない場合のように、それほど極度にセパレータプレートまたは個別プレートの平らな表面に対して垂直の方向に離れて広がることはないことを意味する。
セパレータプレートの、相互接続された個別プレートは、冷却剤が通過できるように個別プレート間に配置される空洞を内包するように形成および配置され得る。この空洞は、ビード内部と流体的に接続され得る。
個別プレートのうちの少なくとも一方が、同じセパレータプレートの他方の個別プレートとは反対方向を向いたその前面に、反応媒体を導くための構造体を有してよい。例えば、構造体は多数のチャネルを含んでよく、これら多数のチャネルは個別プレートに型打ちされる。セパレータプレートの活性領域にあるチャネル構造体は、流れ場とも呼ばれる。個別プレートは、セパレータプレートの流れ場と通過口との間に更なるチャネル構造体を有してよく、この更なるチャネル構造体は、分配領域と呼ばれる。反応媒体を導くための構造体は、通常、ビード構成の、セパレータプレートの通過口とは反対方向を向いた側に配置される。反応媒体を導くためのこの構造体は、個別プレートの少なくとも1つの開口部を介して、例えば、前述のタイプの開口部に接続されたビード側面およびガイドチャネルの開口部を介して、ビード内部と流体的に接続され得る。このように、反応媒体は、ガイドチャネルの出口から、またはその入口へと、具体的には、セパレータプレートの外面にある上述の開口部から、または上述の開口部へと、上述の構造体内を誘導される一方で、個別プレート間のガイドチャネル内、すなわち、セパレータプレート内部を誘導される。
ビード構成の開口部と、開口部に接続された上記タイプのガイドチャネルとは、ビード構成の、セパレータプレートの通過口とは反対方向を向いた側面、および/またはビード構成の、セパレータプレートの通過口の方を向いた側面に配置され得る。ガイドチャネルは両側面に配置されるのが好ましい。
ビード構成は少なくとも部分的に、ビード側面がそれぞれ、セパレータプレートの平らな表面に対して垂直に配向される垂直方向と、70度未満、好ましくは60度未満、特に好ましくは50度未満の角度をなすように形成され得る。ビード頂部は更に、凸状に湾曲していてよい。ビード構成のこの実施形態では、ビード側面が高い剛性を有する一方で、ビード頂部は、特にビード構成が圧縮されたときに、変形可能で復元力がある。
未圧縮状態にあるビード構成の高さは、800μm未満、600μm未満、500μm未満、450μm未満または400μm未満であってよい。既に述べたように、ビード構成の高さは、セパレータプレートの平らな表面から、または関連する個別プレートの平らな表面からビード頂部の最も高い箇所までの距離で示される。
本明細書で提案するタイプの複数のセパレータプレートを含む電気化学システムを更に提案する。電気化学システムは例えば、燃料電池システム、電気化学コンプレッサ、燃料電池システム用加湿装置または電気分解装置であってよい。電気化学システムのセパレータプレートは一般的に積み重ねて配置され、セパレータプレートの通過口が積層体へ媒体を供給するように、または積層体から媒体を排出するように設計される少なくとも1つの媒体チャネルを形成するように設計される。
本発明の例示的な実施形態を図面に示し、以下の明細書で更に詳しく説明する。コーナー部は部分的に半径のない状態で示されることもあるが、通常実際には常に小さい半径を少なくとも有する。本発明に係るセパレータプレートの幾つかの例を以下に挙げる。ここでは、本発明に係るセパレータプレートの種々の有利な機能について、互いに連動させながら述べる。しかし、本発明は、これら個別のオプション機能の共用によってのみならず、個別でも、または他の例の他のオプション機能との併用によっても展開することができる。以下、同様または同様の参照符号が、同様または同様の要素に対して使用されるため、当該要素の説明は繰り返さないこともある。図面は以下の通りである。
積層された複数のセパレータプレートを有する、本発明に係る燃料電池システムを斜視図で示す。
図1の積層体の、本発明に係る、直接隣接する2つのセパレータプレートと、その間に配置される膜電極ユニットとの斜視図を示す。
本発明に係るセパレータプレートの更なる例示的な実施形態を平面視で示す。
従来技術に従ってビード構成に接続されたガイドチャネルを有するセパレータプレートのビード構成を貫通する供給貫通部の斜視図を示す。
図4aのビード供給貫通部の断面図を示す。
従来技術に係るビード供給貫通部を平面視で示す。
図6aのビード供給貫通部の断面図を示す。ここでは、ビード構成が圧縮されたために、個別プレートの複数の領域がビード構成から部分的に突出している。 図6aのビード供給貫通部の断面図を示す。ここでは、ビード構成が圧縮されたために、個別プレートの領域がビード構成から部分的に突出している。
本発明に係るビード供給貫通部を平面視で示す。
図6aのビード開口部の断面図を示す。ここでは、本発明に係るガイドチャネルを具現化した結果として、ビード構成が圧縮された際に、個別プレートがビード構成から突出しない。 図6aのビード開口部の断面図を示す。ここでは、本発明に係るガイドチャネルを具現化した結果として、ビード構成が圧縮された際に、個別プレートがビード構成から突出しない。
本発明に係るガイドチャネルを有するビード供給貫通部の更なる実施形態を平面視で示す。 本発明に係るガイドチャネルを有するビード供給貫通部の更なる実施形態を平面視で示す。 本発明に係るガイドチャネルを有するビード供給貫通部の更なる実施形態を平面視で示す。 本発明に係るガイドチャネルを有するビード供給貫通部の更なる実施形態を平面視で示す。 本発明に係るガイドチャネルを有するビード供給貫通部の更なる実施形態を平面視で示す。
本発明に係るガイドチャネルに沿って切断された、図6bに記載のビード供給貫通部の斜視図を示す。
隣接するガイドチャネル間の領域に沿って切断された、図6bに記載のビード供給貫通部の斜視図を示す。
本発明に係るガイドチャネルを有するビード供給貫通部の断面図を示す。ガイドチャネルの高さは、ビード構成の方向に向かって少なくとも部分的に増大する。 本発明に係るガイドチャネルを有するビード供給貫通部の断面図を示す。ガイドチャネルの高さは、ビード構成の方向に向かって少なくとも部分的に増大する。 本発明に係るガイドチャネルを有するビード供給貫通部の断面図を示す。ガイドチャネルの高さは、ビード構成の方向に向かって少なくとも部分的に増大する。 本発明に係るガイドチャネルを有するビード供給貫通部の断面図を示す。ガイドチャネルの高さは、ビード構成の方向に向かって少なくとも部分的に増大する。
本発明に係るガイドチャネルの断面図を示す。 本発明に係るガイドチャネルの断面図を示す。 本発明に係るガイドチャネルの断面図を示す。 本発明に係るガイドチャネルの断面図を示す。 本発明に係るガイドチャネルの断面図を示す。 本発明に係るガイドチャネルの断面図を示す。
本発明に係るガイドチャネルの断面図を示す。断面図は、同じガイドチャネルの2つの異なる箇所におけるものである。 本発明に係るガイドチャネルの断面図を示す。断面図は、同じガイドチャネルの2つの異なる箇所におけるものである。 本発明に係るガイドチャネルの断面図を示す。断面図は、同じガイドチャネルの2つの異なる箇所におけるものである。 本発明に係るガイドチャネルの断面図を示す。断面図は、同じガイドチャネルの2つの異なる箇所におけるものである。 本発明に係るガイドチャネルの断面図を示す。断面図は、同じガイドチャネルの2つの異なる箇所におけるものである。
図1は、同一設計のセパレータプレートの積層体2を含む、本発明に係る電気化学システム1を示す。これらのセパレータプレートは、z方向7に沿って積層され、2つの端部プレート3と4との間に挟まれている。ここで、セパレータプレートは双極プレートとして形成され、それぞれが、互いに接続された2つの個別プレートを含む。本例におけるシステム1は、燃料電池システムである。このように、積層体2の2つの隣接する双極プレートはそれぞれ、化学エネルギーを電気エネルギーに変換するように設計された電気化学電池をそれらの間に内包する。代替的な実施形態において、システム1は電気分解装置、電気化学コンプレッサまたは燃料電池システム用加湿装置としても形成され得る。セパレータプレートは同様に、これらの電気化学システムに使用される。これらのセパレータプレートの構造体は、セパレータプレートを、またはそれを通じて誘導される媒体が異なっても、ここで更に詳しく説明する双極プレートの構造体に対応する。
z軸7は、x軸8およびy軸9と共に右手デカルト座標系に延びる。端部プレート4は複数のポート5を有し、これらのポートを介して、媒体はシステム1に供給されてもよいし、システム1から排出されてもよい。システム1に供給されてもよいし、システム1から排出されてもよいこれらの媒体には、例えば、水素分子もしくはメタノールなどの燃料、空気もしくは酸素などの反応ガス、蒸気もしくは低酸素空気などの反応生成物、または水および/もしくはグリコールなどの冷却剤が含まれ得る。
図2は、図1の積層体2の、直接隣接する2つのセパレータプレート10、11を示す。これより以下、繰り返し出て来る機能は、いずれの場合も、同じ参照符号で表す。セパレータプレート10、11は同一に形成される。このため、以下ではセパレータ10についてのみ詳細に説明する。このように、セパレータ10は、積層体2のセパレータプレートの代表的なものである。
セパレータプレート10の平らな表面は、x−y面に沿って配向される。ここで、セパレータプレート10は、結合された2つの金属個別プレート10'、10''で形成される(図8aおよび図8bも参照)。しかし、図2で視認できるのは、セパレータプレート10の、見る人の方を向いた第1の個別プレート10'のみである。セパレータプレート10の個別プレート10'、10''は、ステンレス鋼板から製造される。それぞれの厚みは例えば80μmであり、個別プレートの平らな表面に対して垂直に画定される。個別プレート10'、10''は、セパレータプレート10を形成するために、向かい合うその裏面に沿って、互いに溶接、特に互いに部分的に溶接、半田付けまたは接着接合され得る。例えば、個別プレート10'、10''は、レーザ溶接で生成された接続部により接続され得る。
セパレータプレート10と11との間には、膜電極ユニット(膜電極接合体、MEA)12が配置される。MEA12は、高分子電解質膜(PEM)と1つまたは複数のガス拡散層(GDL)とを含んでよい。GDLは通常、セパレータプレート10、11の方に向けて配向され、例えばカーボンマットとして形成される。セパレータプレート10、11の向かい合う側は、未圧縮状態において電気化学電池13を内包する。燃料電池システム用加湿装置の場合は、ほぼ気体不透過性でありながら透水性の膜で電池13が形成される。電池13は、支持媒体と、少なくとも1つの拡散媒体、好ましくは両側が繊維またはカーボンマットで形成された拡散媒体とにより支持され得る。
セパレータプレート10は、複数の通過口10a〜10hを有する。MEA12は、対応する通過口を有し、これらの通過口は、セパレータプレート10の通過口10a〜10hと、積層体2の残りのセパレータプレートの、対応する通過口とに位置合わせされる。その結果、ひとたび積層体2が圧縮されると、通過口は媒体チャネルを形成し、これらの媒体チャネルはそれぞれ、図1のポート5のうちのそれぞれ1つと流体的に接続される。これらの媒体チャネルは、電気化学システム1に媒体を供給するため、および電気化学システム1から媒体を排出するために使用される。
通過口10a〜10hを密閉するか、または通過口10a〜10hにより形成された媒体チャネルを密閉するために、セパレータプレート10にビード構成が形成され、これらのビード構成は、通過口10a〜10hの周りに配置される。このように、セパレータプレート10の、セパレータプレート11とは反対方向を向いた第1の個別プレート10'は、通過口10a〜10hの周りにビード構成14a〜14hを有する。ビード構成14a〜14hは、いずれの場合も、通過口10a〜10hを完全に取り囲む。セパレータプレート10の、セパレータプレート11の方を向いており、図2では視界から隠れている第2の個別プレート10''は、対応するビード構成を通過口10a〜10hの周りに有する。セパレータプレート10の更なるビード構成15が、通過口10a〜10b、10d〜10fおよび10hを完全に取り囲む。
ここで、セパレータプレート10のビード構成はそれぞれ、個別プレート10'、10''と一体成形される。個別プレート10'、10''のビード構成は通常、個別プレートに一体的に形成、特に型打ちされる。ビード構成は、未圧縮状態の個別プレートに形成される。それぞれの高さは、わずか450μmか、わずか400μmですらあり、個別プレート10'、10''の平らな表面に対して垂直に画定される。ここで、ビードの高さは、いずれの場合も、ビード頂部の方を向いた表面における、関連する個別プレートの平らな表面からビード頂部の最も高い箇所までの距離を表す。ビードの高さがこのように極めて低いと、システム1の積層体2のコンパクト化に有利に役立つ。
図2からは、セパレータプレート10の第1の個別プレート10'が、セパレータプレート10の、第2の個別プレート10''とは反対方向を向いたその前面に、反応媒体を導くための構造体17を有することも分かる。構造体17は多数のチャネルを含み、これらの多数のチャネルは個別プレート10'に型打ちされる。構造体17は、全ての側をビード構成15で完全に取り囲まれ、その結果、ビード構成15は、周囲環境に対して構造体17を封止する。構造体17は、個別プレート10'の活性領域の一部である。この活性領域は、更なる電気化学電池の境界を定め、更なる電気化学電池は、セパレータプレート10と更なるセパレータプレートとの間に配置され、更なるセパレータプレートは、図2には図示していないが、正のz方向7へセパレータプレート10に直接隣接して配置される。セパレータプレート10の第2の個別プレート10''は、第1の個別プレート10'とは反対方向を向いたその前面に、反応媒体を導くための構造体17に対応する構造体を有する。
個別プレート10'、10''は、その間に冷却剤が通過するための空洞18を内包するように形成および配置される。空洞18は特に、個別プレート10'、10''の活性領域からの熱が、空洞18を通じて誘導された冷却剤により放散され得るように、個別プレート10'と10''との間に配置される。
個別プレート10'、10''は、供給貫通部19a〜19hも有し、これらの供給貫通部は、ビード構成14a〜14h、15を通じた媒体(例えば、燃料、反応ガス、反応生成物または冷却剤)の通過または伝導を測定できるように設計される。供給貫通部19a〜19hのうちの幾つか、具体的に言うと供給貫通部19cおよび19gは、通過口10cおよび10g(または、これらで形成された媒体チャネル)と、個別プレート10'、10''間の空洞18との間の流体接続を生成する。供給貫通部のうちの幾つか、具体的に言うと供給貫通部19aおよび19eは、通過口10aおよび10e(または、これらで形成された媒体チャネル)と、セパレータプレート10の個別プレート10'の活性領域の、見る人の方を向いた流れ場17との間の流体接続を生成する。残りの供給貫通部19b、19d、19fおよび19hは、通過口10b、10d、10fおよび10h(または、これらで形成された媒体チャネル)と、セパレータプレート10の第2の個別プレート10''の活性領域の、見る人とは反対方向を向いた流れ場との間の流体接続を生成する。以下の図を参照しながら、供給貫通部19a〜19hの詳細について説明する。
図3は、結合された金属個別プレート10'、10''を有するセパレータプレート10の改変形態を示す。第1の個別プレート10'の前面は、見る人の方を向いている。セパレータプレート10の通過口10a〜10cは、通過口10a〜10cを封止するために通過口10a〜10cの周りに配置されるビード構成14a〜14cのように見え、これらのビード構成は、第1の個別プレート10'に型打ちされる。第1の個別プレート10'の活性領域を封止するためのビード構成15を部分的に示す。図3に記載のセパレータプレート10の実施形態は更に、分配構造体20を有する。この分配構造体は、個別プレート10'の前面に型打ちされた多数のチャネルを含み、個別プレート10'の通過口10aと活性領域との間の流体接続を生成する。図3の活性領域は、このイメージの下縁部にある分配構造体20に接続される。その一方で、ビード構成14a〜14cは、媒体を導くための、ビード構成14a〜14cを貫く供給貫通部19a〜19cを有し、通過口10bの媒体、すなわち、ここでは特に冷却剤が、ビード14bおよびビード15の両方を通過せざるを得ないということは明白である。この媒体は、個別プレート10'の、見る人とは反対方向を向いた側を連続的に誘導される。個別プレート10'、10''間の通過口10aからビード構成14aを横切る供給貫通部19aを通じて誘導された媒体は、開口部33(例えば、図6aから図8bを参照)を介して、見る人の方を向いた分配構造体20に入る。セパレータプレート10の反対側の面にある分配構造体(視認不可)から排出された媒体は、第2の個別プレート10''に形成された開口部を通って個別プレート10'、10''間のガイドチャネルに入り、供給貫通部19cを介してビード14cを横断し、通過口10cに流れ込む。
図4aは、セパレータプレート10の詳細を斜視図で示す。第1の個別プレート10'に型打ちされたビード構成14aは、2つのビード側面21、22およびビード頂部23を有する。個別プレート10'の、第2の個別プレート10''の方を向いた裏面では、ビード側面21、22とビード頂部23との間にビード内部24が配置され、ビード内部24はビード側面21、22とビード頂部23により境界を定められる。通過口10aの方を向いたビード側面21は、媒体を導くための、ビード側面21を貫く複数の開口部25を有する。通過口10aは、開口部25を介してビード内部24と流体的に接続される。通過口10aとは反対方向を向いたビード側面22は、媒体を導くための、ビード側面22を貫く開口部26を有する。
開口部26は、ビード構成14aの、第2の個別プレート10''とは反対方向を向いた外部でガイドチャネル127に接続される。これらのガイドチャネルは本発明に係るものではなく、開口部26を介してビード内部24と流体的に接続される。このように、媒体チャネル10a内を誘導された媒体が、ビード構成14aを貫く、開口部25、ビード内部24、開口部26およびチャネル127を介して誘導されてよく、例えば、矢印をもって示すように、個別プレート10'の活性領域内へ選択的に誘導されてよい。本発明に係らないガイドチャネル127は一定の高さを有し、個別プレート10'のガイドチャネル127の高さは、いずれの場合も、個別プレート10'の平らな表面からチャネル頂部30までの距離で示される。図4bは、図4aに記載のビード構成14aの断面図を示す。切断面はx−z面に沿って配向され、本発明に係らないガイドチャネル127を通って長手方向に延びる。
システム1のセパレータプレートの積層体2を可能な限りコンパクトにするために、セパレータプレート10のビード構成14aおよび残りのビード構成を可能な限り平らに形成することが望ましい。しかし、ビード側面21、22の開口部25、26が、ビード構成14aの安定性および復元力、ひいては封止効果に支障を来し得る。これは、必要に応じて開口部25、26をより小さくすることで相殺され得る。しかしこのようにサイズを小さくすると、ビード構成を通る媒体の流量を不必要に減らすことにもつながる。
図5aは、本発明に係らないビード供給貫通部の平面図を示す。特に、図5aに記載のビード供給貫通部は、一定の高さおよび幅を有する、本発明に係らないガイドチャネル127を有する。図5bおよび図5cはそれぞれ、図5aに記載した構成の断面図を2つずつ示す。これらの切断面は、いずれの場合も、個別プレート10'の平らな表面に対して垂直に、ビード構成14aの直線状の広がりに対して垂直に延びる。切断面は、図5aに示す直線A−Aに沿って延びる。図5bおよび図5cの上側のイメージは、いずれの場合も、未圧縮状態のセパレータプレート10を示す。図5bおよび図5cの下側のイメージは、いずれの場合も、圧縮状態のセパレータプレート10を示す。ここでは、セパレータプレート10の平らな表面に対して垂直に、または個別プレート10'、10''の平らな表面に対して垂直に、ビード構成14aへかかる力を矢印44で示す。
図5bおよび図5cの下側のイメージは、個別プレート10'、10''が圧縮中にビード構成14aから離れた所にある領域46において互いに離れて広がり、その結果、個別プレート10'が領域46においてビード構成14aの高さ45より上へ部分的に突出しているのを示す。この場合は、例えば、積層体2の、隣接するセパレータプレート間に配置される膜電極ユニット12が損傷を受け得る。
この悪影響は、図5bに記載の構成において特に非常に顕著である。図5bの例示的な実施形態では、チャネル127間の領域において、セパレータプレート10の2つの個別プレート10'、10''間に形成された接続部はない。図5cに記載の構成では、隣接するチャネル127間に配置されるセパレータプレート10の平面領域34において、一体的に接合された接続部43がセパレータプレート10の個別プレート10'、10''間に部分的に形成される。図5aでは例として、一体的に接合されたこれらの接続部43のうちの1つの位置に重点が置かれている。例えば、一体的に接合された接続部43は、接着接合された接続部、半田付けされた接続部、または、溶接された接続部、特にレーザ溶接で生成された接続部であってよい。図5bおよび図5cのイメージの比較からは、個別プレート10'、10''が互いに反対方向へ離れて広がるという現象を、図5cに記載の一体的に接合された接続部43により抑制できることが分かる。しかし図5cに記載の構成であっても、ビード構成を圧縮した結果として領域46にかかるテコの力はまた、依然として、個別プレート10'が領域46においてビード構成14aの高さ45より上へ部分的に突出するほどの大きさである。以下では例として、セパレータプレート10の個別プレート10'のビード構成14aを貫通するビード供給貫通部19aに関して、図6aから図9dを参照しながら、図2および図3に記載のビード構成14a〜14h、15を貫通する供給貫通部19a〜19hの、本発明に係る実施形態について述べる。この実施形態によれば、ビード構成14a〜14h、15の安定性および復元力に支障を来すことなく、ビード構成14a〜14h、15を貫通する媒体の流量を十分に大きくすることができる。
このように、図6aは、図5aとは対照的な、本発明に係るビード供給貫通部19aの実施形態を示す。ここでは、本発明に係る複数のガイドチャネル27がビード構成14の両側でビード側面21、22に接続される。ガイドチャネル27はここでも、ビード側面21の開口部25、およびビード側面22の開口部26を介してビード内部24と流体的に接続される。分かりやすくするために、ここでは開口部25、26を別々に示していない。既に述べたように、ガイドチャネル27の高さは、ビード構成14aの方向に向かって、いずれの場合も、少なくとも部分的に、ここでは特に直線的に増大する。例えば、図6aに記載のガイドチャネル27はそれぞれ、図5aに示したガイドチャネル127と同様に形成される。
図6aからは、個別プレート10'の平らな表面と平行に画定される、ガイドチャネル27の幅がビード構成14aの方向に向かって少なくとも部分的に減少することも分かる。ここでのガイドチャネル27はそれぞれ、ビード側面21、22から扇状に広がる。このように、ビード構成14aの直線と平行に画定される、ガイドチャネル27の幅は、ビード構成14aの方向に向かって局所的に直線的に減少する。例として、ビード構成14aから第1の距離を置いた所にある、ガイドチャネル27の第1の幅31'と、ビード構成14aから第2の距離を置いた所にある、同じガイドチャネル27の第2の幅31''とを示す。ここでは、第1の距離が第2の距離よりも短く、第1の幅31'が第2の幅32''よりも短い。
ガイドチャネル27の幅は、いずれの場合も、ガイドチャネル27の高さがビード構成14aの方向に向かって増大するのとほぼ同じ程度までビード構成14aの方向に向かって減少し、その結果、ガイドチャネルの断面領域が、ガイドチャネル27の広がりに沿ってほぼ一定となる。例えば、ガイドチャネル27は、その断面領域がガイドチャネル27の広がりの、少なくとも真ん中25%に沿って、好ましくはその広がりの真ん中3分の1に沿って、最大20%または最大15%だけ変化するように設計される。
図6aに記載のガイドチャネル27は、その高さがビード構成14aから離れるにつれて少なくとも部分的に減少するように設計されているため、ビード構成14aが圧縮された際に、個別プレート10'、10''がビード構成14aの高さ45を超えて、ビード構成14aから離れた所にある領域46へと突出するのを有利にも防ぐ。特に、図6aに記載のガイドチャネル27の、本発明に係る実施形態は、個別プレート10'、10''の平らな表面に対して垂直な領域46における、個別プレート10'、10''間の距離がより短いことを意味する。このように、ガイドチャネル27の、本発明に係る実施形態では、ビード構成14aが圧縮された際に、個別プレート10'、10''が互いに反対方向に離れて領域46内へ広がるという現象が防止される。図6aに記載のガイドチャネルは更に、その幅31'、31''がビード構成14aから離れるにつれて増大するように設計される。そのため、ガイドチャネルを通じた流体輸送に支障を来さない。
図5cを参照しながら既に説明したように、個別プレート10'、10''が離れて領域46内へ広がるという現象は、一体的に接合された接続部を局所的に、隣接するガイドチャネル27間の領域34のうちの少なくとも幾つかにおいて形成することを更に行うことによって防止され得る。図6aには例として、一体的に接合されたこの種の接続部43の位置を示す。例えば、接続部は、接着接合された接続部、半田付けされた接続部、または、溶接された接続部、特にレーザ溶接で生成された接続部であってよい。図6cの実例は、ガイドチャネル27の、本発明に係る実施形態により、隣接するガイドチャネル27間の領域34における個別プレート10'、10''間に一体的に接合された接続部43を更に形成することにより、ビード構成14aの圧縮中に領域46で個別プレート10'、10''が変形するのを、完全に、またはほぼ完全に回避できることを示す。
一方、図6bでは、ガイドチャネル27間に一体的に接合された接続部はないが、それでもなお、実際上は個別プレート10'、10''が離れて広がるという現象が抑制されている例を示す。
その一方で、図7aから図7eは、個別プレート10'のビード構成14aを貫通する、本発明に係る供給貫通部19aの改変形態を示す。図7aから図7dに記載のビード供給貫通部19aは、図6aに記載のビード構成14aが直線状に延びる一方で、図7aから図7eに記載のビード構成14aはそれぞれが、少なくとも部分的に、波状の、特に正弦曲線状の広がりを有するという点で、図6aに記載のビード供給貫通部19aとは異なる。
図7aのビード供給貫通部19bは、通過口10bの方を向いたビード側面21においてのみ、本発明に係るガイドチャネル27を有し、これらのガイドチャネルはそれぞれ、ビード側面21に接続される。単に分かりやすくするために、図7aから図7dでは、ビード側面21、22の開口部25、26を別々に示していない。図7aのガイドチャネル27は、ビード側面21の開口部25を介して、ビード内部24と流体的に接続される。ガイドチャネル27の高さは、ビード構成14bの方向に向かって部分的に直線的に増大する。ガイドチャネル27の幅は、ビード構成14bの方向に向かって同じ程度まで減少し、その結果、ガイドチャネルはほぼ一定の横断面を有する。一方、一定の高さを有するガイドチャネル127が、通過口10bとは反対方向を向いたビード側面22に配置され、ビード内部24と個別プレート10'、10''間にある前述の空洞18との間に流体接続を生成する。図7aのガイドチャネル27は、半径39の両側において、段のある端部37を介して空洞18へ移行する。ガイドチャネル27は、通過口10aの方向に向かって、個別プレート10'の、波底領域に突出する内縁部38により境界を定められる。ガイドチャネルは、内縁部38のこのコースの分だけ短くなり、このため、内縁部38において個別プレート10'、10''が互いに反対方向に広がるという現象が更に抑制される。
図7bに記載のビード供給貫通部19aは、特に、本発明に係るガイドチャネル27がビード側面21、22の両方に配置されるという点で、図7aに記載のビード供給貫通部19bとは異なる。ガイドチャネル27の高さは、ビード構成14aの方向に向かって部分的に直線的に増大する。ガイドチャネル27の幅は、ビード構成14aの方向に向かって同じ程度まで減少し、その結果、ガイドチャネルはほぼ一定の横断面を有する。ビード構成14aの、通過口10aとは反対方向を向いた側にあるガイドチャネル27はそれぞれ、ビード構成14aとは反対方向を向いたその端部のそれぞれに入口または出口を有し、当該入口または出口は、個別プレート10'における通過口33の形態をとる。ガイドチャネル27は、例えば、これらの開口部を介して、個別プレート10'の活性領域と流体的に接続される。同様に、図7bにおける個別プレート10'の内縁部38は波状に延び、ビード構成14aおよび内縁部38は同じ波長を有する。このように、ガイドチャネル27の長さは全て等しく、ひいては、均一な状態が実現する。ここでの内縁部の波形は、ほぼ正弦波に相当するが、台形の内縁部分を規則的に並置することも考えられる。
図7cに記載のビード供給貫通部19aは、ガイドチャネル128がビード側面22に配置され、ビード構成14aの方向に向かって少なくとも部分的に扇状に広がるという点で、図7bに記載のビード供給貫通部19とは異なる。ガイドチャネル128の高さは、個別プレート10'の平らな表面と平行に画定される、その幅がビード構成14aの方向に向かって増加するのと同じ程度までビード構成14aの方向に向かって減少し、その結果、ガイドチャネル128の断面領域は、その広がりに沿ってほぼ一定となる。
図7dに記載のビード供給貫通部19aは、一定の高さを有する直線状のガイドチャネル127がビード側面22に配置されるという点で、図7bに記載のビード供給貫通部19aとは異なる。個別プレート10'の内縁部38は、ここでも波状の広がりを有する。しかし、図7dにおいて、内縁部38の波状の広がりの波長は、ビード構成14aの波状の広がりの波長のちょうど半分に相当する。これにより、ガイドチャネル27は特に短くなり、その結果、内縁部38の領域において個別プレート10'、10''が離れて広がるという現象が更に抑制される。
図7eは更なる実施形態を示す。この実施形態は、流れ場17または空洞18内への移行領域に設けられた段37がないという点で、図7aの実施形態とは異なる。媒体はガイドチャネル127と流れ場17との間を直接移動する。図7dの例示的な実施形態において、通過口10bの縁部は、通過口10aの縁部と同等に形成される。
図7aから図7eの実施形態において、本発明に係るガイドチャネル27はそれぞれ、ビード構成14aの波状の広がりの変曲点の領域においてビード側面へ移行する。
図8aおよび図8bは、図7bに記載のビード供給貫通部19aを斜視図で示す。第1の個別プレート10'に加えて、第2の個別プレート10''も示され、第2の個別プレート10''は、第1の個別プレート10'に接合されてセパレータプレートまたは双極プレート10を形成する。ビード供給貫通部19aの3次元構造を示すために、図8aおよび図8bには、イメージの下端部において切断されたセパレータプレート10を示してある。セパレータプレート10は、いずれの場合も、異なる箇所で切断されている。どちらの場合も、切断面はセパレータプレート10の平らな表面(x−y面)に対して垂直に、かつ、ビード構成14aの広がりとほぼ垂直に延びる。図9aの切断面は、イメージの下縁部において、本発明に係る2つのガイドチャネル27の長手方向に沿って延びる。一方、図9bの切断面は、イメージの下縁部において、隣接する2つのガイドチャネル27間の領域で延びる。図9aからは、ガイドチャネル27の、ビード構成14aとは反対方向を向いた端部にある通過口10aと入口または出口33とが、いずれの場合も、イメージの上側半分において、ビード構成14aの両側にあるガイドチャネル27と、ビード側面21と22の開口部25、26と、ビード内部24とを介して流体的に接続されることが明確に分かる。
図9aから図9dはそれぞれ、ビード構成14aを貫通するビード供給貫通部19aの様々な実施形態の断面図を示す。切断面は、個別プレート10'の平らな表面に対して垂直に、かつ、ビード構成14aの広がる方向に対して垂直に配向される。いずれの場合も、ビード側面21、22、およびビード側面21と22との間に配置されるビード頂部23を有するビード構成14aを示す。ビード側面21、22およびビード頂部23は、個別プレート10'の、第2の個別プレート10''の方を向いた裏面にビード内部24を内包する。開口部25、26はビード側面21、22に配置され、ここでは矢印で示される。ビード側面21の開口部25は、ビード側面21を通じて媒体(例えば、燃料、反応ガス、反応生成物または冷却剤)を導くのに使用される。ビード側面22の開口部26は、ビード側面22を通じて媒体を誘導するのに使用される。
本発明に係らないガイドチャネル127は、ビード構成14aの左側外部において開口部25に接続される。ビード内部24は、開口部25およびガイドチャネル127を介して、通過口10aへ、または通過口10aにより形成された媒体チャネルと流体的に接続される。本発明に係らないガイドチャネル127は、x方向8に沿って一定の高さを有する。本発明に係るガイドチャネル27は、ビード構成14aの右側外部において開口部26に接続される。ビード内部24は、開口部26と、本発明に係るガイドチャネル27と、セパレータプレート10の2つの個別プレート10'、10''のうちの一方にある開口部33とを介して、個別プレート10'の前面にある、個別プレート10'の活性領域と流体的に接続される。例えば、ビード内部24は、開口部26と、本発明に係るガイドチャネル27と、開口部33とを介して、個別プレート10'の前面にある前述の構造体17と流体的に接続される(図2参照)。代替的な実施形態(図示せず)において、ガイドチャネル27は、ビード内部24と前述の空洞18との間にも流体接続を生成し得る。空洞18は、セパレータプレート10の個別プレート10'、10''間に配置され、冷却剤が個別プレート10'、10''間を通過できるように設計される。その結果、ここでは開口部33なしで済ませる。このように、媒体はガイドチャネル127、開口部25、ビード内部24、開口部26およびガイドチャネル27を介して、ビード構成14aを誘導され得る。
本発明に係るガイドチャネル27は、いずれの場合も、ガイドチャネル27の入口または出口からビード側面22またはビード側面22の開口部26に至るまで延在する。この入口または出口は、例えば開口部として、ガイドチャネル27の、ビード構成14aとは反対方向を向いた端部を形成する。ガイドチャネル27が、ビード内部24と冷却剤が通過するための空洞18との間に流体接続を生成するとすれば、ガイドチャネル27は、ビード構成14aとは反対方向を向いたその端部に個別プレート10'の通過口を有さない。なぜなら、この場合は、個別プレート10'の前面にある活性領域へ冷却剤が入るべきではないからである。その結果、ガイドチャネル27の、ビード構成14aとは反対方向を向いた端部は、例えば、ガイドチャネル27の高さの段状変化により生じ得る。
ガイドチャネル27は、個別プレート10'の一部として形成されるか、または個別プレート10'と一体成形される。例えば、ガイドチャネル27は、個別プレート10'に一体的に形成、特に型打ちされる。ビード構成14aおよびガイドチャネル27は、通常両方とも、個別プレート10'と一体成形され、そこに型打ちされる。ガイドチャネル127も個別プレート10'と一体成形され、そこに型打ちされる。
本発明に係るガイドチャネル27は、本発明に係るガイドチャネル27の高さがビード構成14aの方向に向かって少なくとも部分的に増大するという点で、本発明に係らないガイドチャネル127とは異なる。ガイドチャネル27の高さは、個別プレート10'の平らな表面41からガイドチャネル27のチャネル頂部30までの距離で示される。図9aから図9dの例示的な実施形態には、ビード側面22の最下部42の領域における、ガイドチャネル27の第1の高さ32'と、ガイドチャネル27の、ビード構成14aとは反対方向を向いた端部の領域における、ガイドチャネル27の第2の高さ32''とを示す。ここでの端部は、個別プレートのうちの一方にある開口部33により形成される。第2の高さ32''は、いずれの場合も、第1の高さ32'よりも低い。ガイドチャネル27の第1の高さ32は、ビード構成14aから第1の距離を置いて画定される。ガイドチャネル27の第2の高さ32''は、ビード構成14aから第2の距離を置いて画定される。第1の距離は、いずれの場合も、第2の距離より短い。ビード構成14aからの距離は、例えば、いずれの場合も、ビード側面22の最下部42から最も短い距離、またはビード頂部23から最も短い距離で示される。
図9aから図9dの例示的な実施形態において、ガイドチャネル27の高さは、ガイドチャネル27の、ビード構成14aとは反対方向を向いた端部からビード最下部42に向かって、いずれの場合も単調に増大する。ガイドチャネル27の高さは、ビード最下部42に向かって、部分的に、特に部分40において極めて単調に増大する。図9a、図9bおよび図9dにおいて、部分40におけるガイドチャネル27の高さは、ビード構成14aの方向に向かって直線的に増大する。図9cにおいて、部分40におけるガイドチャネル27のチャネル頂部30は、ビード構成14aの方向に向かって凸状に湾曲する。ビード最下部42におけるガイドチャネル27の高さ32'は、いずれの場合も、ガイドチャネルの、ビード構成14aとは反対方向を向いた端部33における高さ32''より、少なくとも10%または少なくとも20%高い。
開口部26およびビード側面22は、ガイドチャネル27がビード側面22へ移行する所であって、個別プレート10'の平らな表面41に対して垂直に、すなわち、図9aから図9dで言うと、z方向7に沿って、いずれの場合も、未圧縮状態にあるビード構成14aの高さの最大90%、好ましくは最大85%の高さにまで達する。ここでのビード構成14aの高さは、個別プレート10'の平らな表面41からビード頂部23までの距離で示される。ガイドチャネル27の、ビード構成14aとは反対方向を向いた端部における、ガイドチャネルの入口または出口33は、個別プレート10'の平らな表面41に対して垂直に、いずれの場合も、ビード構成14aの高さの最大70%の高さにまで達する。図9aから図9dにおいて、ガイドチャネル27の端部における高さは、いずれの場合も、ビード構成14aの高さの50%未満ですらある。
図10aから図10fは、図6aから図8bの本発明に係るガイドチャネル27の異なる実施形態の断面図を示す。切断面はいずれの場合も、個別プレート10'の平らな表面に対して垂直に、かつ、媒体がガイドチャネル27を流れる方向に対して垂直に配向される。このように、切断面はいずれの場合も、ガイドチャネル27の断面領域が最小限となるように配向される。
図10aにおけるガイドチャネル27の横断面は、直線状の斜め側面28、29と、直線状のチャネル頂部30とを有する台形である。図10bの斜め側面28、29は直線状であり、チャネル頂部30は内部に向かって凹状に湾曲している。図10cの斜め側面28、29は直線状であり、チャネル頂部30は幾つかの短い直線状の部分に分かれている。その結果、チャネル頂部30は、斜め側面28、29と比べて平坦である。図10dは、直線状の斜め側面28、29と、凸状に湾曲した丸みのあるチャネル頂部30とを示す。ここでは、チャネル頂部30の湾曲が直線状の斜め側面28、29へと滑らかに、すなわち角のない状態で移行する。図10eは、直線状の斜め側面28、29と、凸状に湾曲したチャネル頂部30とを示す。ここでは、チャネル頂部30の湾曲が斜め側面28、29へと移行する部分に角がある。図10fは、完全に丸みのある横断面を示す。チャネル頂部30および斜め側面は両方とも、少なくとも局所的に凸状に湾曲し、角がない状態で互いの間を移行する。
ビード構成は原則として、図10aから図10fに示すような横断面を有してもよい。その場合は、ビード内部24、斜め側面28、29およびビード側面21、22がガイドチャネル27に対応し、ビード頂部23がチャネル頂部30に対応する。高さ(通常は幅も)は概して、ビード14の場合の方がガイドチャネル27の場合よりも大きい。
一方、図11aから図11eは、図6aから図8bの本発明に係るガイドチャネル27の様々な実施形態の断面図を示す。切断面はここでも、個別プレート10'の平らな表面に対して垂直に、かつ、媒体がガイドチャネル27を流れる方向に対して垂直に配向される。ここで、図11aから図11eはそれぞれ、同じガイドチャネルの、ビード構成14aからの距離が異なる2つの断面を示す。ここでは、同じガイドチャネル27の横断面の幾何学的形状がその広がりに沿って変わり得ることが分かる。例えば、図11dのガイドチャネル27の横断面の形状は、凸状に湾曲した形状から台形形状へ移行する。図11bは、ガイドチャネル27が非対称的に形成され得ることを示す。
特定のガイドチャネル27の最大高さ32''および最小高さ32'も示す。単に分かりやすくするために、チャネル27の、関連付けられた幅31''、31'は示していない。いずれの場合も、高さのより高い横断面は、高さのより低い横断面よりもビード構成14aからの距離が短い。図11aから図11eでこうして明確に分かるように、ガイドチャネル27の高さの半分の所でいずれの場合も画定される、ガイドチャネル27の幅は、ビード構成14aの方向に向かって減少し、その一方で、ガイドチャネル27の高さ32は、ビード構成14aの方向に向かって増大する。しかしここで、ガイドチャネル27の横断面の形状は、いずれの場合も、断面領域がチャネルの広がりに沿っていずれの場合も最大20%、好ましくはいずれの場合も10%未満だけ変化するように変化する。

Claims (26)

  1. 媒体を供給または排出するための媒体チャネルを形成する少なくとも1つの通過口と、
    前記通過口の封止を目的として前記少なくとも1つの通過口の周りに配置される少なくとも1つのビード構成であって、前記ビード構成の側面のうちの少なくとも一方は、媒体を導くための、ビード側面を貫く少なくとも1つの開口部を含む、少なくとも1つのビード構成と、
    前記ビード構成の外部で前記ビード側面の前記開口部に接続され、前記ビード側面の前記開口部を介してビード内部と流体的に接続される少なくとも1つのガイドチャネルとを備え、
    前記ガイドチャネルは、セパレータプレートの平らな表面に対して垂直に画定される、前記ガイドチャネルの高さが少なくとも部分的に前記ビード構成の方向に向かって増大するように設計される、電気化学システム用セパレータプレート。
  2. 前記ガイドチャネルは、前記ガイドチャネルの断面領域が前記ガイドチャネルの広がりの真ん中25%に沿って、好ましくは前記ガイドチャネルの前記広がりの真ん中3分の1に沿って、最大25%、好ましくは最大20%、特に好ましくは最大15%だけ変化するように設計され、前記ガイドチャネルの、前記ビード構成とは反対方向を向いた端部から前記ビード側面の前記開口部まで延在する、請求項1に記載の電気化学システム用セパレータプレート。
  3. 前記ガイドチャネルは、前記セパレータプレートの前記平らな表面と平行に画定される、前記ガイドチャネルの幅が前記ビード構成の前記方向に向かって少なくとも部分的に減少するように設計される、請求項1または2に記載の電気化学システム用セパレータプレート。
  4. 前記ガイドチャネルは、前記ガイドチャネルの前記高さが、前記ガイドチャネルに沿って単調に増大するように設計される、請求項1から3のいずれか一項に記載の電気化学システム用セパレータプレート。
  5. 前記ガイドチャネルは、前記ガイドチャネルの前記高さが直線的に増大するように設計される、請求項1から4のいずれか一項に記載の電気化学システム用セパレータプレート。
  6. 前記ガイドチャネルは、前記ガイドチャネルの幅が前記ガイドチャネルに沿って、前記ビード側面から距離を置いて配置される前記ガイドチャネルの長さの少なくとも60%にわたって、単調に減少するように設計される、請求項3から5のいずれか一項に記載の電気化学システム用セパレータプレート。
  7. 前記ガイドチャネルは、前記ガイドチャネルの前記高さが前記ガイドチャネルに沿って、少なくとも10%、好ましくは少なくとも20%だけ増大するように設計される、請求項1から6のいずれか一項に記載の電気化学システム用セパレータプレート。
  8. 前記ビード構成の未圧縮状態において、前記ビード側面の前記開口部は、前記セパレータプレートの前記平らな表面に対して垂直に、前記ビード構成の前記高さの最大90%、好ましくは最大85%の高さにまで達する、請求項1から7のいずれか一項に記載の電気化学システム用セパレータプレート。
  9. 前記ビード構成の未圧縮状態において、前記ガイドチャネルは、前記ガイドチャネルの、前記ビード構成とは反対方向を向いた端部を形成する、前記ガイドチャネルの入口または出口が前記セパレータプレートの前記平らな表面に対して垂直に、前記ビード構成の前記高さの最大80%、好ましくは最大70%の高さにまで達するように設計される、請求項1から8のいずれか一項に記載の電気化学システム用セパレータプレート。
  10. 前記ガイドチャネルは、少なくとも幾つかの区間において、長方形の横断面、台形の横断面、または少なくとも部分的に丸みのある横断面を有する、請求項1から9のいずれか一項に記載の電気化学システム用セパレータプレート。
  11. 前記ガイドチャネルは、前記ガイドチャネルの頂部が前記ビード構成の前記方向に向かって、少なくとも部分的に凸状に湾曲するように設計される、請求項1から10のいずれか一項に記載の電気化学システム用セパレータプレート。
  12. 前記セパレータプレートの、前記通過口の境界を定める内縁部が少なくとも部分的に波状に延在する、請求項1から11のいずれか一項に記載の電気化学システム用セパレータプレート。
  13. 前記ビード構成は、少なくとも幾つかの区間において波状に延在し、前記ビード構成の波状に延在する少なくとも1つの部分が、少なくとも2つの波長にわたって延在する、請求項1から12のいずれか一項に記載の電気化学システム用セパレータプレート。
  14. 前記開口部は、前記ビード構成の波状に延在する前記部分の変曲点の領域において、前記ビード構成の前記外部において前記ガイドチャネルで接続された前記ビード側面に配置される、請求項13に記載の電気化学システム用セパレータプレート。
  15. 内縁部の波状に延在する部分は、前記ビード構成の波状に延在する前記部分と前記通過口との間に配置され、前記セパレータプレートの、前記通過口の境界を定める内縁部の波状に延在する前記部分の第1の波長λ1、および前記ビード構成の波状に延在する前記部分の第2の波長λについて、λ=λまたはλ=2・λが成り立つ、請求項12から14のいずれか一項に記載の電気化学システム用セパレータプレート。
  16. 互いに接続された2つの個別プレートを有する双極プレートとして形成され、前記ビード構成および前記ガイドチャネルは、前記個別プレートのうちの少なくとも一方に形成される、請求項1から15のいずれか一項に記載の電気化学システム用セパレータプレート。
  17. 前記ビード構成の前記側面のうちの少なくとも一方は複数の開口部を有し、前記複数の開口部はそれぞれ、前記ビード構成の前記外部において別個のガイドチャネルで接続され、前記別個のガイドチャネルの前記高さは、少なくとも幾つかの区間において前記ビード構成の前記方向に増大し、前記個別プレート間の一体的に接合された接続部が、互いに直接隣接して配置される前記ガイドチャネルのうちの少なくとも幾つかの間に形成される、請求項16に記載の電気化学システム用セパレータプレート。
  18. 一体的に接合された前記接続部は、半田付けされた接続部、接着接合された接続部、または、溶接された接続部、特にレーザ溶接で生成された接続部である、請求項17に記載の電気化学システム用セパレータプレート。
  19. 前記個別プレートは、金属、好ましくはステンレス鋼で形成され、前記個別プレートの前記平らな表面に対して垂直に画定される、前記個別プレートの厚みはいずれの場合も、50μmから150μmの間、好ましくは70μmから110μmの間である、請求項16から18のいずれか一項に記載の電気化学システム用セパレータプレート。
  20. 前記個別プレートは、冷却剤が通過するための空洞を内包する、請求項16から19のいずれか一項に記載の電気化学システム用セパレータプレート。
  21. 冷却剤が通過するための前記空洞は、前記ビード内部と流体的に連通している、請求項20に記載の電気化学システム用セパレータプレート。
  22. 個別プレートのうちの少なくとも一方は、他方の個別プレートとは反対方向を向いたその表面に、反応媒体を誘導するための構造体を有し、反応媒体を誘導するための前記構造体は、前記個別プレートの開口部の形態をとる、前記ガイドチャネルの少なくとも1つの入口または出口を介して、前記ビード内部と流体的に連通している、請求項1から21のいずれか一項に記載の電気化学システム用セパレータプレート。
  23. 前記開口部および前記ガイドチャネルは、前記ビード構成の、前記セパレータプレートの前記通過口とは反対方向を向いた側面と、前記ビード構成の、前記セパレータプレートの前記通過口の前記方向を向いた側面とのうちの少なくとも一方に配置される、請求項1から22のいずれか一項に記載の電気化学システム用セパレータプレート。
  24. 前記ビード構成が、少なくとも幾つかの区間において、前記ビード側面がそれぞれ、前記セパレータプレートの前記平らな表面に対して垂直に配向される垂直方向と70度未満、好ましくは60度未満、特に好ましくは50度未満の角度をなすように形成されており、ビード頂部は、前記ビード頂部が凸状に湾曲しているという点で、前記ビード側面よりも低い剛性を有する、請求項1から23のいずれか一項に記載の電気化学システム用セパレータプレート。
  25. 未圧縮状態にある前記ビード構成の高さが800μm未満、好ましくは600μm未満または500μm未満、特に好ましくは450μm未満である、請求項1から24のいずれか一項に記載の電気化学システム用セパレータプレート。
  26. 請求項1から22のいずれか一項に記載の電気化学システム用セパレータプレートを複数備える電気化学システム、特に燃料電池システム、電気化学コンプレッサ、燃料電池システム用加湿装置または電気分解装置であって、前記セパレータプレートの前記通過口は、媒体を供給または排出するための少なくとも1つの媒体チャネルを形成する、電気化学システム。
JP2018513621A 2015-09-18 2016-09-16 電気化学システム用セパレータプレート Active JP6769647B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE202015104973.0 2015-09-18
DE202015104973.0U DE202015104973U1 (de) 2015-09-18 2015-09-18 Separatorplatte für ein elektrochemisches System
PCT/EP2016/072073 WO2017046398A1 (de) 2015-09-18 2016-09-16 Separatorplatte für ein elektrochemisches system

Publications (2)

Publication Number Publication Date
JP2018533170A true JP2018533170A (ja) 2018-11-08
JP6769647B2 JP6769647B2 (ja) 2020-10-14

Family

ID=56936434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018513621A Active JP6769647B2 (ja) 2015-09-18 2016-09-16 電気化学システム用セパレータプレート

Country Status (7)

Country Link
US (1) US10601053B2 (ja)
EP (1) EP3350863B1 (ja)
JP (1) JP6769647B2 (ja)
CN (1) CN108292773B (ja)
CA (1) CA2998901A1 (ja)
DE (1) DE202015104973U1 (ja)
WO (1) WO2017046398A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020195002A1 (ja) * 2019-03-28 2020-10-01 Nok株式会社 燃料電池用ガスケット
JP2020177737A (ja) * 2019-04-15 2020-10-29 トヨタ自動車株式会社 燃料電池用のセパレータ
US11616240B2 (en) 2021-03-25 2023-03-28 Honda Motor Co., Ltd. Fuel cell

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202016105307U1 (de) * 2016-09-23 2018-01-09 Reinz-Dichtungs-Gmbh Strömungsplatte für einen Befeuchter
JP6563966B2 (ja) * 2017-02-03 2019-08-21 本田技研工業株式会社 発電セル
DE202017103229U1 (de) 2017-05-30 2018-08-31 Reinz-Dichtungs-Gmbh Separatorplatte für ein elektrochemisches System
JP6618513B2 (ja) * 2017-07-21 2019-12-11 本田技研工業株式会社 発電セル
JP6577540B2 (ja) * 2017-08-25 2019-09-18 本田技研工業株式会社 発電セル
JP6570587B2 (ja) * 2017-09-07 2019-09-04 本田技研工業株式会社 燃料電池用セパレータ及び発電セル
WO2020128322A1 (fr) * 2018-12-19 2020-06-25 Compagnie Generale Des Etablissements Michelin Plaque bipolaire pour pile a combustible
FR3091043A3 (fr) * 2018-12-19 2020-06-26 Michelin & Cie Plaque bipolaire pour pile a combustible
DE202019101145U1 (de) * 2019-02-28 2020-05-29 Reinz-Dichtungs-Gmbh Separatorplatte für ein elektrochemisches System
DE202020105396U1 (de) * 2020-09-21 2022-01-05 Reinz-Dichtungs-Gmbh Abschlussbipolarplatte für ein elektrochemisches System, Plattenanordnung, sowie elektrochemisches System
DE102020215022A1 (de) 2020-11-30 2022-06-02 Robert Bosch Gesellschaft mit beschränkter Haftung Bipolarplatte für eine elektrochemische Zelle, Anordnung elektrochemischer Zellen und Verfahren zum Betrieb einer Anordnung elektrochemischer Zellen
WO2023272477A1 (en) * 2021-06-29 2023-01-05 Interplex (Suzhou) Precision Engineering Ltd. Fuel, oxidant or coolant inlet/outlet structure of a stackable fuel cell bipolar plate
DE202021104475U1 (de) 2021-08-20 2022-11-22 Reinz-Dichtungs-Gmbh Separatorplatte
DE202021106233U1 (de) 2021-11-15 2023-02-16 Reinz-Dichtungs-Gmbh Separatorplatte mit einer Sickendurchführung
DE202021106642U1 (de) 2021-12-06 2023-03-08 Reinz-Dichtungs-Gmbh Separatorplatte mit Schweißabschnitten
DE202022101861U1 (de) 2022-04-07 2023-07-10 Reinz-Dichtungs-Gmbh Separatorplatte
DE102022206952A1 (de) 2022-07-07 2024-01-18 Robert Bosch Gesellschaft mit beschränkter Haftung Bipolarplatte, Brennstoffzellensystem und Elektrolyseur
DE202022106505U1 (de) 2022-11-21 2024-02-28 Reinz-Dichtungs-Gmbh Separatorplatte für ein elektrochemisches System mit einer Entlastungssicke
DE202022106651U1 (de) 2022-11-28 2024-03-01 Reinz-Dichtungs-Gmbh Separatorplatte mit einer Haltestruktur für einen Steckerstift
DE202022107165U1 (de) 2022-12-21 2024-04-02 Reinz-Dichtungs-Gmbh Separatorplatte für ein elektrochemisches System mit einer Abstützsicke

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006504872A (ja) * 2002-10-14 2006-02-09 ラインツ−ディクトゥングス−ゲーエムベーハー 電気化学的システム
JP2006302702A (ja) * 2005-04-21 2006-11-02 Nissan Motor Co Ltd セパレータのシール構造およびシール付きセパレータの製造方法
JP2008123901A (ja) * 2006-11-14 2008-05-29 Toyota Motor Corp 燃料電池
WO2013065757A1 (ja) * 2011-11-02 2013-05-10 日本特殊陶業株式会社 燃料電池
JP2013214358A (ja) * 2012-03-30 2013-10-17 Honda Motor Co Ltd 燃料電池

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10248531B4 (de) 2002-10-14 2005-10-20 Reinz Dichtungs Gmbh & Co Kg Brennstoffzellensystem sowie Verfahren zur Herstellung einer in dem Brennstoffzellensystem enthaltenen Bipolarplatte
DE102005057045B4 (de) 2005-11-30 2015-06-03 Daimler Ag Bipolarplatte und deren Verwendung in einer Brennstoffzelleneinheit
CN103119766B (zh) * 2010-09-16 2016-04-20 丰田自动车株式会社 燃料电池用隔板、燃料电池、燃料电池的制造方法
DE202012004927U1 (de) * 2012-05-16 2013-08-19 Reinz-Dichtungs-Gmbh Befeuchter
JP5903476B2 (ja) * 2013-11-11 2016-04-13 本田技研工業株式会社 燃料電池
DE202014004456U1 (de) * 2014-05-23 2015-05-28 Reinz-Dichtungs-Gmbh Metallische Bipolarplatte mit rückfedernder Dichtungsanordnung und elektrochemisches System
KR101703575B1 (ko) * 2014-12-04 2017-02-07 현대자동차 주식회사 분리판 및 이를 포함하는 연료전지
DE202015104972U1 (de) * 2015-09-18 2016-12-20 Reinz-Dichtungs-Gmbh Separatorplatte für ein elektrochemisches System

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006504872A (ja) * 2002-10-14 2006-02-09 ラインツ−ディクトゥングス−ゲーエムベーハー 電気化学的システム
JP2006302702A (ja) * 2005-04-21 2006-11-02 Nissan Motor Co Ltd セパレータのシール構造およびシール付きセパレータの製造方法
JP2008123901A (ja) * 2006-11-14 2008-05-29 Toyota Motor Corp 燃料電池
WO2013065757A1 (ja) * 2011-11-02 2013-05-10 日本特殊陶業株式会社 燃料電池
JP2013214358A (ja) * 2012-03-30 2013-10-17 Honda Motor Co Ltd 燃料電池

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020195002A1 (ja) * 2019-03-28 2020-10-01 Nok株式会社 燃料電池用ガスケット
JP2020177737A (ja) * 2019-04-15 2020-10-29 トヨタ自動車株式会社 燃料電池用のセパレータ
JP7120136B2 (ja) 2019-04-15 2022-08-17 トヨタ自動車株式会社 燃料電池用のセパレータ
US11616240B2 (en) 2021-03-25 2023-03-28 Honda Motor Co., Ltd. Fuel cell

Also Published As

Publication number Publication date
EP3350863B1 (de) 2019-11-06
CA2998901A1 (en) 2017-03-23
DE202015104973U1 (de) 2016-12-20
WO2017046398A1 (de) 2017-03-23
CN108292773B (zh) 2021-09-10
EP3350863A1 (de) 2018-07-25
JP6769647B2 (ja) 2020-10-14
US20180269497A1 (en) 2018-09-20
CN108292773A (zh) 2018-07-17
US10601053B2 (en) 2020-03-24

Similar Documents

Publication Publication Date Title
JP2018533170A (ja) 電気化学システム用セパレータプレート
JP6769648B2 (ja) 電気化学システム用セパレータプレート
US7736785B2 (en) Fuel cell
JP2006523916A (ja) 型押し燃料電池双極板
US9099693B2 (en) Fuel cell and fuel cell separator
US8304140B2 (en) Fuel cell separator comprising overlapping bosses and guide ridges
JP5960366B2 (ja) 燃料電池スタック
CN108352544B (zh) 用于电化学系统的分离器板和电化学系统
JP2012129194A (ja) 燃料電池
US8802312B2 (en) Fuel cell separators capable of suppressing variation in pressure loss
CN110649278B (zh) 燃料电池用隔板和燃料电池堆
JP2009140704A (ja) 燃料電池
JP5280468B2 (ja) 燃料電池
JP5082313B2 (ja) 燃料電池のセパレータ構造
JP4803957B2 (ja) 内部マニホールド型燃料電池
JP5491231B2 (ja) 燃料電池
JP6117736B2 (ja) 燃料電池
JP6068218B2 (ja) 燃料電池の運転方法
JP2012069445A (ja) 燃料電池
JP2019160647A (ja) 燃料電池スタック
CN115149057A (zh) 发电电池和带树脂框的膜电极组件
JP2019186052A (ja) 燃料電池用セパレータ
JP2017016827A (ja) 燃料電池
JP5886739B2 (ja) 燃料電池スタック
JP6109727B2 (ja) 燃料電池スタック

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200916

R150 Certificate of patent or registration of utility model

Ref document number: 6769647

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250