JP6893023B2 - Polishing equipment - Google Patents

Polishing equipment Download PDF

Info

Publication number
JP6893023B2
JP6893023B2 JP2017113551A JP2017113551A JP6893023B2 JP 6893023 B2 JP6893023 B2 JP 6893023B2 JP 2017113551 A JP2017113551 A JP 2017113551A JP 2017113551 A JP2017113551 A JP 2017113551A JP 6893023 B2 JP6893023 B2 JP 6893023B2
Authority
JP
Japan
Prior art keywords
flow path
surface plate
temperature control
water supply
polishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017113551A
Other languages
Japanese (ja)
Other versions
JP2018202580A (en
Inventor
遊 田山
遊 田山
将貴 杉山
将貴 杉山
隆行 小山
隆行 小山
田中 敬
敬 田中
昭彦 山谷
昭彦 山谷
剛敏 加藤
剛敏 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SpeedFam Co Ltd
Original Assignee
SpeedFam Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SpeedFam Co Ltd filed Critical SpeedFam Co Ltd
Priority to JP2017113551A priority Critical patent/JP6893023B2/en
Priority to TW107114659A priority patent/TWI770167B/en
Priority to CN201810467127.2A priority patent/CN109015343B/en
Priority to KR1020180062695A priority patent/KR102474472B1/en
Publication of JP2018202580A publication Critical patent/JP2018202580A/en
Application granted granted Critical
Publication of JP6893023B2 publication Critical patent/JP6893023B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/26Lapping pads for working plane surfaces characterised by the shape of the lapping pad surface, e.g. grooved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B55/00Safety devices for grinding or polishing machines; Accessories fitted to grinding or polishing machines for keeping tools or parts of the machine in good working condition
    • B24B55/02Equipment for cooling the grinding surfaces, e.g. devices for feeding coolant
    • B24B55/03Equipment for cooling the grinding surfaces, e.g. devices for feeding coolant designed as a complete equipment for feeding or clarifying coolant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/34Accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B55/00Safety devices for grinding or polishing machines; Accessories fitted to grinding or polishing machines for keeping tools or parts of the machine in good working condition
    • B24B55/02Equipment for cooling the grinding surfaces, e.g. devices for feeding coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Description

本発明は、研磨面の裏側に温度調節用流体が流れる温度調節構造が形成された研磨装置に関する発明である。 The present invention relates to a polishing apparatus in which a temperature control structure in which a temperature control fluid flows is formed on the back side of a polishing surface.

従来から、シリコンウェーハ等のワークを研磨する定盤の冷却等の温度調節を行うため、ワークに接触する研磨面の裏側に温度調節用の流体が流れる温度調節構造が設けられた研磨装置が知られている。この研磨装置における温度調節構造では、例えば、定盤の内縁部近傍に設けられた給水口から、外縁部近傍に形成された排水口に向かって渦巻き状に延びる温度調節用流体流路を有するもの(例えば、特許文献1参照)や、定盤の周方向に延びる複数の流路を有し、各流路を流れる温度調節用流体の温度等を個別に調節可能としたもの(例えば、特許文献2,3参照)がある。 Conventionally, in order to perform temperature control such as cooling of a surface plate for polishing a work such as a silicon wafer, a polishing device provided with a temperature control structure in which a fluid for temperature control flows on the back side of a polishing surface in contact with the work has been known. Has been done. The temperature control structure in this polishing device has, for example, a temperature control fluid flow path that spirally extends from a water supply port provided near the inner edge of the surface plate toward a drainage port formed near the outer edge. (For example, refer to Patent Document 1) or a surface plate having a plurality of flow paths extending in the circumferential direction and allowing the temperature of the temperature adjusting fluid flowing through each flow path to be individually adjusted (for example, Patent Document 1). (See a few).

実開昭59-151655号公報Jikkai Sho 59-151655 特開2002-373875号公報Japanese Unexamined Patent Publication No. 2002-373875 特開2002-233948号公報Japanese Unexamined Patent Publication No. 2002-23948

しかしながら、渦巻き状に延在した流体流路を有する温度調節構造では、研磨面の温度調節効率が定盤中心部から外縁部に向かって次第に低下していく。そのため、ワーク研磨中にワークとの接触割合が高い領域等の主たる温度調節対象として意図する領域を優先的かつ効率的に温度調節することができない。そのため、ワーク研磨に伴って生じる研磨熱の影響により、研磨面が部分的に温度上昇し、あるいは、それに関連して研磨条件が部分的に逸脱するという問題が発生する。
一方、複数の流路を流れる温度調節用流体の温度等を個別に調節可能とした温度調節構造では、流体の給排経路を複数系統にする必要があり、装置が大型化したり、制御が複雑になる等の問題が生じる。
However, in the temperature control structure having the fluid flow path extending in a spiral shape, the temperature control efficiency of the polished surface gradually decreases from the center portion of the surface plate to the outer edge portion. Therefore, it is not possible to preferentially and efficiently control the temperature of a region intended as a main temperature control target, such as a region having a high contact ratio with the work during work polishing. Therefore, due to the influence of the polishing heat generated by the polishing of the work, there arises a problem that the temperature of the polished surface is partially raised or the polishing conditions are partially deviated in connection with the temperature rise.
On the other hand, in a temperature control structure in which the temperature of the temperature control fluid flowing through a plurality of flow paths can be individually adjusted, it is necessary to have a plurality of fluid supply / discharge paths, which increases the size of the device and complicates control. Problems such as

本発明は、上記問題に着目してなされたもので、構造を複雑化することなく研磨面の主たる温度調節対象として意図する領域を優先的かつ効率的に温度調節し、ワークの研磨に伴って研磨面の温度が部分的に変化し、あるいは、それに関連して研磨条件が部分的に逸脱することを抑制できる研磨装置を提供することを目的とする。 The present invention has been made by paying attention to the above problems, and preferentially and efficiently adjusts the temperature of a region intended as the main temperature control target of the polished surface without complicating the structure, and is accompanied by polishing of the work. It is an object of the present invention to provide a polishing apparatus capable of suppressing a partial change in the temperature of a polished surface or a partial deviation of the polishing conditions in connection therewith.

上記目的を達成するため、本発明は、ワークを研磨する研磨面の裏側に、温度調節用流体が流れる温度調節構造が形成された定盤を備える研磨装置である。
前記温度調節構造は、前記温度調節用流体を供給する給水口と、前記温度調節用流体が排出される排水口と、前記給水口と前記排水口とを連通すると共に、前記定盤の内縁部から外縁部に向かって順に径方向に並んだ複数の同心円に沿って延在する複数の流路と、前記定盤の径方向に延在して前記同心円を仕切る仕切壁と、を有している。
そして、前記複数の流路は、それぞれ前記定盤の周方向に一周延びると共に、前記仕切壁に沿った折返部を介して連通し、前記研磨面の全体としてつながった一本のルートを形成する。さらに、前記給水口から供給された温度調節用流体は、第1の同心円に沿った流路内を第1の方向に流れてから前記仕切壁に沿って折り返して第2の同心円に沿った流路に流れ込み、前記第2の同心円に沿った流路内を前記第1の方向とは逆の方向に流れて、前記排水口から排出される。
In order to achieve the above object, the present invention is a polishing device provided with a surface plate having a temperature control structure in which a temperature control fluid flows on the back side of a polishing surface for polishing a work.
The temperature control structure communicates the water supply port for supplying the temperature control fluid, the drain port for discharging the temperature control fluid, the water supply port and the drain port, and the inner edge portion of the surface plate. It has a plurality of flow paths extending along a plurality of concentric circles arranged in order from the outer edge to the outer edge, and a partition wall extending in the radial direction of the surface plate to partition the concentric circles. There is.
Then, the plurality of flow paths extend once in the circumferential direction of the surface plate and communicate with each other through a folded portion along the partition wall to form a single route connected as a whole of the polished surface. .. Further, the temperature control fluid supplied from the water supply port flows in the flow path along the first concentric circle in the first direction, then folds back along the partition wall, and flows along the second concentric circle. It flows into the path, flows in the flow path along the second concentric circle in the direction opposite to the first direction, and is discharged from the drain port.

この結果、構造を複雑化することなく研磨面の主たる温度調節対象として意図する領域を優先的かつ効率的に温度調節し、ワークの研磨に伴って研磨面の温度が部分的に変化し、あるいは、それに関連して研磨条件が部分的に逸脱することを抑制できる。 As a result, the temperature of the region intended as the main temperature control target of the polished surface is preferentially and efficiently controlled without complicating the structure, and the temperature of the polished surface changes partially as the work is polished, or In connection with this, it is possible to prevent the polishing conditions from partially deviating.

実施例1の研磨装置の全体構成を概略的に示す断面図である。It is sectional drawing which shows schematic about the whole structure of the polishing apparatus of Example 1. FIG. 実施例1の研磨装置の冷却構造を示す平面図である。It is a top view which shows the cooling structure of the polishing apparatus of Example 1. FIG. 定盤の研磨面を区分けしたときの領域を説明する説明図である。It is explanatory drawing explaining the region when the polished surface of a surface plate is divided. 比較例の研磨装置の冷却構造を示す平面図である。It is a top view which shows the cooling structure of the polishing apparatus of a comparative example. 比較例の冷却構造による研磨面の冷却状態を示す説明図である。It is explanatory drawing which shows the cooling state of the polished surface by the cooling structure of the comparative example. 実施例1の冷却構造における冷却水の流れ方向を示す説明図である。It is explanatory drawing which shows the flow direction of the cooling water in the cooling structure of Example 1. FIG. 実施例1の冷却構造による研磨面の冷却状態を示す説明図である。It is explanatory drawing which shows the cooling state of the polished surface by the cooling structure of Example 1. FIG. 実施例1の冷却構造の第1変形例を示す平面図である。It is a top view which shows the 1st modification of the cooling structure of Example 1. FIG. 実施例1の冷却構造の第2変形例を示す平面図である。It is a top view which shows the 2nd modification of the cooling structure of Example 1. FIG.

以下、本発明の研磨装置を実施するための形態を、図面に示す実施例1に基づいて説明する。なお、以下の実施形態においては、本発明の温度調節構造を冷却構造として説明する。 Hereinafter, a mode for carrying out the polishing apparatus of the present invention will be described with reference to Example 1 shown in the drawings. In the following embodiments, the temperature control structure of the present invention will be described as a cooling structure.

(実施例1)
まず、構成を説明する。
実施例1における研磨装置1は、半導体ウェーハ、水晶ウェーハ、サファイアウェーハ、ガラスウェーハ或いはセラミックウェーハといった、薄板状のワークWの表裏両面を研磨加工する両面研磨装置である。以下、実施例1の研磨装置1の構成を、「全体構成」、「定盤の詳細構成」、「冷却構造の詳細構成」に分けて説明する。
(Example 1)
First, the configuration will be described.
The polishing device 1 in the first embodiment is a double-sided polishing device that polishes both the front and back surfaces of a thin plate-shaped work W such as a semiconductor wafer, a crystal wafer, a sapphire wafer, a glass wafer, or a ceramic wafer. Hereinafter, the configuration of the polishing apparatus 1 of the first embodiment will be described separately as "overall configuration", "detailed configuration of surface plate", and "detailed configuration of cooling structure".

[全体構成]
図1は、実施例1の研磨装置の全体構成を概略的に示す断面図である。以下、図1に基づき、実施例1の研磨装置の全体構成を説明する。
[overall structure]
FIG. 1 is a cross-sectional view schematically showing the overall configuration of the polishing apparatus of the first embodiment. Hereinafter, the overall configuration of the polishing apparatus of the first embodiment will be described with reference to FIG.

実施例1の研磨装置1は、図1に示すように、軸線L1を中心とする同心に配置された下定盤2及び上定盤3と、下定盤2及び上定盤3の中心部に回転自在に配置されたサンギヤ4と、下定盤2及び上定盤3の外周側に配置されたインターナルギヤ5と、下定盤2及び上定盤3の間に配置され且つワーク保持穴(不図示)が形成されたキャリアプレート6と、を有している。また、下定盤2の上面には研磨パッド2aが貼付され、上定盤3の下面には研磨パッド3aが貼付されている。なお、各研磨パッド2a,3aの表面がワークWを研磨する研磨面となる。 As shown in FIG. 1, the polishing apparatus 1 of the first embodiment rotates around the lower surface plate 2 and the upper surface plate 3 and the lower surface plate 2 and the upper surface plate 3 arranged concentrically around the axis L1. A freely arranged sun gear 4, an internal gear 5 arranged on the outer peripheral side of the lower surface plate 2 and the upper surface plate 3, and a work holding hole (not shown) arranged between the lower surface plate 2 and the upper surface plate 3. ) Is formed and has a carrier plate 6. Further, a polishing pad 2a is attached to the upper surface of the lower surface plate 2, and a polishing pad 3a is attached to the lower surface of the upper surface plate 3. The surfaces of the polishing pads 2a and 3a serve as polishing surfaces for polishing the work W.

下定盤2と、サンギヤ4と、インターナルギヤ5とは、それぞれ駆動軸7a,7b,7cを介して図示しない駆動装置に連結され、回転駆動される。 The lower platen 2, the sun gear 4, and the internal gear 5 are connected to a drive device (not shown) via drive shafts 7a, 7b, and 7c, respectively, and are rotationally driven.

また、キャリアプレート6は、サンギヤ4とインターナルギヤ5に噛合する。そして、このキャリアプレート6は、サンギヤ4とインターナルギヤ5の回転により自転しながら軸線L1周りに公転する。このキャリアプレート6の自転及び公転と、下定盤2及び上定盤3の回転により、ワーク保持穴内に配置されたワークWの両面が研磨パッド2a,3aによって研磨される。 Further, the carrier plate 6 meshes with the sun gear 4 and the internal gear 5. Then, the carrier plate 6 revolves around the axis L1 while rotating due to the rotation of the sun gear 4 and the internal gear 5. By the rotation and revolution of the carrier plate 6 and the rotation of the lower surface plate 2 and the upper surface plate 3, both sides of the work W arranged in the work holding hole are polished by the polishing pads 2a and 3a.

上定盤3は、上定盤3の上面に取り付けられた定盤吊り8aを介して、昇降用アクチュエータ8のロッド8bに吊り下げ支持されている。ここで、ロッド8bの先端部には、調芯軸受8cが介装されている。これにより、上定盤3は、昇降用アクチュエータ8によって揺動可能且つ回転可能に吊り下げ支持される。 The upper surface plate 3 is suspended and supported by a rod 8b of the elevating actuator 8 via a surface plate suspension 8a attached to the upper surface of the upper surface plate 3. Here, a centering bearing 8c is interposed at the tip of the rod 8b. As a result, the upper surface plate 3 is swayably and rotatably suspended and supported by the elevating actuator 8.

一方、サンギヤ4が固定された駆動軸7bには、図示しない駆動装置によって回転されるドライバ用駆動軸9が貫挿され、このドライバ用駆動軸9の上端部9aが駆動軸7bの上端開口7dから突出している。この上端部9aにはドライバ10が固定されており、ドライバ10はドライバ用駆動軸9と一体となって回転する。また、ドライバ10の外周面には、上定盤3に設けたフック3bが係合する溝部(不図示)が形成されている。そして、ロッド8bが伸長して上定盤3が下方に移動し、フック3bがドライバ10の溝部に係合することで、ドライバ10の回転に上定盤3が一体となって回転するようになっている。 On the other hand, a driver drive shaft 9 rotated by a drive device (not shown) is inserted into the drive shaft 7b to which the sun gear 4 is fixed, and the upper end portion 9a of the driver drive shaft 9 is the upper end opening 7d of the drive shaft 7b. Protruding from. A driver 10 is fixed to the upper end portion 9a, and the driver 10 rotates integrally with the driver drive shaft 9. Further, a groove portion (not shown) with which the hook 3b provided on the upper surface plate 3 is engaged is formed on the outer peripheral surface of the driver 10. Then, the rod 8b extends and the upper surface plate 3 moves downward, and the hook 3b engages with the groove portion of the driver 10, so that the upper surface plate 3 rotates integrally with the rotation of the driver 10. It has become.

すなわち、上定盤3は、ロッド8bの伸縮動作により上下動し、ドライバ用駆動軸9の回転動作により回転する。また、上定盤3には研磨スラリーを供給する供給孔(図示せず)が設けられている。 That is, the upper surface plate 3 moves up and down by the expansion and contraction operation of the rod 8b, and rotates by the rotation operation of the driver drive shaft 9. Further, the upper surface plate 3 is provided with a supply hole (not shown) for supplying the polishing slurry.

[定盤の詳細構成]
実施例1の研磨装置1の下定盤2は、ワークWの研磨加工時に生じる摩擦熱による研磨面(研磨パッド2aの表面)の部分的な温度変化を抑制するため、研磨面の裏側に冷却構造40(温度調節構造)が形成されている。この下定盤2は、図1に示すように、下側平板部材21と、下側ジャケット部材22と、下側定盤受部材23と、を有している。
[Detailed configuration of surface plate]
The lower platen 2 of the polishing apparatus 1 of the first embodiment has a cooling structure on the back side of the polished surface in order to suppress a partial temperature change of the polished surface (surface of the polishing pad 2a) due to frictional heat generated during the polishing process of the work W. 40 (temperature control structure) is formed. As shown in FIG. 1, the lower surface plate 2 has a lower flat plate member 21, a lower jacket member 22, and a lower surface plate receiving member 23.

下側平板部材21は、研磨パッド2aが貼付される表面が平坦に形成された板部材であり、下定盤2の最上面に位置する。この下側平板部材21は、線膨張係数が小さくて熱変形しにくい低熱膨張材によって形成されている。 The lower flat plate member 21 is a plate member having a flat surface on which the polishing pad 2a is attached, and is located on the uppermost surface of the lower platen 2. The lower flat plate member 21 is formed of a low thermal expansion material having a small coefficient of linear expansion and being resistant to thermal deformation.

下側ジャケット部材22は、下側平板部材21の裏側(下面)に固定される板部材であり、下側平板部材21に対向する面に冷却構造40が形成されている。なお、この冷却構造40の流路43を区画する区画壁46(図2参照)の先端が下側平板部材21に固定されている。また、下側ジャケット部材22は、下側平板部材21及び下側定盤受部材23よりも線膨張係数が大きく、且つ剛性が高いステンレスによって形成されている。 The lower jacket member 22 is a plate member fixed to the back side (lower surface) of the lower flat plate member 21, and a cooling structure 40 is formed on the surface facing the lower flat plate member 21. The tip of the partition wall 46 (see FIG. 2) that partitions the flow path 43 of the cooling structure 40 is fixed to the lower flat plate member 21. Further, the lower jacket member 22 is made of stainless steel having a larger coefficient of linear expansion and higher rigidity than the lower flat plate member 21 and the lower surface plate receiving member 23.

下側定盤受部材23は、下側ジャケット部材22の裏側(下面)に固定されると共に、駆動軸7aが固定された板部材である。 The lower surface plate receiving member 23 is a plate member fixed to the back side (lower surface) of the lower jacket member 22 and to which the drive shaft 7a is fixed.

実施例1の研磨装置1の上定盤3は、ワークWの研磨加工時に生じる摩擦熱による研磨面(研磨パッド3aの表面)の部分的な温度変化を抑制するため、研磨面の裏側に冷却構造40(温度調節構造)が形成されている。この上定盤3は、図1に示すように、上側平板部材31と、上側ジャケット部材32と、を有している。 The upper surface plate 3 of the polishing apparatus 1 of the first embodiment is cooled on the back side of the polished surface in order to suppress a partial temperature change of the polished surface (the surface of the polishing pad 3a) due to frictional heat generated during the polishing process of the work W. A structure 40 (temperature control structure) is formed. As shown in FIG. 1, the upper surface plate 3 has an upper flat plate member 31 and an upper jacket member 32.

上側平板部材31は、研磨パッド3aが貼付される表面が平坦に形成された板部材であり、上定盤3の最下面に位置する。この上側平板部材31は、線膨張係数が小さくて熱変形しにくい低熱膨張材によって形成されている。 The upper flat plate member 31 is a plate member having a flat surface on which the polishing pad 3a is attached, and is located on the lowermost surface of the upper surface plate 3. The upper flat plate member 31 is formed of a low thermal expansion material having a small coefficient of linear expansion and being resistant to thermal deformation.

上側ジャケット部材32は、上側平板部材31の裏側(上面)に固定されると共に、定盤吊り8aによって吊り下げ支持される板部材である。この上側ジャケット部材32は、上側平板部材31に対向する面に冷却構造40が形成されている。なお、この冷却構造40の流路43を区画する区画壁46の先端が側平板部材1に固定されている。また、上側ジャケット部材32は、上側平板部材31よりも線膨張係数が大きく、且つ剛性が高いステンレスによって形成されている。 The upper jacket member 32 is a plate member that is fixed to the back side (upper surface) of the upper flat plate member 31 and is suspended and supported by the surface plate suspension 8a. The upper jacket member 32 has a cooling structure 40 formed on a surface facing the upper flat plate member 31. Incidentally, the tip of the partition wall 46 for partitioning the flow path 43 of the cooling structure 40 is fixed to the upper side flat plate member 3 1. Further, the upper jacket member 32 is made of stainless steel having a larger coefficient of linear expansion and higher rigidity than the upper flat plate member 31.

[冷却構造の詳細構成]
図2は、実施例1の研磨装置の冷却構造を示す平面図である。以下、図2に基づいて、実施例1の冷却構造の詳細構成を説明する。
[Detailed configuration of cooling structure]
FIG. 2 is a plan view showing a cooling structure of the polishing apparatus of the first embodiment. Hereinafter, the detailed configuration of the cooling structure of the first embodiment will be described with reference to FIG.

実施例1の下側ジャケット部材22及び上側ジャケット部材32には、いずれも冷却構造40が形成されている。この冷却構造40は、図示しない冷却水循環装置から供給される冷却水(温度調節用流体)を流通させ、この冷却水と下側平板部材21又は上側平板部材31との間で熱交換を行うことで、下側平板部材21や上側平板部材31を冷却するものである。なお、下側ジャケット部材22に形成された冷却構造40と、上側ジャケット部材32に形成された冷却構造40は同様の構成になっているため、以下では下側ジャケット部材22に形成された冷却構造40について説明する。 A cooling structure 40 is formed on both the lower jacket member 22 and the upper jacket member 32 of the first embodiment. The cooling structure 40 circulates cooling water (fluid for temperature control) supplied from a cooling water circulation device (not shown), and exchanges heat between the cooling water and the lower flat plate member 21 or the upper flat plate member 31. The lower flat plate member 21 and the upper flat plate member 31 are cooled. Since the cooling structure 40 formed on the lower jacket member 22 and the cooling structure 40 formed on the upper jacket member 32 have the same configuration, the cooling structure formed on the lower jacket member 22 will be described below. 40 will be described.

実施例1の冷却構造40は、図2に示すように、冷却水を供給する給水口41と、冷却水が排出される排水口42と、給水口41と排水口42とを連通する流路43と、下定盤2の径方向に沿って延在した仕切壁44と、を有している。 As shown in FIG. 2, the cooling structure 40 of the first embodiment has a flow path communicating the water supply port 41 for supplying cooling water, the drainage port 42 for discharging the cooling water, and the water supply port 41 and the drainage port 42. It has 43 and a partition wall 44 extending along the radial direction of the lower platen 2.

給水口41は、下側ジャケット部材22を軸線L1方向に貫通した縦穴の開口部であり、図示しない冷却水循環装置の吐水口に接続した給水路(不図示)に連通している。なお、給水路は、駆動軸7aの内部を軸方向に延びる縦穴と、下側定盤受部材23の内部を水平方向に延びる横穴と、を有している。 The water supply port 41 is an opening of a vertical hole penetrating the lower jacket member 22 in the axis L1 direction, and communicates with a water supply channel (not shown) connected to a water discharge port of a cooling water circulation device (not shown). The water supply channel has a vertical hole extending in the axial direction inside the drive shaft 7a and a horizontal hole extending horizontally inside the lower surface plate receiving member 23.

排水口42は、下側ジャケット部材22を軸線L1方向に貫通した縦穴の開口部であり、冷却水循環装置の吸水口に接続した排水路(不図示)に連通している。この排水口42の開口面積は、給水口41と同等の大きさに設定されている。なお、排水路は、駆動軸7aの内部を軸方向に延びる縦穴と、下側定盤受部材23の内部を水平方向に延びる横穴と、を有している。 The drainage port 42 is an opening of a vertical hole penetrating the lower jacket member 22 in the axis L1 direction, and communicates with a drainage channel (not shown) connected to the water absorption port of the cooling water circulation device. The opening area of the drainage port 42 is set to the same size as the water supply port 41. The drainage channel has a vertical hole extending in the axial direction inside the drive shaft 7a and a horizontal hole extending horizontally inside the lower surface plate receiving member 23.

流路43は、給水口41から排水口42に向かって冷却水が流れる溝である。この流路43は、下側ジャケット部材22に形成された区画壁46によって区画されており、下定盤2の径方向に並んだ複数の同心円に沿って延在されている。この実施例1の流路43は、下定盤2の内縁部αから外縁部βに向かって順に並んだ複数の同心円(ここでは5つの同心円、第1同心円R1〜第5同心円R5)にそれぞれ沿った第1流路43a、第2流路43b、第3流路43c、第4流路43d、第5流路43eを有している。 The flow path 43 is a groove through which cooling water flows from the water supply port 41 toward the drain port 42. The flow path 43 is partitioned by a partition wall 46 formed on the lower jacket member 22, and extends along a plurality of concentric circles arranged in the radial direction of the lower platen 2. The flow path 43 of the first embodiment is along a plurality of concentric circles (here, five concentric circles, first concentric circles R1 to fifth concentric circles R5) arranged in order from the inner edge portion α to the outer edge portion β of the lower platen 2. It also has a first flow path 43a, a second flow path 43b, a third flow path 43c, a fourth flow path 43d, and a fifth flow path 43e.

なお、最内周に位置する第1同心円R1に沿い、内縁部αに最も近い位置に形成された第1流路43aの内部には、この第1流路43aの延在方向に並ぶ複数(ここでは2個)の排水口42が形成されている。また、最内周から二番目に位置する第2同心円R2に沿い、第1流路43aに隣接する第2流路43bの内部には、この第2流路43bの延在方向に並ぶ複数(ここでは2個)の給水口41が形成されている。つまり、この実施例1では、排水口42の方が、給水口41よりも下定盤2の内側に形成されている。 It should be noted that, inside the first flow path 43a formed at the position closest to the inner edge portion α along the first concentric circle R1 located on the innermost circumference, a plurality of the first flow paths 43a are lined up in the extending direction ( Here, two drainage ports 42) are formed. Further, along the second concentric circle R2 located second from the innermost circumference, inside the second flow path 43b adjacent to the first flow path 43a, a plurality of lines are arranged in the extending direction of the second flow path 43b. Here, two water supply ports 41) are formed. That is, in the first embodiment, the drainage port 42 is formed inside the lower platen 2 rather than the water supply port 41.

そして、この流路43は、複数の同心円(第1同心円R1〜第5同心円R5)に沿って延在されて下定盤2の周方向に延びているものの、仕切壁44に沿って折り返している。すなわち、流路43のうち、第2流路43bと第3流路43cは第1折返部45aで連通し、第3流路43cと第4流路43dは第2折返部45bで連通し、第4流路43dと第5流路43eは第3折返部45cで連通し、第5流路43eと第1流路43aは第4折返部45dで連通している。そして、この第1〜第5流路43a〜43eは、下定盤2の周方向に沿った途中位置が折り返すことで、全体としてつながった1本の冷却水ルートを形成している。 The flow path 43 extends along a plurality of concentric circles (first concentric circles R1 to fifth concentric circles R5) and extends in the circumferential direction of the lower platen 2, but is folded back along the partition wall 44. .. That is, of the flow paths 43, the second flow path 43b and the third flow path 43c communicate with each other at the first folding section 45a, and the third flow path 43c and the fourth flow path 43d communicate with each other at the second folding section 45b. The fourth flow path 43d and the fifth flow path 43e communicate with each other at the third folding section 45c, and the fifth flow path 43e and the first flow path 43a communicate with each other at the fourth folding section 45d. The first to fifth flow paths 43a to 43e form one cooling water route connected as a whole by folding back the intermediate positions of the lower platen 2 along the circumferential direction.

仕切壁44は、下定盤2の径方向に延在した壁面である。この仕切壁44により、流路43が沿う複数の同心円(第1同心円R1〜第5同心円R5)の途中位置が仕切られている。また、実施例1の仕切壁44は、第1同心円R1〜第5同心円R5のすべてを仕切る第1仕切壁44aと、第2,第3,第4同心円R2,R3,R4を仕切る第2仕切壁44bと、を有している。
すなわち、第1仕切壁44aに沿って第1折返部45a及び第3折返部45cが形成され、第2仕切壁44bに沿って第2折返部45bが形成されている。さらに、第1仕切壁44aと第2仕切壁44bとの間に、第5流路43eと第1流路43aを連通する第4折返部45dが形成されている。
The partition wall 44 is a wall surface extending in the radial direction of the lower platen 2. The partition wall 44 partitions the intermediate positions of a plurality of concentric circles (first concentric circles R1 to fifth concentric circles R5) along the flow path 43. Further, the partition wall 44 of the first embodiment is a second partition that partitions the first partition wall 44a that partitions all of the first concentric circles R1 to the fifth concentric circles R5 and the second, third, and fourth concentric circles R2, R3, and R4. It has a wall 44b and.
That is, the first folded portion 45a and the third folded portion 45c are formed along the first partition wall 44a, and the second folded portion 45b is formed along the second partition wall 44b. Further, a fourth folded-back portion 45d that communicates the fifth flow path 43e and the first flow path 43a is formed between the first partition wall 44a and the second partition wall 44b.

次に、作用を説明する。
まず、比較例の冷却構造を有する定盤の構成と課題を説明し、続いて、実施例1の研磨装置の作用を「研磨加工中の定盤冷却作用」、「異材料組み合わせ作用」、「給水口及び排水口の形成位置による特徴的作用」、「その他の特徴的作用」に分けて説明する。
Next, the action will be described.
First, the configuration and problems of the surface plate having the cooling structure of the comparative example will be described, and then the operation of the polishing apparatus of Example 1 will be described as "surface plate cooling effect during polishing", "different material combination operation", and " The description will be divided into "characteristic action depending on the formation position of the water supply port and the drainage port" and "other characteristic action".

[比較例の冷却構造を有する定盤の構成と課題]
図3は、定盤の研磨面を区分けした領域を示す説明図であり、図4は、比較例の研磨装置の冷却構造を示す平面図であり、図5は比較例の冷却構造による研磨面の表面温度を示す説明図である。以下、図3〜図5に基づき、比較例の冷却構造を有する定盤の構成と課題を説明する。
[Structure and issues of surface plate with cooling structure of comparative example]
FIG. 3 is an explanatory view showing a region where the polished surface of the surface plate is divided, FIG. 4 is a plan view showing a cooling structure of the polishing apparatus of the comparative example, and FIG. 5 is a polished surface by the cooling structure of the comparative example. It is explanatory drawing which shows the surface temperature of. Hereinafter, the configuration and problems of the surface plate having the cooling structure of the comparative example will be described with reference to FIGS. 3 to 5.

一般的に、シリコンウェーハ等のワークを研磨する研磨装置では、下定盤と上定盤との間にキャリアプレートを挟み込み、このキャリアプレートに形成されたワーク保持穴の内側にワークを配置する。そのため、ワークの移動範囲はキャリアプレートによって制限される。一方、キャリアプレートは、サンギヤとインターナルギヤに噛合している。そのため、ワーク保持穴は、キャリアプレートの内周縁や外周縁に対して所定の距離をあけて形成する必要がある。 Generally, in a polishing apparatus for polishing a work such as a silicon wafer, a carrier plate is sandwiched between a lower surface plate and an upper surface plate, and the work is arranged inside a work holding hole formed in the carrier plate. Therefore, the moving range of the work is limited by the carrier plate. On the other hand, the carrier plate meshes with the sun gear and the internal gear. Therefore, the work holding hole needs to be formed at a predetermined distance from the inner peripheral edge and the outer peripheral edge of the carrier plate.

これにより、定盤研磨面Kを図3に示すように、定盤中心部に位置する中央領域Aと、定盤外縁部に沿った外縁領域Cと、中央領域Aと外縁領域Cとの間に位置する中間領域Bとに分けた場合、ワークの研磨に伴ってワークと接触する割合が最も高い中間領域Bが、ワークとの間に生じる摩擦熱(以下「加工熱」という)で中央領域Aや外縁領域Cよりも高温になることが分かっている。 As a result, as shown in FIG. 3, the surface plate polishing surface K is between the central region A located at the center of the surface plate, the outer edge region C along the outer edge of the surface plate, and the central region A and the outer edge region C. When divided into the intermediate region B located in, the intermediate region B, which has the highest ratio of contact with the work as the work is polished, is the central region due to the frictional heat generated between the work and the work (hereinafter referred to as "working heat"). It is known that the temperature is higher than that of A and the outer edge region C.

これに対し、比較例の冷却構造100(温度調節構造)では、図4に示すように、径方向に延在する分割壁面101によって定盤全体を放射状に15等分し、各分割領域内にそれぞれ給水口102及び排水口103と、内縁部αから外縁部βに向かって延びる流路形成壁104とが形成されている。ここで、給水口102と排水口103は、流路形成壁104を挟んだ位置であって、いずれも定盤の内縁部αの近傍に形成されている。 On the other hand, in the cooling structure 100 (temperature control structure) of the comparative example, as shown in FIG. 4, the entire surface plate is radially divided into 15 equal parts by the dividing wall surface 101 extending in the radial direction, and the surface plate is divided into 15 equal parts in each divided region. A water supply port 102 and a drainage port 103, and a flow path forming wall 104 extending from the inner edge portion α toward the outer edge portion β are formed, respectively. Here, the water supply port 102 and the drainage port 103 are located at positions sandwiching the flow path forming wall 104, and both are formed in the vicinity of the inner edge portion α of the surface plate.

このような比較例の冷却構造100では、給水口102から流れ出た冷却水(温度調節用流体)は、図4において矢印で示すように、流路形成壁104に沿って定盤の外縁部βに向かって流れる。そして、この冷却水は、流路形成壁104と外縁部βに沿って形成された外周壁105との間の隙間106を通過した後、流路形成壁104に沿って定盤の内縁部αに向かって流れ、排水口103に流れ込む。 In the cooling structure 100 of such a comparative example, the cooling water (temperature control fluid) flowing out from the water supply port 102 is the outer edge portion β of the surface plate along the flow path forming wall 104 as shown by the arrow in FIG. Flow toward. Then, this cooling water passes through the gap 106 between the flow path forming wall 104 and the outer peripheral wall 105 formed along the outer edge portion β, and then passes along the flow path forming wall 104 along the inner edge portion α of the surface plate. It flows toward the drainage port 103.

すなわち、この比較例の冷却構造100では、冷却水が放射状に15等分された分割領域内をそれぞれ径方向に流れ、外縁部βに沿って折り返す構成になっている。そのため、この冷却構造100を有する定盤Xの研磨面は全面がほぼ均等に冷却される。これにより、この定盤Xの研磨面は、ワーク研磨中に発生する加工熱の影響によって、図5に示すように、ワークと接触する確率の高い中間領域Bが約23℃〜24℃程度になり、23℃以下に抑えられる中央領域Aや外縁領域Cよりも高温になってしまう。つまり、この比較例の冷却構造100を有する定盤Xでは、ワークの研磨に伴って研磨面温度が部分的に上昇してしまい、研磨面の一部分が熱変形して歪んだり、維持又は一定率内の変化が望ましい微細な研磨条件が局部的に逸脱してしまう。また、局部的に研磨パッドの表面の変質を促進してしまうおそれがある。これらの現象のうちの一つ又は複合の作用により、ワーク表面を均一に研磨することができなくなり、研磨精度の低下が発生することも考えられる。 That is, in the cooling structure 100 of this comparative example, the cooling water flows in the radial direction in each of the divided regions radially divided into 15 equal parts, and is folded back along the outer edge portion β. Therefore, the entire surface of the polished surface of the surface plate X having the cooling structure 100 is cooled substantially evenly. As a result, on the polished surface of the surface plate X, as shown in FIG. 5, the intermediate region B having a high probability of contacting the work becomes about 23 ° C. to 24 ° C. due to the influence of the processing heat generated during the work polishing. Therefore, the temperature becomes higher than that of the central region A and the outer edge region C, which are suppressed to 23 ° C. or lower. That is, in the surface plate X having the cooling structure 100 of this comparative example, the temperature of the polished surface partially rises as the work is polished, and a part of the polished surface is thermally deformed and distorted, maintained or maintained at a constant rate. Fine polishing conditions for which internal changes are desirable deviate locally. In addition, there is a risk of locally promoting deterioration of the surface of the polishing pad. Due to the action of one or a combination of these phenomena, it is possible that the surface of the work cannot be polished uniformly, resulting in a decrease in polishing accuracy.

また、比較例の冷却構造100では、定盤の径方向に沿った流路を形成するために、分割壁面101及び流路形成壁104が定盤の径方向に延在している。そのため、定盤Xを搬送時に吊り下げたとき、曲げモーメント力は分割壁面101及び流路形成壁104に付与される。ここで、分割壁面101や流路形成壁104が同心円に形成されている場合、曲げモーメント力は同心円上に流れて働くので力を分散することができる。しかし、比較例の冷却構造100の場合では、曲げモーメント力に対する抗力は、分割壁面101及び流路形成壁104の剛性に依存する。そのため、分割壁面101及び流路形成壁104の剛性を大きくしない限りは、定盤の撓み変形を生じやすい傾向がある。
そのため、例えば定盤粗加工時の固定方法に工夫を要したり、定盤製造中の搬送時間(吊り下げ時間)の短縮化を図ったり、機械加工後に所定の硬化時間を要したりする必要がある上、定盤Xの品質にバラつきに影響が生じたり、納期遅延が発生するという問題がある。
Further, in the cooling structure 100 of the comparative example, the divided wall surface 101 and the flow path forming wall 104 extend in the radial direction of the surface plate in order to form the flow path along the radial direction of the surface plate. Therefore, when the surface plate X is suspended during transportation, the bending moment force is applied to the divided wall surface 101 and the flow path forming wall 104. Here, when the divided wall surface 101 and the flow path forming wall 104 are formed concentrically, the bending moment force flows on the concentric circles and acts, so that the force can be dispersed. However, in the case of the cooling structure 100 of the comparative example, the drag against the bending moment force depends on the rigidity of the divided wall surface 101 and the flow path forming wall 104. Therefore, unless the rigidity of the divided wall surface 101 and the flow path forming wall 104 is increased, the surface plate tends to be bent and deformed.
Therefore, for example, it is necessary to devise a fixing method during rough machining of the surface plate, shorten the transport time (hanging time) during surface plate manufacturing, and require a predetermined curing time after machining. In addition, there is a problem that the quality of the surface plate X is affected, and the delivery date is delayed.

さらに、この比較例の冷却構造100では、分割壁面101及び流路形成壁104が定盤の径方向に延在していることから、この分割壁面101や流路形成壁104の先端を切削加工した際、切削加工面が定盤Xの径方向に連続することになる。そのため、この切削加工によって発生した残留応力の影響による定盤Xの径方向の撓みが大きくなるという問題も生じる。 Further, in the cooling structure 100 of this comparative example, since the divided wall surface 101 and the flow path forming wall 104 extend in the radial direction of the surface plate, the tips of the divided wall surface 101 and the flow path forming wall 104 are cut. At that time, the machined surface becomes continuous in the radial direction of the surface plate X. Therefore, there is also a problem that the radial deflection of the surface plate X due to the influence of the residual stress generated by this cutting process becomes large.

[研磨加工中の定盤冷却作用]
図6は、実施例1の冷却構造における冷却水の流れ方向を示す説明図であり、図7は、実施例1の冷却構造による研磨面の表面温度を示す説明図である。以下、図6及び図7に基づき、実施例1の研磨装置1における研磨加工中の定盤冷却作用を説明する。なお、下定盤2における冷却構造40と、上定盤3における冷却構造40とでは、同様の作用を奏することができる。そのため、以下では、下定盤2に形成された冷却構造40についてのみ説明する。
[Surface plate cooling action during polishing]
FIG. 6 is an explanatory view showing the flow direction of the cooling water in the cooling structure of the first embodiment, and FIG. 7 is an explanatory view showing the surface temperature of the polished surface by the cooling structure of the first embodiment. Hereinafter, the surface plate cooling action during the polishing process in the polishing apparatus 1 of the first embodiment will be described with reference to FIGS. 6 and 7. The cooling structure 40 in the lower surface plate 2 and the cooling structure 40 in the upper surface plate 3 can exert the same operation. Therefore, in the following, only the cooling structure 40 formed on the lower platen 2 will be described.

実施例1の研磨装置1が有する下定盤2の冷却構造40では、図示しない冷却水循環装置から冷却水が供給されると、この冷却水は、下側ジャケット部材22及び下側定盤受部材23の内部に形成された給水路(不図示)を通り、給水口41から流れ出る。このとき、給水口41は、第2流路43bの延在方向に沿って複数(2個)設けられているが、すべての給水口41からほぼ同時に同量の冷却水が流れ出る。 In the cooling structure 40 of the lower surface plate 2 included in the polishing apparatus 1 of the first embodiment, when cooling water is supplied from a cooling water circulation device (not shown), the cooling water is supplied to the lower jacket member 22 and the lower surface plate receiving member 23. It flows out from the water supply port 41 through a water supply channel (not shown) formed inside the water supply port 41. At this time, a plurality (two) of water supply ports 41 are provided along the extending direction of the second flow path 43b, but the same amount of cooling water flows out from all the water supply ports 41 at substantially the same time.

給水口41から流れ出た冷却水は、まず、この給水口41が形成された流路43の第2流路43b内に充満し、その後、図6において矢印で示すように、第1折返部45aを介して第3流路43cに流れ込む。第3流路43cに流れ込んだ冷却水は、第3流路43c内を図6に示す反時計回り方向に流れ、第2折返部45bを介して第4流路43dに流れ込む。そして、第4流路43dに流れ込んだ冷却水は、第4流路43d内を図6に示す時計回り方向に流れ、第3折返部45cを介して第5流路43eに流れ込む。さらに、第5流路43eに流れ込んだ冷却水は、第5流路43e内を図6に示す反時計回り方向に流れ、第4折返部45dを介して第1流路43aに流れ込む。 The cooling water flowing out from the water supply port 41 first fills the second flow path 43b of the flow path 43 in which the water supply port 41 is formed, and then, as shown by an arrow in FIG. 6, the first folding portion 45a It flows into the third flow path 43c via. The cooling water that has flowed into the third flow path 43c flows in the third flow path 43c in the counterclockwise direction shown in FIG. 6, and flows into the fourth flow path 43d via the second folding portion 45b. Then, the cooling water that has flowed into the fourth flow path 43d flows in the fourth flow path 43d in the clockwise direction shown in FIG. 6, and flows into the fifth flow path 43e via the third turn-back portion 45c. Further, the cooling water that has flowed into the fifth flow path 43e flows in the fifth flow path 43e in the counterclockwise direction shown in FIG. 6, and flows into the first flow path 43a via the fourth turn-back portion 45d.

そして、第1流路43aに流れ込んだ冷却水は、この第1流路43a内に形成された排水口42から排出される。なお、このとき、排水口42は、第1流路43aの延在方向に沿って複数(2個)設けられているが、すべての排水口42から同量の冷却水が排出される。 Then, the cooling water that has flowed into the first flow path 43a is discharged from the drain port 42 formed in the first flow path 43a. At this time, although a plurality (two) of the drainage ports 42 are provided along the extending direction of the first flow path 43a, the same amount of cooling water is discharged from all the drainage ports 42.

そして、このように流路43を流れる冷却水と、研磨パッド2aが設けられた下側平板部材21との間で熱交換が行われ、研磨パッド2aの表面(研磨面)が冷却される。 Then, heat exchange is performed between the cooling water flowing through the flow path 43 and the lower flat plate member 21 provided with the polishing pad 2a, and the surface (polishing surface) of the polishing pad 2a is cooled.

ここで、実施例1の冷却構造40では、冷却水が、給水口41→第2流路43b→第3流路43c→第4流路43d→第5流路43e→第1流路43a→排水口42と流れる。そのため、流路43は、研磨面の全面を1本の冷却ルートで冷却することになる。これにより、給排水経路を単純な構造にすることができ、構造が複雑化することを防止できる。また、流路43が1本のルートであることから、この流路43を流れる冷却水の流速を向上させることができる。そのため、冷却水による熱伝達率が高くなり、温度調節効率の向上を図ることができる。 Here, in the cooling structure 40 of the first embodiment, the cooling water is supplied from the water supply port 41 → the second flow path 43b → the third flow path 43c → the fourth flow path 43d → the fifth flow path 43e → the first flow path 43a →. It flows with the drain port 42. Therefore, the flow path 43 cools the entire surface of the polished surface with one cooling route. As a result, the water supply / drainage route can be made into a simple structure, and the structure can be prevented from becoming complicated. Further, since the flow path 43 is one route, the flow velocity of the cooling water flowing through the flow path 43 can be improved. Therefore, the heat transfer coefficient by the cooling water becomes high, and the temperature control efficiency can be improved.

さらに、第3流路43cは、最内周から三番目に位置する第3同心円R3に沿って形成されている。そして、第4流路43dは、最内周から四番目に位置する第4同心円R4に沿って形成されている。ここで、この第3流路43c及び第4流路43dは、ワーク研磨中にワークWと接触する割合が最も高い中間領域B(図3参照)に対向する位置に形成された流路である。 Further, the third flow path 43c is formed along the third concentric circle R3 located third from the innermost circumference. The fourth flow path 43d is formed along the fourth concentric circle R4 located fourth from the innermost circumference. Here, the third flow path 43c and the fourth flow path 43d are flow paths formed at positions facing the intermediate region B (see FIG. 3) having the highest ratio of contact with the work W during work polishing. ..

一方、この冷却構造40では、給水口41が形成された第2流路43bから流れ出た冷却水は、第3流路43cに流れ込み、続いて第4流路43dへと順に流れる構成になっている。このため、実施例1の冷却構造40では、比較的温度が低い冷却水を、ワーク研磨時に比較的高温になる中間領域Bに対向する流路(第3流路43c及び第4流路43d)に流すことができる。すなわち、温度調節効率の高くなる第3流路43c及び第4流路43dを、効率的に冷却したいという要求のある研磨面の中間領域Bに対向させることができ、冷却要求の高い領域を優先的に冷却することができる。 On the other hand, in this cooling structure 40, the cooling water flowing out from the second flow path 43b in which the water supply port 41 is formed flows into the third flow path 43c and then flows in order to the fourth flow path 43d. There is. Therefore, in the cooling structure 40 of Example 1, the flow paths (third flow path 43c and fourth flow path 43d) facing the intermediate region B where the cooling water having a relatively low temperature becomes relatively high during polishing of the work. Can be flushed to. That is, the third flow path 43c and the fourth flow path 43d, which have high temperature control efficiency, can be opposed to the intermediate region B of the polished surface, which is required to be cooled efficiently, and the region having high cooling requirement is prioritized. Can be cooled.

なお、給水口41が形成された第2流路43bでは、冷却水温度は最も低くなるが、第流路43bの延在方向に沿って並んだ複数の給水口41から同時に冷却水が供給されるため、第3流路43cや第4流路43dと比べて流速が低くなる。つまり、第2流路43bの定盤温度調節効率は、第3流路43cや第4流路43dよりも低くなる。しかしながら、温度調節効率が低い第2流路43bは、下定盤2の中央領域Aに対向しているため、研磨面の冷却状態に大きな影響を与えることを防止できる。 In the second flow path 43b in which the water supply port 41 is formed, the cooling water temperature is the lowest, but cooling water is simultaneously supplied from a plurality of water supply ports 41 arranged along the extending direction of the second flow path 43b. Therefore, the flow velocity is lower than that of the third flow path 43c and the fourth flow path 43d. That is, the surface plate temperature control efficiency of the second flow path 43b is lower than that of the third flow path 43c and the fourth flow path 43d. However, since the second flow path 43b, which has low temperature control efficiency, faces the central region A of the lower platen 2, it can be prevented from significantly affecting the cooling state of the polished surface.

また、この実施例1の冷却構造40では、複数の同心円(第1同心円R1〜第5同心円R5)を仕切る仕切壁44により流路43が折り返しており、冷却水は、この仕切壁44に沿って折り返して流れていく。つまり、冷却水の流れ方向は、定盤周方向に一周流れるごとに反転する。そのため、例えば流路を螺旋状に形成した場合と異なり、任意の周方向領域の冷却水の温度分布を均等にすることができる。 Further, in the cooling structure 40 of the first embodiment, the flow path 43 is folded back by the partition walls 44 that partition the plurality of concentric circles (first concentric circles R1 to fifth concentric circles R5), and the cooling water flows along the partition walls 44. It turns back and flows. That is, the flow direction of the cooling water is reversed every time it flows in the circumferential direction of the surface plate. Therefore, unlike the case where the flow path is formed in a spiral shape, for example, the temperature distribution of the cooling water in an arbitrary circumferential region can be made uniform.

これにより、実施例1の研磨装置1の下定盤2では、研磨面の中でも冷却要求の高い領域(中間領域B)を効率よく優先的に冷却することができ、図7に示すように、ワーク研磨中に加工熱が生じても、研磨パッド2aの全面をほぼ23℃以下の均等な温度に調節することができる。そして、研磨パッド2aの表面(研磨面)の温度が部分的に変化(ここでは上昇)することを抑制することができて、下定盤2の熱変形を抑制し、及び/又は研磨装置における研磨パッド2aの表面(研磨面)全面での微細な研磨条件を維持することができる。これにより、研磨精度の低下等の研磨中のワークWへの悪影響も防止することができる。 As a result, in the lower platen 2 of the polishing apparatus 1 of the first embodiment, the region having a high cooling requirement (intermediate region B) among the polished surfaces can be efficiently and preferentially cooled. Even if processing heat is generated during polishing, the entire surface of the polishing pad 2a can be adjusted to a uniform temperature of approximately 23 ° C. or lower. Then, it is possible to suppress a partial change (here, an increase) in the temperature of the surface (polishing surface) of the polishing pad 2a, suppress the thermal deformation of the lower platen 2, and / or polish in the polishing apparatus. It is possible to maintain fine polishing conditions on the entire surface (polished surface) of the pad 2a. As a result, it is possible to prevent adverse effects on the work W during polishing, such as a decrease in polishing accuracy.

[異材料組み合わせ作用]
一般的に、下定盤や上定盤といった研磨装置の定盤は、年単位の長時間を経ると経時変化をもたらし、研磨面に歪みが生じることがある。この場合には、下定盤を回転させる駆動軸や、上定盤を吊り下げ支持するロッドから、下定盤や上定盤を取り外し、研磨面のラップ加工をし直して形状を修正する必要がある。
[Various material combination action]
In general, the surface plate of a polishing device such as a lower surface plate or an upper surface plate changes with time after a long period of time on a yearly basis, and the polished surface may be distorted. In this case, it is necessary to remove the lower surface plate and upper surface plate from the drive shaft that rotates the lower surface plate and the rod that suspends and supports the upper surface plate, and wrap the polished surface again to correct the shape. ..

これに対し、実施例1の研磨装置1の下定盤2は、下側平板部材21と、下側ジャケット部材22と、下側定盤受部材23と、を有している。そして、下側平板部材21及び下側定盤受部材23は、下側ジャケット部材22よりも線膨張係数の小さい低熱膨張材によって形成され、下側ジャケット部材22は、これらよりも線膨張係数が大きく、且つ剛性が高いステンレスによって形成されている。 On the other hand, the lower surface plate 2 of the polishing apparatus 1 of the first embodiment has a lower flat plate member 21, a lower jacket member 22, and a lower surface plate receiving member 23. The lower flat plate member 21 and the lower surface plate receiving member 23 are formed of a low coefficient of thermal expansion material having a linear expansion coefficient smaller than that of the lower jacket member 22, and the lower jacket member 22 has a linear expansion coefficient smaller than these. It is made of stainless steel, which is large and has high rigidity.

すなわち、この下定盤2では、ワークWに接触して加工熱が直接伝わる下側平板部材21と、この下側平板部材21の裏側に固定されると共に冷却構造40が形成された下側ジャケット部材22とは、線膨張係数の異なる材料によって形成されている。 That is, in the lower platen 2, the lower flat plate member 21 that comes into contact with the work W and directly transfers the processing heat, and the lower jacket member that is fixed to the back side of the lower flat plate member 21 and has the cooling structure 40 formed therein. 22 is formed of materials having different coefficients of linear expansion.

そのため、下定盤2の全体が、熱膨張率が異なる2枚の金属板を貼り合わせたバイメタルのような構造になる。これにより、冷却構造40を流れる冷却水の温度を調節することで、下定盤2の撓み量を制御することができる。 Therefore, the entire lower platen 2 has a bimetal-like structure in which two metal plates having different coefficients of thermal expansion are bonded together. As a result, the amount of deflection of the lower platen 2 can be controlled by adjusting the temperature of the cooling water flowing through the cooling structure 40.

また、実施例1の研磨装置1の上定盤3は、上側平板部材31と、上側ジャケット部材32と、を有し、上側平板部材31は、上側ジャケット部材32よりも線膨張係数の小さい低熱膨張材によって形成され、上側ジャケット部材32は、これよりも線膨張係数が大きく、且つ剛性が高いステンレスによって形成されている。 Further, the upper surface plate 3 of the polishing apparatus 1 of the first embodiment has an upper flat plate member 31 and an upper jacket member 32, and the upper flat plate member 31 has a lower coefficient of linear thermal expansion than that of the upper jacket member 32. The upper jacket member 32 is made of an inflatable material, and the upper jacket member 32 is made of stainless steel having a larger coefficient of linear expansion and higher rigidity.

すなわち、この上定盤3では、ワークWに接触して加工熱が直接伝わる上側平板部材31と、この上側平板部材31の裏側に固定されると共に冷却構造40が形成された上側ジャケット部材32とは、線膨張係数の異なる材料によって形成されている。 That is, in the upper surface plate 3, the upper flat plate member 31 that comes into contact with the work W and directly transfers the processing heat, and the upper jacket member 32 that is fixed to the back side of the upper flat plate member 31 and has the cooling structure 40 formed therein. Is formed of materials with different coefficients of linear expansion.

そのため、上定盤3の全体も、熱膨張率が異なる2枚の金属板を貼り合わせたバイメタルのような構造になる。これにより、冷却構造40を流れる冷却水の温度を調節することで、上定盤3の撓み量を制御することができる。 Therefore, the entire upper surface plate 3 also has a bimetal-like structure in which two metal plates having different coefficients of thermal expansion are bonded together. As a result, the amount of deflection of the upper surface plate 3 can be controlled by adjusting the temperature of the cooling water flowing through the cooling structure 40.

そして、下定盤2及び上定盤3において、いずれも冷却水の温度調節を行うことで定盤撓み量の制御を行うことができるので、経時変化に伴う研磨面の歪みが生じた場合であっても、冷却水の温度を調節すれば、歪みを緩和することができる。そのため、研磨面のラップ加工のし直しを不要にすることが可能となる。 Then, in both the lower surface plate 2 and the upper surface plate 3 , the amount of deflection of the surface plate can be controlled by adjusting the temperature of the cooling water, so that when the polished surface is distorted due to aging. Even if there is, distortion can be alleviated by adjusting the temperature of the cooling water. Therefore, it is possible to eliminate the need for re-wrapping the polished surface.

また、実施例1では、下側平板部材21が下側ジャケット部材22よりも線膨張係数が小さく、上側平板部材31が上側ジャケット部材32よりも線膨張係数が小さい。つまり、ワークWに接触して摩擦熱が直接伝わる下側平板部材21や上側平板部材31が、熱変形しにくい線膨張係数が小さい材料によって形成されている。そのため、ワーク研磨時に発生する加工熱によって下側平板部材21や上側平板部材31が熱変形することを防止し、下定盤2及び上定盤3の変形を抑制しつつ、定盤撓みの制御を可能とすることができる。 Further, in the first embodiment, the lower flat plate member 21 has a smaller linear expansion coefficient than the lower jacket member 22, and the upper flat plate member 31 has a smaller linear expansion coefficient than the upper jacket member 32. That is, the lower flat plate member 21 and the upper flat plate member 31 in which frictional heat is directly transmitted in contact with the work W are formed of a material having a small coefficient of linear expansion that is less likely to be thermally deformed. Therefore, it is possible to prevent the lower flat plate member 21 and the upper flat plate member 31 from being thermally deformed by the processing heat generated during work polishing, and to control the plateau deflection while suppressing the deformation of the lower surface plate 2 and the upper surface plate 3. It can be possible.

さらに、一般的に、ステンレスは、低熱膨張材と比べて廉価な材料である。そのため、定盤全体を低熱膨張材によって形成した場合と比べて、実施例1の研磨装置1のように、下側ジャケット部材22や上側ジャケット部材32をステンレスに代替して製作することで、コストダウンを図ることが可能となる。 Moreover, in general, stainless steel is a cheaper material than low thermal expansion materials. Therefore, as compared with the case where the entire surface plate is formed of the low thermal expansion material, the lower jacket member 22 and the upper jacket member 32 are manufactured by substituting stainless steel as in the polishing apparatus 1 of the first embodiment, so that the cost is increased. It is possible to reduce the cost.

また、実施例1の上定盤3では、ワーク研磨中の加工熱が直接伝達される上側平板部材31を、線膨張係数が小さくて熱変形しにくい低熱膨張材によって形成し、上側ジャケット部材32を廉価なステンレスによって形成している。これにより、上定盤3において、上側平板部材31の熱変形を抑制しつつ、コストダウンを図ることが可能となる。 Further, in the upper surface plate 3 of the first embodiment, the upper flat plate member 31 to which the processing heat during work polishing is directly transmitted is formed of a low thermal expansion material having a small coefficient of linear expansion and hardly being thermally deformed, and the upper jacket member 32. Is made of inexpensive stainless steel. As a result, in the upper surface plate 3, it is possible to reduce the cost while suppressing the thermal deformation of the upper flat plate member 31.

さらに、下側ジャケット部材22や上側ジャケット部材32を形成するステンレスは、比較的剛性の高い材質である。このため、この下側ジャケット部材22や上側ジャケット部材32を低熱膨張材によって形成した場合と比べて下定盤2や上定盤3の剛性を向上させることができる。これにより、例えば下定盤2や上定盤3を製造途中で吊り下げることがあっても、撓みを抑制して製造しやすさの向上を図ることができる。 Further, the stainless steel forming the lower jacket member 22 and the upper jacket member 32 is a material having relatively high rigidity. Therefore, the rigidity of the lower surface plate 2 and the upper surface plate 3 can be improved as compared with the case where the lower jacket member 22 and the upper jacket member 32 are formed of the low thermal expansion material. As a result, for example, even if the lower surface plate 2 or the upper surface plate 3 is suspended during manufacturing, bending can be suppressed and the ease of manufacturing can be improved.

[給水口及び排水口の形成位置による特徴的作用]
実施例1において、図示しない冷却水循環装置に接続した給水路は、駆動軸7aの内部に垂直方向に形成された縦穴と、下側定盤受部材23の内部を水平方向に延びた横穴と、を有している。また、排水路についても給水路と同様の構成であり、駆動軸7aの内部に垂直方向に形成された縦穴と、下側定盤受部材23の内部を水平方向に延びた横穴と、を有している。
[Characteristic action depending on the formation position of water supply port and drainage port]
In the first embodiment, the water supply channel connected to the cooling water circulation device (not shown) includes a vertical hole formed in the inside of the drive shaft 7a in the vertical direction, a horizontal hole extending in the horizontal direction inside the lower surface plate receiving member 23, and the like. have. Further, the drainage channel has the same configuration as the water supply channel, and has a vertical hole formed in the drive shaft 7a in the vertical direction and a horizontal hole extending in the horizontal direction inside the lower surface plate receiving member 23. doing.

これに対し、この実施例1の冷却構造40では、図2に示すように、排水口42が、下定盤2の内縁部αに最も近い位置、つまり下定盤2の最内周に位置する第1同心円R1に沿った第1流路43aに形成され、給水口41が、最内周から二番目に位置する第2同心円R2に沿い、第1流路43aに隣接する第2流路43bに形成されている。つまり、給水口41及び排水口42は、いずれも駆動軸7aの近傍位置に形成されている。 On the other hand, in the cooling structure 40 of the first embodiment, as shown in FIG. 2, the drainage port 42 is located at the position closest to the inner edge portion α of the lower platen 2, that is, at the innermost circumference of the lower platen 2. 1 The water supply port 41 is formed in the first flow path 43a along the concentric circle R1 and is located in the second flow path 43b adjacent to the first flow path 43a along the second concentric circle R2 located second from the innermost circumference. It is formed. That is, both the water supply port 41 and the drain port 42 are formed in the vicinity of the drive shaft 7a.

これにより、給水口41や排水口42を下定盤2の外縁部β近傍に形成した場合と比べて、給水路や排水路のうち、下側定盤受部材23の内部を水平方向に延びる横穴部分の長さを短縮化することができる。すなわち、冷却構造40が複雑化することをさらに抑制することができ、定盤の作りやすさの向上を図ることができる。 As a result, as compared with the case where the water supply port 41 and the drainage port 42 are formed in the vicinity of the outer edge portion β of the lower surface plate 2, a horizontal hole extending horizontally inside the lower surface plate receiving member 23 in the water supply channel and the drainage channel. The length of the portion can be shortened. That is, it is possible to further suppress the complexity of the cooling structure 40 and improve the ease of making a surface plate.

特に、直径寸法が2メートルを超えるような大型の下定盤2において給水口41や排水口42を下定盤2の外縁部β近傍に形成してしまうと、下側定盤受部材23の内部を水平方向に延びる長い横穴が必要になる。しかしながら、長い横穴を形成することは非常に困難であり、実現できても加工費の高騰が免れない。しかし、実施例1の研磨装置1では、給水口41及び排水口42を内縁部αの近傍位置に形成したことで、下側定盤受部材23の内部を水平方向に延びる長い横穴が不要になり、加工費の高騰を抑制することができる。 In particular, if the water supply port 41 and the drain port 42 are formed in the vicinity of the outer edge portion β of the lower surface plate 2 in the large lower surface plate 2 having a diameter dimension exceeding 2 meters, the inside of the lower surface plate receiving member 23 is formed. A long horizontal hole extending horizontally is required. However, it is very difficult to form a long horizontal hole, and even if it can be realized, the processing cost will inevitably rise. However, in the polishing apparatus 1 of the first embodiment, since the water supply port 41 and the drain port 42 are formed at positions near the inner edge portion α, a long horizontal hole extending in the horizontal direction inside the lower surface plate receiving member 23 becomes unnecessary. Therefore, it is possible to suppress the soaring processing cost.

さらに、この実施例1では、給水口41及び排水口42がそれぞれ複数(2個)形成されている。そして、すべての給水口41からほぼ同時に同量の冷却水が流れ出て、すべての排水口42からほぼ同時に同量の冷却水が排出される。これは、定盤給水口までの当該機内の水路設計や、排水口からの機内の水路設計の制約に応じたものに過ぎない。そのため、必ずしも、この個数に限られるものではない。すなわち、給水口41や排水口42の数は、所望流量や流速を許容耐圧内で得るための設計であることが要諦となる。 Further, in the first embodiment, a plurality (two) of each of the water supply port 41 and the drainage port 42 are formed. Then, the same amount of cooling water flows out from all the water supply ports 41 at almost the same time, and the same amount of cooling water is discharged from all the drainage ports 42 at almost the same time. This is only in response to the restrictions of the in-flight waterway design up to the surface plate water supply port and the in-flight waterway design from the drainage port. Therefore, the number is not necessarily limited to this number. That is, it is important that the number of water supply ports 41 and drainage ports 42 is designed so that a desired flow rate and flow velocity can be obtained within an allowable pressure resistance.

また、この実施例1では、複数の給水口41が、この給水口41が形成された第2流路43の延在方向に並んで形成されている。そのため、複数の給水口41から流れ出た冷却水の干渉を抑制し、冷却水の円滑な流れを妨げないようにできる。そして、冷却水が円滑に流れることで、流速を確保し、定盤温度調節効率の向上を図ることができる。 Further, in the first embodiment, a plurality of water supply ports 41 are formed side by side in the extending direction of the second flow path 43 b in which the water supply ports 41 are formed. Therefore, it is possible to suppress the interference of the cooling water flowing out from the plurality of water supply ports 41 and not to hinder the smooth flow of the cooling water. Then, the smooth flow of the cooling water can secure the flow velocity and improve the surface plate temperature control efficiency.

さらに、複数の排水口42についても、この排水口42が形成された第1流路43aの延在方向に並んで形成されており、冷却水の流れを乱すことなく速やかに排出することが可能となる。この結果、冷却水の円滑な流れを妨げることがなく、冷却水の流速を確保して定盤温度調節効率をさらに向上させることができる。 Further, the plurality of drainage ports 42 are also formed side by side in the extending direction of the first flow path 43a in which the drainage ports 42 are formed, so that the drainage ports 42 can be quickly discharged without disturbing the flow of the cooling water. It becomes. As a result, the flow velocity of the cooling water can be secured and the surface plate temperature control efficiency can be further improved without hindering the smooth flow of the cooling water.

[その他の特徴的作用]
実施例1の冷却構造40では、流路43が下定盤2の径方向に並んだ複数の同心円(第1同心円R1〜第5同心円R5)に沿って形成されている。そのため、第1流路43a〜第5流路43eをそれぞれ区画する区画壁46が下定盤2の周方向に延在する。
[Other characteristic actions]
In the cooling structure 40 of the first embodiment, the flow paths 43 are formed along a plurality of concentric circles (first concentric circles R1 to fifth concentric circles R5) arranged in the radial direction of the lower platen 2. Therefore, the partition wall 46 for partitioning the first flow path 43a to the fifth flow path 43e extends in the circumferential direction of the lower platen 2.

そして、区画壁46が下定盤2の周方向に延在していることで、下定盤2を搬送する際に吊り下げるときの吊り下げ位置と、下定盤2の内縁部αと、外縁部βとが連続することがない。これにより、下定盤2を搬送するときの定盤径方向の撓み変形を抑制することができる。すなわち、製造中の下定盤2の変形を小さくすることができて、下定盤2の製造時間の短縮化や、製造の容易性を向上させることができる。 Since the partition wall 46 extends in the circumferential direction of the lower platen 2, the suspension position when suspending the lower platen 2 when transporting the lower platen 2, the inner edge portion α of the lower platen 2, and the outer edge portion β And are not continuous. As a result, it is possible to suppress bending deformation in the surface plate radial direction when the lower surface plate 2 is conveyed. That is, the deformation of the lower platen 2 during production can be reduced, the production time of the lower platen 2 can be shortened, and the ease of production can be improved.

さらに、実施例1の冷却構造40では、流路43が下定盤2の径方向に並んだ複数の同心円(第1同心円R1〜第5同心円R5)に沿っていることから、第1流路43a〜第5流路43eをそれぞれ区画する区画壁46の先端は、定盤径方向に不連続になる。そのため、この区画壁46の先端に切削加工をした際に生じる残留応力の影響を小さくして、下定盤2の径方向の撓みをさらに抑制することができる。 Further, in the cooling structure 40 of the first embodiment, since the flow path 43 is along a plurality of concentric circles (first concentric circles R1 to fifth concentric circles R5) arranged in the radial direction of the lower surface plate 2, the first flow path 43a The tips of the partition walls 46 that partition the fifth flow path 43e are discontinuous in the surface plate radial direction. Therefore, the influence of the residual stress generated when the tip of the partition wall 46 is cut can be reduced, and the radial bending of the lower platen 2 can be further suppressed.

次に、効果を説明する。
実施例1の研磨装置1にあっては、下記に列挙する効果を得ることができる。
Next, the effect will be described.
In the polishing apparatus 1 of the first embodiment, the effects listed below can be obtained.

(1) ワークWを研磨する研磨面(研磨パッド2a,3aの表面)の裏側に、冷却水が流れる冷却構造40が形成された定盤(下定盤2,上定盤3)を備えた研磨装置1において、
前記冷却構造40は、前記冷却水を供給する給水口41と、前記冷却水が排出される排水口42と、前記給水口41と前記排水口42とを連通すると共に、前記定盤(下定盤2,上定盤3)の径方向に並んだ複数の同心円(第1同心円R1〜第5同心円R5)に沿って延在する流路43と、前記定盤(下定盤2,上定盤3)の径方向に延在して前記同心円(第1同心円R1〜第5同心円R5)を仕切る仕切壁44と、を有し、
前記給水口41から供給された冷却水は、第1の同心円(第3同心円R3)に沿った流路(第3流路43c)内を第1の方向(反時計回り方向)に流れてから前記仕切壁44に沿って折り返して第2の同心円(第4同心円R4)に沿った流路(第4流路43d)に流れ込み、前記第2の同心円(第4同心円R4)に沿った流路(第4流路43d)内を前記第1の方向(反時計回り方向)とは逆の方向(時計回り方向)に流れて、前記排水口42から排出される構成とした。
これにより、構造が複雑化することなく研磨面の主たる温度調節対象として意図する領域(中間領域B)を優先的かつ効率的に温度調節し、ワークの研磨に伴って研磨面の温度が部分的に変化し、あるいは、それに関連して研磨条件が部分的に逸脱することを抑制できる。
(1) Polishing provided with a surface plate (lower surface plate 2, upper surface plate 3) in which a cooling structure 40 through which cooling water flows is formed on the back side of a polishing surface (surface of polishing pads 2a, 3a) for polishing the work W. In device 1,
The cooling structure 40 communicates the water supply port 41 for supplying the cooling water, the drainage port 42 for discharging the cooling water, the water supply port 41 and the drainage port 42, and the surface plate (lower surface plate). 2. A flow path 43 extending along a plurality of concentric circles (first concentric circles R1 to fifth concentric circles R5) arranged in the radial direction of the upper surface plate 3), and the surface plate (lower surface plate 2, upper surface plate 3). ), With a partition wall 44 extending in the radial direction and partitioning the concentric circles (first concentric circles R1 to fifth concentric circles R5).
The cooling water supplied from the water supply port 41 flows in the flow path (third flow path 43c) along the first concentric circle (third concentric circle R3) in the first direction (counterclockwise direction). It is folded back along the partition wall 44 and flows into the flow path (fourth flow path 43d) along the second concentric circle (fourth concentric circle R4), and flows along the second concentric circle (fourth concentric circle R4). The structure is such that the water flows in the (fourth flow path 43d) in the direction opposite to the first direction (counterclockwise direction) (clockwise direction) and is discharged from the drain port 42.
As a result, the temperature of the region (intermediate region B) intended as the main temperature control target of the polished surface is preferentially and efficiently controlled without complicating the structure, and the temperature of the polished surface is partially adjusted as the work is polished. It is possible to prevent the polishing conditions from partially deviating from the polishing conditions.

(2) 前記給水口41は、前記定盤(下定盤2,上定盤3)の最内周から二番目に位置する同心円(第2同心円R2)に沿った第2流路43bに形成され、
前記排水口42は、前記給水口41が前記第2流路43bに形成された場合には前記定盤(下定盤2,上定盤3)の最内周に位置する同心円(第1同心円R1)に沿った第1流路43aに形成されている構成とした。
これにより、(1)の効果に加え、定盤内部に形成される水平方向の給水路及び排水路の長さを短縮化して、冷却構造40の複雑化をさらに抑制することができる。
(2) The water supply port 41 is formed in a second flow path 43b along a concentric circle (second concentric circle R2) located second from the innermost circumference of the surface plate (lower surface plate 2, upper surface plate 3). ,
The drainage port 42 is a concentric circle (first concentric circle R1) located on the innermost circumference of the surface plate (lower surface plate 2, upper surface plate 3) when the water supply port 41 is formed in the second flow path 43b. ) Is formed in the first flow path 43a.
As a result, in addition to the effect of (1), the lengths of the horizontal water supply channel and drainage channel formed inside the surface plate can be shortened, and the complexity of the cooling structure 40 can be further suppressed.

(3) 前記給水口41は、所定の同心円(第2同心円R2)に沿った流路(第2流路43b)の延在方向に並んで複数形成されている構成とした。
これにより、(1)又は(2)の効果に加え、冷却水圧による負荷を軽減すると共に、冷却水を円滑に流すことができる。
(3) A plurality of the water supply ports 41 are formed side by side in the extending direction of the flow path (second flow path 43b) along a predetermined concentric circle (second concentric circle R2).
As a result, in addition to the effects of (1) or (2), the load due to the cooling water pressure can be reduced and the cooling water can flow smoothly.

(4) 前記排水口42は、所定の同心円(第1同心円R1)に沿った流路(第1流路43a)の延在方向に並んで複数形成されている構成とした。
これにより、(1)〜(3)のいずれかの効果に加え、冷却水圧による負荷をさらに軽減し、冷却水の流れをさらに円滑にすることができる。
(4) A plurality of the drainage ports 42 are formed so as to be arranged in the extending direction of the flow path (first flow path 43a) along a predetermined concentric circle (first concentric circle R1).
As a result, in addition to the effects of any one of (1) to (3), the load due to the cooling water pressure can be further reduced, and the flow of the cooling water can be further smoothed.

(5) 前記定盤(下定盤2,上定盤3)は、前記研磨面が形成された平板部材(下側平板部材21,上側平板部材31)と、前記平板部材(下側平板部材21,上側平板部材31)に固定される共に前記冷却構造40が形成されたジャケット部材(下側ジャケット部材22,上側ジャケット部材32)と、を有し、
前記平板部材(下側平板部材21,上側平板部材31)と前記ジャケット部材(下側ジャケット部材22,上側ジャケット部材32)とは、線膨張係数が異なる材料によって形成されている構成とした。
これにより、(1)〜(4)のいずれかの効果に加え、冷却構造40に流れる冷却水温度を調節することで、定盤撓み量の制御ができ、経年変化による定盤の歪みを解消することができる。
(5) The surface plate (lower surface plate 2, upper surface plate 3) includes a flat plate member (lower flat plate member 21, upper flat plate member 31) on which the polished surface is formed and the flat plate member (lower flat plate member 21). It has a jacket member (lower jacket member 22, upper jacket member 32) that is fixed to the upper flat plate member 31) and has the cooling structure 40 formed therein.
The flat plate member (lower flat plate member 21, upper flat plate member 31) and the jacket member (lower jacket member 22, upper jacket member 32) are formed of materials having different coefficients of linear expansion.
As a result, in addition to the effects of any of (1) to (4), the amount of surface plate deflection can be controlled by adjusting the temperature of the cooling water flowing through the cooling structure 40, eliminating the distortion of the surface plate due to aging. can do.

(6) 前記平板部材(下側平板部材21,上側平板部材31)は、前記ジャケット部材(下側ジャケット部材22,上側ジャケット部材32)よりも線膨張係数が小さい材料によって形成されている構成とした。
これにより、(5)の効果に加え、ワークWに接触して摩擦熱が直接伝わる平板部材の熱変形が抑制でき、定盤変形をさらに防止することができる。
(6) The flat plate member (lower flat plate member 21, upper flat plate member 31) is formed of a material having a coefficient of linear expansion smaller than that of the jacket member (lower jacket member 22, upper jacket member 32). did.
As a result, in addition to the effect of (5), thermal deformation of the flat plate member in which frictional heat is directly transmitted in contact with the work W can be suppressed, and surface plate deformation can be further prevented.

(7) 前記定盤(下定盤2)は、前記ジャケット部材(下側ジャケット部材22)を有し、また、さらにそれらを支持する定盤受部材(下側定盤受部材23)を有するように設計することも可能である。
その場合、前記部材(下側定盤部材23)の線膨張係数設計次第では、変化制御単位量を任意に設定することもできる。これにより、(5)の効果に加え、定盤の熱変形の抑制度合いを調合できる。
(7) The surface plate (lower surface plate 2) has the jacket member (lower jacket member 22), and further has a surface plate receiving member (lower surface plate receiving member 23) that supports them. It is also possible to design.
In that case, the depending linear expansion coefficient design constant Edition receiving member (the lower surface plate receiving member 23) may be arbitrarily set the change control unit amount. As a result, in addition to the effect of (5), the degree of suppression of thermal deformation of the surface plate can be adjusted.

以上、本発明の研磨装置を実施例1に基づいて説明してきたが、具体的な構成については、この実施例に限られるものではなく、特許請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。 Although the polishing apparatus of the present invention has been described above based on the first embodiment, the specific configuration is not limited to this embodiment, and the gist of the invention according to each claim in the claims is described. Design changes and additions are permitted as long as they do not deviate.

実施例1では、定盤最内周に位置する第1流路43aに排水口42が形成され、この第1流路43aに隣接する第2流路43bに給水口41が形成された例を示した。しかしながら、これに限らず、例えば第1流路43aに給水口41を形成し、第2流路43bに排水口42を形成してもよい。この場合では、第1流路43aに充満した冷却水が、第5流路43e→第4流路43d→第3流路43cと順に流れ、最後に第2流路43bに流れ込むようになる。このように、冷却構造40を変えずに給水口41と排出口42を逆とすることにより、優先的に温度調節を行いたい領域を変えることが可能になる。
しかしながら、このときにも、給水口41及び排水口42は駆動軸7aの近傍位置に形成されることになり、下側定盤受部材23の内部を水平方向に延びる横穴の長さを短縮化して、冷却構造40が複雑化することをさらに抑制することができる。
In the first embodiment, a drainage port 42 is formed in the first flow path 43a located on the innermost circumference of the surface plate, and a water supply port 41 is formed in the second flow path 43b adjacent to the first flow path 43a. Indicated. However, the present invention is not limited to this, and for example, the water supply port 41 may be formed in the first flow path 43a and the drainage port 42 may be formed in the second flow path 43b. In this case, the cooling water filled in the first flow path 43a flows in the order of the fifth flow path 43e → the fourth flow path 43d → the third flow path 43c, and finally flows into the second flow path 43b. In this way, by reversing the water supply port 41 and the discharge port 42 without changing the cooling structure 40, it is possible to change the region where the temperature control is to be preferentially performed.
However, even at this time, the water supply port 41 and the drain port 42 are formed in the vicinity of the drive shaft 7a, and the length of the horizontal hole extending in the horizontal direction inside the lower surface plate receiving member 23 is shortened. Therefore, it is possible to further suppress the complexity of the cooling structure 40.

また、実施例1の冷却構造40では、冷却水が、給水口41→第2流路43b(冷却水充満)→第3流路43c(反時計回り)→第4流路43d(時計回り)→第5流路43e(反時計回り)→第1流路43a(冷却水排出)→排水口42と流れる例を示した。しかしながら、これに限らず、例えば図6の冷却構造を左右反転させた冷却構造とし、冷却水の流れが、それぞれ逆(給水口41→第2流路43b(冷却水充満)→第3流路43c(時計回り)→第4流路43d(反時計回り)→第5流路43e(時計回り)→第1流路43a(冷却水排出)→排水口42)となるようにしてもよい。これにより、給排水経路を単純な構造にすることができ、構造が複雑化することを防止できる。また、流路43が1本のルートであることから、この流路43を流れる冷却水の流速を向上させることができる。そのため、冷却水による熱伝達率が高くなり、温度調節効率の向上を図ることができる。また、構造を変えず流路の向きを反転できるため、優先的に温度調節を行いたい領域を変えることができる。 Further, in the cooling structure 40 of the first embodiment, the cooling water is supplied from the water supply port 41 → the second flow path 43b (filled with cooling water) → the third flow path 43c (counterclockwise) → the fourth flow path 43d (clockwise). An example is shown in which the flow is as follows: 5th flow path 43e (counterclockwise) → 1st flow path 43a (cooling water discharge) → drain port 42. However, the present invention is not limited to this, for example, the cooling structure of FIG. 6 is inverted to the left and right, and the flow of the cooling water is reversed (water supply port 41 → second flow path 43b (cooling water filling) → third flow path). 43c (clockwise) → 4th flow path 43d (counterclockwise) → 5th flow path 43e (clockwise) → 1st flow path 43a (cooling water discharge) → drain port 42). As a result, the water supply / drainage route can be made into a simple structure, and the structure can be prevented from becoming complicated. Further, since the flow path 43 is one route, the flow velocity of the cooling water flowing through the flow path 43 can be improved. Therefore, the heat transfer coefficient by the cooling water becomes high, and the temperature control efficiency can be improved. Further, since the direction of the flow path can be reversed without changing the structure, it is possible to preferentially change the region where the temperature control is desired.

また、給水口41や排水口42は、定盤最外周に位置する第5流路43eに形成してもよい。なお、給水口41又は排水口42を定盤最外周位置に形成した場合などでは、下側定盤受部材23等に給排水用の横穴を形成せず、定盤外部に配索されたチューブ等を利用して冷却水を給排水するようにしてもよい。 Further, the water supply port 41 and the drain port 42 may be formed in the fifth flow path 43e located on the outermost periphery of the surface plate. When the water supply port 41 or the drainage port 42 is formed at the outermost peripheral position of the surface plate, a horizontal hole for water supply / drainage is not formed in the lower surface plate receiving member 23 or the like, and a tube or the like arranged outside the surface plate or the like. The cooling water may be supplied and drained using the above.

また、実施例1では、給水口41及び排水口42をそれぞれ2個ずつ形成した例を示したが、これに限らない。給水口41及び排水口42は、一つでもよいし、2個以上の任意の数だけ形成してもよい。また、給水口41の数と排水口42の数とが異なっていてもよい。さらに、給水口41の開口面積と排水口42の開口面積を異ならせてもよいし、複数の給水口41の開口面積を互いに異ならせたり、複数の排水口42の開口面積を互いに異ならせたりしてもよい。 Further, in the first embodiment, an example in which two water supply ports 41 and two drainage ports 42 are formed is shown, but the present invention is not limited to this. The water supply port 41 and the drain port 42 may be formed in an arbitrary number of two or more. Further, the number of water supply ports 41 and the number of drainage ports 42 may be different. Further, the opening area of the water supply port 41 and the opening area of the drain port 42 may be different, the opening areas of the plurality of water supply ports 41 may be different from each other, or the opening areas of the plurality of drain ports 42 may be different from each other. You may.

また、流路43は、定盤(下定盤2,上定盤3)の径方向に並んだ複数の同心円(第1同心円R1〜第5同心円R5)に沿って延在すると共に、これらの複数の同心円(第1同心円R1〜第5同心円R5)が仕切壁44によって仕切られていればよい。そのため、流路形状は実施例1に示すものに限らず、例えば、図8に示す第1変形例の冷却構造40Aや、図9に示す第2変形例の冷却構造40Bのようなものであってもよい。 Further, the flow path 43 extends along a plurality of concentric circles (first concentric circles R1 to fifth concentric circles R5) arranged in the radial direction of the surface plates (lower surface plate 2, upper surface plate 3), and a plurality of these. Concentric circles (first concentric circles R1 to fifth concentric circles R5) may be partitioned by a partition wall 44. Therefore, the shape of the flow path is not limited to that shown in the first embodiment, and is, for example, a cooling structure 40A of the first modification shown in FIG. 8 or a cooling structure 40B of the second modification shown in FIG. You may.

すなわち、第1変形例である冷却構造40Aでは、定盤最内周に位置する第1流路43a内に給水口41及び排水口42を形成する。また、仕切壁47として、第1同心円R1〜第5同心円R5のすべてを仕切る第1仕切壁47aと、第1同心円R1〜第4同心円R4を仕切る第2仕切壁47bと、第2,第3同心円R2,R3を仕切る第3仕切壁47cと、第1,第2同心円R1,R2を仕切る第4仕切壁47dと、を形成する。 That is, in the cooling structure 40A which is the first modification, the water supply port 41 and the drainage port 42 are formed in the first flow path 43a located on the innermost circumference of the surface plate. Further, as the partition wall 47, the first partition wall 47a for partitioning all of the first concentric circles R1 to the fifth concentric circles R5, the second partition wall 47b for partitioning the first concentric circles R1 to the fourth concentric circles R4, and the second and third partition walls 47b. A third partition wall 47c for partitioning the concentric circles R2 and R3 and a fourth partition wall 47d for partitioning the first and second concentric circles R1 and R2 are formed.

そして、第1仕切壁47aと第4仕切壁47dとの間に、第1流路43aと第3流路43cを連通する第1折返部48aを形成し、第3仕切壁47cに沿って第2流路43bと第3流路43cを連通する第2折返部48bを形成し、第4仕切壁47dに沿って第1流路43aと第2流路43bを連通する第3折返部48cを形成し、第2仕切壁47bと第3仕切壁47cとの間に、第1流路43aと第4流路43dを連通する第4折返部48dを形成し、第1仕切壁47aに沿って第4流路43dと第5流路43eを連通する第5折返部48eを形成し、第1仕切壁47aと第2仕切壁47bとの間に、第1流路43aと第5流路43eを連通する第6折返部48fを形成する。このとき、給水口41を第1折返部48a内に形成し、排水口42を第6折返部48f内に形成する。 Then, a first folding portion 48a that communicates the first flow path 43a and the third flow path 43c is formed between the first partition wall 47a and the fourth partition wall 47d, and the first folding portion 48a is formed along the third partition wall 47c. A second folding portion 48b that communicates with the second flow path 43b and the third flow path 43c is formed, and a third folding portion 48c that communicates with the first flow path 43a and the second flow path 43b along the fourth partition wall 47d is formed. A fourth folded-back portion 48d that communicates the first flow path 43a and the fourth flow path 43d is formed between the second partition wall 47b and the third partition wall 47c, and along the first partition wall 47a. A fifth folding portion 48e that communicates the fourth flow path 43d and the fifth flow path 43e is formed, and the first flow path 43a and the fifth flow path 43e are formed between the first partition wall 47a and the second partition wall 47b. Form a sixth folding portion 48f that communicates with the above. At this time, the water supply port 41 is formed in the first turning portion 48a, and the drainage port 42 is formed in the sixth turning portion 48f.

これにより、この第1変形例の冷却構造40Aでは、給水口41から流れ出た冷却水は、給水口41→第1折返部48a→第3流路43c→第2折返部48b→第2流路43b→第3折返部48c→第1流路43a→第4折返部48d→第4流路43d→第5折返部48e→第5流路43e→第6折返部48f→排水口42と流れていく。 As a result, in the cooling structure 40A of the first modification, the cooling water flowing out from the water supply port 41 is the water supply port 41 → the first turn-back portion 48a → the third flow path 43c → the second turn-back portion 48b → the second flow path. 43b-> 3rd turn-back part 48c-> 1st flow path 43a-> 4th turn-back part 48d-> 4th flow path 43d-> 5th turn-back part 48e-> 5th flow path 43e-> 6th turn-back part 48f-> drainage port 42 I will go.

また、第2変形例である冷却構造40Bでは、定盤最内周に位置する第1流路43a内に給水口41を形成し、定盤最外周に位置する第5流路43e内に排水口42を形成する。また、仕切壁49は、第1同心円R1〜第5同心円R5のすべてを仕切るものだけである。 Further, in the cooling structure 40B which is the second modification, the water supply port 41 is formed in the first flow path 43a located on the innermost circumference of the surface plate, and drains into the fifth flow path 43e located on the outermost circumference of the surface plate. Form the mouth 42. Further, the partition wall 49 is only for partitioning all of the first concentric circles R1 to the fifth concentric circles R5.

そして、仕切壁49を挟んで交互に第1折返部50aと、第2折返部50bと、第3折返部50cと、第4折返部50dを形成する。そして、第1折返部50aを介して第1,第2流路43a,43bを連通し、第2折返部50bを介して第2,第3流路43b,43cを連通し、第3折返部50cを介して第3,第4流路43c,43dを連通し、第4折返部50dを介して第4,第5流路43d,43eを連通する。 Then, the first folding portion 50a, the second folding portion 50b, the third folding portion 50c, and the fourth folding portion 50d are alternately formed with the partition wall 49 in between. Then, the first and second flow paths 43a and 43b are communicated with each other via the first turn-around portion 50a, and the second and third flow paths 43b and 43c are communicated with each other via the second turn-around portion 50b. The third and fourth flow paths 43c and 43d are communicated via 50c, and the fourth and fifth flow paths 43d and 43e are communicated via the fourth folding portion 50d.

これにより、この第2変形例の冷却構造40Bでは、給水口41から流れ出た冷却水は、給水口41→第1流路43a→第1折返部50a→第2流路43b→第2折返部50b→第3流路43c→第3折返部50c→第4流路43d→第4折返部50d→第5流路43e→排水口42と流れていく。 As a result, in the cooling structure 40B of the second modification, the cooling water flowing out from the water supply port 41 is the water supply port 41 → the first flow path 43a → the first turn-back portion 50a → the second flow path 43b → the second turn-back portion. 50b-> 3rd flow path 43c-> 3rd turn-back portion 50c-> 4th flow path 43d-> 4th turn-back section 50d-> 5th flow path 43e-> drainage port 42.

また、実施例1では、下定盤2の下側平板部材21を線膨張係数の小さい低熱膨張材によって形成し、下側ジャケット部材22を線膨張係数の大きいステンレスによって形成する例を示した。しかしながら、これに限らず、下側平板部材21、下側ジャケット部材22等を、例えば、線膨張係数の大きな材料から選ぶ場合は、鋳鉄やアルミニウム、ステンレス等より任意に選べばよい。また、線膨張係数の小さな材料から選ぶ場合は、セラミック、グラナイト、炭素繊維強化材、炭化ケイ素繊維強化材、インバー合金材等より、任意に選べばよい。さらに、その組み合わせ次第で、下側平板部材21と下側ジャケット部材22との線膨張係数差に応じて、冷却水温度の調節精度に応じた単位歪み量を設定、制御することができるようになる。すなわち、変形制御特性や機器構成上望ましい剛性等を考慮して選定し組み合わせればよい。なお、上定盤3についても同様である。
また、実施例1にて示した例のように、下側ジャケット部材22の下に、さらに、下側定盤受部材23を設け、その材質を、下側ジャケット部材22と異ならせることで、変形特性を調合することもできる。
Further, in Example 1, an example was shown in which the lower flat plate member 21 of the lower platen 2 is formed of a low coefficient of thermal expansion material having a small coefficient of linear expansion, and the lower jacket member 22 is made of stainless steel having a large coefficient of linear expansion. However, the present invention is not limited to this, and when the lower flat plate member 21, the lower jacket member 22, or the like is selected from, for example, a material having a large coefficient of linear expansion, cast iron, aluminum, stainless steel, or the like may be arbitrarily selected. When selecting from materials having a small coefficient of linear expansion, ceramics, granites, carbon fiber reinforced materials, silicon carbide fiber reinforced materials, Invar alloy materials and the like may be arbitrarily selected. Further, depending on the combination, the unit strain amount can be set and controlled according to the adjustment accuracy of the cooling water temperature according to the difference in the coefficient of linear expansion between the lower flat plate member 21 and the lower jacket member 22. Become. That is, it may be selected and combined in consideration of deformation control characteristics, desired rigidity in terms of equipment configuration, and the like. The same applies to the upper surface plate 3.
Further, as in the example shown in the first embodiment, the lower surface plate receiving member 23 is further provided under the lower jacket member 22, and the material thereof is different from that of the lower jacket member 22. Deformation characteristics can also be formulated.

また、実施例1では、温度調節構造として冷却構造を例示したが、研磨面の温度を上昇させる加熱流体が流れる加熱構造であっても、本願発明を適用することができる。 Further, in Example 1, the cooling structure is exemplified as the temperature control structure, but the present invention can be applied to the heating structure in which the heating fluid that raises the temperature of the polished surface flows.

また、実施例1では、下定盤2と上定盤3を有し、ワークWの両面を同時に研磨可能な両面研磨装置を示したが、ワークWの片面のみを研磨する片面研磨装置であっても、本願発明を適用することができる。 Further, in the first embodiment, a double-sided polishing device having a lower surface plate 2 and an upper surface plate 3 and capable of polishing both sides of the work W at the same time is shown, but it is a single-sided polishing device that polishes only one side of the work W. Also, the present invention can be applied.

さらに、実施例1では、流路43が沿う同心円の数を5つとしたが、これに限らず、任意の数の同心円を設定することができる。 Further, in the first embodiment, the number of concentric circles along the flow path 43 is set to 5, but the number is not limited to this, and any number of concentric circles can be set.

1 研磨装置
2 下定盤
2a 研磨パッド
3 上定盤
3a 研磨パッド
3b フック
4 サンギヤ
5 インターナルギヤ
6 キャリアプレート
21 下側平板部材
22 下側ジャケット部材
23 下側定盤受部材
31 上側平板部材
32 上側ジャケット部材
40 冷却構造(温度調節構造)
41 給水口
42 排水口
43 流路
43a 第1流路
43b 第2流路
43c 第3流路
43d 第4流路
43e 第5流路
44 仕切壁
45a 第1折返部
45b 第2折返部
45c 第3折返部
45d 第4折返部
1 Polishing device 2 Lower surface plate 2a Polishing pad 3 Upper surface plate 3a Polishing pad 3b Hook 4 Sun gear 5 Internal gear 6 Carrier plate 21 Lower plate member 22 Lower jacket member 23 Lower surface plate receiving member 31 Upper plate member 32 Upper Jacket member 40 Cooling structure (temperature control structure)
41 Water supply port 42 Drainage port 43 Flow path 43a 1st flow path 43b 2nd flow path 43c 3rd flow path 43d 4th flow path 43e 5th flow path 44 Partition wall 45a 1st turn-back part 45b 2nd turn-back part 45c 3rd Folded part 45d 4th folded part

Claims (6)

ワークを研磨する研磨面の裏側に、温度調節用流体が流れる温度調節構造が形成された定盤を備えた研磨装置において、
前記温度調節構造は、前記温度調節用流体を供給する給水口と、前記温度調節用流体が排出される排水口と、前記給水口と前記排水口とを連通すると共に、前記定盤の内縁部から外縁部に向かって順に径方向に並んだ複数の同心円に沿って延在する複数の流路と、前記定盤の径方向に延在して前記同心円を仕切る仕切壁と、を有し、
前記複数の流路は、それぞれ前記定盤の周方向に一周延びると共に、前記仕切壁に沿った折返部を介して連通し、前記研磨面の全体としてつながった一本のルートを形成し、
前記給水口から供給された温度調節用流体は、第1の同心円に沿った流路内を第1の方向に流れてから前記仕切壁に沿って折り返して第2の同心円に沿った流路に流れ込み、前記第2の同心円に沿った流路内を前記第1の方向とは逆の方向に流れて前記排水口から排出される
ことを特徴とする研磨装置。
In a polishing apparatus equipped with a surface plate having a temperature control structure in which a temperature control fluid flows on the back side of a polishing surface for polishing a work.
The temperature control structure communicates the water supply port for supplying the temperature control fluid, the drain port for discharging the temperature control fluid, the water supply port and the drain port, and the inner edge portion of the surface plate. It has a plurality of flow paths extending along a plurality of concentric circles arranged in order from the surface to the outer edge portion, and a partition wall extending in the radial direction of the surface plate to partition the concentric circles.
Each of the plurality of flow paths extends once in the circumferential direction of the surface plate and communicates with each other through a folded portion along the partition wall to form a single route connected as a whole of the polished surface.
The temperature control fluid supplied from the water supply port flows in the flow path along the first concentric circle in the first direction, then folds back along the partition wall into the flow path along the second concentric circle. A polishing apparatus characterized in that it flows in, flows in a flow path along the second concentric circle in a direction opposite to the first direction, and is discharged from the drain port.
ワークを研磨する研磨面の裏側に、温度調節用流体が流れる温度調節構造が形成された定盤を備えた研磨装置において、
前記温度調節構造は、前記温度調節用流体を供給する給水口と、前記温度調節用流体が排出される排水口と、前記給水口と前記排水口とを連通すると共に、前記定盤の径方向に並んだ複数の同心円に沿って延在する流路と、前記定盤の径方向に延在して前記同心円を仕切る仕切壁と、を有し、
前記給水口から供給された温度調節用流体は、第1の同心円に沿った流路内を第1の方向に流れてから前記仕切壁に沿って折り返して第2の同心円に沿った流路に流れ込み、前記第2の同心円に沿った流路内を前記第1の方向とは逆の方向に流れて前記排水口から排出され、
前記給水口は、前記定盤の最内周に位置する同心円に沿った第1流路、又は、前記定盤の最内周から二番目に位置する同心円に沿った第2流路のいずれかに形成され、
前記排水口は、前記給水口が前記第1流路に形成された場合には前記第2流路に形成され、前記給水口が前記第2流路に形成された場合には前記第1流路に形成されている
ことを特徴とする研磨装置。
In a polishing apparatus equipped with a surface plate having a temperature control structure in which a temperature control fluid flows on the back side of a polishing surface for polishing a work.
The temperature control structure communicates the water supply port for supplying the temperature control fluid, the drain port for discharging the temperature control fluid, and the water supply port and the drain port, and in the radial direction of the surface plate. It has a flow path extending along a plurality of concentric circles arranged in a row, and a partition wall extending in the radial direction of the surface plate to partition the concentric circles.
The temperature control fluid supplied from the water supply port flows in the flow path along the first concentric circle in the first direction, then folds back along the partition wall into the flow path along the second concentric circle. It flows in, flows in the flow path along the second concentric circle in the direction opposite to the first direction, and is discharged from the drain port.
The water supply port is either a first flow path along a concentric circle located on the innermost circumference of the surface plate or a second flow path along a concentric circle located second from the innermost circumference of the surface plate. Formed in
The drainage port is formed in the second flow path when the water supply port is formed in the first flow path, and the first flow port is formed in the second flow path when the water supply port is formed in the second flow path. A polishing device characterized by being formed on a road.
ワークを研磨する研磨面の裏側に、温度調節用流体が流れる温度調節構造が形成された定盤を備えた研磨装置において、
前記温度調節構造は、前記温度調節用流体を供給する給水口と、前記温度調節用流体が排出される排水口と、前記給水口と前記排水口とを連通すると共に、前記定盤の径方向に並んだ複数の同心円に沿って延在する流路と、前記定盤の径方向に延在して前記同心円を仕切る仕切壁と、を有し、
前記給水口から供給された温度調節用流体は、第1の同心円に沿った流路内を第1の方向に流れてから前記仕切壁に沿って折り返して第2の同心円に沿った流路に流れ込み、前記第2の同心円に沿った流路内を前記第1の方向とは逆の方向に流れて前記排水口から排出され、
前記給水口は、所定の同心円に沿った流路の延在方向に並んで複数形成されている
ことを特徴とする研磨装置。
In a polishing apparatus equipped with a surface plate having a temperature control structure in which a temperature control fluid flows on the back side of a polishing surface for polishing a work.
The temperature control structure communicates the water supply port for supplying the temperature control fluid, the drain port for discharging the temperature control fluid, and the water supply port and the drain port, and in the radial direction of the surface plate. It has a flow path extending along a plurality of concentric circles arranged in a row, and a partition wall extending in the radial direction of the surface plate to partition the concentric circles.
The temperature control fluid supplied from the water supply port flows in the flow path along the first concentric circle in the first direction, then folds back along the partition wall into the flow path along the second concentric circle. It flows in, flows in the flow path along the second concentric circle in the direction opposite to the first direction, and is discharged from the drain port.
A polishing apparatus characterized in that a plurality of water supply ports are formed side by side in the extending direction of a flow path along a predetermined concentric circle.
ワークを研磨する研磨面の裏側に、温度調節用流体が流れる温度調節構造が形成された定盤を備えた研磨装置において、
前記温度調節構造は、前記温度調節用流体を供給する給水口と、前記温度調節用流体が排出される排水口と、前記給水口と前記排水口とを連通すると共に、前記定盤の径方向に並んだ複数の同心円に沿って延在する流路と、前記定盤の径方向に延在して前記同心円を仕切る仕切壁と、を有し、
前記給水口から供給された温度調節用流体は、第1の同心円に沿った流路内を第1の方向に流れてから前記仕切壁に沿って折り返して第2の同心円に沿った流路に流れ込み、前記第2の同心円に沿った流路内を前記第1の方向とは逆の方向に流れて前記排水口から排出され、
前記排水口は、所定の同心円に沿った流路の延在方向に並んで複数形成されている
ことを特徴とする研磨装置。
In a polishing apparatus equipped with a surface plate having a temperature control structure in which a temperature control fluid flows on the back side of a polishing surface for polishing a work.
The temperature control structure communicates the water supply port for supplying the temperature control fluid, the drain port for discharging the temperature control fluid, and the water supply port and the drain port, and in the radial direction of the surface plate. It has a flow path extending along a plurality of concentric circles arranged in a row, and a partition wall extending in the radial direction of the surface plate to partition the concentric circles.
The temperature control fluid supplied from the water supply port flows in the flow path along the first concentric circle in the first direction, then folds back along the partition wall into the flow path along the second concentric circle. It flows in, flows in the flow path along the second concentric circle in the direction opposite to the first direction, and is discharged from the drain port.
A polishing apparatus characterized in that a plurality of the drainage ports are formed side by side in the extending direction of the flow path along a predetermined concentric circle.
請求項1から請求項4のいずれか一項に記載された研磨装置において、
前記定盤は、前記研磨面が形成された平板部材と、前記平板部材に固定される共に前記温度調節構造が形成されたジャケット部材と、を有し、
前記平板部材と前記ジャケット部材とは、線膨張係数が異なる材料によって形成されている
ことを特徴とする研磨装置。
In the polishing apparatus according to any one of claims 1 to 4.
The surface plate includes a flat plate member to which the abrasive surface is formed and is fixed to the flat plate member and the jacket member in which the temperature adjustment structure together is formed, the,
A polishing apparatus characterized in that the flat plate member and the jacket member are made of materials having different coefficients of linear expansion.
請求項5に記載された研磨装置において、
前記平板部材は、前記ジャケット部材よりも線膨張係数が小さい材料によって形成されている
ことを特徴とする研磨装置。
In the polishing apparatus according to claim 5,
The flat plate member is a polishing apparatus made of a material having a coefficient of linear expansion smaller than that of the jacket member.
JP2017113551A 2017-06-08 2017-06-08 Polishing equipment Active JP6893023B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017113551A JP6893023B2 (en) 2017-06-08 2017-06-08 Polishing equipment
TW107114659A TWI770167B (en) 2017-06-08 2018-04-30 Polishing apparatus
CN201810467127.2A CN109015343B (en) 2017-06-08 2018-05-16 Grinding device
KR1020180062695A KR102474472B1 (en) 2017-06-08 2018-05-31 Polishing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017113551A JP6893023B2 (en) 2017-06-08 2017-06-08 Polishing equipment

Publications (2)

Publication Number Publication Date
JP2018202580A JP2018202580A (en) 2018-12-27
JP6893023B2 true JP6893023B2 (en) 2021-06-23

Family

ID=64611549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017113551A Active JP6893023B2 (en) 2017-06-08 2017-06-08 Polishing equipment

Country Status (4)

Country Link
JP (1) JP6893023B2 (en)
KR (1) KR102474472B1 (en)
CN (1) CN109015343B (en)
TW (1) TWI770167B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7217202B2 (en) * 2019-05-31 2023-02-02 株式会社荏原製作所 Temperature controller and polisher
JP7442314B2 (en) * 2019-12-24 2024-03-04 東京エレクトロン株式会社 Substrate processing equipment and substrate processing method
CN111843832B (en) * 2020-07-30 2021-09-07 广东汉岂工业技术研发有限公司 Water-cooled grinding head for chemical mechanical grinding
KR102242741B1 (en) * 2020-10-12 2021-04-21 주식회사 피엠피 Top plate for lapping device, and lapping device having the same
KR102454476B1 (en) * 2020-10-30 2022-10-14 박인수 Lapping device having a top plate for ring type parts
CN114603468A (en) * 2022-05-11 2022-06-10 徐州福凯欣智能科技有限公司 Polishing machine tool for excavator rocker arm bracket
KR20240002409A (en) * 2022-06-29 2024-01-05 경북대학교 산학협력단 Wafer chuck

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59151655A (en) 1983-02-16 1984-08-30 Mitsubishi Electric Corp Control device for automatic transmission in vehicle
JPH01159171A (en) * 1987-12-15 1989-06-22 Toshiba Corp Polishing surface plate
US4974370A (en) * 1988-12-07 1990-12-04 General Signal Corp. Lapping and polishing machine
US5036630A (en) * 1990-04-13 1991-08-06 International Business Machines Corporation Radial uniformity control of semiconductor wafer polishing
JPH05177531A (en) * 1992-01-09 1993-07-20 Sony Corp Manufacture of magnetic head device
JPH07290354A (en) * 1994-04-25 1995-11-07 Nippon Steel Corp Polishing device
JPH10296619A (en) * 1997-05-02 1998-11-10 Fujikoshi Mach Corp Polishing surface plate
JPH11170162A (en) * 1997-12-12 1999-06-29 Speedfam Co Ltd Surface polishing surface plate
JP2001018169A (en) * 1999-07-07 2001-01-23 Ebara Corp Polishing device
JP2002233948A (en) 2001-02-02 2002-08-20 Fujikoshi Mach Corp Polishing device
JP2002373875A (en) * 2001-06-13 2002-12-26 Hitachi Ltd Method of manufacturing semiconductor device, and chemical mechanical polishing apparatus
JP3737470B2 (en) * 2002-11-07 2006-01-18 株式会社名機製作所 Mold for molding disk substrate and molding method
DE102007063232B4 (en) * 2007-12-31 2023-06-22 Advanced Micro Devices, Inc. Process for polishing a substrate
CN101407040A (en) * 2008-11-11 2009-04-15 广东工业大学 Face lapping mill with abrasive disk cooling mechanism
CN202726714U (en) * 2012-07-06 2013-02-13 元亮科技有限公司 Grinding polishing disk with circulation water cooling device
CN203831226U (en) * 2014-04-04 2014-09-17 江苏普利赛司研磨科技有限公司 Plane grinding cooling pan

Also Published As

Publication number Publication date
TW201903879A (en) 2019-01-16
CN109015343B (en) 2021-09-10
KR102474472B1 (en) 2022-12-05
TWI770167B (en) 2022-07-11
KR20180134288A (en) 2018-12-18
JP2018202580A (en) 2018-12-27
CN109015343A (en) 2018-12-18

Similar Documents

Publication Publication Date Title
JP6893023B2 (en) Polishing equipment
EP1918069B1 (en) Double side polishing method for wafer
CN108602173B (en) Method for double-side polishing of wafer, method for manufacturing epitaxial wafer using the same, and epitaxial wafer
CN103079767B (en) The polishing pad of polishing system
JP5492239B2 (en) Method for slicing a wafer from a workpiece
US20090000742A1 (en) Shower Plate and Method for Manufacturing the Same
JP2019528233A (en) Silicon carbide single crystal production equipment
JP2012076220A (en) Method of polishing object to be polished, and polishing pad
US10099340B2 (en) Polishing apparatus including pad contact member with baffle in liquid flow path therein
EP1894675B1 (en) Double face polishing apparatus
CN102728796B (en) Amorphous crystallizer
WO2020208968A1 (en) Two-side polishing device
JP5689891B2 (en) Apparatus and method for processing a flat workpiece on both sides
JP2020171996A (en) Double-sided polishing method
JP2002233948A (en) Polishing device
JP3235970B2 (en) Rotary platen temperature holding structure
JP4576366B2 (en) Wrap dish
JP2011051027A (en) Connecting flange
CN110364463A (en) A kind of silicon wafer processing unit and method
JP7116371B2 (en) Abrasive supply device, polishing device and abrasive supply method
JP3139753U (en) Double-side polishing machine
CN100463778C (en) Parallel planar grinder
JP2003136411A (en) Grinding wheel
JP2023537561A (en) A method for cutting multiple slices from a workpiece with a wire saw during a series of cutting operations
KR20110073846A (en) Single carrier for lapping device and lapping device using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210524

R150 Certificate of patent or registration of utility model

Ref document number: 6893023

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150