JP2018205361A - 光走査装置及びそれを備える画像形成装置 - Google Patents

光走査装置及びそれを備える画像形成装置 Download PDF

Info

Publication number
JP2018205361A
JP2018205361A JP2017107076A JP2017107076A JP2018205361A JP 2018205361 A JP2018205361 A JP 2018205361A JP 2017107076 A JP2017107076 A JP 2017107076A JP 2017107076 A JP2017107076 A JP 2017107076A JP 2018205361 A JP2018205361 A JP 2018205361A
Authority
JP
Japan
Prior art keywords
scanned
optical element
imaging optical
axis
image height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017107076A
Other languages
English (en)
Other versions
JP6429944B1 (ja
Inventor
滝 慶行
Keiko Taki
慶行 滝
乃亜 角田
Noa Sumida
乃亜 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2017107076A priority Critical patent/JP6429944B1/ja
Priority to US15/961,600 priority patent/US10539904B2/en
Application granted granted Critical
Publication of JP6429944B1 publication Critical patent/JP6429944B1/ja
Publication of JP2018205361A publication Critical patent/JP2018205361A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/04Apparatus for electrographic processes using a charge pattern for exposing, i.e. imagewise exposure by optically projecting the original image on a photoconductive recording material
    • G03G15/04036Details of illuminating systems, e.g. lamps, reflectors
    • G03G15/04045Details of illuminating systems, e.g. lamps, reflectors for exposing image information provided otherwise than by directly projecting the original image onto the photoconductive recording material, e.g. digital copiers
    • G03G15/04072Details of illuminating systems, e.g. lamps, reflectors for exposing image information provided otherwise than by directly projecting the original image onto the photoconductive recording material, e.g. digital copiers by laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/47Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using the combination of scanning and modulation of light
    • B41J2/471Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using the combination of scanning and modulation of light using dot sequential main scanning by means of a light deflector, e.g. a rotating polygonal mirror
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/04Apparatus for electrographic processes using a charge pattern for exposing, i.e. imagewise exposure by optically projecting the original image on a photoconductive recording material
    • G03G15/043Apparatus for electrographic processes using a charge pattern for exposing, i.e. imagewise exposure by optically projecting the original image on a photoconductive recording material with means for controlling illumination or exposure

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Exposure Or Original Feeding In Electrophotography (AREA)
  • Lenses (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)

Abstract

【課題】 光走査装置及びそれを備える画像形成装置において、小型化及び印字性能の両立を実現すること。【解決手段】 光走査装置100は、光源1からの光束を偏向して被走査面6を主走査方向に走査する偏向器4と、偏向器4により偏向された光束を被走査面6に導光する単一の結像光学素子5と、を備え、被走査面6における軸上像高と軸外像高とで光束の走査速度が異なり、0.0<(R1±h/2+R2±h/2)/(R1±h/2−R2±h/2)<1.7、0.8<h/TC<2.0なる条件を満足する。【選択図】 図1

Description

本発明は光走査装置に関し、例えば、レーザビームプリンタ(LBP)やデジタル複写機、マルチファンクションプリンタ(多機能プリンタ)等の画像形成装置に好適なものである。
従来、画像形成装置に用いられる光走査装置として、偏向器により偏向された光束を被走査面に導光するための結像光学系が、単一の結像光学素子で構成されたものが知られている。特許文献1には、単一の結像光学素子を通過する光束が被走査面を非等速で走査するように構成された光走査装置が記載されている。この構成によれば、結像光学素子を偏向器に近づけて配置することができ、装置全体の小型化を実現することが可能になる。
特開2015−31824号公報
しかしながら、特許文献1においては、結像光学素子によって被走査面に形成されるスポットの形状が光走査装置の印字性能に与える影響について十分に考慮されていない。特に、コマ収差によってスポットの外側に微小な強度ピーク(サイドローブ)が生じると、良好な印字性能が得られなくなる可能性がある。
本発明の目的は、光走査装置及びそれを備える画像形成装置において、小型化及び印字性能の両立を実現することである。
上記目的を達成するための、本発明の一側面としての光走査装置は、光源からの光束を偏向して被走査面を主走査方向に走査する偏向器と、該偏向器により偏向された光束を前記被走査面に導光する単一の結像光学素子と、を備え、前記被走査面における軸上像高と軸外像高とで光束の走査速度が異なり、前記被走査面における主走査方向での最軸外像高をY=±hとし、前記結像光学素子の入射面及び出射面の夫々において、像高Y=±h/2に至る主光線が通過する位置での主走査断面内の曲率半径をR1±h/2及びR2±h/2とし、前記結像光学素子の光軸上における前記偏向器から前記被走査面までの距離をTCとするとき、0.0<(R1±h/2+R2±h/2)/(R1±h/2−R2±h/2)<1.7、0.8<h/TC<2.0なる条件を満足することを特徴とする。
本発明によれば、光走査装置及びそれを備える画像形成装置において、小型化及び印字性能の両立を実現することができる。
本発明の実施形態に係る光走査装置の要部概略図。 コマ収差がスポットの形状に与える影響を説明するための図。 レンズの形状と収差係数との関係を示す図。 本発明の実施例に係る光走査装置の収差特性を示す図。 本発明の実施形態に係る画像形成装置の要部断面図。
以下、本発明の好ましい実施形態について図面を参照しながら説明する。なお、各図面は、便宜的に実際とは異なる縮尺で描かれている場合がある。また、各図面において、同一の部材については同一の参照番号を付し、重複する説明を省略する。
なお、以下の説明において、主走査方向とは、偏向器の回転軸(又は揺動軸)と結像光学系の光軸方向とに垂直な方向(偏向器により被走査面が光走査される方向)であり、副走査方向とは、偏向器の回転軸(又は揺動軸)に平行な方向である。また、主走査断面とは、光軸を含み主走査方向に平行な断面(副走査方向に垂直な断面)であり、副走査断面とは、結像光学系の光軸及び副走査方向に平行な断面(主走査方向に垂直な断面)である。
図1は、本発明の実施形態に係る光走査装置100の主走査断面(XY断面)における要部概略図である。本実施形態に係る光走査装置100は、光源1からの光束を偏向して被走査面6を主走査方向に走査する偏向器4と、偏向器4により偏向された光束を被走査面6に導光する単一の結像光学素子5とを備えている。結像光学系を単一の結像光学素子5で構成することで、装置の小型化及び低コスト化を実現することができる。また、本実施形態に係る結像光学素子5は、それを通過する光束が被走査面6を非等速で走査するように構成されている。このことについて詳細に説明する。
一般的に、光走査装置における結像光学系は、通過した光束が被走査面を等速で走査するように、偏向器の回転角度(走査角度)と被走査面での主走査方向における像高とが略比例関係となる歪曲収差(fθ特性)を有している。また、結像光学系は、被走査面における有効領域(印字領域)に良好な像(スポット)を形成するために、有効領域の全域で像面湾曲を良好に補正する必要がある。
しかし、結像光学系が単一の結像光学素子で構成されている場合、像面湾曲を良好に補正しつつ等速性を確保するためには、主走査断面内での結像光学素子の光学面の形状を軸上像高と軸外像高とで大きく異ならせる必要がある。そして、光走査装置の更なる小型化のために結像光学素子を偏向器に近づけて配置した場合、光学面の形状の変化がより急峻になりコマ収差が増大してしまう。
そこで、本実施形態に係る結像光学素子5は、それを通過する光束が被走査面6において等速性を満たさないように(非等速で走査するように)構成されている。すなわち、本実施形態に係る光走査装置100においては、軸上像高と軸外像高とで光束の走査速度が異なっている。これにより、光学性能を保ちつつ結像光学素子5をより偏向器4に近接して配置することができ、装置全体の更なる小径化を実現することが可能になる。
ただし、各光学部材の位置や形状が製造誤差などにより設計値からずれた場合、有効領域における中間像高近傍で発生するコマ収差によって、スポット形状が変化して良好な印字性能が得られなくなってしまう可能性が生じる。
図2に、模式的な光走査装置によって被走査面に形成されるスポットの形状と、スポットの主走査断面及び副走査断面における光量分布を示す。図2(a)は、結像光学系のコマ収差が良好に補正されている場合のスポットを示し、図2(b)は、中間像高近傍で生じたコマ収差によって形状が変化したスポットを示している。図2(a)に示す良好なスポットに対して、図2(b)に示すスポットにはサイドローブが発生している。
このようなコマ収差に起因する強度ピークが製造誤差等によって増大してしまうと、光走査装置による被走査面の走査にムラが生じ、画像形成装置により形成される画像に濃度ムラが生じてしまう可能性がある。従って、光走査装置の小型化及び印字性能の両立を実現するためには、各光学部材の製造誤差も考慮して、中間像高近傍で生じるコマ収差をより低減することが必要になる。
図3は、焦点距離が同じである両凸レンズ、平凸レンズ、及びメニスカスレンズの夫々に対する収差係数の値を示したものである。図3では、コマ収差に対応する収差係数II、像面湾曲に対応する収差係数III、歪曲収差に対応する収差係数V、及び収差係数IIIと収差係数Vの和である収差係数IVの値を示している。
図3より、像面湾曲を良好に補正するためには、収差係数III及びIVが小さくなるメニスカスレンズを選択すればよいことがわかる。一方、コマ収差及び歪曲収差を良好に補正するためには、収差係数II及びVが小さくなる両凸レンズを選択すればよいことがわかる。また、平凸レンズは、メニスカスレンズ及び両凸レンズの中間の性能を持っていることがわかる。
なお、被走査面を非等速走査する光走査装置においては、結像光学素子の歪曲収差がある程度大きくても許容される。そこで、本実施形態においては、諸収差のバランスを考慮して、結像光学素子5の中間像高近傍に到達する光束が通過する位置での形状を平凸に近い形状としている。これにより、像面湾曲を補正しつつ、中間像高近傍におけるコマ収差を低減することができるため、製造誤差が生じた場合にも良好な印字性能を実現することが可能になる。本実施形態に係る結像光学素子5の形状について、以下に詳細に説明する。
偏向器4により偏向された光束の被走査面6での主走査方向における集光位置(像高)をY[mm]とするとき、軸上像高はY=0、軸外像高はY≠0で表される。また、最軸外像高をY=±hとするとき、被走査面6における有効領域は−h≦Y≦hで表される。また、結像光学素子5の入射面及び出射面の夫々において、像高Y=±h/2(中間像高)に至る主光線が通過する位置での主走査断面内の曲率半径をR1±h/2[mm]及びR2±h/2[mm]、偏向器4から被走査面6までの距離をTC[mm]とする。
このとき、本実施形態に係る光走査装置100は、以下の条件式(1)及び(2)を満足している。
0.0<(R1±h/2+R2±h/2)/(R1±h/2−R2±h/2)<1.7 (1)
0.8<h/TC<2.0 (2)
条件式(1)は、結像光学素子5の中間像高に対応する位置での形状を表している。この条件式(1)を満たすことにより、中間像高における収差の発生を抑制することができる。条件式(1)の中辺の値が大きくなると、結像光学素子5の中間像高に対応する位置での形状がメニスカス形状に近づくが、条件式(1)の上限を上回るとコマ収差の発生を抑制することが難しくなる。一方、条件式(1)の中辺の値が小さくなると、結像光学素子5の中間像高に対応する位置での形状が両凸形状に近づくが、条件式(1)の下限を下回ると像面湾曲の発生を抑制することが難しくなる。
また、条件式(2)は、偏向器4から被走査面6までの距離と、印字領域の長さとの関係を示している。条件式(2)の上限を上回るほど距離TCが短くなると、走査画角が大きくなり過ぎてしまい、結像光学素子5を主走査方向において大型化することが必要になる。また、結像光学素子5の主走査断面内での屈折力を大きくすることが必要になり、諸収差の補正が難しくなる。一方、条件式(2)の下限を下回るほど距離TCが長くなると、装置全体の小型化が難しくなる。
このように、本実施形態に係る光走査装置100は、結像光学系が単一の結像光学素子5で構成され、かつ被走査面6を非等速で走査する構成において、条件式(1)及び(2)を満足することによって小型化及び印字性能の両立を実現している。さらに、以下の条件式(1´)及び(2´)を満足することがより好ましい。
1.0<(R1±h/2+R2±h/2)/(R1±h/2−R2±h/2)<1.7(1´)
0.8<h/TC<1.0 (2´)
次に、本実施形態に係る結像光学素子5の走査特性について説明する。結像光学素子5の走査特性は、偏向器4の走査角度をθ(deg)、軸上像高での結像係数をK[mm]、とするとき以下の式(3)で表される。
Y=(K/B)×tan(B×θ) (3)
ここで、結像係数Kは、結像光学素子5に平行光が入射する場合の走査特性であるfθ特性:Y=f×θにおけるfに相当する係数であり、fθ特性を平行光以外の光束(収束光や発散光)に対して拡張するための係数である。すなわち、結像係数Kは、結像光学素子5に入射する光束の収束度にかかわらず、像高Yと走査角度θとを比例関係にするための係数である。
また、式(3)におけるBは、結像光学素子5の走査特性を決定するための係数(走査特性係数)である。式(3)は、B=0のときはY=K×θとなりfθ特性に相当するが、B≠0のときは像高Yと走査角度θとが比例関係にならない走査特性となる。例えば、B=1のときの式(3)は、Y=Ktanθとなるため、カメラ等の撮像装置に用いられる光学系の射影特性Y=ftanθに相当する。すなわち、式(3)において、走査特性係数Bを0<B<1の範囲で設定することで、射影特性Y=ftanθとfθ特性Y=fθとの間の走査特性を得ることができる。
ここで、式(3)を走査角度θで微分すると、以下の式(4)に示すように、被走査面6での光束の走査角度θに対する走査速度が得られる。
dY/dθ=K/cos(B×θ) (4)
さらに、式(4)を軸上像高における速度dY(0)/dθ=Kで除すると、以下の式(5)に示すようになる。
(dY/dθ)/K=1/cos(B×θ) (5)
式(5)は、軸上像高に対する軸外像高での等速性のずれ量、すなわち軸上像高での部分倍率に対する軸外像高での部分倍率のずれ量(部分倍率ずれ)を表している。本実施例に係る光走査装置100は部分倍率を有するため、B≠0の場合は、軸上像高と軸外像高とで光束の走査速度が異なることになる。つまり、軸外像高における走査位置(単位時間あたりの走査距離)は部分倍率ずれに応じて間延びしてしまうため、この部分倍率ずれを考慮せずに被走査面6を走査した場合は、被走査面6に形成される像の劣化(印字性能の劣化)を招いてしまう。
そこで、本実施形態においては、不図示の制御部により光源1の発光を制御することで、印字性能の劣化を抑制している。具体的には、部分倍率ずれに応じて光源1の変調タイミング(発光タイミング)及び変調時間(発光時間)を制御することで、被走査面6における走査位置及び走査時間を電気的に補正することができる。これにより、部分倍率ずれ及び像の劣化を補正し、fθ特性を満たす場合と同様に良好な印字性能を得ることが可能になる。制御部によって光源1を制御する場合、良好な印字性能を確保するためには、結像光学素子5の部分倍率ずれが全像高で2%以内に収まるようにすることが望ましい。
このとき、本実施形態に係る光走査装置100は、最軸外像高Y=±hにおいて以下の条件式(6)を満たすことが望ましい。
0.3≦B≦0.6 (6)
条件式(6)の下限値を下回ると、部分倍率ずれが小さくなり過ぎてしまい、装置全体の光学性能と光学性能との両立が難しくなる。また、条件式(6)の上限値を上回ると、部分倍率ずれが大きくなり過ぎてしまい、走査位置及び走査時間の補正が難しくなる。
また、結像光学素子5の光軸上での主走査断面内における焦点距離をf、結像光学素子5の副走査断面内における横倍率(近軸横倍率)をβs、とするとき、以下の条件式(7)及び(8)の少なくとも一方を満たすことが望ましい。
1.0≦TC/f≦1.3 (7)
3.0<|βs|<6.0 (8)
条件式(7)の上限を上回るほど焦点距離が短くなると、結像光学素子5の屈折力を大きくすることが必要になり、光学性能を良好に保つことが難しくなる。条件式(7)の下限を下回るほど焦点距離が長くなると、結像光学素子5を主走査方向において大型化することが必要になり、装置全体の小型化が難しくなる。
また、条件式(8)の上限を上回るほど副走査倍率が高くなると、各光学部材の配置誤差による印字位置のずれ量が大きくなってしまう。条件式(8)下限を下回るほど副走査倍率が低くなると、結像光学素子5を主走査方向において大型化することが必要になり、装置全体の小型化が難しくなる。
さらに、以下の条件式(7´)及び(8´)を満足することがより好ましい。
1.0≦TC/f≦1.1 (7´)
4.5<|βs|<6.0 (8´)
なお、軸上像高においては、結像光学素子5を両凸形状とすることが望ましい。これにより、結像光学素子5の像側主点を像側に近づけることができ、結像光学素子5を偏向器4に近づけて装置全体の小型化を図った場合にも、結像光学素子5の主走査倍率の増大を抑制することが可能になる。
以上、本実施形態に係る光走査装置100は、結像光学系が単一の結像光学素子5で構成され、かつ被走査面6を非等速で走査する構成を採っている。そして、この構成において、結像光学素子5の形状及び偏向器4の配置を適切に設定することで、小型化及び印字性能の両立を実現することができる。
[実施例]
以下、本発明の実施例に係る光走査装置100について説明する。本実施例に係る光走査装置100は、上述した実施形態に係る光走査装置100と同等の構成を採っているため、重複する説明を省略する。本実施例に係る光走査装置100は、光源1からの光束を規制する開口絞り2と、光束を偏向器4の偏向面に導光する入射光学系3と、上述した偏向器4及び結像光学系5とを備えている。
光走査装置100において、光源1から出射した光束は、楕円形状の開口が設けられた開口絞り2によって楕円形状に整形されて、入射光学系3によって偏向器4の偏向面に導光される。光源1としては、例えば半導体レーザを用いることができ、その発光点の数は1個でも複数個でもよい。本実施例では、開口絞り2として楕円形状の開口が設けられた楕円絞りを採用しているが、開口の形状はこれに限られるものではなく、例えば矩形の開口が設けられた矩形絞り等を採用してもよい。
本実施例に係る入射光学系3は、主走査断面と副走査断面とで互いに異なるパワーを有する単一の入射光学素子(入射レンズ)で構成されている。この入射光学素子は、主走査断面では光束を略平行光に変換し、かつ副走査断面では光束を偏向器4の偏向面又はその近傍に集光することで、主走査方向に長い線像を形成するアナモフィックコリメータレンズである。なお、ここでの略平行光とは、厳密な平行光だけでなく、弱収束光及び弱発散光を含むものである。
また、本実施例に係る入射光学系3は樹脂材料により構成されたプラスチックモールドレンズであるため、ガラスレンズを採用した場合と比較して大幅なコストダウンが可能になる。さらに、入射光学系3に回折面を設けることで、環境温度の変化によって光源1の発振波長や各光学面の形状が変化した場合のピント変動の補償を可能にしている。例えば、環境温度が常温に対して上昇した場合、光束の長波長化と樹脂材料の伸長により屈折面のパワー(屈折力)は弱くなる一方で、回折面のパワーは強くなるため、屈折面及び回折面によるピント変動を互いにキャンセルさせることができる。
偏向器4は、不図示の駆動部(モータ等)により図中の矢印方向に一定速度で回転させられ、偏向面にて入射光学系3からの光束を偏向することで、結像光学系5を介して被走査面6における有効領域を主走査方向に走査する。本実施例では、偏向器4として四つの偏向面を有する回転多面鏡(ポリゴンミラー)を採用しているが、偏向面の数はこれに限られるものではない。また、回転多面鏡の代わりに、一つ又は二つの偏向面が揺動軸まわりに揺動する揺動ミラーを採用してもよい。
本実施例に係る結像光学系5は、主走査断面と副走査断面とで互いに異なるパワーを有する単一の結像光学素子(トーリックレンズ)で構成されている。結像光学系5は、偏向面にて偏向された光束を被走査面6に導光及び集光し、主走査断面内及び副走査断面内の両方において、被走査面6又はその近傍に光源1の像を形成している。また、結像光学系5は、偏向面又はその近傍と被走査面6又はその近傍とを副走査断面において共役関係にすることより、偏向面が傾いた際の被走査面6上での走査位置ずれの低減(面倒れ補償)を行っている。
なお、本実施例に係る入射光学系3および結像光学系5は、射出成形によって形成されたプラスチックモールドレンズであるが、これに限らずガラスレンズとしてもよい。ただし、生産性及び光学性能の向上を図るためには、回折面や非球面形状の成形が容易であり、かつ大量生産に適したプラスチックモールドレンズを採用することが好ましい。また、必要に応じて、主走査断面内で光束を略平行光に変換するコリメータレンズと副走査断面内で光束を集光するシリンダーレンズとで入射光学系3を構成してもよい。ただし、装置全体の小型化及び低コスト化のためには、本実施例のように入射光学系3を単一の光学素子で構成することが望ましい。
本実施例に係る光走査装置100の構成を表1に示し、本実施例に係る結像光学素子5の形状を表2に示す。なお、表1における軸上偏向点とは、光源1から出射して被走査面6の軸上像高に入射する光束(軸上光束)の主光線と偏向面との交点を示している。各距離は、結像光学素子5の光軸上における値を示している。入射主光線の角度とは、入射光学系3から出射して偏向面に入射する光束の主光線と結像光学系5の光軸との成す角を示している。
また、主走査倍率及び副走査倍率の夫々は、主走査断面及び副走査断面での横倍率を示している。偏向器の回転中心座標は、偏向器と軸上光束の主光線との交点を原点として示している。偏向器の回転角や最大走査画角は、結像光学素子5の光軸に対して対称となるため、光軸に対して一方の側の値を示している。表2における各光学面の曲率半径や非球面係数については、光軸に対して光源1と同じ側(プラス側、Upper)及び光源1とは反対側(マイナス側、Lower)とで分けて示している。なお、表2における「E±N」は「×10±」を意味している。
Figure 2018205361
Figure 2018205361
本実施例に係る結像光学素子5の各光学面(レンズ面)の面頂点を含む主走査断面内での形状(母線形状)は、以下の式で表される。ここでは、各光学面の面頂点と各光軸との交点を原点とし、光軸方向の軸をX軸、主走査断面内においてX軸と直交する軸をY軸、X軸及びY軸に直交する軸をZ軸、としたローカル座標系を定めている。
Figure 2018205361
ただし、Rは光軸上における主走査断面内での曲率半径(母線曲率半径)であり、k,B,B,B,B,B10,B12,B14,B16は主走査断面内での非球面係数である。各光軸(X軸)の両側(Y軸方向におけるプラス側とマイナス側)で非球面係数B〜B16の数値を互いに異ならせることで、母線形状を光軸に対して主走査方向に非対称な形状とすることができる。
また、本実施例に係る結像光学素子5の各光学面の、主走査方向の各位置(各像高)における副走査断面内での曲率半径r´(子線曲率半径)は、以下の式で表される。ただし、rは光軸上での副走査断面内での曲率半径であり、Eは子線変化係数である。なお、子線形状は、主走査方向における各位置での母線上の面法線を含む主走査断面に垂直な断面内での面形状と言い換えることができる。
Figure 2018205361
図4に、本実施例に係る光走査装置100の収差特性を示す。図4(a)は主走査断面内におけるピント位置と像高との関係(像面湾曲)を示し、図4(b)は像高ずれと像高との関係(歪曲収差)を示している。図4に示す通り、何れの収差も良好に補正されていることがわかる。
また、表3に、本実施例に係る光走査装置100における、上述した各条件式の中辺の値を示す。表3に示す通り、光走査装置100は全ての条件式を満足している。
Figure 2018205361
[画像形成装置]
図5は、本発明の実施形態に係る画像形成装置104の要部概略図(副走査断面図)である。画像形成装置104は、上述した実施例における光走査装置(光走査ユニット)100を備えている。
図5に示すように、画像形成装置104には、パーソナルコンピュータ等の外部機器117から出力されたコードデータDcが入力される。このコードデータDcは、装置内のプリンタコントローラ111によって、画像信号(ドットデータ)Diに変換され、光走査ユニット100に入力される。そして、この光走査ユニット100からは、画像信号Diに応じて変調された光束103が射出され、この光束103によって感光ドラム101の感光面(被走査面)が主走査方向に走査される。なお、プリンタコントローラ111は、前述したデータの変換だけでなく、後述するモータ115などの画像形成装置内の各部の制御を行う。
静電潜像担持体(感光体)としての感光ドラム101は、モータ115の駆動力によって時計まわりに回転している。そして、この回転に伴って、感光ドラム101の感光面が光束103に対して副走査方向に移動する。感光ドラム101の上方には、感光面を一様に帯電せしめる帯電ローラ102が感光面に当接するように設けられている。そして、帯電ローラ102によって帯電された感光面上に、光走査ユニット100からの光束103が照射されるように構成されている。
上述したように、光束103は画像信号Diに基づいて変調されており、この光束103を照射することによって感光面上に静電潜像が形成される。この静電潜像は、光束103の照射位置よりもさらに感光ドラム101の回転方向の下流側で感光面に当接するように配設された現像器107によって、トナー像として現像される。
現像器107によって現像されたトナー像は、感光ドラム101の下方で、感光ドラム101に対向するように配設された転写ローラ(転写器)108によって、被転写材としての用紙112上に転写される。用紙112は感光ドラム101の前方(図5において右側)の用紙カセット109内に収納されているが、手差しでも給紙が可能である。用紙カセット109端部には、給紙ローラ110が配設されており、これにより用紙カセット109内の用紙112が搬送路へ送り込まれる。
未定着トナー像が転写された用紙112は、さらに感光ドラム101後方(図5において左側)の定着器へと搬送される。定着器は、内部に定着ヒータ(不図示)を有する定着ローラ113と、この定着ローラ113に圧接するように配設された加圧ローラ114とで構成されている。この定着器は、転写ローラ108から搬送されてきた用紙112を定着ローラ113と加圧ローラ114との圧接部にて加圧しながら加熱することにより、用紙112上の未定着トナー像を定着させる。さらに、定着ローラ113の後方には排紙ローラ116が配設されており、トナー像が定着した用紙112は画像形成装置104の外に排出される。
なお、光走査ユニット100、感光ドラム101、及び現像器107の夫々を複数設けることにより、画像形成装置104をカラー画像形成装置としてもよい。また、例えばCCDセンサやCMOSセンサ等のラインセンサを備えたカラー画像読取装置を、外部機器117として画像形成装置104に接続することにより、カラーデジタル複写機を構成してもよい。
[変形例]
以上、本発明の好ましい実施形態及び実施例について説明したが、本発明はこれらの実施形態及び実施例に限定されず、その要旨の範囲内で種々の組合せ、変形及び変更が可能である。
例えば、上述した各実施例では、一つの光源からの光束により一つの被走査面を走査する構成を採っているが、これに限らず、複数の光源からの光束を一つの偏向器により同時に偏向して、複数の被走査面を走査する構成を採用してもよい。
1 光源
4 偏向器
5 結像光学系(結像光学素子)
6 被走査面
100 光走査装置
上記目的を達成するための、本発明の一側面としての光走査装置は、光源からの光束を偏向して被走査面を主走査方向に走査する偏向器と、該偏向器により偏向された光束を前記被走査面に導光する単一の結像光学素子と、を備え、前記被走査面における軸上像高と軸外像高とで光束の走査速度が異なり、前記結像光学素子の主走査断面内における光軸上での形状は両凸形状であり、前記被走査面における主走査方向での最軸外像高をY=±hとし、前記結像光学素子の入射面及び出射面の夫々において、像高Y=±h/2に至る主光線が通過する位置での主走査断面内の曲率半径をR1±h/2及びR2±h/2とし、前記偏向器における軸上偏向点から前記被走査面までの距離をTCとするとき、1.0<(R1±h/2+R2±h/2)/(R1±h/2−R2±h/2)<1.7、0.8<h/TC<2.0なる条件を満足することを特徴とする。
図3は、焦点距離が同じである両凸レンズ、平凸レンズ、及びメニスカスレンズの夫々に対する収差係数の値を示したものである。図3では、コマ収差に対応する収差係数II、非点収差に対応する収差係数III、歪曲収差に対応する収差係数V、及び収差係数IIIとペッツバール和Pとの和で表される像面湾曲に対応する収差係数IVの値を示している。

Claims (10)

  1. 光源からの光束を偏向して被走査面を主走査方向に走査する偏向器と、該偏向器により偏向された光束を前記被走査面に導光する単一の結像光学素子と、を備え、
    前記被走査面における軸上像高と軸外像高とで光束の走査速度が異なり、
    前記被走査面における主走査方向での最軸外像高をY=±hとし、前記結像光学素子の入射面及び出射面の夫々において、像高Y=±h/2に至る主光線が通過する位置での主走査断面内の曲率半径をR1±h/2及びR2±h/2とし、前記結像光学素子の光軸上における前記偏向器から前記被走査面までの距離をTCとするとき、
    0.0<(R1±h/2+R2±h/2)/(R1±h/2−R2±h/2)<1.7
    0.8<h/TC<2.0
    なる条件を満足することを特徴とする光走査装置。
  2. 前記結像光学素子の光軸上における結像係数をKとし、前記偏向器により走査角度θで偏向された光束が入射する、前記被走査面での主走査方向における像高をY=(K/B)×tan(B×θ)とするとき、像高Y=±hにおいて
    0.3≦B≦0.6
    なる条件を満足することを特徴とする請求項1に記載の光走査装置。
  3. 前記結像光学素子の光軸上での主走査断面内における焦点距離をfとするとき、
    1.0≦TC/f≦1.3
    なる条件を満足することを特徴とする請求項1又は2に記載の光走査装置。
  4. 前記結像光学素子の副走査断面内における横倍率をβsとするとき、
    3.0<|βs|<6.0
    なる条件を満足することを特徴とする請求項1乃至3の何れか一項に記載の光走査装置。
  5. 前記結像光学素子の光軸上での主走査断面内における形状は、両凸形状であることを特徴とする請求項1乃至4の何れか一項に記載の光走査装置。
  6. 前記結像光学素子の部分倍率ずれに基づいて前記光源の発光を制御する制御部を備えることを特徴とする請求項1乃至5の何れか一項に記載の光走査装置。
  7. 前記結像光学素子の光軸上における結像係数をKとし、前記偏向器により走査角度θで偏向された光束が入射する、前記被走査面での主走査方向における像高をY=(K/B)×tan(B×θ)とするとき、1/cos(B×θ)に応じて前記光源の発光を制御する制御部を備えることを特徴とする請求項1乃至5の何れか一項に記載の光走査装置。
  8. 前記制御部は、前記結像光学素子の部分倍率ずれが全像高で2%以内になるように、前記光源の発光を制御することを特徴とする請求項6又は7に記載の光走査装置。
  9. 請求項1乃至8の何れか一項に記載の光走査装置と、該光走査装置により前記被走査面に形成される静電潜像をトナー像として現像する現像器と、現像された前記トナー像を被転写材に転写する転写器と、転写された前記トナー像を前記被転写材に定着させる定着器と、を備えることを特徴とする画像形成装置。
  10. 請求項1乃至8の何れか一項に記載の光走査装置と、外部機器から出力されたデータを画像信号に変換して前記光走査装置に入力するプリンタコントローラと、を備えることを特徴とする画像形成装置。
JP2017107076A 2017-05-30 2017-05-30 光走査装置及びそれを備える画像形成装置 Active JP6429944B1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017107076A JP6429944B1 (ja) 2017-05-30 2017-05-30 光走査装置及びそれを備える画像形成装置
US15/961,600 US10539904B2 (en) 2017-05-30 2018-04-24 Optical scanning apparatus and image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017107076A JP6429944B1 (ja) 2017-05-30 2017-05-30 光走査装置及びそれを備える画像形成装置

Publications (2)

Publication Number Publication Date
JP6429944B1 JP6429944B1 (ja) 2018-11-28
JP2018205361A true JP2018205361A (ja) 2018-12-27

Family

ID=64458886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017107076A Active JP6429944B1 (ja) 2017-05-30 2017-05-30 光走査装置及びそれを備える画像形成装置

Country Status (2)

Country Link
US (1) US10539904B2 (ja)
JP (1) JP6429944B1 (ja)

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS557727A (en) * 1978-06-30 1980-01-19 Norita Kogaku Kk Planoconvex lens
JPS57144517A (en) * 1981-03-03 1982-09-07 Canon Inc Scan optical system having fall compensating function
JPS62262016A (ja) * 1986-05-07 1987-11-14 Seiko Epson Corp 光走査装置
JPS6456465A (en) * 1987-08-27 1989-03-03 Minolta Camera Kk Exposure correction device for laser beam printer
JP2567929B2 (ja) * 1987-12-02 1996-12-25 株式会社リコー 光走査用レンズ及び光走査装置
JP3381333B2 (ja) * 1993-10-15 2003-02-24 セイコーエプソン株式会社 光走査装置
JPH0829716A (ja) * 1994-07-15 1996-02-02 Canon Inc 走査光学装置
JP3445092B2 (ja) * 1996-03-29 2003-09-08 キヤノン株式会社 走査光学装置
JP4201315B2 (ja) * 2002-04-19 2008-12-24 株式会社リコー 走査光学系および光走査装置および画像形成装置
JP2006309090A (ja) * 2005-02-21 2006-11-09 Ricoh Co Ltd 走査光学系、光走査装置、画像形成装置およびカラー画像形成装置
JP4898203B2 (ja) * 2005-12-06 2012-03-14 キヤノン株式会社 光走査装置及びそれを用いた画像形成装置
KR101236388B1 (ko) * 2006-11-07 2013-02-22 삼성전자주식회사 광주사유니트 및 이를 이용한 화상형성장치
JP2008310257A (ja) * 2007-06-18 2008-12-25 Panasonic Corp 走査光学系、それを備える光走査装置及び画像形成装置
JP6045455B2 (ja) 2013-08-02 2016-12-14 キヤノン株式会社 光走査装置及びそれを用いた画像形成装置
JP6478693B2 (ja) * 2015-02-19 2019-03-06 キヤノン株式会社 画像形成装置
JP6700842B2 (ja) * 2015-03-31 2020-05-27 キヤノン株式会社 光走査装置

Also Published As

Publication number Publication date
US20180348662A1 (en) 2018-12-06
JP6429944B1 (ja) 2018-11-28
US10539904B2 (en) 2020-01-21

Similar Documents

Publication Publication Date Title
KR100485315B1 (ko) 주사형 광학장치와 이를 이용한 화상형성장치
JP6045455B2 (ja) 光走査装置及びそれを用いた画像形成装置
JP4819392B2 (ja) 走査光学装置及びそれを用いた画像形成装置
JP5896651B2 (ja) 光走査装置及びそれを用いた画像形成装置
JP4898203B2 (ja) 光走査装置及びそれを用いた画像形成装置
US9874831B2 (en) Optical scanning apparatus and image forming apparatus including the same
JP4617004B2 (ja) 走査光学装置及びそれを用いた画像形成装置
JP6351257B2 (ja) 光走査装置及びそれを有する画像形成装置
US9645522B2 (en) Optical scanning apparatus
JP2015125210A5 (ja)
JP5173879B2 (ja) 光走査装置及びそれを用いた画像形成装置
JP6700842B2 (ja) 光走査装置
JP6429944B1 (ja) 光走査装置及びそれを備える画像形成装置
JP2019095647A (ja) 光走査装置及びそれを備える画像形成装置
US10216116B2 (en) Optical scanning apparatus and image forming apparatus including the same
JP6188899B2 (ja) 光走査装置及びそれを用いた画像形成装置
JP4636736B2 (ja) 走査光学装置及びそれを用いた画像形成装置
JP4378416B2 (ja) 走査光学装置及びそれを用いた画像形成装置
JP2020106579A (ja) 光走査装置及び画像形成装置
JP2019086620A (ja) 光走査装置及びそれを備える画像形成装置
JP2022055826A (ja) 光走査装置
JP4369726B2 (ja) 光走査装置及び画像形成装置
JP2023012296A (ja) 光走査装置及びそれを備える画像形成装置
JP5441938B2 (ja) 走査光学装置及びそれを用いた画像形成装置
JP2019105779A (ja) 光走査装置及びそれを備える画像形成装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181030

R151 Written notification of patent or utility model registration

Ref document number: 6429944

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151