JP2018202580A - Polishing device - Google Patents

Polishing device Download PDF

Info

Publication number
JP2018202580A
JP2018202580A JP2017113551A JP2017113551A JP2018202580A JP 2018202580 A JP2018202580 A JP 2018202580A JP 2017113551 A JP2017113551 A JP 2017113551A JP 2017113551 A JP2017113551 A JP 2017113551A JP 2018202580 A JP2018202580 A JP 2018202580A
Authority
JP
Japan
Prior art keywords
flow path
surface plate
polishing
water supply
concentric circle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017113551A
Other languages
Japanese (ja)
Other versions
JP6893023B2 (en
Inventor
遊 田山
Yu Tayama
遊 田山
将貴 杉山
Masataka Sugiyama
将貴 杉山
隆行 小山
Takayuki Koyama
隆行 小山
田中 敬
Takashi Tanaka
敬 田中
昭彦 山谷
Akihiko Yamatani
昭彦 山谷
剛敏 加藤
Taketoshi Kato
剛敏 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SpeedFam Co Ltd
Original Assignee
SpeedFam Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SpeedFam Co Ltd filed Critical SpeedFam Co Ltd
Priority to JP2017113551A priority Critical patent/JP6893023B2/en
Priority to TW107114659A priority patent/TWI770167B/en
Priority to CN201810467127.2A priority patent/CN109015343B/en
Priority to KR1020180062695A priority patent/KR102474472B1/en
Publication of JP2018202580A publication Critical patent/JP2018202580A/en
Application granted granted Critical
Publication of JP6893023B2 publication Critical patent/JP6893023B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B55/00Safety devices for grinding or polishing machines; Accessories fitted to grinding or polishing machines for keeping tools or parts of the machine in good working condition
    • B24B55/02Equipment for cooling the grinding surfaces, e.g. devices for feeding coolant
    • B24B55/03Equipment for cooling the grinding surfaces, e.g. devices for feeding coolant designed as a complete equipment for feeding or clarifying coolant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/26Lapping pads for working plane surfaces characterised by the shape of the lapping pad surface, e.g. grooved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/34Accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B55/00Safety devices for grinding or polishing machines; Accessories fitted to grinding or polishing machines for keeping tools or parts of the machine in good working condition
    • B24B55/02Equipment for cooling the grinding surfaces, e.g. devices for feeding coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Abstract

To provide a polishing device which adjusts a temperature of a region intended as a main temperature adjustment object in a polishing surface preferentially and efficiently without complicating a structure, and can suppress a partial change of the temperature of the polishing surface in polishing a workpiece, and accordingly can suppress partial deviation of polishing conditions.SOLUTION: A temperature adjustment structure 40 formed on a rear side of a polishing surface of a lower surface plate 2 includes a water supply port 41 for supplying a fluid for temperature adjustment, a drain port 42 from which the fluid for temperature adjustment is drained, a flow passage 43 arranged in a diameter direction of the lower surface plate 2 and extended along a plurality of concentric circles, and a partition wall 44 which extends in the diameter direction of the lower surface plate 2 and partitions the concentric circle. The fluid for temperature adjustment flows in a first direction in a third flow passage 43c along a third concentric circle R3 from the water supply port 41, flows in a fourth flow passage 43d along a fourth concentric circle R4 by folding back along the partition wall 44, flows in a direction opposite to the first direction in the fourth flow passage 43d, and is drained from the drain port 42.SELECTED DRAWING: Figure 2

Description

本発明は、研磨面の裏側に温度調節用流体が流れる温度調節構造が形成された研磨装置に関する発明である。   The present invention relates to a polishing apparatus in which a temperature adjusting structure in which a temperature adjusting fluid flows on the back side of a polishing surface is formed.

従来から、シリコンウェーハ等のワークを研磨する定盤の冷却等の温度調節を行うため、ワークに接触する研磨面の裏側に温度調節用の流体が流れる温度調節構造が設けられた研磨装置が知られている。この研磨装置における温度調節構造では、例えば、定盤の内縁部近傍に設けられた給水口から、外縁部近傍に形成された排水口に向かって渦巻き状に延びる温度調節用流体流路を有するもの(例えば、特許文献1参照)や、定盤の周方向に延びる複数の流路を有し、各流路を流れる温度調節用流体の温度等を個別に調節可能としたもの(例えば、特許文献2,3参照)がある。   Conventionally, in order to perform temperature adjustment such as cooling of a surface plate for polishing a workpiece such as a silicon wafer, a polishing apparatus provided with a temperature adjustment structure in which a temperature adjusting fluid flows on the back side of a polishing surface in contact with the workpiece is known. It has been. The temperature control structure in this polishing apparatus has, for example, a temperature control fluid flow path that spirally extends from a water supply port provided near the inner edge of the surface plate toward a drain port formed near the outer edge. (For example, refer to Patent Document 1) or a plurality of flow paths extending in the circumferential direction of the surface plate, and the temperature of the temperature adjusting fluid flowing through each flow path can be individually adjusted (for example, Patent Document 2 and 3).

実開昭59-151655号公報Japanese Utility Model Publication No.59-151655 特開2002-373875号公報JP 2002-373875 A 特開2002-233948号公報JP 2002-233948 A

しかしながら、渦巻き状に延在した流体流路を有する温度調節構造では、研磨面の温度調節効率が定盤中心部から外縁部に向かって次第に低下していく。そのため、ワーク研磨中にワークとの接触割合が高い領域等の主たる温度調節対象として意図する領域を優先的かつ効率的に温度調節することができない。そのため、ワーク研磨に伴って生じる研磨熱の影響により、研磨面が部分的に温度上昇し、あるいは、それに関連して研磨条件が部分的に逸脱するという問題が発生する。
一方、複数の流路を流れる温度調節用流体の温度等を個別に調節可能とした温度調節構造では、流体の給排経路を複数系統にする必要があり、装置が大型化したり、制御が複雑になる等の問題が生じる。
However, in the temperature control structure having the fluid flow path extending in a spiral shape, the temperature control efficiency of the polishing surface gradually decreases from the center of the surface plate toward the outer edge. Therefore, it is not possible to preferentially and efficiently adjust the temperature of a region intended as a main temperature adjustment target such as a region where the contact ratio with the workpiece is high during workpiece polishing. For this reason, there arises a problem that the polishing surface partially rises in temperature due to the influence of the polishing heat generated along with the workpiece polishing, or the polishing conditions partially deviate in relation to this.
On the other hand, in a temperature control structure that can individually adjust the temperature of the temperature control fluid that flows through multiple flow paths, it is necessary to use multiple fluid supply / discharge paths, resulting in a larger device and complex control. The problem of becoming.

本発明は、上記問題に着目してなされたもので、構造を複雑化することなく研磨面の主たる温度調節対象として意図する領域を優先的かつ効率的に温度調節し、ワークの研磨に伴って研磨面の温度が部分的に変化し、あるいは、それに関連して研磨条件が部分的に逸脱することを抑制できる研磨装置を提供することを目的とする。   The present invention has been made paying attention to the above-mentioned problem, and the temperature of a region intended as a main temperature adjustment target of the polishing surface is preferentially and efficiently adjusted without complicating the structure. It is an object of the present invention to provide a polishing apparatus capable of suppressing the temperature of the polishing surface from partially changing or the polishing conditions from partially deviating in relation thereto.

上記目的を達成するため、本発明は、ワークを研磨する研磨面の裏側に、温度調節用流体が流れる温度調節構造が形成された定盤を備える研磨装置である。
前記温度調節構造は、前記温度調節用流体を供給する給水口と、前記温度調節用流体が排出される排水口と、前記給水口と前記排水口とを連通すると共に、前記定盤の径方向に並んだ複数の同心円に沿って延在した流路と、前記定盤の径方向に延在して前記同心円を仕切る仕切壁と、を有している。
そして、前記給水口から供給された温度調節用流体は、第1の同心円に沿った流路内を第1の方向に流れてから前記仕切壁に沿って折り返して第2の同心円に沿った流路に流れ込み、前記第2の同心円に沿った流路内を前記第1の方向とは逆の方向に流れて、前記排水口から排出される。
In order to achieve the above object, the present invention is a polishing apparatus comprising a surface plate in which a temperature adjusting structure through which a temperature adjusting fluid flows is formed on the back side of a polishing surface for polishing a workpiece.
The temperature control structure communicates the water supply port for supplying the temperature control fluid, the water discharge port for discharging the temperature control fluid, the water supply port and the water discharge port, and the radial direction of the surface plate. And a partition wall extending in a radial direction of the surface plate and partitioning the concentric circles.
Then, the temperature adjusting fluid supplied from the water supply port flows in the first direction in the flow path along the first concentric circle, and then returns along the partition wall to flow along the second concentric circle. It flows into the path, flows in the flow path along the second concentric circle in the direction opposite to the first direction, and is discharged from the drain port.

この結果、構造を複雑化することなく研磨面の主たる温度調節対象として意図する領域を優先的かつ効率的に温度調節し、ワークの研磨に伴って研磨面の温度が部分的に変化し、あるいは、それに関連して研磨条件が部分的に逸脱することを抑制できる。   As a result, the temperature of the intended region as the main temperature adjustment target of the polishing surface is preferentially and efficiently adjusted without complicating the structure, and the temperature of the polishing surface partially changes as the workpiece is polished, or In this connection, it is possible to prevent the polishing condition from partially deviating.

実施例1の研磨装置の全体構成を概略的に示す断面図である。1 is a cross-sectional view schematically showing an overall configuration of a polishing apparatus of Example 1. FIG. 実施例1の研磨装置の冷却構造を示す平面図である。FIG. 3 is a plan view showing a cooling structure of the polishing apparatus of Example 1. 定盤の研磨面を区分けしたときの領域を説明する説明図である。It is explanatory drawing explaining the area | region when the grinding | polishing surface of a surface plate is divided. 比較例の研磨装置の冷却構造を示す平面図である。It is a top view which shows the cooling structure of the grinding | polishing apparatus of a comparative example. 比較例の冷却構造による研磨面の冷却状態を示す説明図である。It is explanatory drawing which shows the cooling state of the grinding | polishing surface by the cooling structure of a comparative example. 実施例1の冷却構造における冷却水の流れ方向を示す説明図である。It is explanatory drawing which shows the flow direction of the cooling water in the cooling structure of Example 1. FIG. 実施例1の冷却構造による研磨面の冷却状態を示す説明図である。FIG. 3 is an explanatory view showing a cooling state of a polished surface by the cooling structure of Example 1. 実施例1の冷却構造の第1変形例を示す平面図である。6 is a plan view showing a first modification of the cooling structure of Embodiment 1. FIG. 実施例1の冷却構造の第2変形例を示す平面図である。6 is a plan view showing a second modification of the cooling structure of Embodiment 1. FIG.

以下、本発明の研磨装置を実施するための形態を、図面に示す実施例1に基づいて説明する。なお、以下の実施形態においては、本発明の温度調節構造を冷却構造として説明する。   Hereinafter, the form for implementing the polish device of the present invention is explained based on Example 1 shown in a drawing. In the following embodiments, the temperature control structure of the present invention will be described as a cooling structure.

(実施例1)
まず、構成を説明する。
実施例1における研磨装置1は、半導体ウェーハ、水晶ウェーハ、サファイアウェーハ、ガラスウェーハ或いはセラミックウェーハといった、薄板状のワークWの表裏両面を研磨加工する両面研磨装置である。以下、実施例1の研磨装置1の構成を、「全体構成」、「定盤の詳細構成」、「冷却構造の詳細構成」に分けて説明する。
Example 1
First, the configuration will be described.
The polishing apparatus 1 according to the first embodiment is a double-side polishing apparatus that polishes both front and back surfaces of a thin workpiece W such as a semiconductor wafer, a crystal wafer, a sapphire wafer, a glass wafer, or a ceramic wafer. Hereinafter, the configuration of the polishing apparatus 1 according to the first embodiment will be described by dividing it into “the overall configuration”, “the detailed configuration of the surface plate”, and “the detailed configuration of the cooling structure”.

[全体構成]
図1は、実施例1の研磨装置の全体構成を概略的に示す断面図である。以下、図1に基づき、実施例1の研磨装置の全体構成を説明する。
[overall structure]
FIG. 1 is a cross-sectional view schematically illustrating the overall configuration of the polishing apparatus according to the first embodiment. Hereinafter, based on FIG. 1, the whole structure of the grinding | polishing apparatus of Example 1 is demonstrated.

実施例1の研磨装置1は、図1に示すように、軸線L1を中心とする同心に配置された下定盤2及び上定盤3と、下定盤2及び上定盤3の中心部に回転自在に配置されたサンギヤ4と、下定盤2及び上定盤3の外周側に配置されたインターナルギヤ5と、下定盤2及び上定盤3の間に配置され且つワーク保持穴(不図示)が形成されたキャリアプレート6と、を有している。また、下定盤2の上面には研磨パッド2aが貼付され、上定盤3の下面には研磨パッド3aが貼付されている。なお、各研磨パッド2a,3aの表面がワークWを研磨する研磨面となる。   As shown in FIG. 1, the polishing apparatus 1 according to the first embodiment rotates around the lower surface plate 2 and the upper surface plate 3 that are arranged concentrically about the axis L <b> 1, and the center of the lower surface plate 2 and the upper surface plate 3. Arranged between the sun gear 4 freely arranged, the internal gear 5 arranged on the outer peripheral side of the lower surface plate 2 and the upper surface plate 3, and the work holding hole (not shown) ) Formed on the carrier plate 6. A polishing pad 2 a is attached to the upper surface of the lower surface plate 2, and a polishing pad 3 a is attached to the lower surface of the upper surface plate 3. In addition, the surface of each polishing pad 2a, 3a becomes a polishing surface for polishing the workpiece W.

下定盤2と、サンギヤ4と、インターナルギヤ5とは、それぞれ駆動軸7a,7b,7cを介して図示しない駆動装置に連結され、回転駆動される。   The lower surface plate 2, the sun gear 4, and the internal gear 5 are connected to a driving device (not shown) via drive shafts 7a, 7b, and 7c, respectively, and are driven to rotate.

また、キャリアプレート6は、サンギヤ4とインターナルギヤ5に噛合する。そして、このキャリアプレート6は、サンギヤ4とインターナルギヤ5の回転により自転しながら軸線L1周りに公転する。このキャリアプレート6の自転及び公転と、下定盤2及び上定盤3の回転により、ワーク保持穴内に配置されたワークWの両面が研磨パッド2a,3aによって研磨される。   The carrier plate 6 meshes with the sun gear 4 and the internal gear 5. The carrier plate 6 revolves around the axis L 1 while rotating by the rotation of the sun gear 4 and the internal gear 5. Due to the rotation and revolution of the carrier plate 6 and the rotation of the lower surface plate 2 and the upper surface plate 3, both surfaces of the work W arranged in the work holding hole are polished by the polishing pads 2a and 3a.

上定盤3は、上定盤3の上面に取り付けられた定盤吊り8aを介して、昇降用アクチュエータ8のロッド8bに吊り下げ支持されている。ここで、ロッド8bの先端部には、調芯軸受8cが介装されている。これにより、上定盤3は、昇降用アクチュエータ8によって揺動可能且つ回転可能に吊り下げ支持される。   The upper surface plate 3 is suspended and supported on the rod 8b of the lifting actuator 8 via a surface plate suspension 8a attached to the upper surface of the upper surface plate 3. Here, a centering bearing 8c is interposed at the tip of the rod 8b. As a result, the upper surface plate 3 is suspended and supported by the lifting / lowering actuator 8 so as to be swingable and rotatable.

一方、サンギヤ4が固定された駆動軸7bには、図示しない駆動装置によって回転されるドライバ用駆動軸9が貫挿され、このドライバ用駆動軸9の上端部9aが駆動軸7bの上端開口7dから突出している。この上端部9aにはドライバ10が固定されており、ドライバ10はドライバ用駆動軸9と一体となって回転する。また、ドライバ10の外周面には、上定盤3に設けたフック3bが係合する溝部(不図示)が形成されている。そして、ロッド8bが伸長して上定盤3が下方に移動し、フック3bがドライバ10の溝部に係合することで、ドライバ10の回転に上定盤3が一体となって回転するようになっている。   On the other hand, a driver drive shaft 9 rotated by a drive device (not shown) is inserted into the drive shaft 7b to which the sun gear 4 is fixed, and an upper end portion 9a of the driver drive shaft 9 is an upper end opening 7d of the drive shaft 7b. Protruding from. A driver 10 is fixed to the upper end portion 9a, and the driver 10 rotates integrally with the driver drive shaft 9. Further, a groove portion (not shown) that engages with a hook 3 b provided on the upper surface plate 3 is formed on the outer peripheral surface of the driver 10. Then, the rod 8b extends, the upper surface plate 3 moves downward, and the hook 3b engages with the groove portion of the driver 10, so that the upper surface plate 3 rotates integrally with the rotation of the driver 10. It has become.

すなわち、上定盤3は、ロッド8bの伸縮動作により上下動し、ドライバ用駆動軸9の回転動作により回転する。また、上定盤3には研磨スラリーを供給する供給孔(図示せず)が設けられている。   That is, the upper surface plate 3 moves up and down by the expansion and contraction operation of the rod 8 b and rotates by the rotation operation of the driver drive shaft 9. The upper surface plate 3 is provided with a supply hole (not shown) for supplying polishing slurry.

[定盤の詳細構成]
実施例1の研磨装置1の下定盤2は、ワークWの研磨加工時に生じる摩擦熱による研磨面(研磨パッド2aの表面)の部分的な温度変化を抑制するため、研磨面の裏側に冷却構造40(温度調節構造)が形成されている。この下定盤2は、図1に示すように、下側平板部材21と、下側ジャケット部材22と、下側定盤受部材23と、を有している。
[Detailed configuration of surface plate]
The lower surface plate 2 of the polishing apparatus 1 of Example 1 has a cooling structure on the back side of the polishing surface in order to suppress a partial temperature change of the polishing surface (the surface of the polishing pad 2a) due to frictional heat generated during the polishing of the workpiece W. 40 (temperature control structure) is formed. As shown in FIG. 1, the lower surface plate 2 includes a lower flat plate member 21, a lower jacket member 22, and a lower surface plate receiving member 23.

下側平板部材21は、研磨パッド2aが貼付される表面が平坦に形成された板部材であり、下定盤2の最上面に位置する。この下側平板部材21は、線膨張係数が小さくて熱変形しにくい低熱膨張材によって形成されている。   The lower flat plate member 21 is a plate member having a flat surface on which the polishing pad 2 a is attached, and is located on the uppermost surface of the lower surface plate 2. The lower flat plate member 21 is formed of a low thermal expansion material that has a small linear expansion coefficient and is difficult to be thermally deformed.

下側ジャケット部材22は、下側平板部材21の裏側(下面)に固定される板部材であり、下側平板部材21に対向する面に冷却構造40が形成されている。なお、この冷却構造40の流路43を区画する区画壁46(図2参照)の先端が下側平板部材21に固定されている。また、下側ジャケット部材22は、下側平板部材21及び下側定盤受部材23よりも線膨張係数が大きく、且つ剛性が高いステンレスによって形成されている。   The lower jacket member 22 is a plate member that is fixed to the back side (lower surface) of the lower flat plate member 21, and a cooling structure 40 is formed on the surface facing the lower flat plate member 21. The tip of the partition wall 46 (see FIG. 2) that partitions the flow path 43 of the cooling structure 40 is fixed to the lower flat plate member 21. The lower jacket member 22 is formed of stainless steel having a higher linear expansion coefficient and higher rigidity than the lower flat plate member 21 and the lower surface plate receiving member 23.

下側定盤受部材23は、下側ジャケット部材22の裏側(下面)に固定されると共に、駆動軸7aが固定された板部材である。   The lower surface plate receiving member 23 is a plate member fixed to the back side (lower surface) of the lower jacket member 22 and the drive shaft 7a being fixed.

実施例1の研磨装置1の上定盤3は、ワークWの研磨加工時に生じる摩擦熱による研磨面(研磨パッド3aの表面)の部分的な温度変化を抑制するため、研磨面の裏側に冷却構造40(温度調節構造)が形成されている。この上定盤3は、図1に示すように、上側平板部材31と、上側ジャケット部材32と、を有している。   The upper surface plate 3 of the polishing apparatus 1 of Example 1 is cooled to the back side of the polishing surface in order to suppress a partial temperature change of the polishing surface (the surface of the polishing pad 3a) due to frictional heat generated during the polishing of the workpiece W. A structure 40 (temperature control structure) is formed. As shown in FIG. 1, the upper surface plate 3 has an upper flat plate member 31 and an upper jacket member 32.

上側平板部材31は、研磨パッド3aが貼付される表面が平坦に形成された板部材であり、上定盤3の最下面に位置する。この上側平板部材31は、線膨張係数が小さくて熱変形しにくい低熱膨張材によって形成されている。   The upper flat plate member 31 is a plate member having a flat surface on which the polishing pad 3 a is affixed, and is located on the lowermost surface of the upper surface plate 3. The upper flat plate member 31 is formed of a low thermal expansion material that has a small linear expansion coefficient and is difficult to be thermally deformed.

上側ジャケット部材32は、上側平板部材31の裏側(上面)に固定されると共に、定盤吊り8aによって吊り下げ支持される板部材である。この上側ジャケット部材32は、上側平板部材31に対向する面に冷却構造40が形成されている。なお、この冷却構造40の流路43を区画する区画壁46の先端が下側平板部材21に固定されている。また、上側ジャケット部材32は、上側平板部材31よりも線膨張係数が大きく、且つ剛性が高いステンレスによって形成されている。   The upper jacket member 32 is a plate member fixed to the back side (upper surface) of the upper flat plate member 31 and supported by being suspended by the surface plate suspension 8a. The upper jacket member 32 has a cooling structure 40 formed on the surface facing the upper flat plate member 31. The tip of the partition wall 46 that partitions the flow path 43 of the cooling structure 40 is fixed to the lower flat plate member 21. The upper jacket member 32 is formed of stainless steel having a higher linear expansion coefficient and higher rigidity than the upper flat plate member 31.

[冷却構造の詳細構成]
図2は、実施例1の研磨装置の冷却構造を示す平面図である。以下、図2に基づいて、実施例1の冷却構造の詳細構成を説明する。
[Detailed structure of cooling structure]
FIG. 2 is a plan view illustrating a cooling structure of the polishing apparatus according to the first embodiment. Hereinafter, based on FIG. 2, the detailed structure of the cooling structure of Example 1 is demonstrated.

実施例1の下側ジャケット部材22及び上側ジャケット部材32には、いずれも冷却構造40が形成されている。この冷却構造40は、図示しない冷却水循環装置から供給される冷却水(温度調節用流体)を流通させ、この冷却水と下側平板部材21又は上側平板部材31との間で熱交換を行うことで、下側平板部材21や上側平板部材31を冷却するものである。なお、下側ジャケット部材22に形成された冷却構造40と、上側ジャケット部材32に形成された冷却構造40は同様の構成になっているため、以下では下側ジャケット部材22に形成された冷却構造40について説明する。   A cooling structure 40 is formed on each of the lower jacket member 22 and the upper jacket member 32 of the first embodiment. The cooling structure 40 distributes heat between the cooling water and the lower flat plate member 21 or the upper flat plate member 31 by circulating cooling water (temperature adjusting fluid) supplied from a cooling water circulation device (not shown). Thus, the lower flat plate member 21 and the upper flat plate member 31 are cooled. Since the cooling structure 40 formed on the lower jacket member 22 and the cooling structure 40 formed on the upper jacket member 32 have the same configuration, the cooling structure formed on the lower jacket member 22 will be described below. 40 will be described.

実施例1の冷却構造40は、図2に示すように、冷却水を供給する給水口41と、冷却水が排出される排水口42と、給水口41と排水口42とを連通する流路43と、下定盤2の径方向に沿って延在した仕切壁44と、を有している。   As shown in FIG. 2, the cooling structure 40 of the first embodiment includes a water supply port 41 that supplies cooling water, a drain port 42 that discharges cooling water, and a flow path that connects the water supply port 41 and the drain port 42. 43 and a partition wall 44 extending along the radial direction of the lower surface plate 2.

給水口41は、下側ジャケット部材22を軸線L1方向に貫通した縦穴の開口部であり、図示しない冷却水循環装置の吐水口に接続した給水路(不図示)に連通している。なお、給水路は、駆動軸7aの内部を軸方向に延びる縦穴と、下側定盤受部材23の内部を水平方向に延びる横穴と、を有している。   The water supply port 41 is a vertical hole opening penetrating the lower jacket member 22 in the direction of the axis L1, and communicates with a water supply channel (not shown) connected to a water discharge port of a cooling water circulation device (not shown). The water supply path has a vertical hole extending in the axial direction inside the drive shaft 7a and a horizontal hole extending in the horizontal direction inside the lower surface plate receiving member 23.

排水口42は、下側ジャケット部材22を軸線L1方向に貫通した縦穴の開口部であり、冷却水循環装置の吸水口に接続した排水路(不図示)に連通している。この排水口42の開口面積は、給水口41と同等の大きさに設定されている。なお、排水路は、駆動軸7aの内部を軸方向に延びる縦穴と、下側定盤受部材23の内部を水平方向に延びる横穴と、を有している。   The drain port 42 is a vertical hole opening that penetrates the lower jacket member 22 in the direction of the axis L1, and communicates with a drain channel (not shown) connected to the water inlet of the cooling water circulation device. The opening area of the drain port 42 is set to the same size as the water supply port 41. The drainage channel has a vertical hole extending in the axial direction inside the drive shaft 7a and a horizontal hole extending in the horizontal direction inside the lower surface plate receiving member 23.

流路43は、給水口41から排水口42に向かって冷却水が流れる溝である。この流路43は、下側ジャケット部材22に形成された区画壁46によって区画されており、下定盤2の径方向に並んだ複数の同心円に沿って延在されている。この実施例1の流路43は、下定盤2の内縁部αから外縁部βに向かって順に並んだ複数の同心円(ここでは5つの同心円、第1同心円R1〜第5同心円R5)にそれぞれ沿った第1流路43a、第2流路43b、第3流路43c、第4流路43d、第5流路43eを有している。   The flow path 43 is a groove through which cooling water flows from the water supply port 41 toward the drain port 42. The flow path 43 is partitioned by a partition wall 46 formed in the lower jacket member 22, and extends along a plurality of concentric circles arranged in the radial direction of the lower surface plate 2. The flow paths 43 of the first embodiment are each along a plurality of concentric circles (here, five concentric circles, first concentric circle R1 to fifth concentric circle R5) arranged in order from the inner edge α to the outer edge β of the lower surface plate 2. The first flow path 43a, the second flow path 43b, the third flow path 43c, the fourth flow path 43d, and the fifth flow path 43e.

なお、最内周に位置する第1同心円R1に沿い、内縁部αに最も近い位置に形成された第1流路43aの内部には、この第1流路43aの延在方向に並ぶ複数(ここでは2個)の排水口42が形成されている。また、最内周から二番目に位置する第2同心円R2に沿い、第1流路43aに隣接する第2流路43bの内部には、この第2流路43bの延在方向に並ぶ複数(ここでは2個)の給水口41が形成されている。つまり、この実施例1では、排水口42の方が、給水口41よりも下定盤2の内側に形成されている。   A plurality of (in the extending direction of the first flow path 43a are arranged inside the first flow path 43a formed along the first concentric circle R1 located on the innermost circumference and closest to the inner edge α. Two drain ports 42 are formed here. Further, a plurality of (in the second flow path 43b adjacent to the first flow path 43a along the second concentric circle R2 positioned second from the innermost circumference are arranged in the extending direction of the second flow path 43b ( Two water supply ports 41 are formed here. That is, in the first embodiment, the drain port 42 is formed inside the lower surface plate 2 rather than the water supply port 41.

そして、この流路43は、複数の同心円(第1同心円R1〜第5同心円R5)に沿って延在されて下定盤2の周方向に延びているものの、仕切壁44に沿って折り返している。すなわち、流路43のうち、第2流路43bと第3流路43cは第1折返部45aで連通し、第3流路43cと第4流路43dは第2折返部45bで連通し、第4流路43dと第5流路43eは第3折返部45cで連通し、第5流路43eと第1流路43aは第4折返部45dで連通している。そして、この第1〜第5流路43a〜43eは、下定盤2の周方向に沿った途中位置が折り返すことで、全体としてつながった1本の冷却水ルートを形成している。   The flow path 43 extends along the plurality of concentric circles (first concentric circle R1 to fifth concentric circle R5) and extends in the circumferential direction of the lower surface plate 2, but is turned back along the partition wall 44. . That is, among the flow paths 43, the second flow path 43b and the third flow path 43c communicate with each other through the first folding part 45a, and the third flow path 43c and the fourth flow path 43d communicate with each other through the second folding part 45b. The fourth flow path 43d and the fifth flow path 43e communicate with each other through the third folding part 45c, and the fifth flow path 43e and the first flow path 43a communicate with each other through the fourth folding part 45d. And the 1st-5th flow paths 43a-43e form the one cooling water route | root connected as a whole by the middle position along the circumferential direction of the lower surface plate 2 turning back.

仕切壁44は、下定盤2の径方向に延在した壁面である。この仕切壁44により、流路43が沿う複数の同心円(第1同心円R1〜第5同心円R5)の途中位置が仕切られている。また、実施例1の仕切壁44は、第1同心円R1〜第5同心円R5のすべてを仕切る第1仕切壁44aと、第2,第3,第4同心円R2,R3,R4を仕切る第2仕切壁44bと、を有している。
すなわち、第1仕切壁44aに沿って第1折返部45a及び第3折返部45cが形成され、第2仕切壁44bに沿って第2折返部45bが形成されている。さらに、第1仕切壁44aと第2仕切壁44bとの間に、第5流路43eと第1流路43aを連通する第4折返部45dが形成されている。
The partition wall 44 is a wall surface extending in the radial direction of the lower surface plate 2. This partition wall 44 partitions the midpoint positions of a plurality of concentric circles (first concentric circle R1 to fifth concentric circle R5) along which the flow path 43 extends. The partition wall 44 of the first embodiment includes a first partition wall 44a that partitions all of the first concentric circle R1 to the fifth concentric circle R5, and a second partition that partitions the second, third, and fourth concentric circles R2, R3, and R4. Wall 44b.
That is, the first folded portion 45a and the third folded portion 45c are formed along the first partition wall 44a, and the second folded portion 45b is formed along the second partition wall 44b. Furthermore, the 4th folding | turning part 45d which connects the 5th flow path 43e and the 1st flow path 43a is formed between the 1st partition wall 44a and the 2nd partition wall 44b.

次に、作用を説明する。
まず、比較例の冷却構造を有する定盤の構成と課題を説明し、続いて、実施例1の研磨装置の作用を「研磨加工中の定盤冷却作用」、「異材料組み合わせ作用」、「給水口及び排水口の形成位置による特徴的作用」、「その他の特徴的作用」に分けて説明する。
Next, the operation will be described.
First, the configuration and problems of the surface plate having the cooling structure of the comparative example will be described, and subsequently, the operation of the polishing apparatus of Example 1 will be described as “surface plate cooling operation during polishing”, “different material combination operation”, “ The description will be divided into “characteristic action depending on the formation position of the water supply port and drainage port” and “other characteristic actions”.

[比較例の冷却構造を有する定盤の構成と課題]
図3は、定盤の研磨面を区分けした領域を示す説明図であり、図4は、比較例の研磨装置の冷却構造を示す平面図であり、図5は比較例の冷却構造による研磨面の表面温度を示す説明図である。以下、図3〜図5に基づき、比較例の冷却構造を有する定盤の構成と課題を説明する。
[Configuration and Problems of Surface Plate with Cooling Structure of Comparative Example]
FIG. 3 is an explanatory view showing a region where the polishing surface of the surface plate is divided, FIG. 4 is a plan view showing the cooling structure of the polishing apparatus of the comparative example, and FIG. 5 is the polishing surface by the cooling structure of the comparative example. It is explanatory drawing which shows surface temperature of this. Hereinafter, based on FIGS. 3-5, the structure and subject of the surface plate which have the cooling structure of a comparative example are demonstrated.

一般的に、シリコンウェーハ等のワークを研磨する研磨装置では、下定盤と上定盤との間にキャリアプレートを挟み込み、このキャリアプレートに形成されたワーク保持穴の内側にワークを配置する。そのため、ワークの移動範囲はキャリアプレートによって制限される。一方、キャリアプレートは、サンギヤとインターナルギヤに噛合している。そのため、ワーク保持穴は、キャリアプレートの内周縁や外周縁に対して所定の距離をあけて形成する必要がある。   Generally, in a polishing apparatus that polishes a workpiece such as a silicon wafer, a carrier plate is sandwiched between a lower surface plate and an upper surface plate, and the workpiece is placed inside a work holding hole formed in the carrier plate. Therefore, the movement range of the workpiece is limited by the carrier plate. On the other hand, the carrier plate meshes with the sun gear and the internal gear. Therefore, the work holding hole needs to be formed at a predetermined distance from the inner and outer peripheral edges of the carrier plate.

これにより、定盤研磨面Kを図3に示すように、定盤中心部に位置する中央領域Aと、定盤外縁部に沿った外縁領域Cと、中央領域Aと外縁領域Cとの間に位置する中間領域Bとに分けた場合、ワークの研磨に伴ってワークと接触する割合が最も高い中間領域Bが、ワークとの間に生じる摩擦熱(以下「加工熱」という)で中央領域Aや外縁領域Cよりも高温になることが分かっている。   Accordingly, as shown in FIG. 3, the surface plate polishing surface K has a central region A located at the center of the surface plate, an outer edge region C along the outer surface of the surface plate, and between the central region A and the outer edge region C. The intermediate region B having the highest rate of contact with the workpiece as the workpiece is polished is the central region due to frictional heat generated between the workpiece and the workpiece (hereinafter referred to as “processing heat”). It has been found that the temperature is higher than that of A and the outer edge region C.

これに対し、比較例の冷却構造100(温度調節構造)では、図4に示すように、径方向に延在する分割壁面101によって定盤全体を放射状に15等分し、各分割領域内にそれぞれ給水口102及び排水口103と、内縁部αから外縁部βに向かって延びる流路形成壁104とが形成されている。ここで、給水口102と排水口103は、流路形成壁104を挟んだ位置であって、いずれも定盤の内縁部αの近傍に形成されている。   On the other hand, in the cooling structure 100 (temperature adjustment structure) of the comparative example, as shown in FIG. 4, the entire surface plate is radially divided into 15 parts by the divided wall surfaces 101 extending in the radial direction, and each divided area is divided into the divided areas. A water supply port 102 and a drainage port 103 and a flow path forming wall 104 extending from the inner edge portion α toward the outer edge portion β are formed. Here, the water supply port 102 and the drainage port 103 are positions where the flow path forming wall 104 is sandwiched, and both are formed in the vicinity of the inner edge portion α of the surface plate.

このような比較例の冷却構造100では、給水口102から流れ出た冷却水(温度調節用流体)は、図4において矢印で示すように、流路形成壁104に沿って定盤の外縁部βに向かって流れる。そして、この冷却水は、流路形成壁104と外縁部βに沿って形成された外周壁105との間の隙間106を通過した後、流路形成壁104に沿って定盤の内縁部αに向かって流れ、排水口103に流れ込む。   In such a cooling structure 100 of the comparative example, the cooling water (temperature adjusting fluid) that flows out from the water supply port 102 flows along the flow path forming wall 104 as shown by arrows in FIG. It flows toward. The cooling water passes through the gap 106 between the flow path forming wall 104 and the outer peripheral wall 105 formed along the outer edge β, and then passes along the flow path forming wall 104 to the inner edge α of the surface plate. To the drain outlet 103.

すなわち、この比較例の冷却構造100では、冷却水が放射状に15等分された分割領域内をそれぞれ径方向に流れ、外縁部βに沿って折り返す構成になっている。そのため、この冷却構造100を有する定盤Xの研磨面は全面がほぼ均等に冷却される。これにより、この定盤Xの研磨面は、ワーク研磨中に発生する加工熱の影響によって、図5に示すように、ワークと接触する確率の高い中間領域Bが約23℃〜24℃程度になり、23℃以下に抑えられる中央領域Aや外縁領域Cよりも高温になってしまう。つまり、この比較例の冷却構造100を有する定盤Xでは、ワークの研磨に伴って研磨面温度が部分的に上昇してしまい、研磨面の一部分が熱変形して歪んだり、維持又は一定率内の変化が望ましい微細な研磨条件が局部的に逸脱してしまう。また、局部的に研磨パッドの表面の変質を促進してしまうおそれがある。これらの現象のうちの一つ又は複合の作用により、ワーク表面を均一に研磨することができなくなり、研磨精度の低下が発生することも考えられる。   In other words, the cooling structure 100 of this comparative example is configured such that the cooling water flows in the radial direction in the radially divided divided regions and is turned back along the outer edge portion β. Therefore, the entire polishing surface of the surface plate X having the cooling structure 100 is cooled almost uniformly. Thereby, the polishing area of the surface plate X has an intermediate region B with a high probability of being in contact with the workpiece at about 23 ° C. to 24 ° C. as shown in FIG. Therefore, the temperature becomes higher than that of the central region A and the outer peripheral region C which are suppressed to 23 ° C. or lower. That is, in the surface plate X having the cooling structure 100 of this comparative example, the polishing surface temperature partially rises as the workpiece is polished, and a part of the polishing surface is thermally deformed and distorted, maintained or at a constant rate. The fine polishing conditions for which changes are desirable deviate locally. Moreover, there is a possibility that the surface modification of the polishing pad may be locally promoted. It is also conceivable that the work surface cannot be uniformly polished due to one or a combination of these phenomena, resulting in a decrease in polishing accuracy.

また、比較例の冷却構造100では、定盤の径方向に沿った流路を形成するために、分割壁面101及び流路形成壁104が定盤の径方向に延在している。そのため、定盤Xを搬送時に吊り下げたとき、曲げモーメント力は分割壁面101及び流路形成壁104に付与される。ここで、分割壁面101や流路形成壁104が同心円に形成されている場合、曲げモーメント力は同心円上に流れて働くので力を分散することができる。しかし、比較例の冷却構造100の場合では、曲げモーメント力に対する抗力は、分割壁面101及び流路形成壁104の剛性に依存する。そのため、分割壁面101及び流路形成壁104の剛性を大きくしない限りは、定盤の撓み変形を生じやすい傾向がある。
そのため、例えば定盤粗加工時の固定方法に工夫を要したり、定盤製造中の搬送時間(吊り下げ時間)の短縮化を図ったり、機械加工後に所定の硬化時間を要したりする必要がある上、定盤Xの品質にバラつきに影響が生じたり、納期遅延が発生するという問題がある。
Further, in the cooling structure 100 of the comparative example, in order to form a flow path along the radial direction of the surface plate, the divided wall surface 101 and the flow path forming wall 104 extend in the radial direction of the surface plate. Therefore, when the surface plate X is suspended during conveyance, the bending moment force is applied to the divided wall surface 101 and the flow path forming wall 104. Here, when the divided wall surface 101 and the flow path forming wall 104 are formed in concentric circles, the bending moment force flows on the concentric circles, so that the force can be dispersed. However, in the case of the cooling structure 100 of the comparative example, the drag force against the bending moment force depends on the rigidity of the divided wall surface 101 and the flow path forming wall 104. Therefore, unless the rigidity of the divided wall surface 101 and the flow path forming wall 104 is increased, the platen tends to bend and deform.
Therefore, for example, it is necessary to devise a fixing method at the time of roughing the surface plate, to shorten the transport time (hanging time) during the surface plate manufacturing, or to require a predetermined curing time after machining. In addition, there is a problem that the quality of the surface plate X is affected by variations and a delay in delivery occurs.

さらに、この比較例の冷却構造100では、分割壁面101及び流路形成壁104が定盤の径方向に延在していることから、この分割壁面101や流路形成壁104の先端を切削加工した際、切削加工面が定盤Xの径方向に連続することになる。そのため、この切削加工によって発生した残留応力の影響による定盤Xの径方向の撓みが大きくなるという問題も生じる。   Further, in the cooling structure 100 of this comparative example, since the divided wall surface 101 and the flow path forming wall 104 extend in the radial direction of the surface plate, the distal ends of the divided wall surface 101 and the flow path forming wall 104 are cut. When this is done, the cut surface is continuous in the radial direction of the surface plate X. Therefore, there also arises a problem that the radial deflection of the surface plate X due to the influence of the residual stress generated by this cutting process increases.

[研磨加工中の定盤冷却作用]
図6は、実施例1の冷却構造における冷却水の流れ方向を示す説明図であり、図7は、実施例1の冷却構造による研磨面の表面温度を示す説明図である。以下、図6及び図7に基づき、実施例1の研磨装置1における研磨加工中の定盤冷却作用を説明する。なお、下定盤2における冷却構造40と、上定盤3における冷却構造40とでは、同様の作用を奏することができる。そのため、以下では、下定盤2に形成された冷却構造40についてのみ説明する。
[Surface plate cooling during polishing]
FIG. 6 is an explanatory view showing the flow direction of the cooling water in the cooling structure of the first embodiment, and FIG. 7 is an explanatory view showing the surface temperature of the polished surface by the cooling structure of the first embodiment. Hereinafter, based on FIG.6 and FIG.7, the surface plate cooling effect | action in the grinding | polishing process in the grinding | polishing apparatus 1 of Example 1 is demonstrated. The cooling structure 40 in the lower surface plate 2 and the cooling structure 40 in the upper surface plate 3 can exhibit the same action. Therefore, only the cooling structure 40 formed on the lower surface plate 2 will be described below.

実施例1の研磨装置1が有する下定盤2の冷却構造40では、図示しない冷却水循環装置から冷却水が供給されると、この冷却水は、下側ジャケット部材22及び下側定盤受部材23の内部に形成された給水路(不図示)を通り、給水口41から流れ出る。このとき、給水口41は、第2流路43bの延在方向に沿って複数(2個)設けられているが、すべての給水口41からほぼ同時に同量の冷却水が流れ出る。   In the cooling structure 40 of the lower surface plate 2 included in the polishing apparatus 1 of the first embodiment, when cooling water is supplied from a cooling water circulation device (not shown), the cooling water is supplied to the lower jacket member 22 and the lower surface plate receiving member 23. It flows out from the water supply port 41 through a water supply channel (not shown) formed in the inside. At this time, a plurality (two) of water supply ports 41 are provided along the extending direction of the second flow path 43b, but the same amount of cooling water flows out of all the water supply ports 41 almost simultaneously.

給水口41から流れ出た冷却水は、まず、この給水口41が形成された流路43の第2流路43b内に充満し、その後、図6において矢印で示すように、第1折返部45aを介して第3流路43cに流れ込む。第3流路43cに流れ込んだ冷却水は、第3流路43c内を図6に示す反時計回り方向に流れ、第2折返部45bを介して第4流路43dに流れ込む。そして、第4流路43dに流れ込んだ冷却水は、第4流路43d内を図6に示す時計回り方向に流れ、第3折返部45cを介して第5流路43eに流れ込む。さらに、第5流路43eに流れ込んだ冷却水は、第5流路43e内を図6に示す反時計回り方向に流れ、第4折返部45dを介して第1流路43aに流れ込む。   The cooling water flowing out from the water supply port 41 first fills the second flow channel 43b of the flow channel 43 in which the water supply port 41 is formed, and then, as shown by the arrow in FIG. Into the third flow path 43c. The cooling water that has flowed into the third flow path 43c flows in the third flow path 43c in the counterclockwise direction shown in FIG. 6, and then flows into the fourth flow path 43d through the second folded portion 45b. And the cooling water which flowed into the 4th flow path 43d flows through the inside of the 4th flow path 43d in the clockwise direction shown in FIG. 6, and flows into the 5th flow path 43e via the 3rd folding | turning part 45c. Furthermore, the cooling water that has flowed into the fifth flow path 43e flows in the fifth flow path 43e in the counterclockwise direction shown in FIG. 6, and then flows into the first flow path 43a through the fourth folded portion 45d.

そして、第1流路43aに流れ込んだ冷却水は、この第1流路43a内に形成された排水口42から排出される。なお、このとき、排水口42は、第1流路43aの延在方向に沿って複数(2個)設けられているが、すべての排水口42から同量の冷却水が排出される。   And the cooling water which flowed into the 1st flow path 43a is discharged | emitted from the drain port 42 formed in this 1st flow path 43a. At this time, a plurality of (two) drain ports 42 are provided along the extending direction of the first flow path 43a, but the same amount of cooling water is discharged from all the drain ports 42.

そして、このように流路43を流れる冷却水と、研磨パッド2aが設けられた下側平板部材21との間で熱交換が行われ、研磨パッド2aの表面(研磨面)が冷却される。   And heat exchange is performed between the cooling water which flows through the flow path 43 in this way, and the lower flat plate member 21 provided with the polishing pad 2a, and the surface (polishing surface) of the polishing pad 2a is cooled.

ここで、実施例1の冷却構造40では、冷却水が、給水口41→第2流路43b→第3流路43c→第4流路43d→第5流路43e→第1流路43a→排水口42と流れる。そのため、流路43は、研磨面の全面を1本の冷却ルートで冷却することになる。これにより、給排水経路を単純な構造にすることができ、構造が複雑化することを防止できる。また、流路43が1本のルートであることから、この流路43を流れる冷却水の流速を向上させることができる。そのため、冷却水による熱伝達率が高くなり、温度調節効率の向上を図ることができる。   Here, in the cooling structure 40 of the first embodiment, the cooling water is supplied from the water supply port 41 → the second flow path 43b → the third flow path 43c → the fourth flow path 43d → the fifth flow path 43e → the first flow path 43a → It flows with the drain port 42. Therefore, the flow path 43 cools the entire polishing surface by one cooling route. Thereby, a water supply / drainage path can be made into a simple structure, and it can prevent that a structure becomes complicated. Moreover, since the flow path 43 is one route, the flow rate of the cooling water flowing through the flow path 43 can be improved. For this reason, the heat transfer rate by the cooling water is increased, and the temperature adjustment efficiency can be improved.

さらに、第3流路43cは、最内周から三番目に位置する第3同心円R3に沿って形成されている。そして、第4流路43dは、最内周から四番目に位置する第4同心円R4に沿って形成されている。ここで、この第3流路43c及び第4流路43dは、ワーク研磨中にワークWと接触する割合が最も高い中間領域B(図3参照)に対向する位置に形成された流路である。   Further, the third flow path 43c is formed along a third concentric circle R3 located third from the innermost periphery. The fourth flow path 43d is formed along a fourth concentric circle R4 located fourth from the innermost periphery. Here, the third flow path 43c and the fourth flow path 43d are flow paths formed at positions facing the intermediate region B (see FIG. 3) having the highest rate of contact with the work W during the work polishing. .

一方、この冷却構造40では、給水口41が形成された第2流路43bから流れ出た冷却水は、第3流路43cに流れ込み、続いて第4流路43dへと順に流れる構成になっている。このため、実施例1の冷却構造40では、比較的温度が低い冷却水を、ワーク研磨時に比較的高温になる中間領域Bに対向する流路(第3流路43c及び第4流路43d)に流すことができる。すなわち、温度調節効率の高くなる第3流路43c及び第4流路43dを、効率的に冷却したいという要求のある研磨面の中間領域Bに対向させることができ、冷却要求の高い領域を優先的に冷却することができる。   On the other hand, in this cooling structure 40, the cooling water that has flowed out from the second flow path 43b in which the water supply port 41 is formed flows into the third flow path 43c, and then flows sequentially to the fourth flow path 43d. Yes. For this reason, in the cooling structure 40 according to the first embodiment, the cooling water having a relatively low temperature is opposed to the intermediate region B that becomes relatively high when the workpiece is polished (the third flow path 43c and the fourth flow path 43d). Can be shed. That is, the third flow path 43c and the fourth flow path 43d having high temperature control efficiency can be opposed to the intermediate area B of the polishing surface that is required to be efficiently cooled, and priority is given to the area with high cooling demand. Can be cooled.

なお、給水口41が形成された第2流路43bでは、冷却水温度は最も低くなるが、第1流路43bの延在方向に沿って並んだ複数の給水口41から同時に冷却水が供給されるため、第3流路43cや第4流路43dと比べて流速が低くなる。つまり、第2流路43bの定盤温度調節効率は、第3流路43cや第4流路43dよりも低くなる。しかしながら、温度調節効率が低い第2流路43bは、下定盤2の中央領域Aに対向しているため、研磨面の冷却状態に大きな影響を与えることを防止できる。   In addition, in the 2nd flow path 43b in which the water supply port 41 was formed, although cooling water temperature becomes the lowest, cooling water is simultaneously supplied from the several water supply port 41 located along the extension direction of the 1st flow path 43b. Therefore, the flow velocity is lower than that of the third flow path 43c and the fourth flow path 43d. That is, the platen temperature adjustment efficiency of the second flow path 43b is lower than that of the third flow path 43c and the fourth flow path 43d. However, since the 2nd flow path 43b with low temperature control efficiency is facing the center area | region A of the lower surface plate 2, it can prevent having a big influence on the cooling state of a grinding | polishing surface.

また、この実施例1の冷却構造40では、複数の同心円(第1同心円R1〜第5同心円R5)を仕切る仕切壁44により流路43が折り返しており、冷却水は、この仕切壁44に沿って折り返して流れていく。つまり、冷却水の流れ方向は、定盤周方向に一周流れるごとに反転する。そのため、例えば流路を螺旋状に形成した場合と異なり、任意の周方向領域の冷却水の温度分布を均等にすることができる。   In the cooling structure 40 of the first embodiment, the flow path 43 is folded back by the partition wall 44 that partitions a plurality of concentric circles (first concentric circle R1 to fifth concentric circle R5), and the cooling water flows along the partition wall 44. And then flow back. That is, the flow direction of the cooling water is reversed every time it flows in the circumferential direction of the surface plate. Therefore, for example, unlike the case where the flow path is formed in a spiral shape, the temperature distribution of the cooling water in an arbitrary circumferential region can be made uniform.

これにより、実施例1の研磨装置1の下定盤2では、研磨面の中でも冷却要求の高い領域(中間領域B)を効率よく優先的に冷却することができ、図7に示すように、ワーク研磨中に加工熱が生じても、研磨パッド2aの全面をほぼ23℃以下の均等な温度に調節することができる。そして、研磨パッド2aの表面(研磨面)の温度が部分的に変化(ここでは上昇)することを抑制することができて、下定盤2の熱変形を抑制し、及び/又は研磨装置における研磨パッド2aの表面(研磨面)全面での微細な研磨条件を維持することができる。これにより、研磨精度の低下等の研磨中のワークWへの悪影響も防止することができる。   As a result, the lower surface plate 2 of the polishing apparatus 1 according to the first embodiment can efficiently and preferentially cool a region (intermediate region B) having a high cooling requirement in the polishing surface. As shown in FIG. Even if processing heat is generated during polishing, the entire surface of the polishing pad 2a can be adjusted to an equal temperature of approximately 23 ° C. or lower. And it can control that the temperature of the surface (polishing surface) of polishing pad 2a changes partially (here rises), suppresses thermal deformation of lower surface plate 2, and / or polishes in a polisher. Fine polishing conditions on the entire surface (polishing surface) of the pad 2a can be maintained. Thereby, the bad influence to the workpiece | work W during grinding | polishing, such as a fall of grinding | polishing precision, can also be prevented.

[異材料組み合わせ作用]
一般的に、下定盤や上定盤といった研磨装置の定盤は、年単位の長時間を経ると経時変化をもたらし、研磨面に歪みが生じることがある。この場合には、下定盤を回転させる駆動軸や、上定盤を吊り下げ支持するロッドから、下定盤や上定盤を取り外し、研磨面のラップ加工をし直して形状を修正する必要がある。
[Combination of different materials]
Generally, a surface plate of a polishing apparatus such as a lower surface plate or an upper surface plate causes a change over time after a long time in units of years, and the polished surface may be distorted. In this case, it is necessary to remove the lower surface plate and the upper surface plate from the drive shaft for rotating the lower surface plate and the rod that supports the upper surface plate by hanging and correct the shape by re-wrapping the polished surface. .

これに対し、実施例1の研磨装置1の下定盤2は、下側平板部材21と、下側ジャケット部材22と、下側定盤受部材23と、を有している。そして、下側平板部材21及び下側定盤受部材23は、下側ジャケット部材22よりも線膨張係数の小さい低熱膨張材によって形成され、下側ジャケット部材22は、これらよりも線膨張係数が大きく、且つ剛性が高いステンレスによって形成されている。   In contrast, the lower surface plate 2 of the polishing apparatus 1 of the first embodiment includes a lower flat plate member 21, a lower jacket member 22, and a lower surface plate receiving member 23. The lower flat plate member 21 and the lower surface plate receiving member 23 are formed of a low thermal expansion material having a smaller linear expansion coefficient than the lower jacket member 22, and the lower jacket member 22 has a linear expansion coefficient smaller than these. It is made of stainless steel that is large and has high rigidity.

すなわち、この下定盤2では、ワークWに接触して加工熱が直接伝わる下側平板部材21と、この下側平板部材21の裏側に固定されると共に冷却構造40が形成された下側ジャケット部材22とは、線膨張係数の異なる材料によって形成されている。   That is, in the lower surface plate 2, the lower flat plate member 21 that contacts the workpiece W and directly transmits the processing heat, and the lower jacket member that is fixed to the back side of the lower flat plate member 21 and has the cooling structure 40 formed thereon. 22 is formed of a material having a different linear expansion coefficient.

そのため、下定盤2の全体が、熱膨張率が異なる2枚の金属板を貼り合わせたバイメタルのような構造になる。これにより、冷却構造40を流れる冷却水の温度を調節することで、下定盤2の撓み量を制御することができる。   Therefore, the entire lower surface plate 2 has a bimetallic structure in which two metal plates having different thermal expansion coefficients are bonded together. Thereby, the deflection amount of the lower surface plate 2 can be controlled by adjusting the temperature of the cooling water flowing through the cooling structure 40.

また、実施例1の研磨装置1の上定盤3は、上側平板部材31と、上側ジャケット部材32と、を有し、上側平板部材31は、上側ジャケット部材32よりも線膨張係数の小さい低熱膨張材によって形成され、上側ジャケット部材32は、これよりも線膨張係数が大きく、且つ剛性が高いステンレスによって形成されている。   The upper surface plate 3 of the polishing apparatus 1 according to the first embodiment includes an upper flat plate member 31 and an upper jacket member 32, and the upper flat plate member 31 has a low thermal expansion coefficient smaller than that of the upper jacket member 32. The upper jacket member 32 is made of an inflatable material, and is made of stainless steel having a higher linear expansion coefficient and higher rigidity.

すなわち、この上定盤3では、ワークWに接触して加工熱が直接伝わる上側平板部材31と、この上側平板部材31の裏側に固定されると共に冷却構造40が形成された上側ジャケット部材32とは、線膨張係数の異なる材料によって形成されている。   That is, in the upper surface plate 3, the upper flat plate member 31 that is in contact with the workpiece W and directly transmits machining heat, and the upper jacket member 32 that is fixed to the back side of the upper flat plate member 31 and has the cooling structure 40 formed thereon. Are formed of materials having different linear expansion coefficients.

そのため、上定盤3の全体も、熱膨張率が異なる2枚の金属板を貼り合わせたバイメタルのような構造になる。これにより、冷却構造40を流れる冷却水の温度を調節することで、上定盤3の撓み量を制御することができる。   Therefore, the entire upper surface plate 3 also has a bimetallic structure in which two metal plates having different thermal expansion coefficients are bonded together. Thereby, the deflection amount of the upper surface plate 3 can be controlled by adjusting the temperature of the cooling water flowing through the cooling structure 40.

そして、下定盤2及び上定盤3において、いずれも冷却水の温度調節を行うことで定盤撓み量の制御を行うことができるので、経時変化に伴う研磨面の歪みが生じた場合であっても、冷却水の温度を調節すれば、歪みを緩和することができる。そのため、研磨面のラップ加工のし直しを不要にすることが可能となる。   In both the lower surface plate 2 and the upper surface plate 3, the amount of deflection of the surface plate can be controlled by adjusting the temperature of the cooling water. However, distortion can be alleviated by adjusting the temperature of the cooling water. For this reason, it is possible to eliminate the need for reworking the polishing surface.

また、実施例1では、下側平板部材21が下側ジャケット部材22よりも線膨張係数が小さく、上側平板部材31が上側ジャケット部材32よりも線膨張係数が小さい。つまり、ワークWに接触して摩擦熱が直接伝わる下側平板部材21や上側平板部材31が、熱変形しにくい線膨張係数が小さい材料によって形成されている。そのため、ワーク研磨時に発生する加工熱によって下側平板部材21や上側平板部材31が熱変形することを防止し、下定盤2及び上定盤3の変形を抑制しつつ、定盤撓みの制御を可能とすることができる。   In the first embodiment, the lower flat plate member 21 has a smaller linear expansion coefficient than the lower jacket member 22, and the upper flat plate member 31 has a smaller linear expansion coefficient than the upper jacket member 32. That is, the lower flat plate member 21 and the upper flat plate member 31 that contact the workpiece W and directly transmit the frictional heat are formed of a material that is difficult to thermally deform and has a small linear expansion coefficient. Therefore, the lower plate member 21 and the upper plate member 31 are prevented from being thermally deformed by the processing heat generated during workpiece polishing, and the deformation of the lower platen 2 and the upper platen 3 is suppressed, and the control of the platen bending is controlled. Can be possible.

さらに、一般的に、ステンレスは、低熱膨張材と比べて廉価な材料である。そのため、定盤全体を低熱膨張材によって形成した場合と比べて、実施例1の研磨装置1のように、下側ジャケット部材22や上側ジャケット部材32をステンレスに代替して製作することで、コストダウンを図ることが可能となる。   Further, generally, stainless steel is an inexpensive material compared to a low thermal expansion material. Therefore, as compared with the case where the entire surface plate is formed of a low thermal expansion material, the lower jacket member 22 and the upper jacket member 32 are manufactured by substituting stainless steel as in the polishing apparatus 1 of Example 1, thereby reducing the cost. It is possible to go down.

また、実施例1の上定盤3では、ワーク研磨中の加工熱が直接伝達される上側平板部材31を、線膨張係数が小さくて熱変形しにくい低熱膨張材によって形成し、上側ジャケット部材32を廉価なステンレスによって形成している。これにより、上定盤3において、上側平板部材31の熱変形を抑制しつつ、コストダウンを図ることが可能となる。   In the upper surface plate 3 of the first embodiment, the upper flat plate member 31 to which the processing heat during workpiece polishing is directly transmitted is formed of a low thermal expansion material having a small linear expansion coefficient and hardly thermally deformed, and the upper jacket member 32. Is made of inexpensive stainless steel. Thereby, in the upper surface plate 3, it becomes possible to aim at cost reduction, suppressing the thermal deformation of the upper side plate member 31. FIG.

さらに、下側ジャケット部材22や上側ジャケット部材32を形成するステンレスは、比較的剛性の高い材質である。このため、この下側ジャケット部材22や上側ジャケット部材32を低熱膨張材によって形成した場合と比べて下定盤2や上定盤3の剛性を向上させることができる。これにより、例えば下定盤2や上定盤3を製造途中で吊り下げることがあっても、撓みを抑制して製造しやすさの向上を図ることができる。   Further, the stainless steel forming the lower jacket member 22 and the upper jacket member 32 is a material having a relatively high rigidity. For this reason, the rigidity of the lower surface plate 2 and the upper surface plate 3 can be improved compared with the case where the lower jacket member 22 and the upper jacket member 32 are formed of a low thermal expansion material. Thereby, for example, even if the lower surface plate 2 and the upper surface plate 3 are suspended in the course of manufacturing, it is possible to suppress the bending and improve the ease of manufacturing.

[給水口及び排水口の形成位置による特徴的作用]
実施例1において、図示しない冷却水循環装置に接続した給水路は、駆動軸7aの内部に垂直方向に形成された縦穴と、下側定盤受部材23の内部を水平方向に延びた横穴と、を有している。また、排水路についても給水路と同様の構成であり、駆動軸7aの内部に垂直方向に形成された縦穴と、下側定盤受部材23の内部を水平方向に延びた横穴と、を有している。
[Characteristic action depending on the location of the water inlet and outlet]
In the first embodiment, a water supply path connected to a cooling water circulation device (not shown) includes a vertical hole formed in the drive shaft 7a in the vertical direction, a horizontal hole extending in the horizontal direction inside the lower surface plate receiving member 23, and have. The drainage channel has the same structure as the water supply channel, and has a vertical hole formed in the drive shaft 7a in the vertical direction and a horizontal hole extending in the horizontal direction in the lower surface plate receiving member 23. doing.

これに対し、この実施例1の冷却構造40では、図2に示すように、排水口42が、下定盤2の内縁部αに最も近い位置、つまり下定盤2の最内周に位置する第1同心円R1に沿った第1流路43aに形成され、給水口41が、最内周から二番目に位置する第2同心円R2に沿い、第1流路43aに隣接する第2流路43bに形成されている。つまり、給水口41及び排水口42は、いずれも駆動軸7aの近傍位置に形成されている。   On the other hand, in the cooling structure 40 of the first embodiment, as shown in FIG. 2, the drain port 42 is located closest to the inner edge α of the lower surface plate 2, that is, the innermost periphery of the lower surface plate 2. The first water supply port 41 is formed in the first flow path 43a along the first concentric circle R1, and the water supply port 41 extends along the second concentric circle R2 located second from the innermost circumference and adjacent to the first flow path 43a. Is formed. That is, both the water supply port 41 and the drain port 42 are formed in the vicinity of the drive shaft 7a.

これにより、給水口41や排水口42を下定盤2の外縁部β近傍に形成した場合と比べて、給水路や排水路のうち、下側定盤受部材23の内部を水平方向に延びる横穴部分の長さを短縮化することができる。すなわち、冷却構造40が複雑化することをさらに抑制することができ、定盤の作りやすさの向上を図ることができる。   Thereby, compared with the case where the water supply port 41 and the drain port 42 are formed in the vicinity of the outer edge part β of the lower surface plate 2, the horizontal hole extending in the horizontal direction inside the lower surface plate receiving member 23 in the water channel and the water channel. The length of the part can be shortened. That is, the cooling structure 40 can be further prevented from becoming complicated, and the ease of making the surface plate can be improved.

特に、直径寸法が2メートルを超えるような大型の下定盤2において給水口41や排水口42を下定盤2の外縁部β近傍に形成してしまうと、下側定盤受部材23の内部を水平方向に延びる長い横穴が必要になる。しかしながら、長い横穴を形成することは非常に困難であり、実現できても加工費の高騰が免れない。しかし、実施例1の研磨装置1では、給水口41及び排水口42を内縁部αの近傍位置に形成したことで、下側定盤受部材23の内部を水平方向に延びる長い横穴が不要になり、加工費の高騰を抑制することができる。   In particular, if the water supply port 41 and the drain port 42 are formed in the vicinity of the outer edge β of the lower surface plate 2 in the large lower surface plate 2 having a diameter dimension exceeding 2 meters, the inside of the lower surface plate receiving member 23 is formed. Long horizontal holes extending in the horizontal direction are required. However, it is very difficult to form a long horizontal hole, and even if it can be realized, an increase in processing cost cannot be avoided. However, in the polishing apparatus 1 according to the first embodiment, since the water supply port 41 and the drain port 42 are formed in the vicinity of the inner edge portion α, there is no need for a long horizontal hole extending in the horizontal direction inside the lower surface plate receiving member 23. Thus, the increase in processing costs can be suppressed.

さらに、この実施例1では、給水口41及び排水口42がそれぞれ複数(2個)形成されている。そして、すべての給水口41からほぼ同時に同量の冷却水が流れ出て、すべての排水口42からほぼ同時に同量の冷却水が排出される。これは、定盤給水口までの当該機内の水路設計や、排水口からの機内の水路設計の制約に応じたものに過ぎない。そのため、必ずしも、この個数に限られるものではない。すなわち、給水口41や排水口42の数は、所望流量や流速を許容耐圧内で得るための設計であることが要諦となる。   Further, in the first embodiment, a plurality of (two) water supply ports 41 and drain ports 42 are formed. Then, the same amount of cooling water flows from all the water supply ports 41 almost simultaneously, and the same amount of cooling water is discharged from all the water discharge ports 42 almost simultaneously. This is only in accordance with the restrictions on the water channel design in the machine up to the surface plate water supply port and the water channel design in the machine from the drain port. Therefore, it is not necessarily limited to this number. That is, it is essential that the number of the water supply ports 41 and the drain ports 42 is designed to obtain a desired flow rate and flow velocity within an allowable pressure resistance.

また、この実施例1では、複数の給水口41が、この給水口41が形成された第2流路43aの延在方向に並んで形成されている。そのため、複数の給水口41から流れ出た冷却水の干渉を抑制し、冷却水の円滑な流れを妨げないようにできる。そして、冷却水が円滑に流れることで、流速を確保し、定盤温度調節効率の向上を図ることができる。   Moreover, in this Example 1, the some water supply port 41 is formed along with the extension direction of the 2nd flow path 43a in which this water supply port 41 was formed. Therefore, the interference of the cooling water flowing out from the plurality of water supply ports 41 can be suppressed so that the smooth flow of the cooling water is not hindered. And since a cooling water flows smoothly, a flow rate can be ensured and the surface plate temperature control efficiency can be improved.

さらに、複数の排水口42についても、この排水口42が形成された第1流路43aの延在方向に並んで形成されており、冷却水の流れを乱すことなく速やかに排出することが可能となる。この結果、冷却水の円滑な流れを妨げることがなく、冷却水の流速を確保して定盤温度調節効率をさらに向上させることができる。   Further, the plurality of drain ports 42 are also formed side by side in the extending direction of the first flow path 43a in which the drain ports 42 are formed, and can be quickly discharged without disturbing the flow of the cooling water. It becomes. As a result, the smooth flow rate of the cooling water is not hindered and the flow rate of the cooling water can be secured to further improve the platen temperature adjustment efficiency.

[その他の特徴的作用]
実施例1の冷却構造40では、流路43が下定盤2の径方向に並んだ複数の同心円(第1同心円R1〜第5同心円R5)に沿って形成されている。そのため、第1流路43a〜第5流路43eをそれぞれ区画する区画壁46が下定盤2の周方向に延在する。
[Other characteristic effects]
In the cooling structure 40 of the first embodiment, the flow path 43 is formed along a plurality of concentric circles (first concentric circle R1 to fifth concentric circle R5) arranged in the radial direction of the lower surface plate 2. Therefore, the partition walls 46 that respectively partition the first flow path 43 a to the fifth flow path 43 e extend in the circumferential direction of the lower surface plate 2.

そして、区画壁46が下定盤2の周方向に延在していることで、下定盤2を搬送する際に吊り下げるときの吊り下げ位置と、下定盤2の内縁部αと、外縁部βとが連続することがない。これにより、下定盤2を搬送するときの定盤径方向の撓み変形を抑制することができる。すなわち、製造中の下定盤2の変形を小さくすることができて、下定盤2の製造時間の短縮化や、製造の容易性を向上させることができる。   The partition wall 46 extends in the circumferential direction of the lower surface plate 2, so that the suspension position when the lower surface plate 2 is suspended, the inner edge α of the lower surface plate 2, and the outer edge β And do not continue. Thereby, the bending deformation of the surface plate radial direction when conveying the lower surface plate 2 can be suppressed. That is, the deformation of the lower surface plate 2 being manufactured can be reduced, and the manufacturing time of the lower surface plate 2 can be shortened and the ease of manufacturing can be improved.

さらに、実施例1の冷却構造40では、流路43が下定盤2の径方向に並んだ複数の同心円(第1同心円R1〜第5同心円R5)に沿っていることから、第1流路43a〜第5流路43eをそれぞれ区画する区画壁46の先端は、定盤径方向に不連続になる。そのため、この区画壁46の先端に切削加工をした際に生じる残留応力の影響を小さくして、下定盤2の径方向の撓みをさらに抑制することができる。   Furthermore, in the cooling structure 40 of the first embodiment, since the flow path 43 is along a plurality of concentric circles (first concentric circle R1 to fifth concentric circle R5) aligned in the radial direction of the lower surface plate 2, the first flow path 43a. The tip of the partition wall 46 that partitions each of the fifth flow paths 43e is discontinuous in the surface plate radial direction. Therefore, the influence of the residual stress generated when cutting the tip of the partition wall 46 can be reduced, and the radial deflection of the lower surface plate 2 can be further suppressed.

次に、効果を説明する。
実施例1の研磨装置1にあっては、下記に列挙する効果を得ることができる。
Next, the effect will be described.
In the polishing apparatus 1 of Example 1, the effects listed below can be obtained.

(1) ワークWを研磨する研磨面(研磨パッド2a,3aの表面)の裏側に、冷却水が流れる冷却構造40が形成された定盤(下定盤2,上定盤3)を備えた研磨装置1において、
前記冷却構造40は、前記冷却水を供給する給水口41と、前記冷却水が排出される排水口42と、前記給水口41と前記排水口42とを連通すると共に、前記定盤(下定盤2,上定盤3)の径方向に並んだ複数の同心円(第1同心円R1〜第5同心円R5)に沿って延在する流路43と、前記定盤(下定盤2,上定盤3)の径方向に延在して前記同心円(第1同心円R1〜第5同心円R5)を仕切る仕切壁44と、を有し、
前記給水口41から供給された冷却水は、第1の同心円(第3同心円R3)に沿った流路(第3流路43c)内を第1の方向(反時計回り方向)に流れてから前記仕切壁44に沿って折り返して第2の同心円(第4同心円R4)に沿った流路(第4流路43d)に流れ込み、前記第2の同心円(第4同心円R4)に沿った流路(第4流路43d)内を前記第1の方向(反時計回り方向)とは逆の方向(時計回り方向)に流れて、前記排水口42から排出される構成とした。
これにより、構造が複雑化することなく研磨面の主たる温度調節対象として意図する領域(中間領域B)を優先的かつ効率的に温度調節し、ワークの研磨に伴って研磨面の温度が部分的に変化し、あるいは、それに関連して研磨条件が部分的に逸脱することを抑制できる。
(1) Polishing provided with a surface plate (lower surface plate 2, upper surface plate 3) in which a cooling structure 40 through which cooling water flows is formed on the back side of the polishing surface (surface of the polishing pads 2a, 3a) for polishing the workpiece W In device 1,
The cooling structure 40 communicates the water supply port 41 for supplying the cooling water, the drain port 42 for discharging the cooling water, the water supply port 41 and the drain port 42, and the surface plate (lower surface plate). 2, a flow path 43 extending along a plurality of concentric circles (first concentric circle R1 to fifth concentric circle R5) arranged in the radial direction of the upper surface plate 3), and the surface plate (lower surface plate 2, upper surface plate 3). And a partition wall 44 extending in the radial direction and partitioning the concentric circles (first concentric circle R1 to fifth concentric circle R5),
The cooling water supplied from the water supply port 41 flows in the first direction (counterclockwise direction) in the flow path (third flow path 43c) along the first concentric circle (third concentric circle R3). It folds along the partition wall 44 and flows into the flow path (fourth flow path 43d) along the second concentric circle (fourth concentric circle R4), and flows along the second concentric circle (fourth concentric circle R4). The inside of the (fourth flow path 43d) flows in the direction (clockwise direction) opposite to the first direction (counterclockwise direction) and is discharged from the drain port 42.
As a result, the region (intermediate region B) intended as the main temperature adjustment target of the polishing surface is preferentially and efficiently adjusted without complicating the structure, and the temperature of the polishing surface is partially increased as the workpiece is polished. It is possible to prevent the polishing condition from being partially deviated in relation to the change to the above.

(2) 前記給水口41は、前記定盤(下定盤2,上定盤3)の最内周から二番目に位置する同心円(第2同心円R2)に沿った第2流路43bに形成され、
前記排水口42は、前記給水口41が前記第2流路43bに形成された場合には前記定盤(下定盤2,上定盤3)の最内周に位置する同心円(第1同心円R1)に沿った第1流路43aに形成されている構成とした。
これにより、(1)の効果に加え、定盤内部に形成される水平方向の給水路及び排水路の長さを短縮化して、冷却構造40の複雑化をさらに抑制することができる。
(2) The water supply port 41 is formed in a second flow path 43b along a concentric circle (second concentric circle R2) located second from the innermost circumference of the surface plate (lower surface plate 2, upper surface plate 3). ,
When the water supply port 41 is formed in the second flow path 43b, the drain port 42 is a concentric circle (first concentric circle R1) located on the innermost periphery of the surface plate (lower surface plate 2, upper surface plate 3). ) Along the first flow path 43a.
Thereby, in addition to the effect of (1), the length of the horizontal water supply channel and drainage channel formed inside the surface plate can be shortened, and the complication of the cooling structure 40 can be further suppressed.

(3) 前記給水口41は、所定の同心円(第2同心円R2)に沿った流路(第2流路43b)の延在方向に並んで複数形成されている構成とした。
これにより、(1)又は(2)の効果に加え、冷却水圧による負荷を軽減すると共に、冷却水を円滑に流すことができる。
(3) A plurality of the water supply ports 41 are formed side by side in the extending direction of the flow path (second flow path 43b) along a predetermined concentric circle (second concentric circle R2).
Thereby, in addition to the effect of (1) or (2), the load due to the cooling water pressure can be reduced and the cooling water can flow smoothly.

(4) 前記排水口42は、所定の同心円(第1同心円R1)に沿った流路(第1流路43a)の延在方向に並んで複数形成されている構成とした。
これにより、(1)〜(3)のいずれかの効果に加え、冷却水圧による負荷をさらに軽減し、冷却水の流れをさらに円滑にすることができる。
(4) A plurality of the drain ports 42 are formed side by side in the extending direction of the flow path (first flow path 43a) along a predetermined concentric circle (first concentric circle R1).
Thereby, in addition to the effect of any one of (1) to (3), it is possible to further reduce the load due to the cooling water pressure and further smooth the flow of the cooling water.

(5) 前記定盤(下定盤2,上定盤3)は、前記研磨面が形成された平板部材(下側平板部材21,上側平板部材31)と、前記平板部材(下側平板部材21,上側平板部材31)に固定される共に前記冷却構造40が形成されたジャケット部材(下側ジャケット部材22,上側ジャケット部材32)と、を有し、
前記平板部材(下側平板部材21,上側平板部材31)と前記ジャケット部材(下側ジャケット部材22,上側ジャケット部材32)とは、線膨張係数が異なる材料によって形成されている構成とした。
これにより、(1)〜(4)のいずれかの効果に加え、冷却構造40に流れる冷却水温度を調節することで、定盤撓み量の制御ができ、経年変化による定盤の歪みを解消することができる。
(5) The platen (lower platen 2 and upper platen 3) includes a flat plate member (lower flat plate member 21, upper flat plate member 31) on which the polished surface is formed, and the flat plate member (lower flat plate member 21). A jacket member (lower jacket member 22, upper jacket member 32) that is fixed to the upper plate member 31) and has the cooling structure 40 formed thereon,
The flat plate member (lower flat plate member 21, upper flat plate member 31) and the jacket member (lower jacket member 22, upper jacket member 32) are formed of materials having different linear expansion coefficients.
As a result, in addition to any of the effects (1) to (4), the amount of deflection of the surface plate can be controlled by adjusting the temperature of the cooling water flowing through the cooling structure 40, and the distortion of the surface plate due to secular change can be eliminated. can do.

(6) 前記平板部材(下側平板部材21,上側平板部材31)は、前記ジャケット部材(下側ジャケット部材22,上側ジャケット部材32)よりも線膨張係数が小さい材料によって形成されている構成とした。
これにより、(5)の効果に加え、ワークWに接触して摩擦熱が直接伝わる平板部材の熱変形が抑制でき、定盤変形をさらに防止することができる。
(6) The flat plate member (the lower flat plate member 21, the upper flat plate member 31) is formed of a material having a smaller linear expansion coefficient than the jacket member (the lower jacket member 22, the upper jacket member 32). did.
Thereby, in addition to the effect of (5), the thermal deformation of the flat plate member that contacts the workpiece W and directly transmits the frictional heat can be suppressed, and the deformation of the surface plate can be further prevented.

(7) 前記定盤(下定盤2)は、前記ジャケット部材(下側ジャケット部材22)を有し、また、さらにそれらを支持する定盤受部材(下側定盤受部材23)を有するように設計することも可能である。
その場合、前記上盤受け部材(下側定盤受け部材23)の線膨張係数設計次第では、変化制御単位量を任意に設定することもできる。これにより、(5)の効果に加え、定盤の熱変形の抑制度合いを調合できる。
(7) The surface plate (lower surface plate 2) includes the jacket member (lower jacket member 22), and further includes a surface plate receiving member (lower surface plate receiving member 23) that supports them. It is also possible to design.
In this case, the change control unit amount can be arbitrarily set depending on the linear expansion coefficient design of the upper board receiving member (lower surface board receiving member 23). Thereby, in addition to the effect of (5), the degree of suppression of thermal deformation of the surface plate can be prepared.

以上、本発明の研磨装置を実施例1に基づいて説明してきたが、具体的な構成については、この実施例に限られるものではなく、特許請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。   As described above, the polishing apparatus of the present invention has been described based on the first embodiment. However, the specific configuration is not limited to this embodiment, and the gist of the invention according to each claim of the claims is described. Unless it deviates, design changes and additions are allowed.

実施例1では、定盤最内周に位置する第1流路43aに排水口42が形成され、この第1流路43aに隣接する第2流路43bに給水口41が形成された例を示した。しかしながら、これに限らず、例えば第1流路43aに給水口41を形成し、第2流路43bに排水口42を形成してもよい。この場合では、第1流路43aに充満した冷却水が、第5流路43e→第4流路43d→第3流路43cと順に流れ、最後に第2流路43bに流れ込むようになる。このように、冷却構造40を変えずに給水口41と排出口42を逆とすることにより、優先的に温度調節を行いたい領域を変えることが可能になる。
しかしながら、このときにも、給水口41及び排水口42は駆動軸7aの近傍位置に形成されることになり、下側定盤受部材23の内部を水平方向に延びる横穴の長さを短縮化して、冷却構造40が複雑化することをさらに抑制することができる。
In Example 1, the drainage port 42 is formed in the 1st flow path 43a located in the innermost periphery of a surface plate, and the water supply port 41 is formed in the 2nd flow path 43b adjacent to this 1st flow path 43a. Indicated. However, the present invention is not limited to this. For example, the water supply port 41 may be formed in the first flow path 43a, and the drainage port 42 may be formed in the second flow path 43b. In this case, the cooling water filled in the first flow path 43a flows in the order of the fifth flow path 43e → the fourth flow path 43d → the third flow path 43c, and finally flows into the second flow path 43b. As described above, by reversing the water supply port 41 and the discharge port 42 without changing the cooling structure 40, it is possible to change the region where temperature adjustment is to be performed preferentially.
However, also at this time, the water supply port 41 and the drain port 42 are formed in the vicinity of the drive shaft 7a, and the length of the horizontal hole extending in the horizontal direction inside the lower surface plate receiving member 23 is shortened. Thus, the cooling structure 40 can be further suppressed from becoming complicated.

また、実施例1の冷却構造40では、冷却水が、給水口41→第2流路43b(冷却水充満)→第3流路43c(反時計回り)→第4流路43d(時計回り)→第5流路43e(反時計回り)→第1流路43a(冷却水排出)→排水口42と流れる例を示した。しかしながら、これに限らず、例えば図6の冷却構造を左右反転させた冷却構造とし、冷却水の流れが、それぞれ逆(給水口41→第2流路43b(冷却水充満)→第3流路43c(時計回り)→第4流路43d(反時計回り)→第5流路43e(時計回り)→第1流路43a(冷却水排出)→排水口42)となるようにしてもよい。これにより、給排水経路を単純な構造にすることができ、構造が複雑化することを防止できる。また、流路43が1本のルートであることから、この流路43を流れる冷却水の流速を向上させることができる。そのため、冷却水による熱伝達率が高くなり、温度調節効率の向上を図ることができる。また、構造を変えず流路の向きを反転できるため、優先的に温度調節を行いたい領域を変えることができる。   Further, in the cooling structure 40 of the first embodiment, the cooling water is supplied from the water supply port 41 → the second flow path 43b (cooling water filling) → the third flow path 43c (counterclockwise) → the fourth flow path 43d (clockwise). → The fifth flow path 43e (counterclockwise) → the first flow path 43a (cooling water discharge) → the drain port 42 is shown as an example. However, the present invention is not limited to this. For example, the cooling structure of FIG. 6 is reversed left and right, and the flow of the cooling water is reversed (water supply port 41 → second flow path 43b (cooling water filling) → third flow path. 43c (clockwise) → fourth channel 43d (counterclockwise) → fifth channel 43e (clockwise) → first channel 43a (cooling water discharge) → drain port 42). Thereby, a water supply / drainage path can be made into a simple structure, and it can prevent that a structure becomes complicated. Moreover, since the flow path 43 is one route, the flow rate of the cooling water flowing through the flow path 43 can be improved. For this reason, the heat transfer rate by the cooling water is increased, and the temperature adjustment efficiency can be improved. Further, since the direction of the flow path can be reversed without changing the structure, it is possible to change the region where temperature adjustment is to be performed preferentially.

また、給水口41や排水口42は、定盤最外周に位置する第5流路43eに形成してもよい。なお、給水口41又は排水口42を定盤最外周位置に形成した場合などでは、下側定盤受部材23等に給排水用の横穴を形成せず、定盤外部に配索されたチューブ等を利用して冷却水を給排水するようにしてもよい。   Further, the water supply port 41 and the drain port 42 may be formed in the fifth flow path 43e located on the outermost periphery of the surface plate. In addition, when the water supply port 41 or the drain port 42 is formed at the outermost peripheral position of the surface plate, a horizontal hole for water supply / drainage is not formed in the lower surface plate receiving member 23 or the like, and the tube routed outside the surface plate The cooling water may be supplied and drained using

また、実施例1では、給水口41及び排水口42をそれぞれ2個ずつ形成した例を示したが、これに限らない。給水口41及び排水口42は、一つでもよいし、2個以上の任意の数だけ形成してもよい。また、給水口41の数と排水口42の数とが異なっていてもよい。さらに、給水口41の開口面積と排水口42の開口面積を異ならせてもよいし、複数の給水口41の開口面積を互いに異ならせたり、複数の排水口42の開口面積を互いに異ならせたりしてもよい。   In the first embodiment, an example in which two water supply ports 41 and two water discharge ports 42 are formed is shown, but the present invention is not limited thereto. The water supply port 41 and the drain port 42 may be one, or may be formed by an arbitrary number of two or more. Further, the number of water supply ports 41 and the number of drain ports 42 may be different. Further, the opening area of the water supply port 41 may be different from the opening area of the drainage port 42, the opening areas of the plurality of water supply ports 41 may be different from each other, or the opening areas of the plurality of drainage ports 42 may be different from each other. May be.

また、流路43は、定盤(下定盤2,上定盤3)の径方向に並んだ複数の同心円(第1同心円R1〜第5同心円R5)に沿って延在すると共に、これらの複数の同心円(第1同心円R1〜第5同心円R5)が仕切壁44によって仕切られていればよい。そのため、流路形状は実施例1に示すものに限らず、例えば、図8に示す第1変形例の冷却構造40Aや、図9に示す第2変形例の冷却構造40Bのようなものであってもよい。   The flow path 43 extends along a plurality of concentric circles (first concentric circle R1 to fifth concentric circle R5) arranged in the radial direction of the surface plate (lower surface plate 2, upper surface plate 3), and the plurality of these The concentric circles (the first concentric circle R1 to the fifth concentric circle R5) may be partitioned by the partition wall 44. For this reason, the flow path shape is not limited to that shown in the first embodiment, and is, for example, the cooling structure 40A of the first modification shown in FIG. 8 or the cooling structure 40B of the second modification shown in FIG. May be.

すなわち、第1変形例である冷却構造40Aでは、定盤最内周に位置する第1流路43a内に給水口41及び排水口42を形成する。また、仕切壁47として、第1同心円R1〜第5同心円R5のすべてを仕切る第1仕切壁47aと、第1同心円R1〜第4同心円R4を仕切る第2仕切壁47bと、第2,第3同心円R2,R3を仕切る第3仕切壁47cと、第1,第2同心円R1,R2を仕切る第4仕切壁47dと、を形成する。   That is, in the cooling structure 40A as the first modified example, the water supply port 41 and the drain port 42 are formed in the first flow path 43a located on the innermost periphery of the surface plate. Further, as the partition wall 47, a first partition wall 47a that partitions all of the first concentric circle R1 to the fifth concentric circle R5, a second partition wall 47b that partitions the first concentric circle R1 to the fourth concentric circle R4, and second and third. A third partition wall 47c that partitions the concentric circles R2 and R3 and a fourth partition wall 47d that partitions the first and second concentric circles R1 and R2 are formed.

そして、第1仕切壁47aと第4仕切壁47dとの間に、第1流路43aと第3流路43cを連通する第1折返部48aを形成し、第3仕切壁47cに沿って第2流路43bと第3流路43cを連通する第2折返部48bを形成し、第4仕切壁47dに沿って第1流路43aと第2流路43bを連通する第3折返部48cを形成し、第2仕切壁47bと第3仕切壁47cとの間に、第1流路43aと第4流路43dを連通する第4折返部48dを形成し、第1仕切壁47aに沿って第4流路43dと第5流路43eを連通する第5折返部48eを形成し、第1仕切壁47aと第2仕切壁47bとの間に、第1流路43aと第5流路43eを連通する第6折返部48fを形成する。このとき、給水口41を第1折返部48a内に形成し、排水口42を第6折返部48f内に形成する。   A first folded portion 48a that communicates the first flow path 43a and the third flow path 43c is formed between the first partition wall 47a and the fourth partition wall 47d, and the first partition wall 47c is formed along the third partition wall 47c. A second folded portion 48b that communicates the second flow path 43b and the third flow path 43c is formed, and a third folded portion 48c that communicates the first flow path 43a and the second flow path 43b along the fourth partition wall 47d. A fourth folded portion 48d that communicates the first flow path 43a and the fourth flow path 43d is formed between the second partition wall 47b and the third partition wall 47c, and is formed along the first partition wall 47a. A fifth folded portion 48e that communicates the fourth flow path 43d and the fifth flow path 43e is formed, and the first flow path 43a and the fifth flow path 43e are provided between the first partition wall 47a and the second partition wall 47b. A sixth folded portion 48f that communicates with each other is formed. At this time, the water supply port 41 is formed in the first folded portion 48a, and the drain port 42 is formed in the sixth folded portion 48f.

これにより、この第1変形例の冷却構造40Aでは、給水口41から流れ出た冷却水は、給水口41→第1折返部48a→第3流路43c→第2折返部48b→第2流路43b→第3折返部48c→第1流路43a→第4折返部48d→第4流路43d→第5折返部48e→第5流路43e→第6折返部48f→排水口42と流れていく。   Thereby, in the cooling structure 40A of the first modified example, the cooling water flowing out from the water supply port 41 is supplied from the water supply port 41 → the first return part 48a → the third flow path 43c → the second return part 48b → the second flow path. 43b → third folding part 48c → first flow path 43a → fourth folding part 48d → fourth flow path 43d → fifth folding part 48e → fifth flow path 43e → sixth folding part 48f → drain port 42 Go.

また、第2変形例である冷却構造40Bでは、定盤最内周に位置する第1流路43a内に給水口41を形成し、定盤最外周に位置する第5流路43e内に排水口42を形成する。また、仕切壁49は、第1同心円R1〜第5同心円R5のすべてを仕切るものだけである。   In the cooling structure 40B as the second modified example, the water supply port 41 is formed in the first flow path 43a located on the innermost periphery of the surface plate, and the water is discharged into the fifth flow path 43e located on the outermost periphery of the surface plate. A mouth 42 is formed. Moreover, the partition wall 49 only partitions all of the first concentric circle R1 to the fifth concentric circle R5.

そして、仕切壁49を挟んで交互に第1折返部50aと、第2折返部50bと、第3折返部50cと、第4折返部50dを形成する。そして、第1折返部50aを介して第1,第2流路43a,43bを連通し、第2折返部50bを介して第2,第3流路43b,43cを連通し、第3折返部50cを介して第3,第4流路43c,43dを連通し、第4折返部50dを介して第4,第5流路43d,43eを連通する。   And the 1st folding | returning part 50a, the 2nd folding | returning part 50b, the 3rd folding | returning part 50c, and the 4th folding | returning part 50d are alternately formed on both sides of the partition wall 49. FIG. The first and second flow paths 43a and 43b are communicated via the first folding part 50a, the second and third flow paths 43b and 43c are communicated via the second folding part 50b, and the third folding part. The third and fourth flow paths 43c and 43d are communicated via 50c, and the fourth and fifth flow paths 43d and 43e are communicated via the fourth folded portion 50d.

これにより、この第2変形例の冷却構造40Bでは、給水口41から流れ出た冷却水は、給水口41→第1流路43a→第1折返部50a→第2流路43b→第2折返部50b→第3流路43c→第3折返部50c→第4流路43d→第4折返部50d→第5流路43e→排水口42と流れていく。   Thereby, in the cooling structure 40B of the second modified example, the cooling water flowing out from the water supply port 41 is supplied from the water supply port 41 → the first flow path 43a → the first return part 50a → the second flow path 43b → the second return part. 50b → the third flow path 43c → the third return part 50c → the fourth flow path 43d → the fourth return part 50d → the fifth flow path 43e → the drain port 42.

また、実施例1では、下定盤2の下側平板部材21を線膨張係数の小さい低熱膨張材によって形成し、下側ジャケット部材22を線膨張係数の大きいステンレスによって形成する例を示した。しかしながら、これに限らず、下側平板部材21、下側ジャケット部材22等を、例えば、線膨張係数の大きな材料から選ぶ場合は、鋳鉄やアルミニウム、ステンレス等より任意に選べばよい。また、線膨張係数の小さな材料から選ぶ場合は、セラミック、グラナイト、炭素繊維強化材、炭化ケイ素繊維強化材、インバー合金材等より、任意に選べばよい。さらに、その組み合わせ次第で、下側平板部材21と下側ジャケット部材22との線膨張係数差に応じて、冷却水温度の調節精度に応じた単位歪み量を設定、制御することができるようになる。すなわち、変形制御特性や機器構成上望ましい剛性等を考慮して選定し組み合わせればよい。なお、上定盤3についても同様である。
また、実施例1にて示した例のように、下側ジャケット部材22の下に、さらに、下側定盤受部材23を設け、その材質を、下側ジャケット部材22と異ならせることで、変形特性を調合することもできる。
Moreover, in Example 1, the lower flat plate member 21 of the lower surface plate 2 is formed of a low thermal expansion material having a small linear expansion coefficient, and the lower jacket member 22 is formed of stainless steel having a large linear expansion coefficient. However, the present invention is not limited to this, and when the lower flat plate member 21, the lower jacket member 22, and the like are selected from materials having a large linear expansion coefficient, for example, they may be arbitrarily selected from cast iron, aluminum, stainless steel, and the like. Further, when selecting from a material having a small linear expansion coefficient, it may be arbitrarily selected from ceramic, granite, carbon fiber reinforcing material, silicon carbide fiber reinforcing material, Invar alloy material, and the like. Further, depending on the combination, the unit strain amount can be set and controlled according to the adjustment accuracy of the cooling water temperature according to the difference in linear expansion coefficient between the lower flat plate member 21 and the lower jacket member 22. Become. That is, selection and combination may be made in consideration of deformation control characteristics, rigidity desired for the device configuration, and the like. The same applies to the upper surface plate 3.
Further, as in the example shown in the first embodiment, the lower surface plate receiving member 23 is further provided below the lower jacket member 22, and the material thereof is different from that of the lower jacket member 22. Deformation characteristics can also be formulated.

また、実施例1では、温度調節構造として冷却構造を例示したが、研磨面の温度を上昇させる加熱流体が流れる加熱構造であっても、本願発明を適用することができる。   In the first embodiment, the cooling structure is exemplified as the temperature adjustment structure. However, the present invention can be applied to a heating structure in which a heating fluid that raises the temperature of the polishing surface flows.

また、実施例1では、下定盤2と上定盤3を有し、ワークWの両面を同時に研磨可能な両面研磨装置を示したが、ワークWの片面のみを研磨する片面研磨装置であっても、本願発明を適用することができる。   Further, in the first embodiment, the double-side polishing apparatus having the lower surface plate 2 and the upper surface plate 3 and capable of simultaneously polishing both surfaces of the workpiece W is shown, but this is a single-side polishing device for polishing only one surface of the workpiece W. Also, the present invention can be applied.

さらに、実施例1では、流路43が沿う同心円の数を5つとしたが、これに限らず、任意の数の同心円を設定することができる。   Furthermore, in the first embodiment, the number of concentric circles along which the flow path 43 extends is five. However, the number is not limited to this, and an arbitrary number of concentric circles can be set.

1 研磨装置
2 下定盤
2a 研磨パッド
3 上定盤
3a 研磨パッド
3b フック
4 サンギヤ
5 インターナルギヤ
6 キャリアプレート
21 下側平板部材
22 下側ジャケット部材
23 下側定盤受部材
31 上側平板部材
32 上側ジャケット部材
40 冷却構造(温度調節構造)
41 給水口
42 排水口
43 流路
43a 第1流路
43b 第2流路
43c 第3流路
43d 第4流路
43e 第5流路
44 仕切壁
45a 第1折返部
45b 第2折返部
45c 第3折返部
45d 第4折返部
DESCRIPTION OF SYMBOLS 1 Polishing apparatus 2 Lower surface plate 2a Polishing pad 3 Upper surface plate 3a Polishing pad 3b Hook 4 Sun gear 5 Internal gear 6 Carrier plate 21 Lower plate member 22 Lower jacket member 23 Lower surface plate receiving member 31 Upper plate member 32 Upper Jacket member 40 Cooling structure (temperature control structure)
41 Water supply port 42 Drain port 43 Channel 43a First channel 43b Second channel 43c Third channel 43d Fourth channel 43e Fifth channel 44 Partition wall 45a First folding part 45b Second folding part 45c Third Return part 45d Fourth return part

Claims (6)

ワークを研磨する研磨面の裏側に、温度調節用流体が流れる温度調節構造が形成された定盤を備えた研磨装置において、
前記温度調節構造は、前記温度調節用流体を供給する給水口と、前記温度調節用流体が排出される排水口と、前記給水口と前記排水口とを連通すると共に、前記定盤の径方向に並んだ複数の同心円に沿って延在する流路と、前記定盤の径方向に延在して前記同心円を仕切る仕切壁と、を有し、
前記給水口から供給された温度調節用流体は、第1の同心円に沿った流路内を第1の方向に流れてから前記仕切壁に沿って折り返して第2の同心円に沿った流路に流れ込み、前記第2の同心円に沿った流路内を前記第1の方向とは逆の方向に流れて前記排水口から排出される
ことを特徴とする研磨装置。
In a polishing apparatus having a surface plate on which a temperature adjusting structure through which a temperature adjusting fluid flows is formed on the back side of a polishing surface for polishing a workpiece,
The temperature control structure communicates the water supply port for supplying the temperature control fluid, the water discharge port for discharging the temperature control fluid, the water supply port and the water discharge port, and the radial direction of the surface plate. A flow path extending along a plurality of concentric circles arranged in a row, and a partition wall extending in the radial direction of the surface plate and partitioning the concentric circles,
The temperature adjusting fluid supplied from the water supply port flows in the first direction along the flow path along the first concentric circle and then folds along the partition wall to form a flow path along the second concentric circle. A polishing apparatus, wherein the polishing apparatus flows in, flows in a flow path along the second concentric circle in a direction opposite to the first direction, and is discharged from the drain port.
請求項1に記載された研磨装置において、
前記給水口は、前記定盤の最内周に位置する同心円に沿った第1流路、又は、前記定盤の最内周から二番目に位置する同心円に沿った第2流路のいずれかに形成され、
前記排水口は、前記給水口が前記第1流路に形成された場合には前記第2流路に形成され、前記給水口が前記第2流路に形成された場合には前記第1流路に形成されている
ことを特徴とする研磨装置。
The polishing apparatus according to claim 1, wherein
The water supply port is either a first flow path along a concentric circle located on the innermost circumference of the surface plate, or a second flow path along a concentric circle located second from the innermost circumference of the surface plate Formed into
The drain port is formed in the second flow channel when the water supply port is formed in the first flow channel, and the first flow channel is formed when the water supply port is formed in the second flow channel. A polishing apparatus characterized by being formed in a path.
請求項1又は請求項2に記載された研磨装置において、
前記給水口は、所定の同心円に沿った流路の延在方向に並んで複数形成されている
ことを特徴とする研磨装置。
In the polishing apparatus according to claim 1 or 2,
The polishing apparatus according to claim 1, wherein a plurality of the water supply ports are formed side by side in the extending direction of the flow path along a predetermined concentric circle.
請求項1から請求項3のいずれか一項に記載された研磨装置において、
前記排水口は、所定の同心円に沿った流路の延在方向に並んで複数形成されている
ことを特徴とする研磨装置。
In the polishing apparatus according to any one of claims 1 to 3,
A polishing apparatus, wherein a plurality of the drain outlets are formed side by side in a direction in which the flow path extends along a predetermined concentric circle.
請求項1から請求項4のいずれか一項に記載された研磨装置において、
前記定盤は、前記研磨面が形成された平板部材と、前記平板部材に固定される共に前記温度調節構造が形成されたジャケット部材と、を有し、
前記平板部材と前記ジャケット部材とは、線膨張係数が異なる材料によって形成されている
ことを特徴とする研磨装置。
The polishing apparatus according to any one of claims 1 to 4, wherein
The surface plate includes a flat plate member on which the polished surface is formed, and a jacket member that is fixed to the flat plate member and on which the temperature adjustment structure is formed.
The flat plate member and the jacket member are made of materials having different linear expansion coefficients.
請求項5に記載された研磨装置において、
前記平板部材は、前記ジャケット部材よりも線膨張係数が小さい材料によって形成されている
ことを特徴とする研磨装置。
The polishing apparatus according to claim 5, wherein
The flat plate member is formed of a material having a smaller linear expansion coefficient than the jacket member.
JP2017113551A 2017-06-08 2017-06-08 Polishing equipment Active JP6893023B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017113551A JP6893023B2 (en) 2017-06-08 2017-06-08 Polishing equipment
TW107114659A TWI770167B (en) 2017-06-08 2018-04-30 Polishing apparatus
CN201810467127.2A CN109015343B (en) 2017-06-08 2018-05-16 Grinding device
KR1020180062695A KR102474472B1 (en) 2017-06-08 2018-05-31 Polishing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017113551A JP6893023B2 (en) 2017-06-08 2017-06-08 Polishing equipment

Publications (2)

Publication Number Publication Date
JP2018202580A true JP2018202580A (en) 2018-12-27
JP6893023B2 JP6893023B2 (en) 2021-06-23

Family

ID=64611549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017113551A Active JP6893023B2 (en) 2017-06-08 2017-06-08 Polishing equipment

Country Status (4)

Country Link
JP (1) JP6893023B2 (en)
KR (1) KR102474472B1 (en)
CN (1) CN109015343B (en)
TW (1) TWI770167B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102242741B1 (en) * 2020-10-12 2021-04-21 주식회사 피엠피 Top plate for lapping device, and lapping device having the same
CN114603468A (en) * 2022-05-11 2022-06-10 徐州福凯欣智能科技有限公司 Polishing machine tool for excavator rocker arm bracket

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7217202B2 (en) * 2019-05-31 2023-02-02 株式会社荏原製作所 Temperature controller and polisher
JP7442314B2 (en) * 2019-12-24 2024-03-04 東京エレクトロン株式会社 Substrate processing equipment and substrate processing method
CN113561055A (en) * 2020-07-30 2021-10-29 赣州市业润自动化设备有限公司 Chemical mechanical grinding head
KR102454476B1 (en) * 2020-10-30 2022-10-14 박인수 Lapping device having a top plate for ring type parts
KR20240002409A (en) * 2022-06-29 2024-01-05 경북대학교 산학협력단 Wafer chuck

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01159171A (en) * 1987-12-15 1989-06-22 Toshiba Corp Polishing surface plate
US4974370A (en) * 1988-12-07 1990-12-04 General Signal Corp. Lapping and polishing machine
JPH05177531A (en) * 1992-01-09 1993-07-20 Sony Corp Manufacture of magnetic head device
JPH10296619A (en) * 1997-05-02 1998-11-10 Fujikoshi Mach Corp Polishing surface plate
JP2001018169A (en) * 1999-07-07 2001-01-23 Ebara Corp Polishing device
CN203831226U (en) * 2014-04-04 2014-09-17 江苏普利赛司研磨科技有限公司 Plane grinding cooling pan

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59151655A (en) 1983-02-16 1984-08-30 Mitsubishi Electric Corp Control device for automatic transmission in vehicle
US5036630A (en) * 1990-04-13 1991-08-06 International Business Machines Corporation Radial uniformity control of semiconductor wafer polishing
JPH07290354A (en) * 1994-04-25 1995-11-07 Nippon Steel Corp Polishing device
JPH11170162A (en) * 1997-12-12 1999-06-29 Speedfam Co Ltd Surface polishing surface plate
JP2002233948A (en) 2001-02-02 2002-08-20 Fujikoshi Mach Corp Polishing device
JP2002373875A (en) * 2001-06-13 2002-12-26 Hitachi Ltd Method of manufacturing semiconductor device, and chemical mechanical polishing apparatus
JP3737470B2 (en) * 2002-11-07 2006-01-18 株式会社名機製作所 Mold for molding disk substrate and molding method
DE102007063232B4 (en) * 2007-12-31 2023-06-22 Advanced Micro Devices, Inc. Process for polishing a substrate
CN101407040A (en) * 2008-11-11 2009-04-15 广东工业大学 Face lapping mill with abrasive disk cooling mechanism
CN202726714U (en) * 2012-07-06 2013-02-13 元亮科技有限公司 Grinding polishing disk with circulation water cooling device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01159171A (en) * 1987-12-15 1989-06-22 Toshiba Corp Polishing surface plate
US4974370A (en) * 1988-12-07 1990-12-04 General Signal Corp. Lapping and polishing machine
JPH05177531A (en) * 1992-01-09 1993-07-20 Sony Corp Manufacture of magnetic head device
JPH10296619A (en) * 1997-05-02 1998-11-10 Fujikoshi Mach Corp Polishing surface plate
JP2001018169A (en) * 1999-07-07 2001-01-23 Ebara Corp Polishing device
CN203831226U (en) * 2014-04-04 2014-09-17 江苏普利赛司研磨科技有限公司 Plane grinding cooling pan

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102242741B1 (en) * 2020-10-12 2021-04-21 주식회사 피엠피 Top plate for lapping device, and lapping device having the same
CN114603468A (en) * 2022-05-11 2022-06-10 徐州福凯欣智能科技有限公司 Polishing machine tool for excavator rocker arm bracket

Also Published As

Publication number Publication date
JP6893023B2 (en) 2021-06-23
CN109015343B (en) 2021-09-10
CN109015343A (en) 2018-12-18
KR102474472B1 (en) 2022-12-05
TWI770167B (en) 2022-07-11
KR20180134288A (en) 2018-12-18
TW201903879A (en) 2019-01-16

Similar Documents

Publication Publication Date Title
JP2018202580A (en) Polishing device
EP1918069B1 (en) Double side polishing method for wafer
CN103079767B (en) The polishing pad of polishing system
CN108602173B (en) Method for double-side polishing of wafer, method for manufacturing epitaxial wafer using the same, and epitaxial wafer
JP4985451B2 (en) Double-head grinding apparatus for workpiece and double-head grinding method for workpiece
JP5492239B2 (en) Method for slicing a wafer from a workpiece
EP1894675B1 (en) Double face polishing apparatus
JP2019528233A (en) Silicon carbide single crystal production equipment
CN107042432B (en) Double-sided or single-sided processing device and method for operating a double-sided or single-sided processing device
JP6153931B2 (en) Susceptor
JP2009289925A (en) Method of grinding semiconductor wafers, grinding surface plate, and grinding device
CN102728796B (en) Amorphous crystallizer
KR20010053432A (en) Method and device for simultaneously grinding double surfaces, and method and device for simultaneously lapping double surfaces
WO2020208968A1 (en) Two-side polishing device
JP5689891B2 (en) Apparatus and method for processing a flat workpiece on both sides
WO2020208967A1 (en) Two-side polishing method
JP2002233948A (en) Polishing device
JP3235970B2 (en) Rotary platen temperature holding structure
JP2011051027A (en) Connecting flange
KR20110062352A (en) Polishing plate improved in cooling member and wafer polishing apparatus having the same
JP3139753U (en) Double-side polishing machine
JP5381555B2 (en) Plate workpiece polishing apparatus and plate workpiece polishing method
CN109414799A (en) Double-side polishing apparatus
JP2011148061A (en) Machine tool
JPH11170162A (en) Surface polishing surface plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210524

R150 Certificate of patent or registration of utility model

Ref document number: 6893023

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150