JP2018192529A - 抵抗スポット溶接方法 - Google Patents

抵抗スポット溶接方法 Download PDF

Info

Publication number
JP2018192529A
JP2018192529A JP2018166396A JP2018166396A JP2018192529A JP 2018192529 A JP2018192529 A JP 2018192529A JP 2018166396 A JP2018166396 A JP 2018166396A JP 2018166396 A JP2018166396 A JP 2018166396A JP 2018192529 A JP2018192529 A JP 2018192529A
Authority
JP
Japan
Prior art keywords
plate
spot welding
layer
resistance spot
welding method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018166396A
Other languages
English (en)
Other versions
JP6648791B2 (ja
Inventor
ひとみ 西畑
Hitomi Nishihata
ひとみ 西畑
泰山 正則
Masanori Taiyama
正則 泰山
康信 宮崎
Yasunobu Miyazaki
康信 宮崎
仁寿 徳永
Jinju Tokunaga
仁寿 徳永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2018166396A priority Critical patent/JP6648791B2/ja
Publication of JP2018192529A publication Critical patent/JP2018192529A/ja
Application granted granted Critical
Publication of JP6648791B2 publication Critical patent/JP6648791B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Resistance Welding (AREA)

Abstract

【課題】材料の組み合わせを問わず、スポット溶接を行え、十分な継手特性が得られる抵抗スポット溶接方法を提供する。【解決手段】スポット溶接方法は、3層に板材1、2、3が積み重ねられた積層部10を含む板組を準備する準備工程と、板組の積層部10を一対の電極20、20によって挟み込み、積層部10を電極20、20によって加圧しながら電極20、20間に電流を印加して、積層部10に抵抗スポット溶接を施す溶接工程と、を含む。準備工程では、積層部10として、最外層に互いに同一の金属の板材1、3を配置するとともに、内層に最外層の板材1、3の材料と同種の材料の板材2であって貫通穴2aを有する板材2を配置する。溶接工程では、内層の板材2における貫通穴2aの位置と電極20、20の位置を一致させた状態で抵抗スポット溶接を施す。【選択図】図1B

Description

本発明は、板材同士を接合するための抵抗スポット溶接方法に関する。
自動車を始めとする輸送機器、産業機器等は、複数の構造部品で構成される。多くの場合、構造部品の製造には、抵抗スポット溶接(以下、単に「スポット溶接」ともいう)が用いられる。
通常、スポット溶接は、以下のとおりに行われる。素材として板組を準備する。板組は、複数の金属の板材が積み重ねられた積層部を有する。次に、一対の電極によって板組の積層部を挟み込む。そして、その電極によって積層部を加圧しながら、電極間に電流を印加する。これにより、板組の積層部は、電極による加圧に伴って隣接する金属板同士が接触し、この接触領域に電流が流れる。その接触領域は電気抵抗による発熱により溶融し、これが凝固してナゲットが形成される。ナゲットの形成により、板組の金属板同士が接合されて繋ぎ合わされ、構造部品が製造される。
近年、輸送機器において、車体の軽量化が推進され、車体を構成する構造部品の軽量化が強く求められている。このため、使用される鋼板の高強度化が進んでいる。一方、鋼板材料の開発においても、環境調和型の次世代材料として、レアメタルを低減した中高炭素鋼の利用が検討されている。この中高炭素鋼は、レアメタルを低減する代わりにC(炭素)を積極的に含有し、材料強度を確保したものである。
一般に、鋼板材料は、強度が高まるほど多くの元素を含有した組成となる。しかしながら、鋼板に含まれるC量が多すぎると、焼入れ性が向上し、焼入れ後の組織(マルテンサイト)の硬さも上昇する。このため、中高炭素鋼の溶接の場合、高温からの急速冷却により、硬さの上昇が著しく、溶接金属が脆くなって界面で脆性破断し易くなり、溶接継手の特性が低下する。ここでいう継手特性とは、破断形態、引張せん断強さ(Tensile Shear Strength:TSS)、十字引張強さ(Cross Tensile Strength:CTS)等である。
一方、各種ステンレス鋼、TWIP(双晶誘起塑性:TWinning-Induced Plasticity)鋼等のように、Cr、Ni、Mnなどの特定の元素を数%〜数十%含有した高合金鋼に関しては、同一材料同士の共材溶接では継手特性の低下は問題とならない。しかし、高合金鋼と同種の高合金鋼又は低合金鋼とを溶接した場合、溶接金属の著しい硬化が発現し、これに伴って継手特性の低下が問題となることがある。これらの高合金鋼は、特定の組成により室温では安定化した鉄の高温相が存在しているが、同種の鋼と溶け合って溶接金属の組成が変化すると、冷却後に硬くて脆いマルテンサイト組織が出現するためである。
また、構造部品には、高C(炭素)含有鋼と高C含有鋼等といったように、同一又は同種の金属材料を組み合わせた構造が採用される場合がある。この場合、複数の同一材料又は同種材料の板材が積層され、スポット溶接によって接合される。
同一材料又は同種材料を組み合わせてスポット溶接により接合する場合、下記の問題がある。溶接金属が著しく硬化して脆くなり、十分な継手特性が得られないことがある。この傾向は、特に、高C含有鋼同士のスポット溶接で顕在化する。また、将来的には、Cを更に多く含有する鋼材のスポット溶接が必要になると予想される。その場合は、溶接金属の硬化に伴う脆弱な組織の生成が促進し、継手特性の低下が一層顕在化する。
特開2002−103054号公報(特許文献1)及び特開2013−78782号公報(特許文献2)は、高強度鋼、すなわちややC含有が多く溶接金属が硬化し易い鋼をスポット溶接によって接合する技術を開示する。これらの特許文献1及び2に開示されるスポット溶接方法では、鋼板を積層して電極によって挟み込み、電極間に電流を印加して溶融及び凝固による溶接を行った後、更に電極間への電流印加を追加する。このような溶接後の追加の通電は、後通電と称される。後通電の印加電流は、溶接時の印加電流よりも低い電流、又は短い印加時間での電流であり、鋼板が溶融には至らず発熱する程度の電流である。この後通電により、継手に剥離荷重が負荷されたときの応力集中部であるナゲット端部において、硬化組織が軟化し、Pなどの偏析が低減する。その結果、溶接金属の組織が改善し、継手が破壊する際の抵抗が高まる。
特開2002−103054号公報 特開2013−78782号公報
特許文献1及び2に開示されるスポット溶接方法は、いずれもC含有量が0.3質量%程度までである鋼板同士の溶接を対象とする。このため、ナゲット端部、すなわち溶接金属のごく一部で組織が改善し、これにより継手特性の改善が図られる。しかし、より多くのCを含有した鋼板では、ナゲット全体にわたり組織を改善することが必要である。このため、後通電のような短時間かつ局所的な熱処理では、継手特性の改善効果は小さい。
更に、ステンレス鋼、TWIP鋼等のような高合金鋼の溶接において、同種の高合金鋼又は低合金鋼との溶接で溶接金属の組成が変化した場合、後通電のような熱処理が施されても、もはや鉄の高温相が室温で安定化することはできない。このため、継手特性の改善効果が得られない。
本発明の目的は、次の特性を有する抵抗スポット溶接方法を提供することである:
・材料の組み合わせを問わず、スポット溶接を行えること;
・十分な継手特性が得られること。
本発明の一実施形態による抵抗スポット溶接方法は、
板材同士を接合するためのスポット溶接方法であって、
少なくとも3層に板材が積み重ねられた積層部を含む板組を準備する準備工程と、
前記板組の前記積層部を一対の電極によって挟み込み、前記積層部を前記電極によって加圧しながら前記電極間に電流を印加して、前記積層部に抵抗スポット溶接を施す溶接工程と、を含む。
前記準備工程では、前記積層部として、最外層に互いに同種の金属の板材を配置するとともに、内層に前記最外層の板材のうちのいずれか一方の板材の材料と同一の材料の板材であって貫通穴を有する板材を配置する。
前記溶接工程では、前記内層の板材における前記貫通穴の位置と前記電極の位置を一致させた状態で抵抗スポット溶接を施す。
このスポット溶接方法の場合、前記最外層の板材のうちのいずれか一方の板材の材料が高C含有鋼であり、他方の板材の材料が低C含有鋼である構成とすることができる。
上記のスポット溶接方法は、下記の構成に変更することができる:
前記最外層の板材の材料が互いに同一であり、
前記内層の板材の材料が前記最外層の板材の材料と同種である。
このスポット溶接方法の場合、前記最外層の板材の材料が低C含有鋼であり、前記内層の板材の材料が高C含有鋼である構成とすることができる。この構成に代えて、前記最外層の板材の材料が高合金鋼である構成とすることができる。
上記のスポット溶接方法は、下記の構成に変更することができる:
前記最外層の板材の材料が互いに同種であり、
前記内層の板材の材料が前記最外層の板材の材料と同種である。
上記のいずれのスポット溶接方法も、前記内層の板材が絶縁被膜を有する構成とすることができる。
上記のいずれのスポット溶接方法も、前記最外層の板材のうちのいずれか一方の板材が当て板である構成とすることができる。
上記のいずれのスポット溶接方法も、前記内層の板材における前記貫通穴の輪郭形状が円形又は正方形であり、前記貫通穴の直径又は一辺の長さが目標のナゲット径よりも大きいことが好ましい。
上記のいずれのスポット溶接方法も、前記最外層の板材の各厚みが3.0mm以下であり、前記内層の板材の全体の厚みが2.4mm以下であることが好ましい。
本発明の抵抗スポット溶接方法は、下記の顕著な効果を有する:
・材料の組み合わせを問わず、スポット溶接を行えること;
・十分な継手特性が得られること。
図1Aは、本実施形態の抵抗スポット溶接方法の手順を模式的に示す断面図であり、積み重ねられる前の板材を示す。 図1Bは、本実施形態の抵抗スポット溶接方法の手順を模式的に示す断面図であり、板材が積み重ねられた積層部についての溶接前の状態を示す。 図1Cは、本実施形態の抵抗スポット溶接方法の手順を模式的に示す断面図であり、溶接中期の状態を示す。 図1Dは、本実施形態の抵抗スポット溶接方法の手順を模式的に示す断面図であり、溶接終期の状態を示す。 図1Eは、本実施形態の抵抗スポット溶接方法の手順を模式的に示す断面図であり、溶接完了後の積層部を示す。
本発明の一実施形態によるスポット溶接方法は、板材同士を接合するために用いられ、準備工程と、溶接工程と、を含む。準備工程は、少なくとも3層に板材が積み重ねられた積層部を含む板組を準備する工程である。溶接工程は、板組の積層部を一対の電極によって挟み込み、積層部を電極によって加圧しながら電極間に電流を印加して、積層部に抵抗スポット溶接を施す工程である。準備工程では、板組の積層部として、最外層に互いに同一又は同種の金属の板材を配置するとともに、内層に貫通穴を有する板材を配置する。溶接工程では、内層の板材における貫通穴の位置と電極の位置を一致させた状態で抵抗スポット溶接を施す。
以下に、本実施形態による抵抗スポット溶接方法について、具体的な態様を説明する。
図1A〜図1Eは、本実施形態の抵抗スポット溶接方法の手順を模式的に示す断面図である。これらの図中、図1Aは、積み重ねられる前の板材を示す。図1Bは、板材が積み重ねられた積層部についての溶接前の状態を示す。図1Cは、溶接中期の状態を示す。図1Dは、溶接終期の状態を示す。図1Eは、溶接完了後の積層部を示す。
本実施形態では、少なくとも3層に板材を組み合わせ、これらの板材をスポット溶接により接合する場合を対象とする。特に、最外層に互いに同種の金属の板材を配置するとともに、内層に最外層のうちのいずれか一方の板材の材料と同一の材料の板材を配置した場合を対象とする。以下では、先ず、最外層の板材として、強度の高い高C含有鋼の板材と、強度の低い低C含有鋼の板材を配置し、内層の板材として、強度の高い高C含有鋼の板材を配置した場合を例示する。
ここで、同種の金属材料とは、化学組成において最も含有量の多い元素が同一である金属材料を意味する。例えば、高C含有鋼と低C含有鋼は同種である。同一の金属材料とは、化学組成が厳密に同一である金属材料のみならず、規格上の呼び名が同一である金属材料を意味する。高C含有鋼は、C含有量が0.4質量%以上のものをいう。低C含有鋼は、C含有量が0.4質量%未満のものをいう。
素材として板組を準備する。図1A及び図1Bに示すように、板組は、3枚の板材1、2、3から構成され、これらの板材1、2、3が順に積み重ねられた3層構造の積層部10を含む。この積層部10において、最外層である第1層及び第3層の板材1、3のうち、第1層の板材1の材料は高C含有鋼である。第3層の板材3の材料は、第1層の板材1の材料と同種の低C含有鋼である。内層である第2層の板材2の材料は、第1層の板材1の材料と同一の高C含有鋼である。
つまり、高C含有鋼の第2層の板材2が、高C含有鋼の第1層の板材1と低C含有鋼の第3層の板材3との間に挟み込まれる。第2層の板材2には、予め貫通穴2aが設けられる。この貫通穴2aの輪郭形状は、円形であっても、正方形であってもよい。実用的には、貫通穴2aは円形である。
第1層及び第3層(最外層)の板材1、3のうち、第2層(内層)の板材2と同種であるが同一でなく、低C含有鋼である第3層の板材3は、当て板であり、構造部品の本質的な形状を形成するものではない。すなわち、高C含有鋼の同一材料である第1層の板材1と第2層の板材2が、構造部品の本質的な形状を形成する。準備工程では、このような構成の積層部10を含む板組を準備する。
準備工程を経た後、スポット溶接による溶接工程に移行する。溶接工程では、先ず、板組の積層部10を一対の電極20、20によって挟み込む。その際、図1Bに示すように、第2層(内層)の板材2に設けられた貫通穴2aの位置と電極20、20の位置を一致させた状態にする。続いて、電極20、20によって積層部10を加圧する。これにより、図1Cに示すように、第1層及び第3層(最外層)の板材1、3が変形し、第2層(内層)の板材2における貫通穴2aの領域で互いに接触した状態になる。
更に、電極20、20によって積層部10を加圧しながら、電極20、20間に電流を印加する。これにより、第1層及び第3層(最外層)の板材1、3の接触領域に電流が流れる。その接触領域は抵抗発熱により溶融して凝固し、図1Dに示すように、ナゲット4が形成される。ナゲット4の周囲では、接触する第1層及び第3層(最外層)の板材1、3同士が圧接される。
また、上記の溶接工程において、第1層及び第3層(最外層)の板材1、3が互いに接触する以前に、電極20、20間に電流を印加するように変更することもできる。この場合、先ず、第1層及び第3層(最外層)の板材1、3は、第2層(内層)の板材2における貫通穴2aの周囲の環状領域で第2層の板材2と接触した状態になる。このため、第1層及び第3層の板材1、3と第2層の板材2との環状接触領域に電流が流れる。これにより、その環状領域が発熱するため、その環状領域内及びその近傍の領域で第1層及び第3層の板材1、3が軟化する。更に、電極20、20間に電流を印加しながら、電極20、20による積層部10の加圧を続けると、軟化した第1層及び第3層(最外層)の板材1、3が変形し、第2層(内層)の板材2における貫通穴2aの領域で互いに接触した状態になる(図1C参照)。これにより、第1層及び第3層(最外層)の板材1、3の接触領域にも電流が流れ、最終的にナゲット4が形成される(図1D参照)。
このようにして積層部10がスポット溶接により接合され、構造部品が製造される(図1E参照)。スポット溶接では、高C含有鋼である第1層(最外層)の板材1と、低C含有鋼である第3層(最外層)の板材3とが、高C含有鋼である第2層(内層)の板材2における貫通穴2aを介して接合される。この接合により、積層部10は、内層の板材2が最外層の板材1、3同士の間で強力に挟み込まれた状態になる。
このように、本実施形態のスポット溶接方法によれば、高C含有鋼の同一材料同士を組み合わせて接合することができる。また、スポット溶接による実質的な接合は、高C含有鋼と低C含有鋼という同種材料である最外層(第1層及び第3層)の板材1、3同士で行われる。このため、溶接金属のC含有量は、高C含有鋼同士の溶接を行った場合よりも低下する。溶接金属のC含有量は、溶接対象の鋼板それぞれのC含有量に依存し、両者のC含有量のほぼ平均となるからである。したがって、溶接金属の硬化に起因した脆弱な組織の生成に伴う破断が生じないことから、十分な継手特性を得ることができる。
上記した本実施形態のスポット溶接方法において、最外層(第1層及び第3層)の板材1、3の材料が互いに同種の金属材料であり、内層(第2層)の板材2の材料が最外層の板材1、3のうちのいずれか一方の板材の材料と同一である限り、それらの材料に限定はない。例えば、上記の実施形態において、内層である第2層の板材2の材料を、最外層である第3層の板材3の材料と同一の低C含有鋼とすることができる。
例えば、鋼系材料でいうと、低C含有鋼と、高C含有鋼等は、互いに同種の金属材料である。その他に、α系(フェライト系)ステンレス鋼と、γ系(オーステナイト系)ステンレス鋼と、TWIP(双晶誘起塑性: TWinning-Induced Plasticity)鋼等は、互いに同種の高合金鋼の金属材料である。Al系材料でいうと、Alと、Al合金等は、互いに同種の金属材料である。
ただし、最外層(第1層及び第3層)の板材1、3の材料が互いに同種の金属材料であり、内層(第2層)の板材2の材料が最外層の板材1、3の材料と同種である構成に変更しても構わない。スポット溶接による実質的な接合が同種の金属材料間で行われるため、接合対象がC含有量又は合金元素含有量の低い金属材料を含んでいれば、溶接金属の硬化が緩和されることに変わりはないからである。
例えば、最外層である第1層の板材1、及び内層である第2層の板材2のうち、いずれか一方の板材を高C含有鋼とし、他方の板材をそれとは同種の高C含有鋼とし、別の最外層である第3層の板材3の材料を低C含有鋼とすることができる。第1層の板材1又は第2層の板材2の材料は、めっき鋼板であってもよい。
最外層(第1層及び第3層)の板材1、3の材料が互いに同一の金属材料であり、内層(第2層)の板材2の材料が最外層の板材1、3の材料と同種である構成に変更しても構わない。スポット溶接による実質的な接合が同一の金属材料間で行われるため、接合対象がC含有量又は合金元素含有量の低い金属材料を含んでいれば、溶接金属の硬化が緩和されることに変わりはないからである。また、各種ステンレス鋼、TWIP鋼等のような高合金鋼同士の溶接、又はAl合金同士の溶接では、継手特性の低下はないからである。
例えば、最外層である第1層及び第3層の板材1、3を低C含有鋼とし、内層である第2層の板材2を高C含有鋼とすることができる。また、最外層である第1層及び第3層の板材1、3と、内層である第2層の板材2とのうち、いずれか一方の層の板材をα系ステンレス鋼とし、他方の層の板材をγ系ステンレス鋼とすることができる。同様に、最外層の板材1、3と、内層の板材2とのうち、いずれか一方の層の板材をAlとし、他方の層の板材をAl合金とすることができる。
また、内層(第2層)の板材2は、表面に塗装等の絶縁被膜が施された絶縁被膜付き鋼板(母材:低C含有鋼、高C含有鋼)であっても構わない。スポット溶接による実質的な接合は、金属材料である最外層(第1層及び第3層)の板材1、3同士で行われるため、内層の板材2の特性として導電性は必須でないからである。
下記の表1に、第1層(最外層)の板材1の材料、内層の板材2の材料、及び第3層(最外層)の板材3の材料の組み合わせの一例を示す。
Figure 2018192529
ステンレス鋼、TWIP鋼などの金属材料を組み合わせる場合、最外層(第1層、第3層)の板材1、3としては、それらの同種の金属材料の中でも、互いに同一又は近似する化学組成の金属材料を採用することが好ましい。また、含有量が6質量%を超える合金元素を含む金属材料を組み合わせる場合、最外層(第1層、第3層)の板材1、3としては、その合金元素が共通する金属材料(より好ましくは同一の金属材料)を採用することが好ましい。
上記した本実施形態のスポット溶接方法において、最外層(第1層及び第3層)の板材1、3のうち、第3層の板材3に代えて第1層の板材1を当て板にしてもよい。もっとも、最外層の板材1、3のうちの一方の板材1、3を必ずしも当て板にする必要はない。すなわち、最外層の板材1、3の両方と内層(第2層)の板材2が構造部品の本質的な形状を形成するものであっても構わない。
板組の積層部10は、少なくとも3層に板材が積み重ねられたものであればよい。すなわち、内層が複数枚の板材を積み重ねられた構成でも構わない。この場合、内層の板材の全てに同軸上に貫通穴を設ければよい。
ここで、上記した本実施形態のスポット溶接方法において、最外層(第1層及び第3層)の板材1、3の各厚みは、構造部品の設計仕様に応じて設定される。例えば、最外層の板材1、3の各厚みは、実用的には、0.3mm〜3.0mmである。その厚みが薄過ぎると、強度を確保することができない。このため、その厚みの好ましい下限は、0.3mmであり、より好ましくは0.5mmである。一方、その厚みが厚過ぎると、スポット溶接時に電極からの加圧による変形が困難になり、最外層の板材1、3同士の接触が不十分になる。このため、その厚みの好ましい上限は、3.0mmであり、より好ましくは2.0mmであり、更に好ましくは1.6mmである。
また、内層(第2層)の板材2の厚み(内層が2層以上の場合は内層全体の厚み)は、最外層(第1層及び第3層)の板材1、3の各厚みに関連し、構造部品の設計仕様に応じて設定される。例えば、内層の板材2の全体の厚みは、実用的には、0.3mm〜2.4mmである。その厚みが薄過ぎると、強度を確保することができない。このため、その厚みの好ましい下限は、0.3mmであり、より好ましくは0.5mmである。一方、その厚みが厚過ぎると、スポット溶接時に電極からの加圧による最外層の板材1、3の変形量が過大になり、最外層の板材1、3同士の接触が不十分になる。このため、その厚みの好ましい上限は、2.4mmであり、より好ましくは1.8mmであり、更に好ましくは1.2mmである。
スポット溶接に用いられる電極20、20は、DR(ドームラジアス)型、CF(センターフラット)型、及びSR(シングルアール)型のいずれでもよい。DR型電極は、先端部がドーム状に突出した概ね円柱形状であって、その先端面が曲率半径の大きい凸曲面に形成されたものである。CF型電極は、先端部が円錐台状に突出した概ね円柱形状であって、その先端面が平坦面に形成されたものである。SR型電極は、概ね円柱形状であって、その先端面が一定の曲率半径の凸曲面に形成されたものである。
ここで、上記した本実施形態のスポット溶接方法において、内層(第2層)の板材2に設けられた貫通穴2aの直径は、目標のナゲット径よりも大きいことが好ましい。その理由を以下に示す。
一般に、スポット溶接によって構造部品を製造するにあたり、設計仕様により、目標のナゲット径(ナゲットの直径)NDaimが定められる。すなわち、スポット溶接によって形成されるナゲットは、目標のナゲット径NDaim以上であることが要求される。目標のナゲット径NDaimは、電極本体の直径Dよりも小さい。
通常、目標のナゲット径NDaimは、接合対象の板材の厚みt[mm]を指標とし、X√t[mm]で表される。その係数Xは、設計仕様により定められる。目標のナゲット径NDaimは、例えば5√tとされる。
これに対し、本実施形態のスポット溶接方法では、ナゲット4は、最外層(第1層及び第3層)の板材1、3の接触領域、すなわち、内層(第2層)の板材2における貫通穴2aの領域に形成される。したがって、目標のナゲット径NDaim以上のナゲット4を形成するために、貫通穴2aの直径(貫通穴が円形である場合)又は一辺の長さ(貫通穴が正方形である場合)は、目標のナゲット径NDaimよりも大きくする必要がある。より安全には、貫通穴2aの直径又は一辺の長さは、電極本体の直径D以上とすればよい。
ただし、貫通穴2aの直径又は一辺の長さがあまりに大きいと、外層(第1層及び第3層最)の板材1、3同士の接合による内層(第2層)の板材2の挟み込みが不十分になる。このため、その貫通穴2aの直径又は一辺の長さは、電極本体の直径Dの2.5倍以下であることが好ましい。
本発明の効果を確認するため、前記図1A〜図1Eに示す本実施形態のスポット溶接方法を適用し、下記の溶接試験を実施した。
[実施例1]
試験用の板材として、厚みが1.6mmである非めっきの高C含有鋼の板材(以下、「高C鋼板」ともいう)と、厚みが1.6mmである非めっきの低C含有鋼の板材(以下、「低C鋼板」ともいう)を多数準備した。高C鋼板の幾つかには、レーザカットにより直径が20mmの貫通穴を形成した。高C鋼板のC含有量は0.55質量%であった。低C鋼板のC含有量は0.01質量%未満であった。
本発明例1として、穴なし高C鋼板、穴有り高C鋼板、及び穴なし低C鋼板を順に積み重ねた3層構造の板組を準備した。比較例1として、穴なし高C鋼板、及び穴なし高C鋼板を順に積み重ねた2層構造の板組を準備し、スポット溶接を行った。
それぞれのスポット溶接では、溶接電流を種々変更した。共通する溶接条件は下記のとおりである。
・溶接機:単層交流電源のエアー加圧式スポット溶接機
・電極:DR型電極(先端面の直径:φ6mm、先端面の曲率半径:R40mm、本体直径:φ16mm)
・加圧力:400kgf(=3.92kN)
・通電時間:3層構造では40cycle、2層構造では20cycle(1cycleは1/60秒を意味する。)
スポット溶接を行った後の各板組について、継手特性を評価した。継手特性の評価は、JIS Z3136に準拠した引張せん断強さ(TSS)で行った。更に、各板組について、ナゲットの中央を通るように切断し、その断面を鏡面研磨し、ナゲット(溶接金属)のビッカース硬さ(Hv)を測定した。ビッカース硬さの測定は、JIS Z2244に準拠して行った。試験荷重は1kgfとし、硬さは、測定した5点の平均値とした。下記の表2に試験条件と試験結果を示す。
Figure 2018192529
表2に示す結果から以下のことが示される。本発明例1では、溶接金属のビッカース硬さが約600であり、第1層の高C鋼板のナゲット外周(溶接熱影響部)でプラグ破断した。これに対し、比較例1では、溶接金属のビッカース硬さが約750であり、高C鋼板同士の接合界面である溶接金属(ナゲット)内で脆性破断した。したがって、本発明例1の溶接条件に従えば、溶接金属の硬化を抑え、溶接金属内での脆性な破断を回避できることがわかった。
[実施例2]
試験用の板材として、厚みが1.6mmである高C鋼板と、厚みが1.4mmである低C鋼板を多数準備した。高C鋼板の幾つかには、上記実施例1と同様に貫通穴を形成した。高C鋼板のC含有量は0.55質量%であった。低C鋼板のC含有量は0.15質量%であった。
本発明例2として、穴なし低C鋼板、穴有り高C鋼板、及び穴なし低C鋼板を順に積み重ねた3層構造の板組を準備した。比較例2として、穴なし高C鋼板、及び穴なし低C鋼板を順に積み重ねた2層構造の板組を準備し、スポット溶接を行った。
それぞれのスポット溶接では、上記実施例1と同様に溶接電流を種々変更した。共通する溶接条件、及び評価方法は上記実施例1と同様である。
Figure 2018192529
表3に示す結果から以下のことが示される。本発明例2では、溶接金属のビッカース硬さが約450であり、第1層の低C鋼板のナゲット外周でプラグ破断した。これに対し、比較例2では、溶接金属のビッカース硬さが約670であり、高C鋼板と低C鋼板の接合界面である溶接金属内で脆性破断した。したがって、本発明例2の溶接条件に従えば、溶接金属の硬化を抑え、溶接金属内での脆性な破断を回避できることがわかった。
[実施例3]
試験用の板材として、厚みが1.4mmであるTWIP鋼板と、厚みが1.4mmである低合金鋼板を多数準備した。低合金板の幾つかには、上記実施例1と同様に貫通穴を形成した。TWIP鋼板について、C含有量は0.6質量%であり、Si含有量は0.3質量%であり、Mn含有量は20%であった。低合金鋼板について、C含有量は0.2質量%であり、Si含有量は0.05質量%であり、Mn含有量は1.2質量%であった。
本発明例3として、穴なしTWIP鋼板、穴有り低合金鋼板、及び穴なしTWIP鋼板を順に積み重ねた3層構造の板組を準備した。比較例3として、穴なしTWIP鋼板、及び穴なし低合金鋼板を順に積み重ねた2層構造の板組を準備し、スポット溶接を行った。
それぞれのスポット溶接では、上記実施例1と同様に溶接電流を種々変更した。共通する溶接条件、及び評価方法は上記実施例1と同様である。
Figure 2018192529
表4に示す結果から以下のことが示される。本発明例3では、溶接金属のビッカース硬さが約410であり、第1層のTWIP鋼板のナゲット外周でプラグ破断した。これに対し、比較例3では、溶接金属のビッカース硬さが約720であり、TWIP鋼板と低合金鋼板の接合界面である溶接金属内で脆性破断した。したがって、本発明例3の溶接条件に従えば、溶接金属の硬化を抑え、溶接金属内での脆性な破断を回避できることがわかった。
本発明は、あらゆる材料のスポット溶接に有効に利用できる。
1:第1層(最外層)の板材、 2:第2層(内層)の板材、
2a:貫通穴、 3:第3層(最外層)の板材、 4:ナゲット、
10:板組の積層部、 20:電極

Claims (8)

  1. 板材同士を接合するための抵抗スポット溶接方法であって、
    少なくとも3層に板材が積み重ねられた積層部を含む板組を準備する準備工程と、
    前記板組の前記積層部を一対の電極によって挟み込み、前記積層部を前記電極によって加圧しながら前記電極間に電流を印加して、前記積層部に抵抗スポット溶接を施す溶接工程と、を含み、
    前記準備工程では、前記積層部として、最外層に互いに同一の金属の板材を配置するとともに、内層に前記最外層の板材の材料と同種の材料の板材であって貫通穴を有する板材を配置し、
    前記溶接工程では、前記内層の板材における前記貫通穴の位置と前記電極の位置を一致させた状態で抵抗スポット溶接を施す、抵抗スポット溶接方法。
  2. 請求項1に記載の抵抗スポット溶接方法であって、
    前記最外層の板材の材料が低C含有鋼であり、前記内層の板材の材料が高C含有鋼である、抵抗スポット溶接方法。
  3. 請求項1に記載の抵抗スポット溶接方法であって、
    前記最外層の板材の材料が高合金鋼である、抵抗スポット溶接方法。
  4. 板材同士を接合するための抵抗スポット溶接方法であって、
    少なくとも3層に板材が積み重ねられた積層部を含む板組を準備する準備工程と、
    前記板組の前記積層部を一対の電極によって挟み込み、前記積層部を前記電極によって加圧しながら前記電極間に電流を印加して、前記積層部に抵抗スポット溶接を施す溶接工程と、を含み、
    前記準備工程では、前記積層部として、最外層に互いに同種の金属の板材を配置するとともに、内層に前記最外層の板材の材料と同種の材料の板材であって貫通穴を有する板材を配置し、
    前記溶接工程では、前記内層の板材における前記貫通穴の位置と前記電極の位置を一致させた状態で抵抗スポット溶接を施す、抵抗スポット溶接方法。
  5. 請求項1〜4のいずれか1項に記載の抵抗スポット溶接方法であって、
    前記内層の板材が絶縁被膜を有する、抵抗スポット溶接方法。
  6. 請求項1〜5のいずれか1項に記載の抵抗スポット溶接方法であって、
    前記最外層の板材のうちのいずれか一方の板材が当て板である、抵抗スポット溶接方法。
  7. 請求項1〜6のいずれか1項に記載の抵抗スポット溶接方法であって、
    前記内層の板材における前記貫通穴の輪郭形状が円形又は正方形であり、前記貫通穴の直径又は一辺の長さが目標のナゲット径よりも大きい、抵抗スポット溶接方法。
  8. 請求項1〜7のいずれか1項に記載の抵抗スポット溶接方法であって、
    前記最外層の板材の各厚みが3.0mm以下であり、前記内層の板材の全体の厚みが2.4mm以下である、抵抗スポット溶接方法。
JP2018166396A 2018-09-05 2018-09-05 抵抗スポット溶接方法 Active JP6648791B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018166396A JP6648791B2 (ja) 2018-09-05 2018-09-05 抵抗スポット溶接方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018166396A JP6648791B2 (ja) 2018-09-05 2018-09-05 抵抗スポット溶接方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015002748A Division JP6428272B2 (ja) 2015-01-09 2015-01-09 抵抗スポット溶接方法

Publications (2)

Publication Number Publication Date
JP2018192529A true JP2018192529A (ja) 2018-12-06
JP6648791B2 JP6648791B2 (ja) 2020-02-14

Family

ID=64571207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018166396A Active JP6648791B2 (ja) 2018-09-05 2018-09-05 抵抗スポット溶接方法

Country Status (1)

Country Link
JP (1) JP6648791B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113458565A (zh) * 2020-03-30 2021-10-01 双叶产业株式会社 接合构件的制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6291792B1 (en) * 1992-12-04 2001-09-18 Daimlerchrysler Ag Welded joint between a sheet-steel component and a light sheet metal component, and a welding method
JP2010240678A (ja) * 2009-04-02 2010-10-28 Seki Kogyo Kk プレート積層構造、プレート補強構造、プレート接続構造及びプレート積層方法
JP2014104502A (ja) * 2012-11-29 2014-06-09 Kobe Steel Ltd 異材接合体用構造体の製造方法及び異材接合体の製造方法
JP2016059954A (ja) * 2014-09-19 2016-04-25 新日鐵住金株式会社 抵抗スポット溶接方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6291792B1 (en) * 1992-12-04 2001-09-18 Daimlerchrysler Ag Welded joint between a sheet-steel component and a light sheet metal component, and a welding method
JP2010240678A (ja) * 2009-04-02 2010-10-28 Seki Kogyo Kk プレート積層構造、プレート補強構造、プレート接続構造及びプレート積層方法
JP2014104502A (ja) * 2012-11-29 2014-06-09 Kobe Steel Ltd 異材接合体用構造体の製造方法及び異材接合体の製造方法
JP2016059954A (ja) * 2014-09-19 2016-04-25 新日鐵住金株式会社 抵抗スポット溶接方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113458565A (zh) * 2020-03-30 2021-10-01 双叶产业株式会社 接合构件的制造方法
JP2021159919A (ja) * 2020-03-30 2021-10-11 フタバ産業株式会社 接合部材の製造方法
JP7152439B2 (ja) 2020-03-30 2022-10-12 フタバ産業株式会社 接合部材の製造方法
US11590600B2 (en) 2020-03-30 2023-02-28 Futaba Industrial Co., Ltd. Manufacturing method of joined member

Also Published As

Publication number Publication date
JP6648791B2 (ja) 2020-02-14

Similar Documents

Publication Publication Date Title
JP2016059954A (ja) 抵抗スポット溶接方法
KR100785557B1 (ko) 알루미늄재와의 이질재료 용접 접합용 강판, 및 이질재료접합체
KR101744427B1 (ko) 조인트 강도가 우수한 고강도 강판의 스폿 용접 방법
US7752728B2 (en) Method of producing a material composite with explosion-welded intermediate piece
EP1802417B1 (en) Methods for extending the life of alloy steel welded joints by elimination and reduction of the haz
JP6447752B2 (ja) 抵抗溶接部を有する自動車用部材
JP2005288524A (ja) 異種材料の抵抗溶接方法、アルミニウム合金材および異種材料の抵抗溶接部材
US11524351B2 (en) Multistage joining process with thermal sprayed layers
JP6572986B2 (ja) 抵抗スポット溶接方法および抵抗スポット溶接の溶接条件判定方法
JP6360056B2 (ja) 抵抗スポット溶接方法
JP2014000580A (ja) 異材接合体、異材接合体用構造体、及び、異材接合体用リベット
WO2018123350A1 (ja) 抵抗スポット溶接方法
KR100578511B1 (ko) 접합강도와 내식성이 우수한 내환경성 클래드 판재 및 그제조방법
JP6428272B2 (ja) 抵抗スポット溶接方法
JP6648791B2 (ja) 抵抗スポット溶接方法
JP2017209725A (ja) 接合構造体及び接合構造体の製造方法
JP6037018B2 (ja) 抵抗スポット溶接方法
JP6315161B1 (ja) 抵抗スポット溶接方法
CN112536523A (zh) 连接具有不同规格比的钢制工件的方法
JP2022000315A (ja) ウェルドボンド継手の製造方法
JP2005021899A (ja) 金属クラッド板およびその製造方法
JP6811063B2 (ja) 抵抗スポット溶接方法および抵抗スポット溶接継手の製造方法
WO2024063011A1 (ja) 溶接部材およびその製造方法
WO2023181680A1 (ja) 抵抗スポット溶接継手およびその製造方法
JP6794006B2 (ja) 抵抗スポット溶接継手、抵抗スポット溶接方法および抵抗スポット溶接継手の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191230

R151 Written notification of patent or utility model registration

Ref document number: 6648791

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151