JP2018204439A - 容量可変型斜板式圧縮機 - Google Patents

容量可変型斜板式圧縮機 Download PDF

Info

Publication number
JP2018204439A
JP2018204439A JP2017106813A JP2017106813A JP2018204439A JP 2018204439 A JP2018204439 A JP 2018204439A JP 2017106813 A JP2017106813 A JP 2017106813A JP 2017106813 A JP2017106813 A JP 2017106813A JP 2018204439 A JP2018204439 A JP 2018204439A
Authority
JP
Japan
Prior art keywords
hole
swash plate
chamber
drive shaft
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017106813A
Other languages
English (en)
Inventor
裕之 仲井間
Hiroyuki Nakaima
裕之 仲井間
昇平 藤原
Shohei Fujiwara
昇平 藤原
隆容 鈴木
Takayasu Suzuki
隆容 鈴木
友次 橋本
Tomoji Hashimoto
友次 橋本
和也 本田
Kazuya Honda
和也 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2017106813A priority Critical patent/JP2018204439A/ja
Publication of JP2018204439A publication Critical patent/JP2018204439A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

【課題】必要な時に吐出容量を増大し易く、かつ、駆動軸の回転数が低い場合や駆動軸の回転が停止した場合に迅速に吐出容量を減少可能な容量可変型斜板式圧縮機を提供する。
【解決手段】本発明の圧縮機において、制御機構15は、抽気通路22と、給気通路24と、第1制御弁26と、第2制御弁57とを有している。抽気通路22は、制御圧室13cと吸入室としての第2吸入室27bとに接続しており、制御圧室13c内の冷媒ガスを第2吸入室27b内に導出する。給気通路24は、吐出室としての第2吐出室29bと制御圧室13cとに接続しており、第2吐出室29b内の冷媒ガスを制御圧室13c内に導入する。第1制御弁26は抽気通路22に設けられており、抽気通路22の開度を変更可能である。第2制御弁57は、駆動軸3の回転数が所定値を下回ることで開弁し、制御圧室13c内の冷媒ガスを制御圧室13cの外部に放出する。
【選択図】図1

Description

本発明は容量可変型斜板式圧縮機に関する。
特許文献1に従来の容量可変型斜板式圧縮機(以下、単に圧縮機という。)が開示されている。この圧縮機は、ハウジングと、駆動軸と、斜板と、リンク機構と、複数のピストンと、区画体と、移動体と、制御圧室と、制御機構と、付勢部材とを備えている。
ハウジングには、吸入室、吐出室、斜板室及び複数のシリンダボアが形成されている。駆動軸はハウジングに回転可能に支承されている。斜板は、斜板室内に配置されており、駆動軸とともに回転可能となっている。リンク機構は斜板の傾斜角度の変更を許容する。ここで、傾斜角度とは、駆動軸の駆動軸心に直交する方向に対して斜板がなす角度である。各ピストンは、各シリンダボアにそれぞれ収納されており、斜板の回転によって傾斜角度に応じたストロークでシリンダボア内を往復動可能となっている。これにより、各ピストンは、各シリンダボア内に圧縮室を形成する。区画体は駆動軸に固定されており、斜板室内で駆動軸と一体回転可能となっている。移動体は、駆動軸に移動可能に設けられているとともに斜板に連結されている。移動体は、斜板室内で駆動軸と一体回転可能であるとともに、かつ区画体に対して駆動軸心方向に移動可能となっている。制御圧室は、区画体と移動体とによって区画されており、内部の圧力によって移動体を移動させる。
制御機構は制御圧室内の圧力を調整する。制御機構は、抽気通路と給気通路と制御弁とを有している。抽気通路は、制御圧室と吸入室とに接続しており、制御圧室内の冷媒を吸入室内に導出する。給気通路は、吐出室と制御圧室とに接続しており、吐出室内の冷媒を制御圧室内に導入する。制御弁は、抽気通路に設けられており、抽気通路の開度を変更する。付勢部材は、斜板を付勢して傾斜角度を減少させる。
この圧縮機では、制御弁が抽気通路の開度を小さくすれば、給気通路を通じて導入された吐出室内の冷媒によって制御圧室内の圧力が高くなる。これにより、制御圧室は区画体から離れるように移動体を駆動軸心方向に移動させる。このため、移動体は傾斜角度が増大するように斜板を牽引する。これにより、斜板は、ピストンを通じて自己に作用する圧縮機の圧縮反力や付勢部材の付勢力に抗しつつ傾斜角度を増大させる。こうして、駆動軸の1回転当たりの吐出容量が増大する。一方、制御弁が抽気通路の開度を大きくすれば、抽気通路を通じて制御圧室内から吸入室内へ導出される冷媒の流量が増加することから、制御圧室の圧力が低下する。これにより、斜板は、圧縮反力や付勢部材の付勢力によって傾斜角度を減少させる。こうして、駆動軸の1回転当たりの吐出容量が減少する。また、この際に移動体は区画体に近づくように駆動軸心方向に移動する。
特開2014−190265号公報
この圧縮機では、吐出容量が増大すれば駆動軸の回転に要するトルクが増大するため、始動時や駆動軸の回転数が低い場合には、斜板の傾斜角度を小さくして吐出容量を減少させることが好ましい。また、この圧縮機では、駆動軸の回転数が低下して斜板の回転数が低下すれば、単位時間当たりで各ピストンが各シリンダボア内を往復動する回数が減少する。このため、単位時間当たりで圧縮反力が斜板に作用する回数が減少することから、結果として、斜板に作用する圧縮反力が小さくなり、斜板が傾斜角度を減少し難くなる。
このため、この圧縮機では、斜板の傾斜角度が大きい状態で駆動軸の回転数が低下すれば、たとえ制御弁が抽気通路の開度を大きくしても、制御圧室内の圧力を低下させるために長時間を要することになる。このため、始動時や駆動軸の回転数が再度上昇する際、斜板の傾斜角度が十分に小さくなっておらず、駆動軸の回転に要するトルクが過大となり易い。
特に、この圧縮機では、駆動軸の回転が停止すれば、付勢部材の付勢力のみで斜板の傾斜角度を減少させることになるため、傾斜角度が減少するまでにより長時間を要することになる。このため、斜板が傾斜角度を減少し易くなるように付勢部材の付勢力をより大きくすることが考えられるものの、この場合には、逆に斜板の傾斜角度が増大し難くなるため、必要な時に吐出容量を増大し難くなってしまう。
本発明は、上記従来の実情に鑑みてなされたものであって、必要な時に吐出容量を増大し易く、かつ、駆動軸の回転数が低い場合や駆動軸の回転が停止した場合に迅速に吐出容量を減少可能な容量可変型斜板式圧縮機を提供することを解決すべき課題としている。
本発明の容量可変型斜板式圧縮機は、吸入室、吐出室、斜板室及び複数のシリンダボアが形成されたハウジングと、前記ハウジングに回転可能に支承された駆動軸と、前記斜板室内に配置されて前記駆動軸とともに回転される斜板と、前記駆動軸の駆動軸心に直交する方向に対する前記斜板の傾斜角度の変更を許容するリンク機構と、前記各シリンダボアに収納され、前記斜板の回転によって前記傾斜角度に応じたストロークで往復動して前記各シリンダボア内に圧縮室を形成するピストンと、前記斜板室内で前記駆動軸と一体回転可能に設けられた区画体と、前記斜板室内で前記駆動軸と一体回転可能であるとともに前記斜板と連結され、前記区画体に対して前記駆動軸心方向に移動して前記傾斜角度を変更する移動体と、前記区画体と前記移動体とにより区画された制御圧室と、前記制御圧室内の圧力を制御する制御機構と、前記傾斜角度を減少させる付勢部材とを備え、
前記制御圧室は、内部の圧力が高くなることにより、前記移動体を移動させて前記傾斜角度を増大させ、
前記制御機構は、前記制御圧室と前記吸入室とに接続し、前記制御圧室内の冷媒を前記吸入室内に導出する抽気通路と、
前記吐出室と前記制御圧室とに接続し、前記吐出室内の前記冷媒を前記制御圧室内に導入する給気通路と、
前記抽気通路に設けられ、前記抽気通路の開度を変更可能な第1制御弁と、
前記駆動軸の回転数が所定値を下回ることで開弁し、前記制御圧室内の前記冷媒を前記制御圧室の外部に放出する第2制御弁とを有していることを特徴とする。
本発明の圧縮機では、駆動軸の回転数が所定値を下回れば、第2制御弁が開弁する。このため、この状態では、制御圧室内の冷媒は、抽気通路によって吸入室内へ導出されるだけでなく、開弁した第2制御弁によって制御圧室の外部にも放出される。このため、制御圧室内の圧力を迅速に低下させることができる。これにより、この圧縮機では、駆動軸の回転数が所定値を下回り、斜板に作用する圧縮反力が小さくなる場合であっても、斜板は傾斜角度を減少し易い。また、駆動軸の回転が停止し、斜板に圧縮反力が作用しない場合も、斜板は付勢部材の付勢力のみで傾斜角度を減少することができる。この際、この圧縮機では、斜板が傾斜角度を減少し易くするために、付勢部材の付勢力を過剰に大きくする必要もない。
したがって、本発明の容量可変型斜板式圧縮機は、必要な時に吐出容量を増大し易く、かつ、駆動軸の回転数が低い場合や駆動軸の回転が停止した場合に迅速に吐出容量を減少可能である。
第2制御弁は、駆動軸、区画体及び移動体のいずれかに設けられ、開弁時に制御圧室内の冷媒を斜板室内に放出する一方、遠心力によって閉弁する方向に付勢されていることが好ましい。この場合には、第2制御弁を開閉するに当たって、駆動軸の回転数を検出する検出装置や電磁弁等の装置が不要となるため、第2制御弁、ひいては圧縮機の構成を簡素化することができる。
また、第2制御弁は、駆動軸又は移動体に設けられ、制御圧室を挟んで区画体とは反対側に位置していることが好ましい。この場合には、第2制御弁によって制御圧室内から斜板室内に放出された冷媒の圧力によって、移動体は斜板の傾斜角度を減少させる方向に移動し易くなる。このため、斜板は傾斜角度をより減少し易くなる。
第2制御弁は駆動軸に設けられ得る。また、抽気通路は、駆動軸に形成されて駆動軸心方向に延びる軸路と、駆動軸に形成され、軸路と連通して駆動軸の径方向に延びて制御圧室内に開口する経路とを有し得る。そして、第2制御弁は、貫通孔と、弁体と、保持体と、弁体付勢部材とを有し得る。貫通孔は駆動軸に形成され、弁座を有して駆動軸を径方向に貫通して軸路と連通する。弁体は貫通孔内に収容され、駆動軸の径方向の一方側に移動することにより、弁座に着座する。保持体は、弁体に接続されて貫通孔内に収容され、遠心力によって、弁体とともに駆動軸の径方向の一方側に移動して弁体を弁座に着座させる。弁体付勢部材は貫通孔内に収容され、遠心力に抗して弁体と弁座とが離反するように弁体を径方向の他方側に向けて付勢する。
この場合には、第2制御弁の構成を容易化することができる。このため、第2制御弁を小型化することが可能となり、第2制御弁を駆動軸に容易に設けることが可能となる。
また、この場合、貫通孔は、径方向の他方側から直線状に延びる第1孔と、第1孔と同軸をなし、径方向の一方側から直線状に延びる第2孔と、第1孔よりも小径に形成され、第1孔及び第2孔と同軸で直線状に延びて第1孔に連通する第3孔と、第2孔及び第3孔よりも小径に形成され、第1孔、第2孔及び第3孔と同軸で直線状に延びて第2孔及び第3孔に連通する第4孔とを有し得る。第1孔と第3孔との間には、弁座を形成する第1段差が設けられ得る。第2孔と第4孔との間には、保持体と当接して保持体の移動を規制する第2段差が設けられ得る。第3孔と第4孔との間には、弁体付勢部材の一端を支持する第3段差が設けられ得る。また、弁体は、第1孔内に配置され、弁座と当接して第1孔と斜板室との間を閉鎖する本体部と、本体部と一体をなし、第3孔内に延びる第1接続部とを有し得る。さらに、保持体は、第2孔内に配置される蓋部と、蓋部と一体をなし、第2孔内、第3孔内及び第4孔内に延びて第1接続部に接続される第2接続部とを有し得る。また、弁体付勢部材は、第3段差と本体部との間に配置され得る。そして、第2孔内には、第2孔と斜板室との間を封止する封止部材が設けられていることが好ましい。
これにより、第2制御弁では、駆動軸の回転数が所定値以上となり、保持体に作用する遠心力が大きくなれば、弁体の本体部が第1孔内を駆動軸の径方向の一方側に移動して弁座に着座する。このため、第1孔と斜板室との間が本体部によって閉鎖される。また、封止部材によって、第2孔と斜板室との間が封止される。これらにより、第2制御弁が閉弁する。一方、駆動軸の回転数が所定値を下回り、保持体に作用する遠心力が小さくなれば、弁体は、弁体付勢部材の付勢力によって、第1孔内を駆動軸の径方向の他方側に移動するため、本体部が弁座から離れる。これにより、第1孔と斜板室との間が開放され、第2制御弁が開弁する。このため、制御圧室内の冷媒が径路、軸路、第4孔、第3孔及び第1孔を流通して、駆動軸の外部、すなわち、斜板室へ放出される。ここで、保持体と弁体とは、第1接続部及び第2接続部を通じて接続していることから、蓋部は、弁体の移動に伴って、第2孔内を駆動軸の径方向の他方側に移動する。そして、蓋部が第2段差に当接すれば、蓋部、ひいては保持体の移動が規制され、結果として、弁体も駆動軸の径方向の他方側へ移動することが規制される。このように、この第2制御弁によれば、上記の作用を好適に奏することが可能となる。
第2孔と第3孔とは略同径に形成されていることが好ましい。この場合には、軸路内の冷媒、ひいては制御圧室内の冷媒の圧力が弁体及び保持体にそれぞれ作用する際の弁体の受圧面積と、保持体の受圧面積とがほぼ等しくなる。弁体に作用する制御圧室内の冷媒の圧力は、制御圧室内と斜板室内との差圧により、弁体の本体部を弁座から離反させようとする力となる。また、保持体に作用する制御圧室内の冷媒の圧力は、制御圧室内と斜板室内との差圧により、保持体を通じて本体部を弁座に着座させようとする力となる。ここで、弁体の受圧面積と保持体の受圧面積とがほぼ等しくなることで、弁体に作用する制御圧室内の冷媒の圧力と、保持体に作用する制御圧室内の冷媒の圧力とがほぼ相殺される。このため、第2制御弁では、制御圧室内と斜板室内との差圧に影響されず、保持体に作用する遠心力のみで閉弁することが可能となる。
また、第3孔は、第2孔よりも大径に形成されていることも好ましい。この場合には、制御圧室内の冷媒の圧力が作用する際の保持体の受圧面積に比べて、弁体の受圧面積が大きくなる。このため、保持体に作用する制御圧室内の冷媒の圧力よりも、弁体に作用する制御圧室内の冷媒の圧力が大きくなり、本体部を弁座から離反させようとする力が大きくなる。これにより、この第2制御弁では、制御圧室内と斜板室内との差圧が大きくなることで、第2孔と第3孔とが略同径である場合と比べて、より開弁し易くなる。
蓋部は、斜板室に面する端面と、端面と連続しつつ駆動軸の径方向に延びる側面とを有し得る。そして、封止部材は環状をなし、端面と当接することより第2孔と斜板室との間を封止することが好ましい。この場合には、封止部材が蓋部の側面に当接する構成と異なり、蓋部が第2孔内を移動するに当たって封止部材がその抵抗とならない。このため、蓋部が第2孔内を移動し易くなる。また、封止部材が蓋部の端面と当接するまでの間は、弁体側だけでなく、蓋部の側面と第2孔との間からも制御圧室内の冷媒を流通させて斜板室に放出させることができる。このため、第2制御弁の開弁により、制御圧室内の冷媒を斜板室内に好適に放出することが可能となる。
本発明の容量可変型斜板式圧縮機は、必要な時に吐出容量を増大し易く、かつ、駆動軸の回転数が低い場合や駆動軸の回転が停止した場合に迅速に吐出容量を減少可能である。
図1は、実施例1の圧縮機において、傾斜角度が最小の状態を示す断面図である。 図2は、実施例1の圧縮機において、傾斜角度が最大の状態を示す断面図である。 図3は、実施例1の圧縮機に係り、制御機構を示す模式図である。 図4は、実施例1の圧縮機に係り、開弁時の第2制御弁を示す図1におけるA−A断面を示す拡大断面図である。 図5は、実施例1の圧縮機に係り、閉弁時の第2制御弁を示す図4と同様の拡大断面図である。 図6は、実施例1の圧縮機に係り、第2制御弁によって、制御圧室内の冷媒ガスが斜板室内に放出されている状態を示す要部拡大断面図である。 図7は、実施例2の圧縮機に係り、開弁時の第2制御弁を示す図4と同様の拡大断面図である。
以下、本発明を具体化した実施例1、2を図面を参照しつつ説明する。これらの圧縮機は、いずれも車両に搭載されており、車両用空調装置の冷凍回路を構成している。
(実施例1)
図1及び図2に示すように、実施例1の圧縮機は、ハウジング1と、駆動軸3と、斜板5と、リンク機構7と、複数のピストン9と、複数対のシュー11a、11bと、アクチュエータ13とを備えている。また、この圧縮機は、図3に示す制御機構15を備えている。
図1及び図2に示すように、ハウジング1は、フロントハウジング17と、リヤハウジング19と、第1シリンダブロック21と、第2シリンダブロック23と、第1弁形成プレート39と、第2弁形成プレート41とを有している。なお、本実施例では、フロントハウジング17が位置する側を圧縮機の前方側とし、リヤハウジング19が位置する側を圧縮機の後方側として、圧縮機の前後方向を規定している。また、図1及び図2の紙面の上方を圧縮機の上方側とし、紙面の下方を圧縮機の下方側として、圧縮機の上下方向を規定している。そして、図4以降では、図1及び図2に対応させて前後方向及び上下方向を表示する。なお、実施例1における前後方向等は一例であり、本発明の圧縮機は、搭載される車両等に対応して、その姿勢が適宜変更される。
フロントハウジング17には、前方に向かって突出するボス17aが形成されている。ボス17a内には軸封装置25が設けられている。また、フロントハウジング17内には、第1吸入室27a及び第1吐出室29aが形成されている。第1吸入室27aはフロントハウジング17の中心側に位置している。第1吐出室29aは環状に形成されており、第1吸入室27aの外周側に位置している。
リヤハウジング19には、上記の制御機構15の一部が設けられている。また、リヤハウジング19には、第2吸入室27b、第2吐出室29b及び圧力調整室31が形成されている。圧力調整室31は、リヤハウジング19の中心側に位置している。第2吸入室27bは環状に形成されており、圧力調整室31の外周側に位置している。第2吐出室29bも環状に形成されており、第2吸入室27bの外周側に位置している。上記の第1吐出室29aと第2吐出室29bとは、図示しない吐出通路を通じて互いに連通している。また、吐出通路は図示しない吐出ポートに接続している。
第1シリンダブロック21は、フロントハウジング17と第2シリンダブロック23との間に設けられている。第1シリンダブロック21には、駆動軸3の駆動軸心O方向に延びる複数個の第1シリンダボア21aが形成されている。各第1シリンダボア21aは、それぞれ周方向に等角度間隔で配置されている。
また、第1シリンダブロック21には、駆動軸3を挿通させる第1軸孔21bが形成されている。第1軸孔21b内には第1滑り軸受22aが設けられている。さらに、第1シリンダブロック21には、第1軸孔21bに圧縮機の後方側から連通する第1凹部21cが形成されている。第1凹部21cは第1軸孔21bと同軸をなしている。第1凹部21cは、第1軸孔21bよりも内径が大きくされている。第1凹部21c内には、第1スラスト軸受35aが設けられている。また、第1シリンダブロック21には、前後方向に延びる第1連絡路37aが形成されている。
第2シリンダブロック23は、第1シリンダブロック21とリヤハウジング19との間に設けられている。第2シリンダブロック23は、第1シリンダブロック21に接合されることにより、第1シリンダブロック21との間に斜板室33を形成している。斜板室33は第1凹部21cと連通している。これにより、第1凹部21cは斜板室33の一部を構成している。また、斜板室33は第1連絡路37aと連通している。
第2シリンダブロック23には、駆動軸3の駆動軸心O方向に延びる複数個の第2シリンダボア23aが形成されている。各第2シリンダボア23aは、各第1シリンダボア21aと同様、周方向に等角度間隔でそれぞれ配置されており、各第1シリンダボア21aと同軸かつ前後で対になっている。また、各第1シリンダボア21aと各第2シリンダボア23aとは同径に形成されている。なお、第1シリンダボア21aと第2シリンダボア23aとが対をなしていれば、これらの個数は適宜設計することができる。また、各第1シリンダボア21aと各第2シリンダボア23aとで異なる径の大きさに形成しても良い。さらに、対をなす第1シリンダボア21a及び第2シリンダボア23aの軸心は、ずれていても良い。
第2シリンダブロック23には、駆動軸3を挿通させる第2軸孔23bが形成されている。第2軸孔23b内には第2滑り軸受22bが設けられている。また、第2シリンダブロック23には、第2軸孔23bに圧縮機の前方側から連通する第2凹部23cが形成されている。第2凹部23cは第2軸孔23bと同軸をなしている。第2凹部23cは、第2軸孔23bよりも内径が大きくされている。第2凹部23c内には、第2スラスト軸受35bが設けられている。第2凹部23cも斜板室33と連通しており、斜板室33の一部を構成している。
さらに、第2シリンダブロック23には、吸入ポート330と、第2連絡路37bとが形成されている。斜板室33は、吸入ポート330を介して管路を構成する図示しない蒸発器と接続している。第2連絡路37bは、前後方向に延びており、斜板室33と連通している。
第1弁形成プレート39は、フロントハウジング17の後端面と第1シリンダブロック21の前端面との間に設けられている。この第1弁形成プレート39を介して、フロントハウジング17と第1シリンダブロック21とが接合されている。
第1弁形成プレート39には、第1シリンダボア21aと同数の第1吸入孔390a及び第1吐出孔390bが形成されている。また、第1弁形成プレート39には、第1吸入連通孔390cが形成されている。各第1シリンダボア21aは、各第1吸入孔390aを通じて第1吸入室27aと連通する。また、各第1シリンダボア21aは、各第1吐出孔390bを通じて第1吐出室29aと連通する。そして、第1吸入連通孔390cを通じて、第1吸入室27aと第1連絡路37aとが連通する。
第2弁形成プレート41は、リヤハウジング19の前端面と第2シリンダブロック23の後端面との間に設けられている。この第2弁形成プレート41を介して、リヤハウジング19と第1シリンダブロック23とが接合されている。
第2弁形成プレート41には、第2シリンダボア23aと同数の第2吸入孔410a及び第2吐出孔410bが形成されている。また、第2弁形成プレート41には、第2吸入連通孔410cが形成されている。各第2シリンダボア23aは、各第2吸入孔410aを通じて第2吸入室27bと連通する。また、各第2シリンダボア23aは、各第2吐出孔410bを通じて第2吐出室29bと連通する。そして、第2吸入連通孔410cを通じて、第2吸入室27bと第2連絡路37bとが連通する。
図示を省略するものの、第1弁形成プレート39には、弾性変形により各第1吸入孔390aを開閉可能な吸入リード弁と、弾性変形により各第2吐出孔390bを開閉可能な吐出リード弁と、吐出リード弁の最大開度を規制するリテーナプレートとが設けられている。第2弁形成プレート41についても同様である。また、第1シリンダブロック21及び第2シリンダブロック23には、各吸入リード弁の最大開度を規制するリテーナ溝がそれぞれ設けられている。
第1、2連絡路37a、37b及び第1、2吸入連通孔390c、410cにより、第1、2吸入室27a、27bと斜板室33とが互いに連通している。このため、第1、2吸入室27a、27b内と斜板室33内とは、圧力がほぼ等しくなっている。そして、斜板室33には、吸入ポート330を通じて蒸発器を経た低圧の冷媒ガスが流入することから、斜板室33内及び第1、2吸入室27a、27b内は、第1、2吐出室29a、29b内よりも低圧である。
駆動軸3は、駆動軸本体30と第1支持部材43aと第2支持部材43bとで構成されている。また、駆動軸3の前端には、ねじ部3aが形成されている。このねじ部3aを介して駆動軸3は、図示しないプーリ又は電磁クラッチと連結されている。
駆動軸本体30は、軸方向でハウジング1の前方側から後方側に向かって延びている。駆動軸本体30は、第1径部30aと、第2径部30bと、第3径部30cとを有している。また、駆動軸本体30には、軸路3b及び径路3cが形成されている他、第2制御弁57が設けられている。これらの軸路3b、径路3c及び第2制御弁57の詳細は後述する。
第1径部30aは駆動軸本体30における前後方向の略中央に位置している。第2径部30bは、駆動軸本体30における前方側に位置しており、第1径部30aの前端と連続している。第2径部30bは、第1径部30aよりも小径となっている。第3径部30cは、駆動軸本体30における後方側に位置しており、第1径部30aの後端と連続している。第3径部30cも第1径部30aよりも小径となっている。なお、第2径部30bと第3径部30cとは同径に形成されている。
第1支持部材43aは、駆動軸3の駆動軸心Oを中心軸とする円筒状に形成されている。第1支持部材43aは、駆動軸本体30の第2径部30bに圧入されている。また、第1支持部材43aには、径方向の外側に突出する第1フランジ430が形成されている。さらに、第1支持部材43aには、後述する第2ピン47bが挿通される取付部(図示略)が形成されている。
第2支持部材43bも、駆動軸3の駆動軸心Oを中心軸とする円筒状に形成されている。第2支持部材43bは、駆動軸本体30の第3径部30cに圧入されている。第2支持部材43bの前端には、径方向の外側に突出する第2フランジ431が形成されている。また、第2支持部材43bにおいて第2フランジ431よりも後方側には、第1シールリング46a及び第2シールリング46bが設けられている。
駆動軸3は、ハウジング1内において、軸封装置25内及び第1、2軸孔21b、23b内に挿通されている。これにより、第1支持部材43aは第1軸孔21bに支承されており、第2支持部材43bは第2軸孔23bに支承されている。また、第1支持部材43aでは、第1フランジ430が第1凹部21cの前壁との間で第1スラスト軸受35aを挟持する。そして、第2支持部材43bでは、第2フランジ431が第2凹部23cの後壁との間で第2スラスト軸受35bを挟持する。こうして、駆動軸3はハウジング1に支承されており、圧縮機の前後方向と平行な駆動軸心O周りで回転可能となっている。また、駆動軸3がハウジング1に支承されることにより、軸封装置25は、駆動軸3を挿通した状態でフロントハウジング17の外部と第1吸入室27aとの間を封止する。さらに、第1、2シールリング46a、46bは、第2凹部23cと圧力調整室31との間、ひいては、斜板室33と圧力調整室31との間を封止する。
また、駆動軸3には、上記の斜板5、リンク機構7及びアクチュエータ13が設けられている。これにより、斜板5、リンク機構7及びアクチュエータ13は、斜板室33内に配置されている。
斜板5は環状の平板形状をなしており、前面5aと後面5bとを有している。前面5aは、斜板室33内において圧縮機の前方側、つまり、フロントハウジング17側に面している。後面5bは、斜板室33内において圧縮機の後方側、つまり、リヤハウジング19側に面している。
斜板5はリングプレート45を有している。リングプレート45は環状の平板形状に形成されており、中心部に挿通孔45aが形成されている。斜板5は、斜板室33内において挿通孔45aに駆動軸本体30が挿通されることにより、駆動軸3に取り付けられている。また、リングプレート45には、前面5a側から後面5b側まで貫通する溝部45bが形成されている。さらに、リングプレート45には、斜板5の後方に突出する連結部45cが形成されている。連結部45cは、駆動軸心Oを基準として、溝部45bの反対側に位置している。
リンク機構7はラグアーム49を有している。ラグアーム49は、斜板室33内において、斜板5よりも前方に配置されており、斜板5と第1支持部材43aとの間に位置している。ラグアーム49は、前方から後方に向かって略L字形状となるように形成されている。また、ラグアーム49には、ウェイト部49aが形成されている。なお、ウェイト部49aの形状は適宜設計することが可能である。
ラグアーム49の後端側は、第1ピン47aによってリングプレート45と連結されている。これにより、ラグアーム49は、第1ピン47aの軸心を第1揺動軸心M1として、リングプレート45、すなわち斜板5に対し、第1揺動軸心M1周りで揺動可能に支持されている。
ラグアーム49の前端側は、第2ピン47bによって第1支持部材43aと連結されている。これにより、ラグアーム49は、第2ピン47bの軸心を第2揺動軸心M2として、第1支持部材43a、すなわち駆動軸3に対し、第2揺動軸心M2周りで揺動可能に支持されている。これらのラグアーム49、第1、2ピン47a、47bに加えて、後述する連結アーム134及び第3ピン47cによって、本発明におけるリンク機構7が構成されている。
ウェイト部49aは、ラグアーム49の後端、つまり、第1揺動軸心M1を基準として第2揺動軸心M2とは反対側に位置している。このため、ラグアーム49が第1ピン47aによってリングプレート45に支持されることで、ウェイト部49aはリングプレート45の溝部45bを通って、斜板5の後面5b側に位置する。そして、斜板5が駆動軸心O周りに回転することにより発生する遠心力が後面5b側でウェイト部49aに作用する。
この圧縮機では、斜板5と駆動軸3とがリンク機構7によって連結されることにより、斜板5は駆動軸3と共に回転することが可能となっている。また、ラグアーム49の両端がそれぞれ第1揺動軸心M1及び第2揺動軸心M2周りで揺動することにより、斜板5は、図1に示す最小値から図2に示す最大値まで傾斜角度を変更することが可能となっている。
各ピストン9は、それぞれ前端に第1頭部9aを有しており、後端に第2頭部9bを有している。つまり、各ピストン9は両頭ピストンである。各第1頭部9aは、それぞれ各第1シリンダボア21a内を往復動可能に収納されている。これらの各第1頭部9aと第1弁形成プレート39とにより、各第1シリンダボア21a内にそれぞれ第1圧縮室53aが形成されている。各第2頭部9bは、それぞれ第2シリンダボア23a内を往復動可能に収納されている。これらの各第2頭部9bと第2弁形成プレート41とにより、各第2シリンダボア23a内にそれぞれ第2圧縮室53bが形成されている。
また、各ピストン9の中央には係合部9cが形成されている。各係合部9c内には、半球状のシュー11a、11bがそれぞれ設けられている。これらのシュー11a、11bは、変換機構として斜板5の回転をピストン9の往復動に変換する。こうして、斜板5の傾斜角度に応じたストロークで、各第1頭部9aがそれぞれ第1シリンダボア21a内を往復動することが可能となっているとともに、各第2頭部9bがそれぞれ第2シリンダボア23a内を往復動することが可能となっている。
ここで、この圧縮機では、斜板5の傾斜角度の変更に伴い各ピストン9のストロークが変化することで、リンク機構7は、各第1頭部9aと各第2頭部9bとの各上死点の位置を移動させる。具体的には、図1に示すように、リンク機構7は、斜板5の傾斜角度が小さくなるのに伴って、各第1頭部9aの上死点の位置よりも各第2頭部9bの上死点の位置を大きく移動させる。
アクチュエータ13は、斜板室33内において斜板5よりも後方側に配置されている。これにより、アクチュエータ13は、第2凹部23c内に進入することが可能となっている。アクチュエータ13は、移動体13aと区画体13bと制御圧室13cとを有している。
図6に示すように、移動体13aは、後壁130と、突出部131と、収容部132と、周壁133と、一対の連結アーム134とを有している。なお、図6、図1及び図2では、連結アーム134の一方のみを図示している。
後壁130は移動体13aの後方に位置しており、駆動軸心Oから離れる方向で径方向に延びる略円盤形状とされている。また、後壁130には、挿通孔130aが貫設されている。挿通孔130a内にはOリング51aが設けられている。突出部131は、略円環状に形成されている。突出部131は、後壁130の外周縁側で後壁130と一体をなしており、後壁130から離れるように移動体13aの後方に向かって延びている。収容部132は、後壁130及び突出部131によって形成されており、後壁130の後側に位置している。
周壁133は、後壁130の外周縁と連続しており、突出部131の反対側、つまり、移動体13aの前方に向かって延びている。これらの後壁130、突出部131、収容部132及び周壁133により、移動体13aは有底の略円筒状をなしている。図1及び図2に示すように、各連結アーム134は周壁133の前端にそれぞれ形成されており、周壁133から圧縮機の前方に向かって延びている。
区画体13bは、移動体13aの内径とほぼ同径をなす略円板状に形成されている。区画体13bは中心に挿通孔135が貫設されている。また、区画体13bの外周にはOリング51bが設けられている。
移動体13aの挿通孔130aには、駆動軸本体30の第3径部30cが挿通されている。これにより、移動体13aは駆動軸本体30と共に回転可能であるとともに、区画体13bに対して第3径部30cを駆動軸心O方向に移動することが可能となっている。一方、区画体13bの挿通孔135に対して、第3径部30cが圧入されている。これにより、区画体13bは駆動軸本体30に固定され、区画体13bは駆動軸本体30と共に回転可能となっている。なお、区画体13bについても駆動軸心O方向に移動可能に第3径部30cに挿通する構成としても良い。
区画体13bは、移動体13a内に配置されており、その周囲が周壁133によって取り囲まれた状態となっている。これにより、移動体13aが駆動軸心O方向に移動するに当たり、周壁133の内周面と、区画体13bの外周面とが摺動する。
そして、区画体13bが周壁133によって取り囲まれることにより、移動体13aと区画体13bとの間に制御圧室13cが形成されている。この制御圧室13cは、後壁130と周壁133と区画体13bとによって斜板室33から区画されている。また、Oリング51aは移動体13aと第3径部30cとの間で弾性変形し、Oリング51bは移動体13aと区画体13bとの間で弾性変形する。これにより、Oリング51a、51bは、制御圧室13cと斜板室33との間を封止する。
各連結アーム134と、リングプレート45の連結部45cとは、第3ピン47cによって連結されている。これにより、斜板5は、第3ピン47cの軸心を第3軸心M3として、第3軸心M3周りで移動体13aに揺動可能に連結されている。ここで、第1ピン47aと第3ピン47cとは、駆動軸本体30を挟んで対向して配置されている。つまり、各連結アーム134は、駆動軸心Oを基準として、溝部45bとは反対側でリングプレート45に連結されている。
また、駆動軸3には、復帰ばね44aと傾角減少ばね44bとが設けられている。傾角減少ばね44bは、本発明における「付勢部材」の一例である。復帰ばね44aは、第1支持部材43aの第1フランジ430と斜板5の前面5aとの間に配置されている。復帰ばね44aは、傾斜角度が増大するように斜板5を付勢する。一方、傾角減少ばね44bは、区画体13bと斜板5の後面5bとの間に配置されている。傾角減少ばね44bは、傾斜角度が減少するように斜板5を付勢する。なお、移動体13aの後壁130と、第2支持部材43bの第2フランジ431との間に傾角減少ばね44bを設けても良い。
軸路3bは、駆動軸本体30内、より具体的には、第3径部30c内に形成されており、駆動軸心O方向に延びている。軸路3bの後端は、第3径部30cの後端面、つまり、駆動軸本体30の後端面に開口しており、圧力調整室31に連通している。径路3cは、軸路3bの前端と接続しつつ駆動軸本体30の径方向に延びており、第3径部30cの外周面に開口している。上記のように駆動軸本体30にアクチュエータ13が設けられることにより、径路3cは制御圧室13c内に開口する。こうして、軸路3b及び径路3cによって、圧力調整室31と制御圧室13cとが連通している。
図3に示すように、制御機構15は、抽気通路22と、給気通路24と、第1制御弁26と、オリフィス28と、第2制御弁57とを有している。
抽気通路22は、第1低圧通路221、第2低圧通路222、圧力調整室31、軸路3b及び径路3cによって構成されている。第1低圧通路221は、第2吸入室27bと第1制御弁26とに接続している。第2低圧通路222は、第1制御弁26と圧力調整室31とに接続している。これにより、抽気通路22は、制御圧室13cと第2吸入室27bとを接続している。第1制御弁26は、第2吸入室27bの圧力に基づいて第1、2低圧通路221、222に対する開度を変更することにより、抽気通路22の開度を変更する。
給気通路24は、高圧通路241、圧力調整室31、軸路3b及び径路3cによって構成されている。高圧通路241は、第2吐出室29bと圧力調整室31とに接続している。これにより、給気通路24は、第2吐出室29bと制御圧室13cとに接続している。オリフィス28は、高圧通路241に設けられている。
この制御機構15において、圧力調整室31、軸路3b及び径路3cは、抽気通路22の一部と、給気通路24の一部とを兼ねている。
図1及図2に示すように、第2制御弁57は、駆動軸本体30の第3径部30cに設けられており、制御圧室13cの外側に位置している。より具体的には、第2制御弁57は、制御圧室13cを挟んで区画体13bとは反対側に位置している。図4及び図5に示すように、第2制御弁57は、貫通孔59と、弁体61と、保持体63と、コイルばね65と、封止部材67とを有している。コイルばね65は、本発明における「弁体付勢部材」の一例である。
貫通孔59は、軸路3bと直交するように、第3径部30cを径方向に一方側から他方側まで貫通している。ここで、径方向の一方側とは、図4及び図5の紙面における下側、つまり、貫通孔59内において、封止部材67が存在する側を指す。そして、径方向の他方とは、図4及び図5の紙面における上側、つまり、貫通孔59内において、弁体61が存在する側を指す。貫通孔59は、第3径路30c内で軸路3bと連通している。貫通孔59は、第1〜4孔59a〜59dによって構成されている。
第1孔59aは、第1内径L1を有する円柱状に形成されており、第3径部30cの径方向、すなわち、駆動軸本体30の径方向の他方側の端部から一方側に向かって直線状に延びている。第2孔59bは、第1孔59aと同軸をなしており、貫通孔59において第1孔59aの反対側に位置している。第2孔59bは、第1内径L1よりも小径の第2内径L2を有する円柱状に形成されており、駆動軸本体30の径方向の一方側の端部から他方側に向かって直線状に延びている。
第3孔59cは、第1孔59a及び第2孔59bと同軸をなしている。第3孔59cは、第2内径L2を有する円柱状に形成されており、第1孔59aと連通しつつ、第3径部30cの一方側に向かって直線状に延びている。つまり、本実施例では、第2孔59bと第3孔59cとは同径に形成されている。ここで、第1孔59aに比べて第3孔59cは内径が小さいため、双方の間には第1段差591が形成されている。貫通孔59内には、この第1段差591によって弁座69が形成されている。
第4孔59dは、第1〜3孔59a〜59cと同軸をなしている。第4孔59dは、第1内径L1及び第2内径L2よりも小径の第3内径L3を有する円柱状に形成されている。第4孔59dは、駆動軸本体30の径方向に直線状に延びており、第2孔59b及び第3孔59cに連通している。ここで、第2、3孔59b、59cに比べて第4孔59dは内径が小さい。このため、第2孔59bと第4孔59dとの間には、第2段差592が形成されており、第3孔59cと第4孔59dとの間には、第3段差593が形成されている。
弁体61は、円盤状をなす本体部61aと、円筒状をなす第1接続部61bとで構成されている。本体部61aは、第1内径L1よりも小径であって、第2内径L2よりも大径に形成されている。第1接続部61bは、第3内径L3よりも小径に形成されている。第1接続部61bは、本体部61aと一体をなしており、本体部61aから離れるように、駆動軸本体30の径方向に直線状に延びている。
保持体63は、蓋部63aと第2接続部63bとで構成されている。蓋部63aは円柱状に形成されており、第1端面631と、第2端面632と、側面633とを有している。第1側面631は、本発明における「端面」の一例である。第1端面631及び第2端面632は平坦に形成されており、蓋体63aにおいて対向して位置している。側面633は、第1端面631及び第2端面632と連続しつつ、駆動軸本体30の径方向に直線状に延びている。蓋部63aは、第2内径L2とほぼ同径に形成されている。第2接続部63bは、第3内径L3よりも小径であって、第1接続部61bの内径とほぼ同径に形成されている。第2接続部63bは、第2端面632と一体をなしており、第2端面632、すなわち、蓋部63aから離れるように、駆動軸本体30の径方向に直線状に延びている。
コイルばね65は、第2内径L2よりも小径であって、第3内径L3よりも大径に形成されている。封止部材67は、円環状をなしており、内周側に通気路67aが形成されている。封止部材67の外径は、第2内径L2とほぼ同径に形成されている。
第2制御弁57では、貫通孔59に対して、第2孔59b側から保持体63が収容される。この際、保持体63は、第1端面631が第2孔59b内で斜板室33に面した状態で収容される。これにより、保持体63では、第2接続部63bが第4孔59d内から第3孔59c内を経て、第1孔59a内まで延びる状態となる。また、貫通孔59に対して、第1孔59a側からコイルばね65が収容される。さらに、第1孔59a側から、弁体61が収容される。この際、弁体61は、第1接続部61bを第3、4孔59c、59d側に向けた状態で収容される。これにより、コイルばね65が第3段差593と、弁体61の本体部61aとの間に配置される。つまり、第3段差593は、コイルばね65のばね座として機能する。コイルばね65は、弁体61を駆動軸本体30の径方向の他方側に向けて付勢することにより、本体部61aと弁座69とを離反させる。さらに、第2接続部63bが、第1接続部61bに圧入されることで、第1接続部61bと第2接続部63bとが接続される。こうして、貫通孔59内で弁体61と保持体63とが接続される。ここで、上記のように、コイルばね65によって、弁体61が駆動軸本体30の径方向の他方側に向けて付勢されるため、保持体63も同じく駆動軸本体30の径方向の他方側に向けて付勢されることとなる。このように、弁体61と保持体63とを接続した状態で、貫通孔59に対して、第2孔59b側から封止部材67が収容される。さらに、第2孔59bに対してサークリップ71が取り付けられ、封止部材67の第2孔59bからの抜け止めが行われる。こうして、貫通孔59内に、弁体61、保持体63、コイルばね65及び封止部材67がそれぞれ収容される。なお、サークリップ71を設けずに、封止部材67を第2孔59bの内周面に接着しても良い。
この圧縮機では、図1及び図2に示す吸入ポート330に対して蒸発器に繋がる配管が接続されるとともに、図示しない吐出ポートに対して凝縮器に繋がる配管が接続される。凝縮器は配管及び膨張弁を介して蒸発器と接続される。これらの圧縮機、蒸発器、膨張弁、凝縮器等によって車両用空調装置の冷凍回路が構成されている。なお、蒸発器、膨張弁、凝縮器及び各配管の図示は省略する。
以上のように構成された圧縮機では、駆動軸3が回転することにより、リンク機構7が駆動軸3の回転を斜板5に伝達するため、斜板5が回転する。これにより、各ピストン9では、各第1頭部9aが各第1シリンダボア21a内を往復動し、各第2頭部9bが各第2シリンダボア23a内を往復動する。このため、第1、2圧縮室53a、53bがピストン9のストロークに応じて容積変化を生じる。このため、この圧縮機では、第1、2吸入室27a、27bから第1、2圧縮室53a、53bへ冷媒ガスを吸入する吸入行程と、第1、2圧縮室53a、53bにおいて冷媒ガスが圧縮される圧縮行程と、圧縮された冷媒ガスが第1、2吐出室29a、29bに吐出される吐出行程等とが繰り返し行われることとなる。第1、2吐出室29a、29bに吐出された冷媒ガスは、吐出通路を経て吐出ポートから配管を介して凝縮器に吐出される。
そして、このように駆動軸3が回転することにより、第2制御弁57では、保持体63の蓋体63aに対して遠心力が作用する。このため、第2制御弁57は閉弁するように付勢される。具体的には、図5に示すように、蓋体63aに対して遠心力が作用することにより、保持体63は、コイルばね65の付勢力に抗しつつ、貫通孔59内を駆動軸本体30の径方向の一方側に向けて移動する。また、保持体63に接続された弁体61も同じく貫通孔59内を駆動軸本体30の径方向の一方側に向けて移動する。そして、駆動軸3の回転数が所定値以上となり、蓋体63aに作用する遠心力がより大きくなることで、弁体61及び保持体63は、貫通孔59内を駆動軸本体30の径方向の一方側に向けてより大きく移動する。このため、弁体61では、本体部61aが第1孔59a内を駆動軸本体30の径方向の一方側に移動して弁座69に着座する。このため、第1孔59aと斜板室33との間が本体部61aによって閉鎖される。また、保持体63では、蓋部63aが第2孔59b内を駆動軸本体30の径方向の一方側に移動し、第1端面631が封止部材67と当接する。これにより、第2孔59bと斜板室33との間も封止される。これらにより、第2制御弁57は閉弁し、軸路3bと斜板室33とが非連通となる。ここで、本実施例では、駆動軸3の回転数の所定値として300rpmを設定している。なお、所定値は適宜設定可能である。
また、上記のように吸入行程等が行われる間、斜板5、リングプレート45、ラグアーム49及び第1ピン47aからなる回転体には斜板5の傾斜角度を小さくするピストン圧縮力が作用する。そして、斜板5の傾斜角度が変更されれば、ピストン9のストロークの増減による容量制御を行うことが可能である。
具体的には、駆動軸3の回転数が所定値以上であり、第2制御弁57が閉弁している状態で、図3に示す第1制御弁26が抽気通路22の開度を小さくする。これにより、高圧通路241を通じて第2吐出室29b内から導入された高圧の冷媒ガスによって、圧力調整室31の圧力が上昇する。そして、軸路3b及び径路3cを経て、圧力調整室31から制御圧室13cに高圧の冷媒ガスが導入されることで、制御圧室13cの圧力が上昇する。このため、制御圧室13cと斜板室33との差圧である可変差圧が大きくなる。なお、第2制御弁57が閉弁しているため、軸路3bを流通する高圧の冷媒ガスが斜板室33へ流出することはない。
これにより、この圧縮機では、各ピストン9を介して斜板5に作用する圧縮反力及び傾角減少ばね44bの付勢力に抗しつつ、移動体13aは、図2に示すように、区画体13bに対して駆動軸心O方向で第3径部30cを後方側に向かって移動する。なお、圧縮反力は、各ピストン9によって斜板5に作用するピストン圧縮力の合力である。
このため、各連結アーム134を通じて、移動体13aは斜板5を駆動軸心O方向で斜板室33の後方へ牽引する。このため、この圧縮機では、斜板5が作用軸心M3周りに揺動する。また、ラグアーム49の前端側が第1揺動軸心M1周りで揺動するとともに、ラグアーム49の後端側が第2揺動軸心M2周りで揺動する。このため、ラグアーム49の前端側が第1支持部材43aの第1フランジ430から遠ざかる。これらにより、斜板5は、作用軸心M3及び第1揺動軸心M1をそれぞれ作用点及び支点として揺動する。このため、駆動軸3の駆動軸心Oに直交する方向に対する斜板5の傾斜角度が増大し、各ピストン9のストロークが増大する。このため、この圧縮機では、駆動軸3の1回転当たりの吐出容量が増大する。
ここで、斜板5の傾斜角度が最大値となるときに、移動体13aでは、当接部131が第2凹部23cの壁面、すなわち、第2シリンダブロック23に当接する。このため、移動体13aにおける第3径部30cの後方側への移動が規制される。この際、第2制御弁57は、移動体13aの収容部132内に位置しており、制御圧室13c内に進入することはない。つまり、斜板5の傾斜角度が最大値となっても、第2制御弁57は制御圧室13cの外側に位置する。
一方、駆動軸3の回転数が所定値以上であり、第2制御弁57が閉弁している状態で、図3に示す第1制御弁26が抽気通路22の開度を大きくすれば、制御圧室13c内から径路3c、軸路3b及び圧力調整室31を経て第2吸入室27b内へ導出される冷媒ガスの流量が増大する。この結果、制御圧室13c内の圧力が減少し、可変差圧が小さくなる。なお、第2制御弁57が閉弁しているため、軸路3bを流通する冷媒ガスが斜板室33へ流出することはない。
これにより、この圧縮機では、各ピストン9を介して斜板5に作用する圧縮反力及び傾角減少ばね44bの付勢力によって、斜板5は傾斜角度が減少する方向に付勢される。このため、傾斜角度が大きくなる場合とは反対方向で斜板5が作用軸心M3周りで揺動する。また、傾斜角度が大きくなる場合とは反対方向でラグアーム49の前端側が第1揺軸心M1周りで揺動するとともに、ラグアーム49の後端側が第2揺動軸心M2周りで揺動する。このため、ラグアーム49の前端側が第1支持部材43aの第1フランジ430に近づく。これらにより、斜板5は、作用軸心M3を作用点とし、第1揺動軸心M1を支点として、傾斜角度が大きくなる場合とは反対方向に揺動する。このため、図1に示すように、駆動軸3の駆動軸心Oに直交する方向に対する斜板5の傾斜角度が減少し、各ピストン9のストロークが減少する。こうして、この圧縮機では、駆動軸3の1回転当たりの吐出容量が減少する。
ここで、この圧縮機では、斜板5の傾斜角度が最小値であるとき、制御圧室13c内の圧力は、第2吸入室27b内の圧力とほぼ等しくなる。また、上記のように傾斜角度が減少することに伴い、斜板5は、移動体13aを駆動軸心O方向で斜板室33の前方へ牽引する。このため、移動体13aは区画体13bに近づくように駆動軸心O方向で第3径部30cを前方側に移動する。さらに、傾斜角度が最小値である場合を含め、傾斜角度が最小値に近づくことにより、斜板5は復帰ばね44aに当接する。
また、この圧縮機では、ウェイト部49aに作用した遠心力も斜板5に付与される。このため、この圧縮機では、斜板5が傾斜角度を減少させる方向に変位し易くなっている。
そして、このように、斜板5の傾斜角度が減少し、各ピストン9のストロークが減少することで、リンク機構7は、各第2頭部9bの上死点の位置を大きく移動させる。これにより、各第2頭部9bの上死点の位置が第2弁形成プレート41から遠ざかる。一方、リンク機構7は、斜板5の傾斜角度に係らず、各第1頭部9aの上死点の位置を殆ど移動させない。このため、この圧縮機では、斜板5の傾斜角度が最小値である場合を含め、傾斜角度が最小値に近づくことで、第1圧縮室53aでは、冷媒ガスの圧縮仕事が行われ、内部の冷媒ガスが吐出リード弁を開いて第1吐出室29aに吐出されるものの、第2圧縮室53bでは、内部の冷媒ガスが吐出リード弁を開かないため、冷媒ガスが第2吐出室29bに吐出されなくなる。
また、この圧縮機では、駆動軸3の回転数が低下して斜板5の回転数が低下すれば、単位時間当たりで各ピストン9の第1、2頭部9a、9bが各第1、2シリンダボア21a、23a内を往復動する回数が減少する。このため、単位時間当たりで斜板5に圧縮反力が作用する回数が減少し、結果として、斜板5に作用する圧縮反力が小さくなる。
この点、この圧縮機では、駆動軸3の回転数が低下し、所定値を下回ることにより、第2制御弁57では、保持体63の蓋体63aに作用する遠心力が小さくなる。これにより、図4に示すように、コイルばね65は、遠心力に抗しつつ、貫通孔59内で弁体61及び保持体63を駆動軸本体30の径方向の他方側に向けて移動させ、弁体61の本体部61aを弁座69から離反させる。このため、第2制御弁57が開弁し、第1孔59aと斜板室33との間が開放される。また、保持体63が駆動軸本体30の径方向の他方側に移動することにより、蓋部63aの第1端面631が封止部材67から離反する。このため、第2制御弁57が開弁した状態では、第2孔59bと斜板室33との間も開放される。なお、蓋体63aが第2孔59b内を移動し、第2端面631が第2段差592と当接することにより、弁体61及び保持体63の駆動軸本体30の径方向の他方側への移動が規制される。
これらのため、図6に示すように、駆動軸3の回転数が所定値を下回った状態では、制御圧室13c内の冷媒ガスは、抽気通路22によって第2吸入室27b内へ導出されるだけでなく、開弁した第2制御弁57によって斜板室33内にも放出される。具体的には、同図の破線矢印で示すように、制御圧室13c内の冷媒ガスは、径路3c及び軸路3bを経て、第4孔59dに至る。そして、第4孔59d内の冷媒ガスは、第3孔59c及び第1孔59aを経て斜板室33内に放出される。また、第2制御弁57では、蓋部63aの側面633と第2孔59bの内周面との間は封止されていない。このため、第4孔59d内の冷媒ガスは、第2孔59bと蓋部63aとの隙間から封止部材67の通気孔67aを経ることによっても、斜板室33内に放出される。そして、斜板室33内に放出されなかった冷媒ガスは、軸路3bから、圧力調整室31及び第1、2低圧通路221、222を経て、第2吸入室27b内に導出される。なお、図6では、説明を容易にするため、蓋部63aと第2孔59bとの隙間を誇張して図示している。
このように、この圧縮機では、第2制御弁57が開弁することにより、制御圧室13c内の冷媒ガスを第2吸入室27b内へ導出するだけでなく、斜板室33内にも放出することができる。このため、制御圧室13c内の冷媒ガスを第2吸入室27b内へ導出するのみである場合に比べて、制御圧室13c内の圧力を迅速に低下させることができる。これにより、この圧縮機では、駆動軸3の回転数が所定値を下回り、斜板5に作用する圧縮反力が小さくなる場合であっても、斜板5は傾斜角度を減少し易くなっている。また、この圧縮機では、駆動軸3の回転が停止すれば、斜板5に圧縮反力が作用せず、斜板5は傾角減少ばね44bの付勢力のみで傾斜角度を減少させることになるものの、このような場合であっても、斜板5は傾斜角度を減少し易くなっている。この際、この圧縮機では、斜板5が傾斜角度を減少し易くするために、傾角減少ばね44bの付勢力を過剰に大きくする必要もない。このため、斜板5が傾斜角度を増大するに当たって、傾角減少ばね44bの付勢力が妨げとなり難いことから、吐出容量を増大させ易くなっている。
また、この圧縮機では、第2制御弁57が駆動軸本体30の第3径部30cに設けられており、制御圧室13cを挟んで区画体13bとは反対側に位置している。このため、第2制御弁57によって制御圧室13c内から斜板室33内に放出された冷媒ガスの圧力によって、移動体13aは第3径部30cの前方側に移動し易くなっている。これによっても、この圧縮機では、斜板5は傾斜角度を減少し易くなっている。
したがって、実施例1の圧縮機は、必要な時に吐出容量を増大し易く、かつ、駆動軸3の回転数が低い場合や駆動軸3の回転が停止した場合に迅速に吐出容量を減少可能である。
特に、第2制御弁57は、駆動軸3の回転数が所定値を下回ることにより、コイルばね65が弁体61の本体部61aを弁座69から離反させることで開弁する一方、保持体63の蓋体63aに作用する遠心力が大きくなれば、閉弁する方向に付勢される。このため、この圧縮機では、第2制御弁57を開閉するに当たって、駆動軸3の回転数を検出する検出装置や電磁弁等の装置が不要となっている。これにより、第2制御弁57、ひいては圧縮機の構成を簡素化することが可能となっている。
また、第2孔59bと第3孔59cとがともに第2内径L2を有する円柱状に形成されていることから、第2制御弁57では、第2孔59bと第3孔59cとが同径となっている。このため、第2制御弁57では、軸路3b内の冷媒ガス、ひいては制御圧室13c内の冷媒ガスの圧力が弁体61及び保持体63にそれぞれ作用する際の弁体61の受圧面積と、保持体63の受圧面積とがほぼ等しくなっている。第2制御弁57の閉弁時に弁体61に作用する制御圧室13c内の冷媒ガスの圧力は、制御圧室13c内と斜板室33内との差圧により、弁体61の本体部61aを弁座69から離反させようとする力となる。また、第2制御弁57の閉弁時に保持体63に作用する制御圧室13c内の冷媒ガスの圧力は、制御圧室13c内と斜板室33内との差圧により、保持体63を通じて本体部61aを弁座69に着座させようとする力となる。ここで、弁体61の受圧面積と保持体63の受圧面積とがほぼ等しくなることで、弁体61に作用する制御圧室13c内の冷媒ガスの圧力と、保持体63に作用する制御圧室13c内の冷媒ガスの圧力とがほぼ相殺される。このため、第2制御弁57では、制御圧室13c内と斜板室33内との差圧に影響されず、保持体63に作用する遠心力のみで閉弁することが可能となっている。
さらに、封止部材67は、蓋部63aの第1端面631と当接することより第2孔59bと斜板室33との間を封止する。このため、第2制御弁57では、蓋体63の側面633と、第2孔59の内周面との間を封止する必要がない。これにより、封止部材67は、蓋部63aが第2孔59b内を移動するに当たって抵抗とならず、蓋部63aが第2孔59b内を移動し易くなっている。また、封止部材67が第1端面と当接するまでは、弁体61側だけでなく、蓋部63aの側面633と第2孔59bとの隙間からも制御圧室13c内の冷媒ガスを流通させて斜板室33に放出させることが可能となっている。このため、第2制御弁57の開弁により、制御圧室13c内の冷媒ガスを斜板室33に好適に放出することが可能となっている。
(実施例2)
図7に示すように、実施例2の圧縮機では、第2制御弁57において、第2孔59bは、第2内径L2よりも小径の第4内径L4を有する円柱状に形成されている。つまり、第3孔59cは、第2孔59bよりも大径となっている。なお、第4内径L4は第3内径L3よりも大径であり、第2孔59bは、第4孔59dよりも大径である。また、第2孔59bが第4内径L4となることにより、この圧縮機では、実施例1の圧縮機に比べて、蓋部63a及び封止部材67の外径が小径となっている。この圧縮機における他の構成は実施例1の圧縮機と同様であり、同一の構成については同一の符号を付して構成に関する詳細な説明を省略する。
この圧縮機では、第3孔59cが第2孔59bよりも大径であるため、制御圧室13c内の冷媒ガスの圧力が作用する際の保持体63の受圧面積に比べて、弁体61の受圧面積が大きくなる。このため、第2制御弁57の閉弁時に、保持体63に作用する制御圧室13c内の冷媒ガスの圧力よりも、弁体61に作用する制御圧室13c内の冷媒ガスの圧力が大きくなり、結果として、本体部61aを弁座69から離反させようとする力が大きくなる。これにより、この圧縮機では、制御圧室13c内と斜板室33内との差圧が大きくなることで、実施例1の圧縮機に比べて第2制御弁57がより開弁し易くなっており、制御圧室13c内の冷媒ガスを斜板室33内に放出し易くなっている。この圧縮機における他の作用は、実施例1の圧縮機と同様である。
以上において、本発明を実施例1、2に即して説明したが、本発明は上記実施例1、2に制限されるものではなく、その趣旨を逸脱しない範囲で適宜変更して適用できることはいうまでもない。
例えば、第2制御弁57について、遠心力で閉弁するものではなく、駆動軸3の回転数を検出する検出装置を備え、検出装置によって検出された駆動軸3の回転数が所定値を下回った場合に、開弁する電磁弁等を採用することもできる。
また、第2制御弁57は、駆動軸本体30に限らず、移動体13aや区画体13bに設けられても良い。また、第2制御弁57は、斜板室33内に限らず、圧力調整室31や第1、2吸入室27a、27bに制御圧室13c内の冷媒ガスを放出しても良い。
さらに、第2制御弁57において、封止部材67を蓋部63aの側面633に設けても良い。
また、第1シリンダブロック21にのみ第1シリンダボア21aを形成し、各ピストン9は第1頭部9aのみを有することにより、片頭式の圧縮機としても良い。
さらに、アクチュエータ13は、斜板室33内において斜板5よりも前方側に配置されていても良い。この場合、リンク機構7は、斜板5の傾斜角度が小さくなるのに伴って、各第2頭部9bの上死点の位置よりも各第1頭部9aの上死点の位置を大きく移動させるように構成されていても良い。
本発明は空調装置等に利用可能である。
1…ハウジング
3…駆動軸
3b…軸路(抽気通路、給気通路)
3c…経路(抽気通路、給気通路)
5…斜板
7…リンク機構
9…ピストン
13a…移動体
13b…区画体
13c…制御圧室
15…制御機構
22…抽気通路
24…給気通路
26…第1制御弁
27a…第1吸入室
27b…第2吸入室
29a…第1吐出室
29b…第2吐出室
33…斜板室
44b…傾角減少ばね(付勢部材)
57…第2制御弁
59…貫通孔
59a…第1孔
59b…第2孔
59c…第3孔
59d…第4孔
61…弁体
61a…本体部
61b…第1接続部
63…保持体
63a…蓋部
63b…第2接続部
65…コイルばね(弁体付勢部材)
67…封止部材
591…第1段差
592…第2段差
593…第3段差
631…第1端面(端面)
633…側面
O…駆動軸心

Claims (8)

  1. 吸入室、吐出室、斜板室及び複数のシリンダボアが形成されたハウジングと、前記ハウジングに回転可能に支承された駆動軸と、前記斜板室内に配置されて前記駆動軸とともに回転される斜板と、前記駆動軸の駆動軸心に直交する方向に対する前記斜板の傾斜角度の変更を許容するリンク機構と、前記各シリンダボアに収納され、前記斜板の回転によって前記傾斜角度に応じたストロークで往復動して前記各シリンダボア内に圧縮室を形成するピストンと、前記斜板室内で前記駆動軸と一体回転可能に設けられた区画体と、前記斜板室内で前記駆動軸と一体回転可能であるとともに前記斜板と連結され、前記区画体に対して前記駆動軸心方向に移動して前記傾斜角度を変更する移動体と、前記区画体と前記移動体とにより区画された制御圧室と、前記制御圧室内の圧力を制御する制御機構と、前記傾斜角度を減少させる付勢部材とを備え、
    前記制御圧室は、内部の圧力が高くなることにより、前記移動体を移動させて前記傾斜角度を増大させ、
    前記制御機構は、前記制御圧室と前記吸入室とに接続し、前記制御圧室内の冷媒を前記吸入室内に導出する抽気通路と、
    前記吐出室と前記制御圧室とに接続し、前記吐出室内の前記冷媒を前記制御圧室内に導入する給気通路と、
    前記抽気通路に設けられ、前記抽気通路の開度を変更可能な第1制御弁と、
    前記駆動軸の回転数が所定値を下回ることで開弁し、前記制御圧室内の前記冷媒を前記制御圧室の外部に放出する第2制御弁とを有していることを特徴とする容量可変型斜板式圧縮機。
  2. 前記第2制御弁は、前記駆動軸、前記区画体及び前記移動体のいずれかに設けられ、開弁時に前記制御圧室内の前記冷媒を前記斜板室内に放出する一方、遠心力によって閉弁する方向に付勢されている請求項1記載の容量可変型斜板式圧縮機。
  3. 前記第2制御弁は、前記駆動軸又は前記移動体に設けられ、前記制御圧室を挟んで前記区画体とは反対側に位置している請求項2記載の容量可変型斜板式圧縮機。
  4. 前記第2制御弁は前記駆動軸に設けられ、
    前記抽気通路は、前記駆動軸に形成されて前記駆動軸心方向に延びる軸路と、前記駆動軸に形成され、前記軸路と連通して前記駆動軸の径方向に延びて前記制御圧室内に開口する経路とを有し、
    前記第2制御弁は、前記駆動軸に形成され、弁座を有して前記駆動軸を前記径方向に貫通して前記軸路と連通する貫通孔と、
    前記貫通孔内に収容され、前記駆動軸の前記径方向の一方側に移動することにより、前記弁座に着座する弁体と、
    前記弁体に接続されて前記貫通孔内に収容され、前記遠心力によって、前記弁体とともに前記駆動軸の前記径方向の前記一方側に移動して前記弁体を前記弁座に着座させる保持体と、
    前記貫通孔内に収容され、前記遠心力に抗して前記弁体と前記弁座とが離反するように前記弁体を前記径方向の他方側に向けて付勢する弁体付勢部材とを有する請求項2又は3記載の容量可変型斜板式圧縮機。
  5. 前記貫通孔は、前記径方向の前記他方側から直線状に延びる第1孔と、前記第1孔と同軸をなし、前記径方向の前記一方側から直線状に延びる第2孔と、前記第1孔よりも小径に形成され、前記第1孔及び前記第2孔と同軸で直線状に延びて前記第1孔に連通する第3孔と、前記第2孔及び前記第3孔よりも小径に形成され、前記第1孔、前記第2孔及び前記第3孔と同軸で直線状に延びて前記第2孔及び第3孔に連通する第4孔とを有し、
    前記第1孔と前記第3孔との間には、前記弁座を形成する第1段差が設けられ、
    前記第2孔と前記第4孔との間には、前記保持体と当接して前記保持体の移動を規制する第2段差が設けられ、
    前記第3孔と前記第4孔との間には、前記弁体付勢部材の一端を支持する第3段差が設けられ、
    前記弁体は、前記第1孔内に配置され、前記弁座と当接して前記第1孔と前記斜板室との間を閉鎖する本体部と、前記本体部と一体をなし、前記第3孔内に延びる第1接続部とを有し、
    前記保持体は、前記第2孔内に配置される蓋部と、前記蓋部と一体をなし、前記第2孔内、前記第3孔内及び前記第4孔内に延びて前記第1接続部に接続される第2接続部とを有し、
    前記弁体付勢部材は、前記第3段差と前記本体部との間に配置され、
    前記第2孔内には、前記第2孔と前記斜板室との間を封止する封止部材が設けられている請求項4記載の容量可変型斜板式圧縮機。
  6. 前記第2孔と前記第3孔とは略同径に形成されている請求項5記載の容量可変型斜板式圧縮機。
  7. 前記第3孔は、前記第2孔よりも大径に形成されている請求項5記載の容量可変型斜板式圧縮機。
  8. 前記蓋部は、前記斜板室に面する端面と、前記端面と連続しつつ前記駆動軸の前記径方向に延びる側面とを有し、
    前記封止部材は環状をなし、前記端面と当接することより前記第2孔と前記斜板室との間を封止する請求項5乃至7のいずれか1項記載の容量可変型斜板式圧縮機。
JP2017106813A 2017-05-30 2017-05-30 容量可変型斜板式圧縮機 Pending JP2018204439A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017106813A JP2018204439A (ja) 2017-05-30 2017-05-30 容量可変型斜板式圧縮機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017106813A JP2018204439A (ja) 2017-05-30 2017-05-30 容量可変型斜板式圧縮機

Publications (1)

Publication Number Publication Date
JP2018204439A true JP2018204439A (ja) 2018-12-27

Family

ID=64956725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017106813A Pending JP2018204439A (ja) 2017-05-30 2017-05-30 容量可変型斜板式圧縮機

Country Status (1)

Country Link
JP (1) JP2018204439A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020090848A1 (ja) 2018-10-30 2020-05-07 昭和電工株式会社 材料設計装置、材料設計方法、及び材料設計プログラム
CN113677889A (zh) * 2019-03-27 2021-11-19 株式会社丰田自动织机 活塞式压缩机
CN114585813A (zh) * 2019-10-02 2022-06-03 株式会社丰田自动织机 活塞式压缩机

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020090848A1 (ja) 2018-10-30 2020-05-07 昭和電工株式会社 材料設計装置、材料設計方法、及び材料設計プログラム
CN113677889A (zh) * 2019-03-27 2021-11-19 株式会社丰田自动织机 活塞式压缩机
CN114585813A (zh) * 2019-10-02 2022-06-03 株式会社丰田自动织机 活塞式压缩机
CN114585813B (zh) * 2019-10-02 2023-06-06 株式会社丰田自动织机 活塞式压缩机

Similar Documents

Publication Publication Date Title
JP4656044B2 (ja) 圧縮機の吸入絞り弁
KR20130119354A (ko) 가변 용량 압축기용 제어 밸브
JPWO2017145798A1 (ja) 容量可変型斜板式圧縮機
JP2018204439A (ja) 容量可変型斜板式圧縮機
JP5949626B2 (ja) 容量可変型斜板式圧縮機
JP5200214B2 (ja) 可変容量圧縮機
US10815980B2 (en) Variable displacement swash plate type compressor
JP6146263B2 (ja) 容量可変型斜板式圧縮機
JP2017172367A (ja) 容量可変型斜板式圧縮機
JP2017172366A (ja) 容量可変型斜板式圧縮機
JP2015190435A (ja) 容量可変型斜板式圧縮機
US20160252084A1 (en) Variable displacement swash plate type compressor
JP2015063966A (ja) 容量可変型斜板式圧縮機
JP2019178646A (ja) 容量可変型斜板式圧縮機
JP2017166336A (ja) 容量可変型斜板式圧縮機
JP6179438B2 (ja) 容量可変型斜板式圧縮機
JP2018204440A (ja) 容量可変型斜板式圧縮機
JP2018159277A (ja) 容量可変型斜板式圧縮機
JP2018145968A (ja) 容量可変型斜板式圧縮機
JP2018150902A (ja) 容量可変型斜板式圧縮機
JP2017172420A (ja) 容量可変型斜板式圧縮機
JP2018145929A (ja) 容量可変型斜板式圧縮機
JP2019183837A (ja) ピストン式圧縮機
JP2018150880A (ja) 容量可変型斜板式圧縮機
JP2017180095A (ja) 容量可変型斜板式圧縮機