JP2018192520A - ガスシールドアーク溶接用フラックス入りワイヤ、及び溶接継手の製造方法 - Google Patents

ガスシールドアーク溶接用フラックス入りワイヤ、及び溶接継手の製造方法 Download PDF

Info

Publication number
JP2018192520A
JP2018192520A JP2017100982A JP2017100982A JP2018192520A JP 2018192520 A JP2018192520 A JP 2018192520A JP 2017100982 A JP2017100982 A JP 2017100982A JP 2017100982 A JP2017100982 A JP 2017100982A JP 2018192520 A JP2018192520 A JP 2018192520A
Authority
JP
Japan
Prior art keywords
flux
oxide
cored wire
less
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017100982A
Other languages
English (en)
Other versions
JP6953789B2 (ja
Inventor
耕太郎 渡邊
Kotaro Watanabe
耕太郎 渡邊
富士本 博紀
Hironori Fujimoto
博紀 富士本
貴幸 原野
Takayuki Harano
貴幸 原野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2017100982A priority Critical patent/JP6953789B2/ja
Publication of JP2018192520A publication Critical patent/JP2018192520A/ja
Application granted granted Critical
Publication of JP6953789B2 publication Critical patent/JP6953789B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Nonmetallic Welding Materials (AREA)

Abstract

【課題】耐低温割れ性に優れ、高温強度に優れた溶接金属が得られ、スパッタの発生量が少なく、且つ立向溶接性に優れたフラックス入りワイヤ、及び溶接継手の製造方法を提供する。【解決手段】本発明の一態様に係るガスシールドアーク溶接用フラックス入りワイヤでは、フラックスが、F換算値の合計が0.11%以上2.00%未満である弗化物と、合計3.50%以上13.00%未満の、Cr酸化物及びTi酸化物を含む酸化物と、0%以上10.0%未満の鉄粉とを含み、CaF2の含有量が1.00%未満であり、Ti酸化物の含有量が2.50%以上8.50%未満であり、Cr酸化物の含有量が0.10%以上10.00%未満であり、Ca酸化物の含有量が0.20%未満であり、さらに、弗化物、酸化物、及び炭酸塩を除く化学成分が所定範囲内とされる。【選択図】図1

Description

本発明は、ガスシールドアーク溶接用フラックス入りワイヤ、及び溶接継手の製造方法に関する。
火力発電ボイラや石油化学精製装置等の耐熱、耐圧配管に用いられる高温材料としては、フェライト系耐熱鋼ならびにオーステナイト系耐熱鋼がよく知られている。フェライト系耐熱鋼は、Crを数%〜12%、及びMoを数%含むことを特徴とする。オーステナイト系耐熱鋼に比べて熱膨張係数が小さくかつ安価であることから、使用環境に応じて様々なフェライト系耐熱鋼が多量に使用されている。
これらフェライト系耐熱鋼を使用する場合、溶接によりこれを組み立てて、構造物とするのが一般的である。そして、溶接に際しては、母材であるフェライト系耐熱鋼と類似の合金成分を有し、類似の組織を形成可能なフェライト系耐熱鋼用溶接材料が広く使用されている。
ところで、これらのフェライト系耐熱鋼用溶接材料を用いて溶接する場合、例えば、非特許文献1に記載の通り、溶接低温割れが問題となることが広く知られている。それを防止するため、非特許文献1に併せて示されるように、溶接前に被溶接部を予熱する作業が取られている。
また、特許文献1には、高Crフェライト系耐熱鋼の溶接低温割れを防止するために、被覆アーク溶接、TIG溶接、サブマージアーク溶接などの溶接法に関わらず、150〜300℃の予熱を行うとの具体的な方法が示されている。さらに、特許文献1では、溶接低温割れを防止するためには、溶接終了後に溶接部が300℃未満に冷却される前に溶接部を母材厚さ25mmあたり、150〜300℃の温度に10分以上2時間以下に保持する直後熱が必要であることが記載されている。
しかしながら、これら文献に示されている予熱作業は被溶接部を高温に加熱するため、溶接効率を著しく損ない、溶接コストを増大させる。そのため、予熱作業の省略もしくは予熱温度の低下等が望まれている。加えて、直後熱も、溶接後に溶接部が冷却される前に溶接部を高温に加熱、保持する必要があるため、省略が望まれる。
予熱や直後熱の省略を可能とする溶接材料について、例えば、特許文献2には、Cなどの合金元素の量を調整し、さらにCrおよびMoをそれぞれ0.8〜1.5%および0.4〜1.2%含むTIG溶接材料が提案されている。しかしながら、ここで提案されている技術は、元々、低温割れが問題となりにくいTIG溶接に使用するソリッドワイヤに関するものであり、近年、適用範囲が広がりつつあるフラックス入りワイヤに適用し得るものではない。
一方、特許文献3には、必須元素としてCoを0.1〜10.0%含有し、Moを任意に0.1〜3.0%含有する溶接材料用鋼材が開示されている。特許文献3では、Coの含有を必須とした上記溶接材料用鋼材を用いて製造される被覆アーク溶接材料やフラックス入りワイヤを用いることにより、予熱が省略できるとされている。また、特許文献4には、外皮又はフラックスにVを含有させることにより、耐低温割れ性を向上させた490〜780MPa級高張力用フラックス入りワイヤが提案されている。しかしながら、特許文献3に提案されている溶接材料は高価なCoの含有を必須としている点で産業利用上好ましくない。特許文献4については、高温での溶接金属の強度については何ら考慮がなされていない。
特許文献5は、フラックス入りワイヤにCaF主体とする弗化物を添加することで、溶接金属中に含まれる拡散性水素量を低減させ、耐低温割れ性を改善した画期的な技術を開示している。しかしながら、特許文献5では溶接金属の高温強度を確保するための手段について検討されていない。
本発明者らは、前記した課題を解決するために調査を行った結果、フラックス入りワイヤにおいて、フラックス中の弗化物量を適正な範囲に管理することで、溶接金属中の拡散性水素量を低減し、予熱作業が簡略化できること、さらに、ワイヤ全体として合金成分を所定の範囲とすることで、必要な高温強度との両立が可能となることが分かった。
その結果、高温強度および耐低温割れ性について良好な溶接部を有する溶接継手が得られた。しかし、シールドガスが100%COガスである溶接作業に、上述のフラックス入りワイヤを用いた場合には、スパッタが多発し、作業性が著しく悪いという問題が起こった。100%COシールドガスは、Ar−CO混合シールドガスに比べて、安価であるので、100%COシールドガスを用いる溶接に適用可能なフラックス入りワイヤは溶接施工のコストを低減させることができる。さらに、作業性に関し、フラックス入りワイヤには立向溶接性に優れること、具体的には立向溶接に適用された場合に溶融部の垂れを抑制可能であることが要求されている。立向溶接性に優れるフラックス入りワイヤは、幅広い溶接現場において利用可能である。しかし従来技術によれば、スパッタ発生量の抑制と、立向溶接性の向上との両方が達成された、耐低温割れ性及び高温強度に優れたフェライト系耐熱鋼用溶接材料は提供されていなかった。特に、上述された特許文献5の耐低温割れ性向上技術である弗化物添加には、スパッタ発生量を増大させるという欠点がある。
現代溶接技術体系<第14巻> 耐熱鋼・耐熱材料の溶接、産報出版株式会社(1980)、P.55−58
特開平8−164481号公報 特開2002−1579号公報 特開2006−9070号公報 特開平8−257785号公報 特開2015−27700号公報
本発明の課題は、耐低温割れ性に優れ、高温強度に優れた溶接金属が得られ、スパッタの発生量が少なく、且つ立向溶接性に優れるフラックス入りワイヤ、及び溶接継手の製造方法を提供することである。
本発明の要旨は次のとおりである。
(1)本発明の一態様に係るガスシールドアーク溶接用フラックス入りワイヤは、鋼製外皮の内部にフラックスが充填されたものであって、前記フラックスが、前記フラックス入りワイヤの全質量に対するF換算値の合計が0.11%以上2.00%未満である弗化物と、前記フラックス入りワイヤの全質量に対する質量%で合計3.50%以上13.00%未満の、Cr酸化物及びTi酸化物を含む酸化物と、前記フラックス入りワイヤの全質量に対する質量%で0%以上10.0%未満の鉄粉と、を含み、前記弗化物に含まれるCaFの含有量が前記フラックス入りワイヤの全質量に対する質量%で0%以上1.00%未満であり、前記Ti酸化物の含有量が、前記フラックス入りワイヤの全質量に対するTiO換算の質量%で2.50%以上8.50%未満であり、前記Cr酸化物の含有量が、前記フラックス入りワイヤの全質量に対するCr換算の質量%で0.10%以上10.00%未満であり、前記酸化物に含まれるCa酸化物の含有量が、前記フラックス入りワイヤの全質量に対するCaO換算の質量%で0%以上0.20%未満であり、さらに、前記弗化物、前記酸化物、及び炭酸塩を除く化学成分が、前記フラックス入りワイヤの全質量に対する質量%で、C:0.003〜0.150%、Si:0.05〜2.00%、Mn:0.4〜3.5%、P:0.020%以下、S:0.020%以下、Cr:0.30〜13.00%、及びMo:0.10〜2.50%、を含有し、残部がFeおよび不純物からなる。
(2)上記(1)に記載のガスシールドアーク溶接用フラックス入りワイヤにおいて、さらに、前記フラックス入りワイヤの前記弗化物、前記酸化物、及び前記炭酸塩を除く前記化学成分が、前記フラックス入りワイヤの全質量に対する質量%で、前記化学成分に含まれるFeの一部に代えて、V:0.50%以下、Nb:0.50%以下、Ti:0.500%以下、及びTa:0.50%以下からなる群から選択される一種以上を含有してもよい。
(3)上記(1)又は(2)に記載のガスシールドアーク溶接用フラックス入りワイヤにおいて、さらに、前記フラックス入りワイヤの前記弗化物、前記酸化物、及び前記炭酸塩を除く前記化学成分が、前記フラックス入りワイヤの全質量に対する質量%で、前記化学成分に含まれるFeの一部に代えて、Cu:1.00%以下、Ni:1.0%以下、Co:5.0000%以下、及びB:0.0200%以下からなる群から選択される一種以上を含有してもよい。
(4)上記(1)〜(3)のいずれか一項に記載のガスシールドアーク溶接用フラックス入りワイヤにおいて、さらに、前記フラックス入りワイヤの前記弗化物、前記酸化物、及び前記炭酸塩を除く前記化学成分が、前記フラックス入りワイヤの全質量に対する質量%で、前記化学成分に含まれるFeの一部に代えて、W:4.0000%以下を含有してもよい。
(5)上記(1)〜(4)のいずれか一項に記載のガスシールドアーク溶接用フラックス入りワイヤにおいて、さらに、前記フラックス入りワイヤの前記弗化物、前記酸化物、及び前記炭酸塩を除く前記化学成分が、前記フラックス入りワイヤの全質量に対する質量%で、前記化学成分に含まれるFeの一部に代えて、Ca:0.500%以下、REM:0.0100%以下、Mg:0.80%以下、及びAl:0.400%以下を含有してもよい。
(6)上記(1)〜(5)のいずれか一項に記載のガスシールドアーク溶接用フラックス入りワイヤにおいて、前記フラックスが、さらに、CaCO、NaCO、及びMgCOからなる群から選択される一種以上の前記炭酸塩を、前記フラックス入りワイヤの全質量に対する質量%で合計2.00%以下含有してもよい。
(7)上記(1)〜(6)のいずれか一項に記載のガスシールドアーク溶接用フラックス入りワイヤにおいて、前記弗化物が、CaF、MgF、NaAlF、NaF、及びKZrFからなる群から選択される一種以上であり、式1によって算出されるX値が3.00%以下であってもよい。
X=[NaAlF]+[NaF]+[MgF]+1.5×([KZrF])+3.5×([CaF])・・・(式1)
ただし、前記式1に記載の括弧が付された化学式は、前記化学式に係る前記弗化物の、前記フラックス入りワイヤの全質量に対する質量%での含有量を表し、含有されない前記弗化物の含有量は0%とみなす。
(8)上記(1)〜(7)のいずれか一項に記載のガスシールドアーク溶接用フラックス入りワイヤにおいて、前記酸化物が、前記Cr酸化物、前記Ti酸化物、並びにFe酸化物、Ba酸化物、Na酸化物、Si酸化物、Zr酸化物、Mg酸化物、Al酸化物、Mn酸化物、K酸化物、及びCa酸化物からなる群から選択される一種以上であり、前記Cr酸化物、前記Ti酸化物、前記Fe酸化物、前記Ba酸化物、前記Na酸化物、前記Si酸化物、前記Zr酸化物、前記Mg酸化物、前記Al酸化物、前記Mn酸化物、前記K酸化物、及び前記Ca酸化物の含有量の合計が、前記フラックス入りワイヤの前記全質量に対する、Cr、TiO、FeO、BaO、NaO、SiO、ZrO、MgO、Al、MnO、KO、及びCaOの各々の換算値で3.50%以上13.00%未満であり、式2によって算出されるV値が5.00以上27.00以下であってもよい。
V=([TiO]+1.2×[SiO]+1.4×[Al]+1.5×[ZrO])/(F)1/2:式2
ただし、前記式2に記載の括弧が付された化学式は、前記化学式に係る前記酸化物の、前記フラックス入りワイヤの全質量に対する質量%での含有量を表し、前記式2に記載の記号「F」は、前記フラックス入りワイヤの全質量に対する前記弗化物の前記F換算値の合計を示し、含有されない前記酸化物の含有量は0%とみなす。
(9)上記(1)〜(8)のいずれか一項に記載のガスシールドアーク溶接用フラックス入りワイヤにおいて、前記鋼製外皮がスリット状の隙間のない形状であってもよい。
(10)上記(1)〜(8)のいずれか一項に記載のガスシールドアーク溶接用フラックス入りワイヤにおいて、前記鋼製外皮がスリット状の隙間を有する形状であってもよい。
(11)上記(1)〜(10)のいずれか一項に記載のガスシールドアーク溶接用フラックス入りワイヤは、前記鋼製外皮の表面にパーフルオロポリエーテル油を有してもよい。
(12)本発明の別の態様に係る溶接継手の製造方法では、上記(1)〜(11)のいずれか一項に記載のガスシールドアーク溶接用フラックス入りワイヤを用いて、鋼材を溶接する。
本発明は、高温強度に優れた溶接金属を得ることができ、耐低温割れ性が優れ、スパッタの発生量が少なく、さらに立向溶接性に優れたガスシールドアーク溶接用フラックス入りワイヤ及び溶接継手の製造方法を提供することができる。特に本発明は、高温強度が必要とされる部材に使用されるフェライト系耐熱鋼の溶接、及びシールドガスが100%COである溶接に適用された場合であっても、耐低温割れ性に優れ、スパッタ発生が少なく、立向溶接性に優れ、高い溶接施工効率で溶接可能であるガスシールドアーク溶接用フラックス入りワイヤ及び溶接継手の製造方法を提供することができる。
X値とスパッタ量との関係を示すグラフである。 (a)エッジ面を突合せて溶接して作ったワイヤ、(b)エッジ面を突合せて作ったワイヤ、及び(c)エッジ面をかしめて作ったワイヤの断面の写真である。 一般的な立向溶接作業性評価試験において「垂れ落ち無し」と判定される溶接部を例示する写真である。 一般的な立向溶接作業性評価試験において「垂れ落ち有り」と判定される溶接部を例示する写真である。
本発明者らは、高温強度が求められるガスシールドアーク溶接用フラックス入りワイヤにおいて、種々のスラグ成分量を変えて実験した。その結果、本発明者らは、Crを0.3〜13.0%含有したフラックス入りワイヤを用いて鋼材を溶接した場合に問題となる低温割れを改善することができ、かつ、シールドガスが100%COガスである溶接に用いられた場合でもスパッタの発生量を抑制することができる弗化物及び酸化物の種類と添加量とを見出した。
本発明は以上のような検討の結果なされたものである。以下、本実施形態に係るフラックス入りワイヤについて、スラグ成分と合金成分とに分けて説明する。なお、フラックス入りワイヤについての説明中の成分の含有量は、特に断りが無い限り、フラックス入りワイヤの全質量に対する質量%を表す。
本実施形態に係るガスシールドアーク溶接用フラックス入りワイヤは、鋼製外皮と、鋼製外皮に包まれたフラックスとを有する。鋼製外皮の内部に充填されるフラックスは、弗化物、酸化物、及び任意に含まれ得る炭酸塩等のスラグ成分と、金属粉及び合金粉等の合金成分とを含む。また、充填率の調整のために、フラックスは鉄粉を含む場合もある。最初に、ワイヤの鋼製外皮の内部に挿入されるスラグ成分について説明する。
(弗化物の、フラックス入りワイヤの全質量に対するF換算値の合計:0.11%以上2.00%未満)
(弗化物の種類:好ましくはCaF、MgF、NaAlF、NaF、及びKZrFからなる群から選択される一種以上)
本実施形態に係るフラックス入りワイヤは、弗化物を、フラックス入りワイヤの全質量に対するF換算値(以下、単に「F換算値」と称する場合がある)の合計で0.11%以上含有する。フラックス入りワイヤの全質量に対するF換算値とは、弗化物に含まれる弗素(F)の量を、フラックス入りワイヤの全質量に対する質量%で示すものである。例えば、フラックス入りワイヤの全質量に対する質量%でn%のCaFがフラックス入りワイヤに含まれる場合、CaFのF換算値は以下の式Aによって求められる。
(CaFのF換算値)=n×(19.00×2/78.08)・・・(式A)
上の式A中の「19.00」は、Fの原子量であり、「2」は、1個のCaFに含まれるF原子の個数であり、「78.08」は、CaFの分子量である。CaF以外の弗化物に関しても、同様にF換算値が算出できる。フラックス中に複数種類の弗化物が含まれる場合、各弗化物のF換算値の合計値が、フラックスに含まれる弗化物のF換算値とみなされる。なお、弗化物の種類は特に制限されないが、例えばCaF、MgF、NaAlF、NaF、及びKZrFからなる群から選択される一種以上とすることができる。
弗化物は、溶接金属の拡散性水素量を低減させることができる。弗化物のF換算値の合計が0.11%未満では、溶接金属の拡散性水素量を安定して低減し、耐低温割れ性を満足することができない。溶接金属の拡散性水素量をより低減するために、弗化物のF換算値合計の下限を0.14%、0.20%、0.30%、0.40%、又は、0.50%としてもよい。
一方、弗化物の含有量が過剰である場合、溶接中のスパッタ量が増大する。また、弗化物の含有量が過剰である場合、アーク力が高まり、溶融金属が圧迫されることにより、立向溶接性が悪くなる場合がある。従って、弗化物のF換算値の合計量を2.00%未満とする必要がある。弗化物のF換算値の合計量の上限値を1.95%、1.90%、1.70%、又は1.35%としてもよい。
弗化物が拡散性水素量を低減する理由については、必ずしも明らかではないが、弗化物が溶接アークにより分解し、生成されたフッ素が水素と結合してHFガスとして大気中に散逸したか、又は、そのまま溶接金属中に水素がHFとして固定されたためではないかと考えられている。また、弗化物の種類によって、スパッタの発生量が異なる理由については、必ずしも明らかではないが、本発明者らは、弗化物と化学結合している金属元素が、何らかの理由でスパッタ生成に影響していると推測している。
(CaF:フラックス入りワイヤの全質量に対する質量%で0%以上1.00%未満)
CaFは、MgF、NaAlF、NaF、及びKZrFよりも、100%COガスを使用するガスシールドアーク溶接において、スパッタを多量に発生させる。従って、本実施形態に係るフラックス入りワイヤはCaFを含有しないことが好ましい。しかしながら、フラックスの原料にCaFが含有されている場合がある。その場合、CaFの含有量を1.00%未満に制限する。CaFの含有量を1.00%未満に制限すれば、スパッタ量は許容可能な範囲内となる。スパッタの発生量をさらに低減するために、CaFの含有量の上限を0.75%、又は、0.50%としてもよい。本実施形態に係るフラックス入りワイヤはCaFを必要としないので、CaFの含有量の下限値は0%である。
(X値:好ましくは3.00%以下)
シールドガスが100%COガスであるガスシールドアーク溶接において、CaFがスパッタを増加させることは上述した。さらに、本発明者らは、多種の弗化物を含有し、鋼製外皮にスリット状の隙間がなく、植物油が鋼製外皮に塗布された、1.2mmφのワイヤを多数作成して、これらのスパッタ特性を調査した。銅製の捕集箱内で、鋼板上に、ビードオンプレートで、溶接電流280A、電圧27V、溶接速度25cm/min、シールドガス種100%CO、シールドガス流量25l/min、及び予熱なしの条件で、上述の種々のフラックス入りワイヤを用いて、1分間、溶接ビードを作製した。この溶接ビードの作成の間に箱内に飛散したスパッタおよび鋼板に付着したスパッタを回収し、これらのうち直径1.0mm超のものの総重量を測定した。スパッタ発生量、弗化物の種類、及び各弗化物の含有量のデータを多元解析した結果、式Bを用いて算出されるX値とスパッタ発生量との間に、図1に示される良好な相関関係があることが見出された。
X=[NaAlF]+[NaF]+[MgF]+1.5×([KZrF])+3.5×([CaF])・・・(式B)
式Bにおいて、括弧が付された化学式は、化学式に係る化合物(弗化物)の含有量を、フラックス入りワイヤの全質量に対する質量%で表すものである。フラックス中に含まれない弗化物の含有量は0とする。式Bで定義するX値を3.00%以下とすることで、上述の条件で溶接を行った際のスパッタ量を一層抑制して5.00g/min以下にすることができ、種々の条件で溶接を行ったとしてもスパッタ量を問題ない範囲に確実に抑えることができることがわかった。従って、本実施形態に係るフラックス入りワイヤにおいては、X値を3.00%以下とすることが好ましい。X値のさらに好ましい上限値は2.80%、2.50%、又は2.20%である。なお、本実施形態に係るフラックス入りワイヤでは、弗化物のX値の下限値を定める必要はない。弗化物の含有量の下限値は、上述されたF換算値を用いて規定されるからである。
(酸化物の合計:フラックス入りワイヤの全質量に対して3.50%以上13.00%未満)
(酸化物の種類:Cr酸化物及びTi酸化物、並びに好ましくはFe酸化物、Ba酸化物、Na酸化物、Si酸化物、Zr酸化物、Mg酸化物、Al酸化物、Mn酸化物、K酸化物、及びCa酸化物からなる群から選択される一種以上)
本実施形態に係るフラックス入りワイヤは、酸化物を含む。この酸化物は、Cr酸化物及びTi酸化物を含み、好ましくはFe酸化物、Ba酸化物、Na酸化物、Si酸化物、Zr酸化物、Mg酸化物、Al酸化物、Mn酸化物、K酸化物、及びCa酸化物からなる群から選択される一種以上をさらに含む。本実施形態に係るフラックス入りワイヤは、これら酸化物を合計で3.50%以上13.00%未満含有する。
酸化物は、溶接ビードの形状をよくすることができる。酸化物含有量の合計が3.50%未満である場合、溶接ビードの形状が悪くなることがある。溶接ビードの形状を一層よくするために、酸化物の合計含有量の下限を3.80%、又は、4.00%としてもよい。また、酸化物の合計含有量が13.00%以上である場合、溶接部の靭性を低下させることがある。溶接部の靱性の改善のために、酸化物の合計含有量の上限を12.00%、11.50%、又は、11.00%としてもよい。
(Cr酸化物の含有量:フラックス入りワイヤの全質量に対して、Cr換算の質量%で0.10%以上10.00%未満)
Cr酸化物は、上述の効果に加えて、スパッタ発生を抑制して溶接作業性を向上させる効果を有する。従来技術において、Cr酸化物をスラグ形成剤として利用するフラックス入りワイヤの例は無く、また、Cr酸化物の量とスパッタ発生量との関係について検討された例もないが、本発明者らは、独自の実験調査の結果、フラックス中にCr換算の質量%で0.10%以上のCr酸化物を含有させることによってスパッタ発生量を抑制可能である旨を見いだした。従って、本実施形態に係るフラックス入りワイヤにおけるCr酸化物の含有量は、フラックス入りワイヤの全質量に対して、Cr換算の質量%で0.10%以上とされる。
一方、Cr酸化物が過剰であると、溶接部の靱性が損なわれる場合がある。これは、過剰に含まれたCr酸化物の一部が、スラグとして溶接部の外に排出されることなく、溶接部に合金元素として溶け込むことにより、溶接部のCr濃度を過剰に上昇させるからであると考えられる。従来から、Cr酸化物による溶接部脆化のおそれは知られており、このためCr酸化物をスラグ形成剤として用いることは従来技術において忌避されてきた。一方、溶接部のCr濃度を向上させる必要がある場合は、従来技術においてCrは酸化物ではなく金属粉、合金粉、めっき、又は鋼製外皮の合金成分として添加されてきた。本実施形態に係るフラックスワイヤでは、他の特徴点によって溶接部の靱性を向上させているので、Cr酸化物の含有量を、フラックス入りワイヤの全質量に対してCr換算の質量%で10.00%未満とすることは許容されるが、これ以上の含有は好ましくない。Cr酸化物の含有量の上限値を、フラックス入りワイヤの全質量に対してCr換算の質量%で9.50%、9.00%、8.00%、又は4.50%としてもよい。
なお、Cr酸化物には酸化クロム(II):CrO、酸化クロム(III):Cr、酸化クロム(IV):CrO、及び酸化クロム(VI):CrOがある。これらはいずれも本実施形態に係るフラックス入りワイヤにおいて同様の効果を有するので、Cr酸化物の種類は特に限定されず、これらのいずれかを単独で用いても、組み合わせて用いても良い。しかしながら、最も安定した酸化物である酸化クロム(III):CrをCr酸化物の主成分とすることが好ましい。また、上述したCr酸化物の含有量は、Cr換算値、即ち、Cr酸化物に含まれるCrが全てCrである場合のCrの質量%での含有量である。Cr酸化物以外の酸化物、即ちTi酸化物、Fe酸化物、Ba酸化物、Na酸化物、Si酸化物、Zr酸化物、Mg酸化物、Al酸化物、Mn酸化物、K酸化物、及びCa酸化物それぞれの含有量も、同様に、TiO、Cr、FeO、BaO、NaO、SiO、ZrO、MgO、Al、MnO、及びKO換算値としてもよい。これら以外の金属の酸化物がフラックス入りワイヤに含まれる場合、その含有量は、その金属の最も安定した酸化物の含有量に換算することとしてもよい。
(Ti酸化物:フラックス入りワイヤの全質量に対するTiO換算の質量%で、2.50%以上8.50%未満)
本実施形態に係るフラックス入りワイヤのフラックスは、フラックス入りワイヤの全質量に対するTiO換算値での質量%で2.50%以上8.50%未満のTi酸化物を含む。Ti酸化物は主にスラグ形成剤として作用する。また、Ti酸化物はスラグ融点を低下させて溶融スラグの粘性を向上させる働きを有するので、溶融スラグの垂れ落ちを抑制して立向溶接性を改善する。Ti酸化物の含有量が2.50%未満であるフラックス入りワイヤを用いて立向上進溶接を行う場合、上述の効果が十分に得られないので、立向溶接性が確保できない。従って、Ti酸化物の含有量の下限値をフラックス入りワイヤの全質量に対するTiO換算の質量%で2.50%とする。フラックス入りワイヤの全質量に対するTiO換算の質量%でのTi酸化物の含有量の下限値は、より好適には2.70%であり、立向溶接性を一層向上させるために、3.00%、3.20%、3.50%、又は、4.00%としてもよい。
一方、フラックス入りワイヤの全質量に対するTiO換算の質量%で8.50%以上のTi酸化物は、スラグ量を過剰に増大させるので、スラグまきこみの欠陥を増加させる。さらに、Ti酸化物が過剰である場合、溶接金属の酸素量が高くなって溶接部の靭性が損なわれる恐れがある。従って、Ti酸化物の含有量を、フラックス入りワイヤの全質量に対するTiO換算の質量%で8.50%未満とする。フラックス入りワイヤの全質量に対するTiO換算の質量%でのTi酸化物の含有量の上限値は、より好適には7.00%であり、必要に応じて、6.70%、6.40%、6.20%、6.00%、5.90%、又は、5.80%としてもよい。
(Ca酸化物:フラックス入りワイヤの全質量に対するCaO換算の質量%で0%以上0.20%未満)
Ca酸化物は、100%COガスを使用するシールドアーク溶接においてスパッタを多く発生させる。フラックス入りワイヤがフラックス入りワイヤの全質量に対するCaO換算の質量%で0.20%以上のCa酸化物を含有する場合、100%COガスを使用するシールドアーク溶接に適用することが困難になる。したがって、Ca酸化物の含有量はフラックス入りワイヤの全質量に対するCaO換算の質量%で0.20%未満とする。Ca酸化物の含有量の上限値をフラックス入りワイヤの全質量に対するCaO換算の質量%で0.10%としてもよい。一方、Ca酸化物は本実施形態に係るフラックス入りワイヤにとって不要であるので、Ca酸化物の含有量の下限値は0%である。
上述された酸化物の例、即ちCr酸化物、Ti酸化物、Fe酸化物、Ba酸化物、Na酸化物、Si酸化物、Zr酸化物、Mg酸化物、Al酸化物、Mn酸化物、K酸化物、及びCa酸化物以外の、フラックスの造粒に使用されるバインダーなどに含まれる酸化物がフラックス入りワイヤに含まれても良い。従って「酸化物の含有量の合計値」とは、これら酸化物の合計量に加え、フラックスの造粒に使用されるバインダーなどに含まれる酸化物の含有量も含む。
(V値:好ましくは5.00以上27.00以下)
本実施形態に係るフラックスワイヤでは、以下の式Cによって算出されるV値を5.00以上27.00以下とすることが好ましい。
V=([TiO]+1.2×[SiO]+1.4×[Al]+1.5×[ZrO])/(F)1/2……式C
上の式C中の角括弧で囲まれた各化学式に対応する化合物は、各化合物の、フラックス入りワイヤの全質量に対する質量%での含有量を示し、先述のような各酸化物に対応する換算値での含有量を示す。Fは、弗化物のF換算値での合計含有量を示す。本発明者らは、酸化物のうちTi酸化物(TiO換算値)、Si酸化物(SiO換算値)、Al酸化物(Al換算値)、及びZr酸化物(ZrO換算値)の量と弗化物量との関係を適正な範囲内にする必要があることを見いだした。弗化物量に対してTi酸化物、Si酸化物、Al酸化物、及びZr酸化物の量が多すぎる、すなわち、V値が27.00超であるフラックス入りワイヤを用いて溶接を行った場合、高融点を有する酸化物系スラグの量が多くなるので、スラグ巻込みが生じやすくなることを本発明者らは知見した。一方、弗化物量に対してTi酸化物、Si酸化物、Al酸化物、及びZr酸化物の量が少なすぎる、すなわち、V値が5.00未満であるフラックス入りワイヤを用いて溶接を行った場合、弗化物によってアーク力が高まり、溶融金属が圧迫され、ビード形状の劣化と立向溶接性の劣化とが生じやすくなることを本発明者らは知見した。従って、本実施形態に係るフラックス入りワイヤのV値は5.00〜27.00とされることが好ましい。V値の下限値は、さらに好ましくは7.00、9.00、10.00、11.00、又は12.00である。V値の上限値は、さらに好ましくは25.00、22.50、20.00、18.00、16.00又は15.00である。
(CaCO、NaCO、MgCOからなる群から選択される一種以上の炭酸塩の合計含有量:フラックス入りワイヤの全質量に対する質量%で、好ましくは2.00%以下)
本実施形態に係るフラックス入りワイヤは、炭酸塩を含む必要はない。従って炭酸塩の含有量の下限値は0%である。しかしながら、本実施形態に係るフラックス入りワイヤは、更に、MgCO、NaCO、及びCaCOからなる群から選択される一種以上の炭酸塩を合計で2.00%以下含有することが好ましい。
炭酸塩は、アークによって電離し、COガスを発生させる。炭酸塩から生成されたCOガスは、水素分圧を下げ、溶接金属中の拡散性水素量を低減させる。この効果を得るために炭酸塩をフラックス入りワイヤに含有させる場合、炭酸塩の含有量の合計を0%超、又は0.30%以上とすることが好ましい。溶接金属中の拡散性水素の量をさらに低減するために、炭酸塩の含有量の合計の下限を0.10%、0.50%又は1.00%としてもよい。また、炭酸塩の合計含有量が2.00%超では、溶接ヒュームが過剰に発生するおそれがある。溶接ヒューム発生の回避のために、炭酸塩含有量合計の上限を1.80%、1.50%、1.30%、又は0.75%としてもよい。
次に、本実施形態に係るフラックス入りワイヤを構成する鋼製外皮及びフラックス中に含有される合金成分及び金属脱酸成分について説明する。本実施形態に係るフラックス入りワイヤにおいて、合金成分及び金属脱酸成分とは、弗化物、酸化物、及び炭酸塩を構成しない成分(弗化物、酸化物、及び炭酸塩を除く化学成分)のことである。合金成分は、金属粉または合金粉の状態でフラックスに含まれても、鋼製外皮に含まれても、鋼製外皮にめっきされてもよい。
(C:0.003〜0.150%)
Cは、炭化物を形成し、溶接金属の高温強度の確保に寄与するとともにベイナイトならびにマルテンサイト組織を得るのに有効な元素であるため、必須の添加元素であり、0.150%以下の範囲で本実施形態に係るフラックス入りワイヤに含有させる。合金成分のC含有量が0.150%を上回る場合は、溶接金属が過剰に硬化し、溶接金属の靭性にとって好ましくない。C含有量の上限値を0.090%、0.080%、又は0.070%としてもよい。継手強度や鋼の製造の際の脱炭コストの点からは、C含有量の下限を0.003%とする。C含有量の下限値を0.015%または0.020%としてもよい。
(Si:0.05〜2.00%)
Siは、脱酸元素である。本実施形態に係るフラックス入りワイヤは、溶接金属のO量を低減して清浄度を高めるために、0.05%以上のSiを含有する必要がある。ただし、2.00%を超えてSiを含有させると溶接金属のクリープ延性および靭性を低下させる。従って、Si含有量は0.05〜2.00%とする。また、溶接金属の靭性を安定して確保するためには、Si含有量の下限を0.10%、0.20%、又は0.21%としてもよい。Si含有量の上限は、1.80%、1.60%又は1.40%としてもよい。
(Mn:0.4〜3.5%)
Mnは、溶接金属の焼入れ性を確保して強度を高める元素であり、必要とされる溶接金属の強度に応じて3.5%以下の範囲で本実施形態に係るフラックス入りワイヤに含有させる。3.5%を超えてMnを含有させると、溶接金属の粒界脆化感受性が増加して、溶接金属の靱性が劣化する。しかしMnは、SをMnSとして固定化し、高温割れの発生を防止する効果も有する。この効果を得るために、Mn含有量の下限を0.4%とすることが望ましい。Mn含有量の下限値を、0.6%、0.8%、0.9%、または1.0%としてもよい。Mn含有量の上限値を、3.4%、3.3%、または3.2%としてもよい。
(P:0.020%以下)
Pは不純物元素であり、溶接金属の靱性を阻害するため、極力低減する必要があるが、靱性への悪影響が許容できる範囲として、P含有量は0.020%以下とする。靭性の一層の向上のため、Pの上限を0.015%に制限してもよい。
(S:0.020%以下)
Sも不純物元素であり、過大に存在すると、溶接金属の靱性と延性とをともに劣化させるため、極力低減することが好ましい。溶接金属の靱性及び延性への悪影響が許容できる範囲として、S含有量は0.020%以下とする。溶接金属の靭性の一層の向上のため、Sの上限を0.010%に制限してもよい。
(Cr:0.30〜13.00%)
Crは耐熱鋼において耐酸化性および耐高温腐食性を確保するとともに、溶接金属のマトリックスのベイナイトならびにマルテンサイト組織を安定して得るために必須の元素である。その効果を得るためには、0.30%以上含有することが必要である。しかし、Crを過剰に含有すると、高温での使用中に多量のCr炭化物の生成により炭化物の安定性を低下させ、溶接金属のクリープ強度の低下を招くとともに、溶接金属の靭性も劣化させる。そのためCr含有量を13.00%以下とする必要がある。Cr含有量の望ましい範囲は0.50〜12.50%、さらに望ましい範囲は1.00〜12.00%または2.15〜11.00%である。
(Mo:0.10〜2.50%)
Moは、溶接金属のマトリックスを固溶強化し、クリープ強度の向上に寄与する元素である。この効果を得るために本実施形態に係るフラックス入りワイヤは0.10%以上のMoを含有する必要がある。しかし、2.50%を超えてMoを含有すると、その効果が飽和するとともに、粗大な炭化物を生成し、溶接金属の靭性の低下を招く。Mo含有量の望ましい範囲は0.30〜2.20%、さらに望ましい範囲は0.50〜2.00%である。
本実施形態に係るフラックス入りワイヤは、合金成分または金属脱酸成分として、以上の基本成分に加え、溶接する鋼材の強度レベル及び求められる溶接部の靭性の程度に応じて、V、Nb、Ti、Ta、Cu、Ni、Co、B、W、Ca、REM、Mg、及びAlからなる群から選択される一種または二種以上を、任意に、化学成分の残部であるFeの一部に代えて含有させることができる。ただし、これら元素が含まれない場合でも、本実施形態に係るフラックス入りワイヤは課題を解決できるので、これら元素の含有量の下限値は0%である。
(V:0.50%以下、Nb:0.50%以下、Ti:0.500%以下、Ta:0.50%以下)
本実施形態に係るフラックス入りワイヤは、V:0.50%以下、Nb:0.50%以下、Ti:0.500%以下、Ta:0.50%以下からなる群から選択される一種以上を任意に含有しても良い。これらはいずれも高温での使用中に炭素や窒素と結合して炭窒化物として析出し、溶接金属のクリープ強度に寄与するため、本実施形態に係るフラックス入りワイヤはこれら元素を含有してもよい。しかし、これら元素を過剰に含有すると、上述の炭窒化物が多量に析出し、溶接金属の靭性の低下を招く。従ってこれら元素をフラックス入りワイヤが含有する場合には、いずれの元素の上限値も上述の範囲内とする。これら元素それぞれの含有量は、望ましくは0.40%以下、さらに望ましくは0.30%以下とする。また、これら元素の効果を安定して得るためには、これら元素それぞれを0.015%超、0.02%以上、0.03%以上、さらには0.04%以上含有することが望ましい。
(Cu:1.00%以下、Ni:1.0%以下、Co:5.0000%以下、B:0.0200%以下)
本実施形態に係るフラックス入りワイヤは、Cu:1.00%以下、Ni:1.0%以下、Co:5.0000%以下、B:0.0200%以下からなる群から選択される一種以上を含有しても良い。これらはいずれも溶接金属の焼入れ性を高め、ベイナイト組織又はマルテンサイト組織を得るのに有効な元素であるので、本実施形態に係るフラックス入りワイヤはこれら元素を含有してもよい。しかしながら、これら元素を過剰に含有した場合、溶接金属のクリープ延性の低下が生じる。従って、これら元素をフラックス入りワイヤが含有する場合には、Cuは1.00%、Niは1.0%、Coは5.0000%、Bは0.0200%を上限とする。望ましくは、CuおよびNiは0.80%以下、Coは4.5000%以下、並びにBは0.0180%以下である。さらに望ましくは、CuおよびNiは0.60%以下、Coは4.0000%以下、並びにBは0.0150%以下である。また、これらの効果を安定して得るためには、Cu、NiおよびCoは0.1%以上、Bは0.0005%以上とすることが望ましく、さらにはCu、NiおよびCoは0.2%以上、Bは0.001%以上とすることが望ましい。
(W:4.0000%以下)
Wは溶接金属のマトリックスを固溶強化し、クリープ強度の向上に寄与する元素であるので、本実施形態に係るフラックス入りワイヤはWを含有してもよい。しかし、Wを過剰に含有すると、Wが粗大な金属間化合物を生成し、溶接金属の靭性の低下を招く。従って、Wを含有する場合には、4.0000%を上限とする。W含有量は、望ましくは3.8000%以下、さらに望ましくは3.5000%以下とする。また、効果を安定して得るためには、Wを0.1000%以上、さらには0.2000%以上含有することが望ましい。
(Mg:0.80%以下、Ca:0.500%以下、REM:0.0100%以下、Al:0.400%以下)
Mgは強脱酸元素であり、溶接金属中のO量を低減し、溶接金属の延性及び靭性を向上させる。この効果を得るために含有させる場合は、0.10%以上のMgを含有させるのがよい。しかし、フラックス入りワイヤ中のMg含有量が0.80%を超えると、Mgが溶接金属中で粗大酸化物を形成し、無視できない水準の靭性低下を招く。また、フラックス入りワイヤ中のMg含有量が0.80%を超えると、溶接中のアークの安定性が劣化し、ビード形状を悪化させる原因にもなる。そのため、Mgを含有させる場合には、その含有量を0.80%以下とする。
Ca、及びREMはいずれも溶接金属中で硫化物の構造を変化させ、また溶接金属中での硫化物、酸化物のサイズを微細化して、溶接金属の延性及び靭性向上に有効である。その効果を得るために含有させる場合、Ca含有量を0.100%以上とし、REM含有量を0.0020%以上としてもよい。一方、Ca及びREMを過剰に含有すると、硫化物及び酸化物の粗大化を生じ、溶接金属の延性及び靭性の劣化を招く。また、Ca及びREMを過剰に含有すると、溶接ビード形状の劣化及び溶接性の劣化の可能性も生じる。従って、Ca含有量の上限値を0.500%とし、REM含有量の上限値を0.0100%とする。なお「REM」との用語は、Sc、Yおよびランタノイドからなる合計17元素を指し、上記「REMの含有量」とは、これらの17元素の合計含有量を意味する。
Alは脱酸元素であり、Siと同様に、溶接金属中のO量を低減し、溶接金属の清浄度を向上させる効果がある。その効果を発揮するために含有させる場合は、0.001%以上のAlを含有させるのがよい。一方、0.400%を超えてAlを含有させると、AlはAl窒化物及びAl酸化物を形成して、溶接金属の靱性を阻害する。従って、Al含有量を0.400%以下とする。また、溶接金属の靭性を向上する効果を十分に得るためには、Al含有量の下限を0.004%としてもよく、また、粗大酸化物の生成抑制のために、Al含有量の上限を、0.200%、0.100%又は0.080%としてもよい。
なお、以上の合金成分あるいは金属脱酸成分として含有される元素の含有量には、それらの元素が弗化物、酸化物、炭酸塩として含有される場合の含有量は含めない。また、それらの元素は必ずしも純物質である必要はなく、Cu−Ni等の合金の形態で含有されていても何ら問題はない。また、それらの元素は鋼製外皮中に含有されていても、フラックスとして含有されていても、その効果は同じであるので、鋼製外皮及びフラックスの何れに含有させてもよい。
(鉄粉:0%以上10.0%未満)
鉄粉(Fe粉)は、フラックス入りワイヤにおけるフラックスの充填率の調整のために、または溶着効率の向上のために必要に応じて含有させる場合がある。しかし、鉄粉の表層は酸化されているので、フラックスが鉄粉を過剰に含有すると、溶接金属の酸素量を増加させて靭性を低下させる場合がある。したがって、鉄粉は含有させなくてもよい。充填率の調整のために鉄粉を含有させる場合には、溶接金属の靭性を確保するために、鉄粉の含有量を10.0%未満にする。鉄粉の含有量の上限値を5.0%、3.0%、2.0%、又は1.7%としてもよい。一方、鉄粉は本実施形態に係るフラックス入りワイヤの課題解決のために必須ではないので、鉄粉の含有量の下限値は0%である。
以上が本実施形態に係るフラックス入りワイヤの成分組成に関する限定理由であるが、その他の残部成分はFeと不純物である。Feは上述された鉄粉に含まれるが、その他のFe成分として、鋼製外皮のFe、フラックス中に添加された合金成分中のFeがフラックス入りワイヤに含まれる。不純物とは、フラックス及び鋼製外皮を工業的に製造する際に、鉱石若しくはスクラップ等のような原料、又は製造工程の種々の要因によって混入する成分であって、本実施形態に係るフラックス入りワイヤの特性に悪影響を与えない範囲で許容されるものを意味する。
続いて、フラックス入りワイヤの形態について説明する。
図2に、フラックス入りワイヤの切断面を示す。図2(a)に、エッジ面を突合せて溶接して作ったフラックス入りワイヤの例、図2(b)に、エッジ面を突合せて作ったフラックス入りワイヤの例、及び、図2(c)に、エッジ面をかしめて作ったフラックス入りワイヤの例を示す。このように、フラックス入りワイヤには、図2(a)に示すように鋼製外皮にスリット状の隙間がないワイヤと、図2(b)、(c)に示すように鋼製外皮にスリット状の隙間を有するワイヤとに大別できる。本実施形態に係るフラックス入りワイヤでは、いずれの断面構造も採用することができるが、溶接金属の低温割れを抑制するためには、スリット状の隙間がないワイヤ(シームレスワイヤともいう)とすることが好ましい。
溶接時に溶接部に侵入する水素は、溶接金属内及び鋼材側に拡散し、応力集中部に集積して低温割れの発生原因となる。この水素源は、溶接材料が保有する水分、大気から混入する水分、並びに鋼表面に付着した錆び及びスケール等である。十分に溶接部の清浄度、及びガスシールドの条件が管理された溶接の下では、ワイヤ中に含有される水分の水素が、溶接継手の拡散性水素の主な供給源となる。
このため、鋼製外皮をスリット状の隙間がない管とし、ワイヤ製造後から使用するまでの間に、鋼製外皮からフラックスへの大気中の水素の侵入を抑制することが望ましい。鋼製外皮を、スリット状の隙間(シーム)を有する管とした場合には、大気中の水分は外皮のスリット状の隙間部からフラックス中に侵入しやすいので、水分等の水素源の侵入を防止することはできない。鋼製外皮がスリットを有し、かつ製造後使用するまでの期間が長い場合は、ワイヤ全体を真空包装するか、またはワイヤを乾燥した状態に保持できる容器内で保存することが望ましい。
また、フラックス入りワイヤの送給性をよくするため、フラックス入りワイヤの表面に潤滑油が塗布される場合がある。即ち、本実施形態に係るフラックス入りワイヤは、鋼製外皮の表面に潤滑油をさらに備えても良い。ワイヤ表面に塗布される潤滑油は特に限定されず、例えば植物油などであればよい。拡散性水素を低減するために、潤滑油は、パーフルオロポリエーテル油(PFPE)のように水素分を含まない油であることが好ましい。
本実施形態に係るフラックス入りワイヤは、通常のフラックス入りワイヤの製造方法と同様の製造工程によって製造することができる。すなわち、まず、外皮となる鋼帯、並びに、弗化物、合金成分、酸化物、及び炭酸塩等が所定の含有量になるように配合したフラックスを準備する。鋼帯を、長手方向に送りながら成形ロールによりオープン管(U字型)に成形して鋼製外皮とする。この成形途中で、オープン管の開口部からフラックスを供給する。開口部の相対するエッジ面を突合せ、スリット状の隙間を溶接する。溶接法は、例えば電縫溶接、レーザー溶接、又は、TIG溶接などである。溶接により得られたスリット状の隙間のない管を伸線し、伸線途中又は伸線工程完了後に焼鈍処理して、所望の線径を有するスリット状の隙間のないワイヤを得る。また、開口部の相対するエッジ面を突合せた後にスリット状の隙間を溶接しないことにより、鋼製外皮をスリット状の隙間有りの管とし、それを伸線することで、スリット状の隙間を有するワイヤを得る。
突合せシーム溶接されたスリット状の隙間が無いワイヤを切断した断面の例は、図2(a)に示される。この断面では、研磨及びエッチングされない限り、溶接跡が観察されない。そのため、上記のようにスリット状の隙間が無いワイヤをシームレスワイヤと呼ぶことがある。例えば、溶接学会編「新版 溶接・接合技術入門」(2008年)産報出版、p.111には、スリット状の隙間が無いワイヤがシームレスタイプのワイヤと記載されている。
図2(b)に、鋼帯のエッジ面を突き合わせたワイヤの例を示し、図2(c)に鋼帯のエッジ面をかしめたワイヤの例を示す。図2(b)のように突合せてから、隙間をろう付けしたり、図2(c)のようにかしめてから、隙間をろう付けしたりしても、スリット状の隙間が無いワイヤが得られる。また、図2(b)及び図2(c)のワイヤは、その隙間がろう付けされない場合、スリット状の隙間が有るワイヤとなる。
本実施形態に係るフラックス入りワイヤは、いかなる種類の鋼材にも適用可能である。例えば、Cr:0.3〜13%、Mo:0.1〜2.5%を含有し、板厚4mm以上のフェライト系耐熱鋼のガスシールドアーク溶接に、本実施形態に係るフラックス入りワイヤを使用することができるが、これに限定されない。
本実施形態に係るフラックス入りワイヤは、いかなる種類のシールドガスが用いられる溶接にも適用可能である。シールドガスは、溶接金属の酸素量をより低いものとし、ヒューム発生量を抑制し、溶接アークの安定性を確保するためには、例えば、Arと3〜20vol%COとの混合ガス、Arと1〜10vol%Oとの混合ガス、および100%COガス等を用いることができるが、これに限定されない。本実施形態に係るフラックス入りワイヤは、これらのシールドガスを用いてもスパッタの発生が少ない。特に、本実施形態に係るフラックス入りワイヤは、従来技術によればスパッタを生じさせやすい100%COガスがシールドガスである溶接に用いられても、スパッタの発生量を抑制することができる。
本実施形態に係る溶接継手の製造方法では、上述された本実施形態に係るガスシールドアーク溶接用フラックス入りワイヤを用いて鋼材を溶接する。本実施形態に係る溶接継手の製造方法では、低温割れを防止するための予熱作業が不要、又は、予熱作業を著しく低減することができ、さらに、スパッタの発生量を少なくすることができる。本実施形態に係る溶接継手の製造方法で用いられるシールドガスの種類及び鋼材の種類は、上述の通り特に限定されない。しかし、シールドガスが100%COガスであり、鋼材がフェライト系耐熱鋼である場合、本実施形態に係る溶接継手の製造方法は、従来技術による溶接継手の製造方法と比較して、顕著にスパッタ発生量を減少させ、且つ顕著に耐低温割れ性を向上させることができるので、溶接作業性を向上させることができる。また、この場合、本実施形態に係る溶接継手の製造方法は、従来技術による溶接継手の製造方法と比較して、溶接部の高温強度を改善することができる。
次に、実施例により本発明の実施可能性及び効果についてさらに詳細に説明する。
鋼帯を長手方向に送りながら成形ロールによりオープン管に成形し、この成形途中でオープン管の開口部からフラックスを供給し、開口部の相対するエッジ面を突合わせシーム溶接することで鋼帯を継目無し管とし、造管したワイヤの伸線作業の途中で焼鈍を加えることにより、最終のワイヤ径がφ1.2mmのフラックス入りワイヤを試作した。また、シーム溶接をしない継目有りの管を伸線することで、ワイヤ径がφ1.2mmのフラックス入りワイヤを試作した。試作したフラックス入りワイヤの成分組成(フラックス組成、及び合金成分または金属脱酸成分)を表1−1、表1−2、及び表2に示す。なお、本発明の範囲外の数値には下線を付した。また、添加されなかった成分は、表において空白とした。合金成分又は金属脱酸成分は、鋼製外皮となる鋼帯の化学成分またはフラックスの金属粉又は合金分の形でフラックス入りワイヤに含有させた。
No.2のみ、図2(C)に示されるような、継目がかしめられ且つろう付けされていない継目ありフラックス入りワイヤとした。溶接作業の直前まで、No.2のフラックス入りワイヤ全体が真空包装された。それ以外の例は、鋼製外皮がシーム溶接され、鋼製外皮に継目がないフラックス入りワイヤとした。No.3のみ、フラックス入りワイヤの表面にパーフルオロポリエーテル油が塗布された。それ以外のワイヤには、植物油を塗布した。
耐低温割れ性は、表4に示す化学成分(鋼材成分)を有する板厚20mmの鋼板を用いて、JIS Z 3157(U形溶接割れ試験方法)に準拠した、温度0℃−湿度60%の一定雰囲気管理下における試験によって評価された。試験ビード作成から48時間後に、溶接部に表面及び断面に割れがない試料(U形割れ試験結果が「割れ無し」とされたワイヤ)にかかるフラックス入りワイヤが、耐低温割れ性に関し合格と判断された。溶接入熱は17kJ/cmで溶接された。
さらに、溶接低温割れ性評価の結果、合格となったワイヤについては、先の溶接低温割
れ性試験で用いた鋼板と同じ化学組成の厚さ20mm、幅150mm、長さ200mmの
鋼板上に溶接低温割れが発生しない下限の予熱温度(表3に記載の予熱温度)を適用し、前述と同じ溶接方法、溶接条件にて多層肉盛り溶接により全溶着金属を作製した。
高温強度は、得られた全溶着金属に、クリープ破断試験を行うことによって評価した。ワイヤ番号1〜8、及び16〜25の例については、740℃×1時間、空冷、の溶接後熱処理(PWHT)を全溶着金属に施し、ワイヤ番号9〜15、及び26〜30の例については720℃×1時間、空冷、の溶接後熱処理(PWHT)を全溶着金属に施した後、平行部径6mm、平行部長さ30mmの丸棒クリープ破断試験片を採取し、それぞれの溶接材料が使用される母材の550℃での目標破断時間が約1000時間となる応力条件でクリープ破断試験を行い、1000時間を超えたものを、高温強度(クリープ破断試験結果)に関し「合格」とした。
また、Ti酸化物、Si酸化物、Mg酸化物、Al酸化物、Ca酸化物、Zr酸化物、及びCr酸化物は、それぞれTiO、SiO、MgO、Al、CaO、ZrO、及びCrとした。
各フラックス入りワイヤに係るスパッタ発生量は以下の手段により測定された。銅製の捕集箱内で、鋼板上に、ビードオンプレートで、溶接電流280A、電圧27V、溶接速度25cm/min、シールドガス100%CO(25l/min)、及び予熱なしの条件で、試験対象となるフラックス入りワイヤを用いて、1分間、溶接ビードを作製した。この溶接ビードの作成の間に箱内に飛散したスパッタおよび鋼板に付着したスパッタを回収し、これらのうち直径1.0mm超のものの総重量を測定した。測定結果を、g/minを単位として表3に示す。スパッタ発生量が5g/min以下であるフラックス入りワイヤを、スパッタ抑制性能(溶接作業性)に関し合格とした。上述の試験項目すべてを満足する試料は、「総合判定」が「合格」であると記載され、上述の試験項目のうち1つ以上が不合格である試料は、「総合判定」が「合格」であると記載された。
各フラックス入りワイヤに係る立向溶接作業性は以下の手段により測定された。鋼板上に立向上進ビードオンプレート溶接で、溶接電流200A、溶接電圧23V、溶接速度15cm/min、シールドガス種100%CO、シールドガス流量25L/min、及び予熱なしの条件で、試験対象となるフラックス入りワイヤを用いて、1分間、溶接ビードを作製した。溶接した時に、垂れ落ちが発生しないものを合格とし、垂れ落ちが発生したものを不合格とした。図3Aは、垂れ落ちが生じていない溶接部の写真であり、図3Bは、垂れ落ちが生じた溶接部の写真である。
表3に溶接低温割れ性を評価した結果を示す。ワイヤ番号1〜8及び16〜25については、100℃予熱で、ワイヤ番号9〜15及び26〜28については予熱無しで、室温の20℃で試験を実施し、割れがなかったものを合格とした。
また、表3に、溶接低温割れ性評価の結果、合格となったワイヤ番号のフラックス入りワイヤについて、全溶着金属を得るための多層肉盛り溶接を行った後、クリープ試験を実施した結果を示す。クリープ試験が実施されなかったワイヤ番号の例については、クリープ試験結果の欄に記号「−」を記載した。また、上述の規定範囲外であったスパッタ発生量の数値には下線を付した。
CaF量が過剰であったワイヤ番号16の比較例は、スパッタ発生量が多く溶接作業性が劣悪となったので、不合格と判定された。Ti酸化物が含まれなかったワイヤ番号17の比較例は、立向溶接性が劣悪となったので、不合格と判定された。Cr酸化物量が不足したワイヤ番号18の比較例は、スパッタ発生量が多く溶接作業性が劣悪となったので、不合格と判定された。ワイヤ番号19の比較例は、いわゆるメタル系ワイヤであり、弗化物量、Ti酸化物量、Cr酸化物量、及び酸化物合計量が不足したものである。ワイヤ番号19の比較例は、弗化物量が少ないためスパッタ発生量及び立向作業性については合格範囲内であったが、耐低温割れ性が不足したので不合格と判定された。弗化物量が過剰であったワイヤ番号20の比較例は、スパッタ発生量が多く、さらに立向溶接性も劣悪となったので、不合格と判定された。弗化物量が不足したワイヤ番号21の比較例は、耐低温割れ性が不足したので不合格と判定された。Ca酸化物量が過剰であったワイヤ番号22の比較例は、スパッタ発生量が多く溶接作業性が劣悪となったので、不合格と判定された。Mo含有量が不足したワイヤ番号23及び28の比較例、Cr含有量が過剰であったワイヤ番号24の比較例、並びにCr含有量が不足したワイヤ番号25及び27の比較例は、高温強度が不足したので、不合格と判定された。Ni含有量が過剰かつCr含有量が不足したワイヤ番号26の比較例は、高温強度が不足したので、不合格と判定された。
一方、ワイヤ番号1〜15の本発明例は、高温強度に優れた溶接金属を得ることができ、耐低温割れ性が優れ、スパッタの発生量が少なく、さらに立向溶接性に優れたフラックス入りワイヤであった。以上のように、本発明の範囲を満足するフラックス入りワイヤのみが、予熱作業を軽減させる効果、溶接作業性、及び溶接金属のクリープ破断強さを併せて具備し得ることが分かる。
本発明は、高温強度に優れた溶接金属を得ることができ、耐低温割れ性が優れ、スパッタの発生量が少なく、さらに立向溶接性に優れたガスシールドアーク溶接用フラックス入りワイヤ及び溶接継手の製造方法を提供することができる。特に本発明は、高温強度が必要とされる部材に使用されるフェライト系耐熱鋼の溶接、及びシールドガスが100%COである溶接に適用された場合であっても、耐低温割れ性に優れ、スパッタ発生が少なく、高い溶接施工効率で溶接可能であるガスシールドアーク溶接用フラックス入りワイヤ及び溶接継手の製造方法を提供することができる。従って、本発明は溶接分野、特に火力発電ボイラや石油化学精製装置等の耐熱、耐圧配管に用いられる高温材料の溶接分野において高い産業上の利用可能性を有する。

Claims (12)

  1. 鋼製外皮の内部にフラックスが充填されたガスシールドアーク溶接用フラックス入りワイヤであって、
    前記フラックスが、
    前記フラックス入りワイヤの全質量に対するF換算値の合計が0.11%以上2.00%未満である弗化物と、
    前記フラックス入りワイヤの全質量に対する質量%で合計3.50%以上13.00%未満の、Cr酸化物及びTi酸化物を含む酸化物と、
    前記フラックス入りワイヤの全質量に対する質量%で0%以上10.0%未満の鉄粉と、
    を含み、
    前記弗化物に含まれるCaFの含有量が前記フラックス入りワイヤの全質量に対する質量%で0%以上1.00%未満であり、
    前記Ti酸化物の含有量が、前記フラックス入りワイヤの全質量に対するTiO換算の質量%で2.50%以上8.50%未満であり、
    前記Cr酸化物の含有量が、前記フラックス入りワイヤの全質量に対するCr換算の質量%で0.10%以上10.00%未満であり、
    前記酸化物に含まれるCa酸化物の含有量が、前記フラックス入りワイヤの全質量に対するCaO換算の質量%で0%以上0.20%未満であり、
    さらに、前記弗化物、前記酸化物、及び炭酸塩を除く化学成分が、前記フラックス入りワイヤの全質量に対する質量%で、
    C:0.003〜0.150%、
    Si:0.05〜2.00%、
    Mn:0.4〜3.5%、
    P:0.020%以下、
    S:0.020%以下、
    Cr:0.30〜13.00%、及び
    Mo:0.10〜2.50%、
    を含有し、残部がFeおよび不純物からなることを特徴とするガスシールドアーク溶接用フラックス入りワイヤ。
  2. さらに、前記フラックス入りワイヤの前記弗化物、前記酸化物、及び前記炭酸塩を除く前記化学成分が、前記フラックス入りワイヤの全質量に対する質量%で、前記化学成分に含まれるFeの一部に代えて、
    V:0.50%以下、
    Nb:0.50%以下、
    Ti:0.500%以下、及び
    Ta:0.50%以下
    からなる群から選択される一種以上を含有することを特徴とする請求項1に記載のガスシールドアーク溶接用フラックス入りワイヤ。
  3. さらに、前記フラックス入りワイヤの前記弗化物、前記酸化物、及び前記炭酸塩を除く前記化学成分が、前記フラックス入りワイヤの全質量に対する質量%で、前記化学成分に含まれるFeの一部に代えて、
    Cu:1.00%以下、
    Ni:1.0%以下、
    Co:5.0000%以下、及び
    B:0.0200%以下
    からなる群から選択される一種以上を含有することを特徴とする請求項1又は2に記載のガスシールドアーク溶接用フラックス入りワイヤ。
  4. さらに、前記フラックス入りワイヤの前記弗化物、前記酸化物、及び前記炭酸塩を除く前記化学成分が、前記フラックス入りワイヤの全質量に対する質量%で、前記化学成分に含まれるFeの一部に代えて、
    W:4.0000%以下
    を含有することを特徴とする請求項1〜3のいずれか一項に記載のガスシールドアーク溶接用フラックス入りワイヤ。
  5. さらに、前記フラックス入りワイヤの前記弗化物、前記酸化物、及び前記炭酸塩を除く前記化学成分が、前記フラックス入りワイヤの全質量に対する質量%で、前記化学成分に含まれるFeの一部に代えて、
    Ca:0.500%以下、
    REM:0.0100%以下、
    Mg:0.80%以下、及び
    Al:0.400%以下
    からなる群から選択される一種以上を含有することを特徴とする請求項1〜4のいずれか一項に記載のガスシールドアーク溶接用フラックス入りワイヤ。
  6. 前記フラックスが、さらに、CaCO、NaCO、及びMgCOからなる群から選択される一種以上の前記炭酸塩を、前記フラックス入りワイヤの全質量に対する質量%で合計2.00%以下含有することを特徴とする請求項1〜5のいずれか一項に記載のガスシールドアーク溶接用フラックス入りワイヤ。
  7. 前記弗化物が、CaF、MgF、NaAlF、NaF、及びKZrFからなる群から選択される一種以上であり、
    式1によって算出されるX値が3.00%以下であることを特徴とする請求項1〜6のいずれか一項に記載のガスシールドアーク溶接用フラックス入りワイヤ。
    X=[NaAlF]+[NaF]+[MgF]+1.5×([KZrF])+3.5×([CaF])・・・(式1)
    ただし、前記式1に記載の括弧が付された化学式は、前記化学式に係る前記弗化物の、前記フラックス入りワイヤの全質量に対する質量%での含有量を表し、含有されない前記弗化物の含有量は0%とみなす。
  8. 前記酸化物が、前記Cr酸化物、前記Ti酸化物、並びにFe酸化物、Ba酸化物、Na酸化物、Si酸化物、Zr酸化物、Mg酸化物、Al酸化物、Mn酸化物、K酸化物、及びCa酸化物からなる群から選択される一種以上であり、
    前記Cr酸化物、前記Ti酸化物、前記Fe酸化物、前記Ba酸化物、前記Na酸化物、前記Si酸化物、前記Zr酸化物、前記Mg酸化物、前記Al酸化物、前記Mn酸化物、前記K酸化物、及び前記Ca酸化物の含有量の合計が、前記フラックス入りワイヤの前記全質量に対する、Cr、TiO、FeO、BaO、NaO、SiO、ZrO、MgO、Al、MnO、KO、及びCaOの各々の換算値で3.50%以上13.00%未満であり、
    式2によって算出されるV値が5.00以上27.00以下であることを特徴とする請求項1〜7のいずれか一項に記載のガスシールドアーク溶接用フラックス入りワイヤ。
    V=([TiO]+1.2×[SiO]+1.4×[Al]+1.5×[ZrO])/(F)1/2:式2
    ただし、前記式2に記載の括弧が付された化学式は、前記化学式に係る前記酸化物の、前記フラックス入りワイヤの全質量に対する質量%での含有量を表し、前記式2に記載の記号「F」は、前記フラックス入りワイヤの全質量に対する前記弗化物の前記F換算値の合計を示し、含有されない前記酸化物の含有量は0%とみなす。
  9. 前記鋼製外皮がスリット状の隙間のない形状であることを特徴とする請求項1〜8のいずれか一項に記載のガスシールドアーク溶接用フラックス入りワイヤ。
  10. 前記鋼製外皮がスリット状の隙間を有する形状であることを特徴とする請求項1〜8のいずれか一項に記載のガスシールドアーク溶接用フラックス入りワイヤ。
  11. 前記鋼製外皮の表面にパーフルオロポリエーテル油を有することを特徴とする請求項1〜10のいずれか一項に記載のガスシールドアーク溶接用フラックス入りワイヤ。
  12. 請求項1〜11のいずれか一項に記載のガスシールドアーク溶接用フラックス入りワイヤを用いて、鋼材を溶接することを特徴とする溶接継手の製造方法。
JP2017100982A 2017-05-22 2017-05-22 ガスシールドアーク溶接用フラックス入りワイヤ、及び溶接継手の製造方法 Active JP6953789B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017100982A JP6953789B2 (ja) 2017-05-22 2017-05-22 ガスシールドアーク溶接用フラックス入りワイヤ、及び溶接継手の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017100982A JP6953789B2 (ja) 2017-05-22 2017-05-22 ガスシールドアーク溶接用フラックス入りワイヤ、及び溶接継手の製造方法

Publications (2)

Publication Number Publication Date
JP2018192520A true JP2018192520A (ja) 2018-12-06
JP6953789B2 JP6953789B2 (ja) 2021-10-27

Family

ID=64569732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017100982A Active JP6953789B2 (ja) 2017-05-22 2017-05-22 ガスシールドアーク溶接用フラックス入りワイヤ、及び溶接継手の製造方法

Country Status (1)

Country Link
JP (1) JP6953789B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110102930A (zh) * 2019-04-29 2019-08-09 江苏九洲新材料科技有限公司 一种与304l钢材配套的e304l药芯焊丝
CN110142529A (zh) * 2019-04-29 2019-08-20 中冶建筑研究总院有限公司 超级双相不锈钢气体保护焊接用药芯焊丝及其制备方法
JP2020157315A (ja) * 2019-03-25 2020-10-01 日鉄溶接工業株式会社 エレクトロガスアーク溶接用フラックス入りワイヤ
US11958139B2 (en) * 2018-01-16 2024-04-16 Kobe Steel, Ltd. Flux-cored wire for gas shield arc welding

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11958139B2 (en) * 2018-01-16 2024-04-16 Kobe Steel, Ltd. Flux-cored wire for gas shield arc welding
JP2020157315A (ja) * 2019-03-25 2020-10-01 日鉄溶接工業株式会社 エレクトロガスアーク溶接用フラックス入りワイヤ
JP7244322B2 (ja) 2019-03-25 2023-03-22 日鉄溶接工業株式会社 エレクトロガスアーク溶接用フラックス入りワイヤ
CN110102930A (zh) * 2019-04-29 2019-08-09 江苏九洲新材料科技有限公司 一种与304l钢材配套的e304l药芯焊丝
CN110142529A (zh) * 2019-04-29 2019-08-20 中冶建筑研究总院有限公司 超级双相不锈钢气体保护焊接用药芯焊丝及其制备方法
CN110142529B (zh) * 2019-04-29 2020-12-08 中冶建筑研究总院有限公司 超级双相不锈钢气体保护焊接用药芯焊丝及其制备方法

Also Published As

Publication number Publication date
JP6953789B2 (ja) 2021-10-27

Similar Documents

Publication Publication Date Title
JP6766866B2 (ja) フラックス入りワイヤ、溶接継手の製造方法、及び溶接継手
JP6766867B2 (ja) フラックス入りワイヤ、溶接継手の製造方法、及び溶接継手
KR101674743B1 (ko) 가스 실드 아크 용접용 플럭스 내장 와이어 및 극저온용 강의 용접 방법 및 용접 조인트의 제조 방법
EP3539715B1 (en) Flux-cored wire, manufacturing method of welded joint, and welded joint
JP6874425B2 (ja) ガスシールドアーク溶接用フラックス入りワイヤ及び溶接継手の製造方法
JP6291461B2 (ja) ガスシールドアーク溶接用フラックス入りワイヤ
JP6390204B2 (ja) ガスシールドアーク溶接用フラックス入りワイヤ
JP6953869B2 (ja) ガスシールドアーク溶接用フラックス入りワイヤ、及び溶接継手の製造方法
JP6953789B2 (ja) ガスシールドアーク溶接用フラックス入りワイヤ、及び溶接継手の製造方法
JP5764083B2 (ja) フラックス入りワイヤおよびこれを用いたガスシールドアーク溶接方法
JP6801494B2 (ja) ガスシールドアーク溶接用フラックス入りワイヤ、および溶接継手の製造方法
JP6891630B2 (ja) ガスシールドアーク溶接用フラックス入りワイヤ、及び溶接継手の製造方法
KR101600174B1 (ko) 가스 실드 아크 용접용 플럭스 내장 와이어
JP6953870B2 (ja) ガスシールドアーク溶接用フラックス入りワイヤ、及び溶接継手の製造方法
JP2019048323A (ja) ガスシールドアーク溶接用フラックス入りワイヤ、及び溶接継手の製造方法
JP6939574B2 (ja) ガスシールドアーク溶接用フラックス入りワイヤ、及び溶接継手の製造方法
JP6728806B2 (ja) ガスシールドアーク溶接用高Niフラックス入りワイヤ及び溶接継手の製造方法
JP2022157587A (ja) フラックス入りワイヤ及び溶接継手の製造方法
JP2022157454A (ja) フラックス入りカットワイヤ及び溶接継手の製造方法
JP2022061819A (ja) 溶接継手の製造方法及び開先充填用のフラックス入りカットワイヤ
JP6881025B2 (ja) ガスシールドアーク溶接用フラックス入りワイヤ、及び溶接継手の製造方法
JP2022157455A (ja) フラックス入りワイヤ及び溶接継手の製造方法
JP2022061814A (ja) 溶接継手の製造方法及び開先充填用のフラックス入りカットワイヤ
JP2022061826A (ja) 溶接継手の製造方法及び開先充填用のフラックス入りカットワイヤ

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181019

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210913

R151 Written notification of patent or utility model registration

Ref document number: 6953789

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151