JP2018186613A - 車載バッテリの充電制御システム - Google Patents

車載バッテリの充電制御システム Download PDF

Info

Publication number
JP2018186613A
JP2018186613A JP2017086162A JP2017086162A JP2018186613A JP 2018186613 A JP2018186613 A JP 2018186613A JP 2017086162 A JP2017086162 A JP 2017086162A JP 2017086162 A JP2017086162 A JP 2017086162A JP 2018186613 A JP2018186613 A JP 2018186613A
Authority
JP
Japan
Prior art keywords
vehicle
charging
battery
charge
vehicle battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017086162A
Other languages
English (en)
Other versions
JP6465146B2 (ja
Inventor
潔 大路
Kiyoshi Omichi
潔 大路
渉 増田
Wataru Masuda
渉 増田
輝彦 花岡
Teruhiko Hanaoka
輝彦 花岡
敏貴 ▲高▼橋
敏貴 ▲高▼橋
Toshitaka Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2017086162A priority Critical patent/JP6465146B2/ja
Publication of JP2018186613A publication Critical patent/JP2018186613A/ja
Application granted granted Critical
Publication of JP6465146B2 publication Critical patent/JP6465146B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Abstract

【課題】低温環境下において、外部充電装置20に複数の車両10が接続された場合であっても、車載バッテリ11への充電と、バッテリ温度の維持とを両立できる車載バッテリ11の充電制御システム1を提供することを目的とする。【解決手段】車両10の車載バッテリ11と、車載バッテリ11に電力を供給する外部充電装置20と、車載バッテリ11の放電を制御する充放電制御手段とを備えた車載バッテリ11の充電制御システム1であって、充放電制御手段が、車載バッテリ11に充電する充電制御、車載バッテリ11の充放電を待機する待機制御、及び車載バッテリ11を放電する放電制御を1回の充放電サイクルとして繰り返すように構成され、車両10が外部充電装置20に接続された際、別の車両が待機制御の場合に充電制御が開始されるように、車両間における充放電サイクルの開始タイミングを制御するタイミング制御手段を備えたことを特徴とする。【選択図】図5

Description

この発明は、例えば、電気自動車などの車両の車載バッテリと、車載バッテリを充電するための外部電力供給装置とが接続された状態において、低温環境下における車載バッテリのバッテリ温度を適切な温度範囲に維持するような車載バッテリの充電制御システムに関する。
駆動用モータの出力を駆動力として用いるプラグインハイブリッド車や電気自動車などの車両では、従来の鉛蓄電池に比べて、高出力で、かつ充電効率が優れているリチウムイオン二次電池を、駆動用モータに電力を供給するための車載バッテリとして用いている。
このような車両の車載バッテリは、回生エネルギーを変換して得た電力だけでは十分に充電できないため、自宅などの車両保管場所に設けた外部電力供給装置から供給される外部電力によって充電される。この際、ガソリンなどの燃料を給油する場合に比べて、車載バッテリの充電にある程度の時間がかかるため、例えば夜間など車両を長時間使用しない時間帯に車載バッテリの充電が行われることが多い。
しかしながら、リチウムイオン二次電池は、例えばバッテリ温度が0℃以下のように、バッテリ温度が低いと出力特性が極端に低下するという特徴がある。このため、車載バッテリの充電が完了した車両を低温環境下に長時間放置すると、車載バッテリのバッテリ温度が低下して、車両としての始動性が低下するという問題があった。
そこで、車両の車載バッテリと外部電力供給装置とが接続された状態において、バッテリ温度の低下を抑制する技術が提案されている。
例えば、特許文献1では、低温環境下において、車載バッテリと外部電力供給装置とが接続された際、所定充電率の範囲内で車載バッテリの充放電を繰り返すことで、自己発熱を促してバッテリ温度の低下を抑制している。
ところで、特許文献1は、1つの外部電力供給装置に対して接続可能な車両の台数が1台とされている。このため、1つの外部電力供給装置に対して接続可能な車両の台数が複数台の場合、特許文献1では、接続された複数の車載バッテリへの充電が同時に行われることで、複数の車載バッテリに供給される総電力量が、契約電力容量を超過するおそれがあった。
このように外部電力供給装置に対して複数の車両が接続される場合、車載バッテリへの充電と、バッテリ温度の維持とを両立するために、充放電制御をどのように行うかという新たな課題が生じている。
特許第545701号公報
本発明は、上述した問題に鑑み、低温環境下において、外部電力供給装置に複数の車両が接続された場合であっても、車載バッテリへの充電と、バッテリ温度の維持とを両立できる車載バッテリの充電制御システムを提供することを目的とする。
この発明は、車両に搭載された車載バッテリと、該車載バッテリに電気的に接続されるとともに、前記車両の外部から前記車載バッテリに外部電力を供給する外部電力供給装置と、前記車載バッテリの充放電を前記車載バッテリの所定充電率の範囲内で制御するとともに、前記車載バッテリのバッテリ温度を所定温度の範囲内で維持するように前記車載バッテリの放電を制御する充放電制御手段とを備えた車載バッテリの充電制御システムであって、前記充放電制御手段が、前記車載バッテリに充電する充電制御、前記車載バッテリの充放電を待機する待機制御、及び前記車載バッテリを放電する放電制御をこの順番で行うとともに、前記充電制御、前記待機制御、及び前記放電制御を1回の充放電サイクルとして、該充放電サイクルを繰り返すように構成され、前記外部電力供給装置が、複数の前記車両が接続可能に構成され、前記複数の車両が前記外部電力供給装置に接続された場合、前記複数の車両間における前記充放電サイクルの開始タイミングを制御するタイミング制御手段を備え、該タイミング制御手段が、別の車両における前記充放電サイクルが前記待機制御または/および前記放電制御の場合に、前記充電制御が開始されるように、前記車両間における充放電サイクルの開始タイミングを制御する構成であることを特徴とする。
上記車載バッテリは、例えば、電気自動車における駆動用モータに対して電力を供給するための車載バッテリであって、リチウムイオン二次電池などすることができる。
上記所定充電率の範囲は、充電完了となる充電率の範囲であって、例えば80%から100%の範囲とすることができる。
上記所定温度の範囲は、所望される車載バッテリの出力特性が得られるバッテリ温度の範囲であって、例えば常温の範囲などとすることができる。
上記充放電制御手段は、車両または車載バッテリに設けた制御手段、外部電力供給装置に設けた制御手段、あるいはこれらの協働による制御手段とすることができる。
この発明により、車載バッテリの充電制御システムは、低温環境下において、外部電力供給装置に複数の車両が接続された場合であっても、車載バッテリへの充電と、バッテリ温度の維持とを両立することができる。
具体的には、充電制御、待機制御、及び放電制御を1回の充放電サイクルとして、充放電サイクルを繰り返すことで、車載バッテリの充電制御システムは、充電制御による車載バッテリの昇温と、待機制御による車載バッテリの自然冷却と、放電制御による車載バッテリの温度維持とを繰り返すことができる。
この際、バッテリ温度を維持するように放電制御が行われるため、車載バッテリの充電制御システムは、車載バッテリを昇温するための放電量に比べて、放電量を抑えることができる。このため、車載バッテリの充電制御システムは、充電率の低下を抑えて、バッテリ温度を維持することができる。
そして、複数の車両が外部電力供給装置に接続された場合、別の車両における充放電サイクルが待機制御または/および放電制御の場合に、充電制御が開始されるように、車両間における充放電サイクルの開始タイミングを制御することで、車載バッテリの充電制御システムは、複数の車両間において充電制御が同時に行われることを防止できる。このため、車載バッテリの充電制御システムは、複数の車載バッテリに供給される総電力量が、契約電力容量を超過することを防止できる。
さらに、充電制御と放電制御との間に待機制御を設けたことにより、車載バッテリの充電制御システムは、充電制御及び放電制御を1回の充放電サイクルとした場合に比べて、車載バッテリへの電力供給を停止する時間を長く確保することができる。このため、車載バッテリの充電制御システムは、複数の車両が外部電力供給装置に接続された場合であっても、車両1台あたりの充電時間を安定して確保することができる。
加えて、外部電力供給装置に接続される車両の台数が多い場合、車載バッテリの充電制御システムは、例えば、待機制御の制御時間を調整することで、接続された全ての車載バッテリへの充電を容易にすることができる。このため、車載バッテリの充電制御システムは、外部電力供給装置に接続される車両の増減に対して、柔軟に対応することができる。
従って、車載バッテリの充電制御システムは、低温環境下において、外部電力供給装置に複数の車両が接続された場合であっても、車載バッテリへの充電と、バッテリ温度の維持とを両立することができる。
この発明の態様として、外気温度を検出する外気温検出手段を備え、前記タイミング制御手段が、前記1回の充放電サイクルにおける前記待機制御の制御時間を、検出された外気温度に基づいて制御する構成である。
この発明により、車載バッテリの充電制御システムは、不要な充放電を防止して、バッテリ温度をより効率的に維持することができる。
具体的には、車載バッテリは、充放電が行われていない状態では、大気中への放熱によって時間経過とともにバッテリ温度が低下する。このため、低温環境下において、待機制御の制御時間が長くなると、車載バッテリのバッテリ温度が、所定温度の範囲を下回るおそれがある。
さらに、この場合、放電制御の開始とともに、車載バッテリを所定温度の範囲まで昇温させる必要があるため、過剰な放電によって充電率が所定充電率を下回るおそれがあった。
そこで、外気温度に基づいて待機制御の制御時間を制御することで、車載バッテリの充電制御システムは、低温環境下において、車載バッテリのバッテリ温度が、所定温度の範囲を下回る前に、放電制御を開始することができる。
従って、車載バッテリの充電制御システムは、外気温度に基づいて待機制御の制御時間を制御することで、不要な放電をより確実に防止して、バッテリ温度をより効率的に維持することができる。
この発明により、低温環境下において、外部電力供給装置に複数の車両が接続された場合であっても、車載バッテリへの充電と、バッテリ温度の維持とを両立できる車載バッテリの充電制御システムを提供することができる。
充電制御システムにおける構成を示すブロック図。 外部充電装置、車載バッテリ、及びバッテリヒータの関係を回路で示す回路図。 バッテリ電流、バッテリ温度、及び充電率の時間変化を示すタイミングチャート。 充電制御システムにおける処理動作、及び各種信号の授受動作を示すシーケンス図。 各車両における充放電サイクルを示すタイミグチャート。 充放電サイクル処理の動作を示すフローチャート。 充電制御システムにおける電流の流れを説明する説明図。 別の実施形態における充放電サイクルを示すタイミングチャート。
この発明の一実施形態を以下図面と共に説明する。
本実施形態における充電制御システム1は、例えば電気自動車のような車両10の車載バッテリと、車載バッテリを充電するための外部充電装置20とが接続された状態において、低温環境下における車載バッテリのバッテリ温度を適切な温度範囲に維持するものである。
このような充電制御システム1について、図1から図3を用いて詳しく説明する。
なお、図1は充電制御システム1における構成のブロック図を示し、図2は外部充電装置20、車載バッテリ11、及びバッテリヒータ14の関係の回路図を示し、図3はバッテリ電流、バッテリ温度、及び充電率のタイミングチャートを示している。
また、図2中において、外部充電装置20の詳細な図示を省略して、外部充電装置20を、その機能に基づいた直流電源とスイッチとで図示している。
充電制御システム1は、図1に示すように、例えば電気自動車のような車両10と、車両10の車載バッテリ11に外部から電力を供給するとともに、3台の車両10が一度に接続可能な1つの外部充電装置20とで構成されている。
なお、3台の車両10は、いずれも同じ構成のため、ここでは後述する外部充電装置20の第1充電器22に接続された車両10(10a)を用いて説明する。
車両10は、図1に示すように、充放電可能な車載バッテリ11と、車載バッテリ11の温度を検知するバッテリ温度センサ12と、外気温度を検知する外気温センサ13と、車載バッテリ11に電気的に接続されたバッテリヒータ14と、車載バッテリ11に電気的に接続された駆動用モータ15と、外部充電装置20が接続される充電器接続部16と、これらと電気的に接続されるとともに、これらの動作を制御する電子制御装置(Electronic Control Unit、以下「ECU」と呼ぶ)17とで構成されている。
車載バッテリ11は、リチウムイオン二次電池であって、図2に示すように、同じ出力特性を有する複数のセル(図示省略)を直列接続したセルモジュール11aと、セルモジュール11aへの導通を切換えるスイッチ11bとで構成されている。なお、車載バッテリ11は、駆動用モータ15、及び充電器接続部16に対する電気的接続を切換える切替えスイッチを介して、駆動用モータ15または充電器接続部16に択一的に接続されている。
バッテリ温度センサ12は、車載バッテリ11の適宜の位置に装着された温度センサであって、車載バッテリ11の温度を検出する機能と、検出した温度をバッテリ温度信号としてECU17に出力する機能とを有している。
外気温センサ13は、車載バッテリ11の周辺温度を検知可能な位置に配置された温度センサであって、外気温度を検出する機能と、検出した外気温度を外気温度信号としてECU17に出力する機能とを有している。
バッテリヒータ14は、車載バッテリ11に近接配置された電気ヒータであって、図2に示すように、抵抗値の高い発熱体14aと、発熱体14aへの電力供給を切換えるスイッチ14bとで構成されている。このバッテリヒータ14は、車載バッテリ11からの電力によって、車載バッテリ11の温度を維持する程度の発熱量の熱を発する機能を有している。
駆動用モータ15は、例えば車両前部のエンジンルーム(図示省略)に配置された電気モータであって、車載バッテリ11から供給された電力によって、車輪に伝達される駆動力を発生する機能を有している。
充電器接続部16は、車両10の適宜の部位に配置されるとともに、外部充電装置20の接続ケーブル(図示省略)が接続される接続部である。この充電器接続部16は、外部充電装置20からの電力の供給を受付ける受電部16aと、外部充電装置20と通信を行う通信部16bとで構成されている。
受電部16aは、外部充電装置20が出力した直流電力を、接続ケーブルを介して受け付ける機能と、受付けた直流電流を車載バッテリ11へ供給する機能とを有している。
通信部16bは、ECU17の指示に基づいて外部充電装置20へ各種信号を送信する機能と、外部充電装置20が出力した各種信号を受信する機能と、受信した各種信号をECU17へ出力する機能とを有している。
ECU17は、CPU及びメモリなどをハード構成と、プログラム及びデータなどのソフト構成とで構成されている。このECU17は、図示を省略した鉛蓄電池と電気的に接続され、鉛蓄電池の電力によって動作するものとする。
さらに、ECU17には、充電に伴ってバッテリ温度が上昇した際、安定した出力の確保と安全性の確保とを両立できるバッテリ温度である上限温度と、低温環境下において、車両10が安定して発進できる出力が得られるバッテリ温度である下限温度と、車載バッテリ11を充電する際、充電完了となる充電率の範囲である充電目標の上限充電率、及び下限充電率などが予め記憶されている。
例えば、ECU17には、バッテリ温度の上限温度として60℃が記憶され、バッテリ温度の下限温度として25℃が記憶され、充電完了となる充電率の範囲として充電率80%から充電率100%の範囲が記憶されている。
一方、外部充電装置20は、交流電力網2に電気的に接続されるとともに、3台の車両10が一度に接続可能に構成されている。
より詳しくは、外部充電装置20は、図1に示すように、交流電力網2に電気的に接続された電力変換部21と、車両10が接続される第1充電器22、第2充電器23、及び第3充電器24と、これらの動作を制御する充電制御部25とで構成されている。
電力変換部21は、ブレーカーと、AC/DCコンバータと、第1充電器22、第2充電器23、または第3充電器24との電気的接続を切換えるスイッチなどで構成されている。この電力変換部21は、交流電力網2からの交流電力を直流電力に変換する機能と、充電制御部25の指示に基づいて、第1充電器22、第2充電器23、または第3充電器24に直流電力を出力する機能とを有している。
第1充電器22は、車両10に接続される接続ケーブル(図示省略)と、接続ケーブルを介して直流電力を車両10に供給する給電部22aと、接続ケーブルを介して車両10の通信部16bと通信を行う通信部22bとで構成されている。
給電部22aは、充電制御部25の指示に基づいて、電力変換部21が出力した直流電力を、接続ケーブルを介して車両10に出力する機能を有している。
通信部22bは、充電制御部25の指示に基づいて車両10へ各種信号を送信する機能と、車両10の通信部16bが出力した各種信号を受信する機能と、受信した各種信号を充電制御部25へ出力する機能とを有している。
第2充電器23は、給電部23a、及び通信部23bとで構成されている。この第2充電器23は、第1充電器22と同様の構成のため、その詳細な説明を省略する。
第3充電器24は、給電部24a、及び通信部24bとで構成されている。この第3充電器24は、第1充電器22と同様の構成のため、その詳細な説明を省略する。
充電制御部25は、CPU及びメモリなどをハード構成と、プログラム及びデータなどのソフト構成とで構成されている。この充電制御部25は、電力変換部21が出力した直流電力の車両10への供給を制御する機能と、接続された複数の車両10に対して直流電力を供給するタイミングを制御する機能とを有している。
さらに、充電制御部25には、後述する1回あたりの充放電サイクルの所要時間ΔT、及び接続された車両10に対して電力を供給する充電時間ΔTが予め記憶されている。
ここで、1回あたりの充放電サイクルについて、図3を用いて説明する。
1回あたりの充放電サイクルは、図3に示すように、外部充電装置20に車両10が接続された状態において、車載バッテリ11における充電、待機、及び放電のサイクルを示している。
より詳しくは、1回あたりの充放電サイクルは、図3に示すように、経過時間が時間t1に至るまでの間、車載バッテリ11に電流が入力されるように制御される工程と、時間t1から時間t2までの間、車載バッテリ11の電流入出力を停止するように制御される工程と、時間t2から時間t3までの間、車載バッテリ11から電流がバッテリヒータ14に出力されるように制御される工程とが、この順番で行われるものを1回のサイクルとしている。
つまり、充放電サイクルは、車載バッテリ11を充電する充電工程と、車載バッテリ11の充放電を待機する待機工程と、車載バッテリ11の電力を放電する放電工程とで1回のサイクルを構成している。
この充放電サイクルにおいて、上述した1回あたりの所要時間ΔTは、図3に示すように、充電工程に要する時間である充電時間ΔT、待機工程に要する時間である待機時間ΔT、及び放電工程に要する時間である放電時間ΔTの合計時間である。
このうち、所要時間ΔT、及び充電時間ΔTが、外部充電装置20の充電制御部25に記憶され、待機時間ΔT、及び放電時間ΔTが、車両10において、外気温及びバッテリ温度に基づいて、その時間長さが調整されるように算出される。
そして、上述したように所要時間ΔTは、予め充電制御部25に記憶されており、例えば600secとする。
一方、充電制御部25に記憶された充電時間ΔTは、次の式1により定義付けされる。
Figure 2018186613
例えば、本実施形態では外部充電装置20の最大接続台数が3台のため、所要時間ΔTを例えば600secとした場合、充電時間ΔTは、ΔT=600/3=200secとなる。
次に、上述した構成の充電制御システム1において、3台の車両10を充電する際の動作について、図4から図7を用いて説明する。
なお、本実施形態では、説明を容易にするため、図1に示すように、第1充電器22に接続された車両10を車両10aとし、第2充電器23に接続された車両10を車両10bとし、第3充電器24に接続された車両10を車両10cとして説明する。
また、図4は充電制御システム1における処理動作、及び各種信号の授受動作のシーケンス図を示し、図5は各車両10における充放電サイクルのタイミグチャートを示し、図6は充放電サイクル処理の動作のフローチャートを示し、図7は充電制御システム1における電流の流れXを説明する説明図を示している。
また、図5(a)は第1充電器22が接続された車両10aにおける車載バッテリ11の入出力電流のタイミングチャートを示し、図5(b)は第2充電器23が接続された車両10bにおける車載バッテリ11の入出力電流のタイミングチャートを示し、図5(c)は第3充電器24が接続された車両10cにおける車載バッテリ11の入出力電流のタイミングチャートを示している。
また、図7(a)は充電工程における各スイッチの状態を示し、図7(b)は待機工程における各スイッチの状態を示し、図7(c)は放電工程における各スイッチの状態を示している。
さらに、本実施形態では、外部充電装置20の第1充電器22、及び第2充電器23がそれぞれ車両10a,10bに接続された状態において、第3充電器24が車両10cに接続された場合について説明する。
まず、交流電力網2からの電力供給を受けると、外部充電装置20の充電制御部25は、図4に示すように、処理動作を開始して、第3充電器24が車両10cに接続されたか否かを判定する(ステップS101)。第3充電器24が車両10cに接続されていない場合(ステップS101:No)、充電制御部25は、車両10cに接続されるまで処理を待機する。
一方、第3充電器24が車両10cに接続された場合(ステップS101:Yes)、充電制御部25は、条件送信処理を開始して(ステップS102)、1回における充放電サイクルの所要時間ΔTを示す所要時間情報と、充電時間ΔTを示す充電時間情報とを、接続ケーブルを介して車両10cに送信する。
そして、所要時間情報、及び充電時間情報を受信した車両10cのECU17は、図4に示すように、1回あたりの充放電サイクルの詳細条件を算出する充放電条件算出処理を開始する(ステップS103)。
具体的には、ECU17は、外部充電装置20から取得した所要時間ΔT、及び充電時間ΔTに基づいて、待機時間ΔT、放電時間ΔT、車載バッテリ11を充電するための入力電流である充電電流I、及びバッテリヒータ14へ放電するための出力電流である放電電流Iを算出する。
このうち、放電電流Iは、次の式2によって定義付けされる。
Figure 2018186613
また、放電時間ΔTは、車載バッテリ11の発熱量、車載バッテリ11がバッテリヒータ14から受ける熱量、及び車載バッテリ11の表面から放出される放熱量に基づいて算出する。
より詳しくは、ECU17は、車載バッテリ11の内部発熱量に、バッテリヒータ14から受ける熱量を加算した熱量と、車載バッテリ11の表面から放熱される放熱量との関係式を示す次の式3を満足する放電時間ΔTを算出する。
Figure 2018186613
上記式3において、充電工程における車載バッテリ11の内部発熱量Qbc、放電工程における車載バッテリ11の内部発熱量Qbd、バッテリヒータ14の発熱量Q、及び車載バッテリ11の表面からの放熱量Qoutは、それぞれ次の式4、式5、式6、及び式7によって定義付けされる。
Figure 2018186613
Figure 2018186613
Figure 2018186613
Figure 2018186613
上述した式3に、式4の充電工程における車載バッテリ11の内部発熱量Qbc、式5の放電工程における車載バッテリ11の内部発熱量Qbd、式6のバッテリヒータ14の発熱量Q、及び式7の車載バッテリ11の表面からの放熱量Qoutを代入すると、式3は、次の式8に置き換えることができる。
Figure 2018186613
また、充電電流Iは、充電工程後の充電率と放電工程後の充電率との関係を示す次の式9によって定義付けされる。
Figure 2018186613
そして、外部充電装置20から取得した所要時間ΔT、及び充電時間ΔTと、上述した式2で定義付けされた放電電流Iとに基づいて、上記式8、及び上記式9を満足する放電時間ΔT、及び充電電流Iを算出すると、それぞれ次の式10、及び式11によって定義付けされる。
Figure 2018186613
Figure 2018186613
このようにして、ECU17は、放電時間ΔT、充電電流I、及び放電電流Iを算出する。
さらに、ECU17は、所要時間ΔTから充電時間ΔT、及び放電時間ΔTを減算して待機時間ΔTを算出する。
図4のステップS103に戻り、充放電条件算出処理を完了すると、ECU17は、車載バッテリ11への充電準備が完了したことを示す準備完了信号を、接続ケーブルを介して外部充電装置20へ出力する(ステップS104)。
準備完了信号を受信すると、外部充電装置20の充電制御部25は、図4に示すように、第1充電器22に接続された車両10a、または第2充電器23に接続された車両10bが充電工程か否かを判定する(ステップS105)。
第1充電器22に接続された車両10a、または第2充電器23に接続された車両10bが充電工程の場合(ステップS105:Yes)、充電制御部25は、第3充電器24に接続された車両10cにおける充電工程の開始タイミングを時間的に遅らせるシフト処理を開始する(ステップS106)。
この際、充電制御部25は、第1充電器22に接続された車両10aの充電工程、または第2充電器23に接続された車両10bの充電工程と重複しないように、車両10cの充電工程の開始タイミングを、時間軸の後方へシフトして調整する。
つまり、充電制御部25は、他の車両10における充放電サイクルが待機工程または/および放電工程の場合に、車両10cの充電工程が開始されるように、各車両10における充電工程の開始タイミングを調整する。
より詳しくは、第3充電器24と車両10cとが接続された際、図5に示すように、第1充電器22が接続された車両10aの充電工程が時間t4まで行われたのち、第2充電器23が接続された車両10bの充電工程が時間t5まで行われるように、車両10aの充放電サイクルに対して車両10bの充放電サイクルが調整されているとする。
このような状態において、他の車両10が充電工程か否かを判定した時間が時間t4未満の場合、時間t4まで車両10aが充電工程で、時間t4から時間t5まで車両10bが充電工程のため、充電制御部25は、車両10bの充電工程が終了する時間t5に達した際、第3充電器24が接続された車両10cの充電工程が開始されるように、充電工程の開始時間を遅らせる。
あるいは、他の車両10が充電工程か否かを判定した時間が時間t4以上時間t5未満の場合、車両10aが待機工程だが、車両10bが充電工程のため、充電制御部25は、車両10bの充電工程が終了する時間t5に達した際、車両10cの充電工程が開始されるように、充電工程の開始時間を遅らせる。
シフト処理を完了すると、充電制御部25は、図4に示すように、第3充電器24に接続された車両10cの充電工程が開始される開始時間か否かを判定する(ステップS107)。現在の時間が車両10cの充電工程が開始される開始時間でない場合(ステップS107:No)、充電制御部25は、車両10cの充電工程が開始される開始時間まで処理を待機する。
一方、現在の時間が車両10cの充電工程が開始される開始時間の場合(ステップS107:Yes)、充電制御部25は、第3充電器24に接続された車両10cに対して、給電を開始することを示す給電開始信号を出力する(ステップS108)。その後、充電制御部25は、第3充電器24に接続された車両10cに対して給電を開始する。
ステップS108において、外部充電装置20が送信した給電開始信号を受信すると、車両10cのECU17は、充電充放電サイクル処理を開始する(ステップS109)。
より詳しくは、充放電サイクル処理を開始したECU17は、図6に示すように、第1スイッチ状態切換え処理を開始して(ステップS121)、車載バッテリ11のスイッチ11bをオン状態にさせ、バッテリヒータ14のスイッチ14bをオフ状態にさせる(図7(a)参照)。
このため、電流の流れXは、図7(a)に示すように、外部充電装置20から充電器接続部16を介して、車載バッテリ11のスイッチ11b、及びセルモジュール11aの順に通って、再び充電器接続部16を介して外部充電装置20へ戻る流れとなる。
この際、車載バッテリ11は、図3に示すように、充電電流Iが入力されることで、バッテリ温度、及び充電率が時間経過とともに上昇する。
その後、ECU17は、図6に示すように、充電工程が終了したか否かを判定する(ステップS122)。この際、ECU17は、図3に示すように、充電工程を開始してからの経過時間が時間t1に達した場合、すなわち充電時間ΔTだけ充電した場合、充電工程が終了したと判定する。あるいは、バッテリ温度が上限温度に達した場合、もしくは車載バッテリ11の充電率が充電目標の上限充電率に達した場合、充電工程が終了したと判定する。
ステップS121において、充電工程が終了していない場合(ステップS122:No)、ECU17は、充電工程が完了するまで処理を待機する。
一方、充電工程が終了した場合(ステップS122:Yes)、ECU17は、車載バッテリ11におけるスイッチ11bの状態を切換える第2スイッチ状態切換え処理を開始する(ステップS123)。
具体的には、ECU17は、図7(a)及び図7(b)に示すように、車載バッテリ11のスイッチ11bをオン状態からオフ状態に切換えさせる。この際、ECU17は、外部充電装置20に対して電力の供給を停止させる停止信号を出力する。
そして、停止信号を受信した外部充電装置20の充電制御部25は、図7(b)に示すように、第3充電器24を介した車両10cへの電力供給を遮断する。このため、車両10cは、車載バッテリ11の充放電を待機する待機状態へ移行する。
この際、車載バッテリ11は、図3に示すように、充電率に変化はないが、大気中への放熱によってバッテリ温度が時間経過とともに低下する。
その後、ECU17は、図6に示すように、待機工程が終了したか否かを判定する(ステップS124)。この際、ECU17は、図3に示すように、充電工程を開始してからの経過時間が時間t2に達した場合、すなわち待機時間ΔTだけ待機状態を継続した場合、待機工程が終了したと判定する。あるいは、ECU17は、バッテリ温度が下限温度に達した場合、待機工程が終了したと判定する。
待機工程が終了していない場合(ステップS124:No)、ECU17は、待機工程が終了するまで処理を待機する。一方、待機工程が終了した場合(ステップS124:Yes)、ECU17は、車載バッテリ11のスイッチ11b、及びバッテリヒータ14のスイッチ11bの状態を切換える第3スイッチ状態切換え処理を開始する(ステップS125)。
具体的には、ECU17は、図7(b)及び図7(c)に示すように、車載バッテリ11のスイッチ11bをオフ状態からオン状態に切換えさせるとともに、バッテリヒータ14のスイッチ14bをオフ状態からオン状態に切換えさせる。
このため、電流の流れXは、図7(c)に示すように、車載バッテリ11のセルモジュール11aからスイッチ11bを介して、バッテリヒータ14のスイッチ14b、及び発熱体14aを順に通って、セルモジュール11aへ戻る流れとなる。
この際、車載バッテリ11は、図3に示すように、放電電流Iだけバッテリヒータ14へ放電することで、充電率が時間経過とともに緩やかに低下する。さらに、車載バッテリ11は、バッテリヒータ14から受ける熱と、バッテリヒータ14への放電による自己発熱とによって、上限温度と下限温度の範囲内の一定温度にバッテリ温度が維持される。
その後、ECU17は、図6に示すように、放電工程が終了したか否かを判定する(ステップS126)。この際、ECU17は、図3に示すように、充電工程を開始してからの経過時間が時間t3に達した場合、すなわち放電時間ΔTだけ放電した場合、放電工程が終了したと判定する。あるいは、車載バッテリ11の充電率が充電目標の下限充電率に達した場合、放電工程が終了したと判定する。
放電工程が終了していない場合(ステップS126:No)、ECU17は、放電工程が終了するまで処理を待機する。一方、放電工程が終了した場合(ステップS126:Yes)、ECU17は、第2スイッチ状態切換え処理を開始して(ステップS127)、上述したステップS123と同様に、車載バッテリ11のスイッチ11b、及びバッテリヒータ14のスイッチ14bを、それぞれオフ状態にさせる(図7(b)参照)。
その後、ECU17は、1回の充放電サイクルが終了したことを示す1サイクル終了信号を、接続ケーブルを介して外部充電装置20に出力したのち(ステップS128)、充放電サイクル処理を終了して、処理を図4のステップS109に戻す。
図4のステップS109に戻り、第3充電器が接続された車両10cから1サイクル終了信号を受信すると、外部充電装置20の充電制御部25は、図4に示すように、乗員の操作によって、車両10cとの接続が解除されたか否かを判定する(ステップS110)。
車両10cとの接続が解除された場合(ステップS110:Yes)、充電制御部25は、車両10cに対する処理動作を終了する。
一方、車両10cとの接続が解除されていない場合(ステップS110:No)、充電制御部25は、処理をステップS105に戻す。その後、充電制御システム1は、車両10cとの接続が解除されるまで、ステップS105からステップS110の処理を繰り返すことで、充放電サイクルを繰り返し実行する。
また、図4のステップS105において、第1充電器22に接続された車両10a、または第2充電器23に接続された車両10bが充電工程でない場合(ステップS105:No)、充電制御部25は、処理をステップS108に進めて、給電開始信号を出力する。
その後、ステップS109の充放電サイクル処理において、車両10のECU17は、充放電サイクルの充電工程を即座に開始する。この場合、充電工程が開始される時間は、車両10bの充電工程が終了する時間t4以上、車両10aの放電工程が終了する時間t6以下である。
このようにして、充電制御システム1は、外部充電装置20に接続された全ての車両10の車載バッテリ11を充電するとともに、車載バッテリ11のバッテリ温度を上限温度と下限温度の範囲内で維持する。
以上のような動作を実現する車載バッテリ11の充電制御システム1は、低温環境下において、外部充電装置20に複数の車両10が接続された場合であっても、車載バッテリ11への充電と、バッテリ温度の維持とを両立することができる。
具体的には、充電工程、待機工程、及び放電工程を1回の充放電サイクルとして、充放電サイクルを繰り返すことで、充電制御システム1は、充電工程による車載バッテリ11の昇温と、待機工程による車載バッテリ11の自然冷却と、放電工程による車載バッテリ11の温度維持とを繰り返すことができる。
この際、バッテリ温度を維持するように放電工程が行われるため、充電制御システム1は、車載バッテリ11を昇温するための放電量に比べて、放電量を抑えることができる。このため、充電制御システム1は、充電率の低下を抑えて、バッテリ温度を維持することができる。
そして、複数の車両10が外部充電装置20に接続された場合、別の車両10における充放電サイクルが待機工程または/および放電工程の場合に、充電工程が開始されるように、車両10間における充放電サイクルの開始タイミングを制御することで、充電制御システム1は、複数の車両10間において充電工程が同時に行われることを防止できる。このため、充電制御システム1は、複数の車載バッテリ11に供給される総電力量が、契約電力容量を超過することを防止できる。
さらに、充電工程と放電工程との間に待機工程を設けたことにより、充電制御システム1は、充電工程及び放電工程を1回の充放電サイクルとした場合に比べて、車載バッテリ11への電力供給を停止する時間を長く確保することができる。このため、充電制御システム1は、複数の車両10が外部充電装置20に接続された場合であっても、車両101台あたりの充電時間を安定して確保することができる。
加えて、外部充電装置20に接続される車両10の台数が多い場合、車載バッテリ11の充電制御システム1は、例えば、待機時間ΔTを調整することで、接続された全ての車載バッテリ11への充電を容易にすることができる。このため、車載バッテリ11の充電制御システム1は、外部充電装置20に接続される車両10の増減に対して、柔軟に対応することができる。
従って、充電制御システム1は、低温環境下において、外部充電装置20に複数の車両10が接続された場合であっても、車載バッテリ11への充電と、バッテリ温度の維持とを両立することができる。
また、1回の充放電サイクルにおける待機時間ΔTを、外気温とバッテリ温度とに基づいて制御することにより、充電制御システム1は、不要な充放電を防止して、バッテリ温度をより効率的に維持することができる。
具体的には、車載バッテリ11は、充放電が行われていない状態では、大気中への放熱によって時間経過とともにバッテリ温度が低下する。このため、低温環境下において、待機時間ΔTが長くなると、車載バッテリ11のバッテリ温度が、下限温度を下回るおそれがある。
さらに、この場合、放電工程の開始とともに、車載バッテリ11を下限温度まで昇温させる必要があるため、過剰な放電によって充電率が所定充電率を下回るおそれがあった。
そこで、外気温とバッテリ温度とに基づいて待機時間を制御することで、充電制御システム1は、低温環境下において、車載バッテリ11のバッテリ温度が、下限温度を下回る前に、放電工程を開始することができる。
従って、充電制御システム1は、外気温とバッテリ温度とに基づいて待機時間ΔTを制御することで、不要な放電をより確実に防止して、バッテリ温度をより効率的に維持することができる。
この発明の構成と、上述の実施形態との対応において、
この発明の外部電力供給装置は、実施形態の外部充電装置20に対応し、
以下同様に、
所定充電率の範囲は、充電目標の上限充電率と下限充電率との範囲に対応し、
所定温度の範囲は、バッテリ温度の上限温度と下限温度との範囲に対応し、
充放電制御手段は、車両10のECU17、及び外部充電装置20の充電制御部25に対応し、
タイミング制御手段は、外部充電装置20の充電制御部25に対応し、
外気温検出手段は、外気温センサ13、及び車両10のECU17に対応し、
待機制御の制御時間は、待機時間ΔTに対応するが、
この発明は、上述の実施形態の構成のみに限定されるものではなく、多くの実施の形態を得ることができる。
例えば、上述した実施形態において、車両10を電気自動車としたが、これに限定せず、駆動用モータ15を回転駆動させるための車載バッテリ11を備えるとともに、車両10の外部から供給された電力によって車載バッテリ11が充電される車両であれば、例えば、プラグインハイブリッド車であってもよい。
また、外気温を検出する外気温センサ13を車両10に設けたが、これに限定せず、外部充電装置20に外気温センサを設けてもよい。この場合、図4のステップS102における条件送信処理において、所要時間情報、及び充電時間情報に加えて、外気温を示す外気温情報を車両10に送信する。
また、第1充電器22、及び第2充電器23にそれぞれ車両10が接続され、第3充電器24に車両10が接続された場合について説明したが、これに限定せず、第1充電器22、第2充電器23、及び第3充電器24のいずれかに車両10が接続された状態、あるいは第1充電器22、第2充電器23、及び第3充電器24のいずれにも車両10が接続されていない状態であってもよい。
また、車載バッテリ11を保温するためにバッテリヒータ14を備えた構成としたが、これに限定せず、発熱体となる抵抗体を内蔵した車載バッテリとしてもよい。あるいは、バッテリヒータ14などを設けず、放電による自己発熱によって車載バッテリ11のバッテリ温度を維持する構成としてもよい。
また、車両10のECU17と、外部充電装置20の充電制御部25との協働により、車載バッテリ11における充放電、及び待機を制御するとともに、充放電サイクルの開始タイミングを制御する構成としたが、これに限定せず、外部充電装置20の充電制御部25により、車載バッテリ11における充放電、及び待機を制御するとともに、充放電サイクルの開始タイミングを制御する構成としてもよい。
例えば、外部充電装置20に車両10が接続された際、外部充電装置20の外部充電制御部25が、車両10から車載バッテリの充電率やバッテリ温度、内部抵抗値などの各種情報を取得して、充電電流I、充電時間ΔT、待機時間ΔT、放電電流I、及び放電時間ΔTを算出する。
そして、充電制御部25が、外部充電装置20に設けたスイッチをオンオフ制御することで、外部充電装置20から車載バッテリ11への給電を制御して、充電工程、及び待機工程を制御する。さらに、充電制御部25が、外部充電装置20に設けた負荷装置に車両10の車載バッテリ11を接続させることで、車載バッテリ11を放電させる構成としてもよい。
また、1つの外部充電装置20に対して最大3台の車両10が接続可能な充電制御システム1としたが、これに限定せず、1つの外部充電装置20に対して適宜の台数の車両が接続可能な構成としてもよい。
例えば、別の実施形態における充放電サイクルのタイミングチャートを示す図8のように、1つの外部充電装置20に対して最大10台の車両10が接続可能な充電制御システム1としてもよい。
なお、図8(a)は第1の充電器に接続された車両における充放電サイクルのタイミングチャートを示し、図8(b)は第2の充電器に接続された車両における充放電サイクルのタイミングチャートを示し、図8(c)は第3の充電器に接続された車両における充放電サイクルのタイミングチャートを示し、図8(d)は第9の充電器に接続された車両における充放電サイクルのタイミングチャートを示し、図8(e)は第10の充電器に接続された車両における充放電サイクルのタイミングチャートを示している。
この場合、1回の充放電サイクルにおける待機時間ΔTを、図8に示すように、接続可能な台数が3台の場合の待機時間ΔTよりも長くする。さらに、充電時間ΔTを、接続可能な台数が3台の場合の充電時間ΔTよりも短くするとともに、充電電流Iを、接続可能な台数が3台の場合の充電電流Iよりも大きい値にする。これにより、充電制御システム1は、上述した実施形態と同様の効果を奏することができる。
1…充電制御システム
10…車両
10a…車両
10b…車両
10c…車両
11…車載バッテリ
13…外気温センサ
17…ECU
20…外部充電装置
25…充電制御部
ΔT…待機時間

Claims (2)

  1. 車両に搭載された車載バッテリと、
    該車載バッテリに電気的に接続されるとともに、前記車両の外部から前記車載バッテリに外部電力を供給する外部電力供給装置と、
    前記車載バッテリの充放電を前記車載バッテリの所定充電率の範囲内で制御するとともに、前記車載バッテリのバッテリ温度を所定温度の範囲内で維持するように前記車載バッテリの放電を制御する充放電制御手段とを備えた車載バッテリの充電制御システムであって、
    前記充放電制御手段が、
    前記車載バッテリに充電する充電制御、前記車載バッテリの充放電を待機する待機制御、及び前記車載バッテリを放電する放電制御をこの順番で行うとともに、前記充電制御、前記待機制御、及び前記放電制御を1回の充放電サイクルとして、該充放電サイクルを繰り返すように構成され、
    前記外部電力供給装置が、複数の前記車両が接続可能に構成され、
    前記複数の車両が前記外部電力供給装置に接続された場合、前記複数の車両間における前記充放電サイクルの開始タイミングを制御するタイミング制御手段を備え、
    該タイミング制御手段が、
    別の車両における前記充放電サイクルが前記待機制御または/および前記放電制御の場合に、前記充電制御が開始されるように、前記車両間における充放電サイクルの開始タイミングを制御する構成である
    車載バッテリの充電制御システム。
  2. 外気温度を検出する外気温検出手段を備え、
    前記タイミング制御手段が、
    前記1回の充放電サイクルにおける前記待機制御の制御時間を、検出された外気温度に基づいて制御する構成である
    請求項1に記載の車載バッテリの充電制御システム。
JP2017086162A 2017-04-25 2017-04-25 車載バッテリの充電制御システム Active JP6465146B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017086162A JP6465146B2 (ja) 2017-04-25 2017-04-25 車載バッテリの充電制御システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017086162A JP6465146B2 (ja) 2017-04-25 2017-04-25 車載バッテリの充電制御システム

Publications (2)

Publication Number Publication Date
JP2018186613A true JP2018186613A (ja) 2018-11-22
JP6465146B2 JP6465146B2 (ja) 2019-02-06

Family

ID=64355205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017086162A Active JP6465146B2 (ja) 2017-04-25 2017-04-25 車載バッテリの充電制御システム

Country Status (1)

Country Link
JP (1) JP6465146B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020129915A (ja) * 2019-02-08 2020-08-27 株式会社デンソー 充放電装置およびそれを用いた電力管理システム
JP2020174458A (ja) * 2019-04-10 2020-10-22 株式会社豊田自動織機 電池パック
KR102610629B1 (ko) * 2022-09-01 2023-12-06 김윤재 배터리 충전장치 및 배터리 충전방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011238428A (ja) * 2010-05-10 2011-11-24 Kansai Electric Power Co Inc:The 二次電池の充電システム及び充電方法
JP2013109859A (ja) * 2011-11-17 2013-06-06 Denso Corp 電池制御装置
JP2014090639A (ja) * 2012-10-31 2014-05-15 Daihatsu Motor Co Ltd 車両用充電制御システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011238428A (ja) * 2010-05-10 2011-11-24 Kansai Electric Power Co Inc:The 二次電池の充電システム及び充電方法
JP2013109859A (ja) * 2011-11-17 2013-06-06 Denso Corp 電池制御装置
JP2014090639A (ja) * 2012-10-31 2014-05-15 Daihatsu Motor Co Ltd 車両用充電制御システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020129915A (ja) * 2019-02-08 2020-08-27 株式会社デンソー 充放電装置およびそれを用いた電力管理システム
JP7135912B2 (ja) 2019-02-08 2022-09-13 株式会社デンソー 充放電装置およびそれを用いた電力管理システム
JP2020174458A (ja) * 2019-04-10 2020-10-22 株式会社豊田自動織機 電池パック
KR102610629B1 (ko) * 2022-09-01 2023-12-06 김윤재 배터리 충전장치 및 배터리 충전방법

Also Published As

Publication number Publication date
JP6465146B2 (ja) 2019-02-06

Similar Documents

Publication Publication Date Title
JP5752151B2 (ja) 電池の内部抵抗を使用して動作性能を改善するための電池パックシステム
JP5660102B2 (ja) 車両の電源装置
CN105882643B (zh) 用于驾驶循环之后发电的车辆电池电荷准备
CN104773084B (zh) 用于延长蓄电池寿命周期的方法和系统
JP5858306B2 (ja) バッテリーパック連結制御装置及び方法
JP6419992B2 (ja) ハイブリッドエネルギー貯蔵モジュールシステム
US9187085B1 (en) Electric vehicle control based on operating costs associated with power sources
JP6653197B2 (ja) 蓄電装置、機器及び制御方法
CN110303944B (zh) 一种电动汽车快速充电系统及方法
JP5344047B2 (ja) 二次電池の出力制御装置
JP6465146B2 (ja) 車載バッテリの充電制御システム
JP2015225782A (ja) 蓄電システム
US10703269B2 (en) Vehicle and method of notifying charging information of vehicle
JP2018098892A (ja) 電動車両の電源装置
JP2014018019A (ja) ソーラー充電システム及び移動体
CN113809438A (zh) 电池系统及供电系统
KR20150109608A (ko) 전기 자동차 충전 장치
JP2015220956A (ja) 充電装置
JP6541310B2 (ja) モジュール制御装置、バランス補正システム及び蓄電システム
JP5821691B2 (ja) 電動車両、受電設備および電力供給システム
JP2014017891A (ja) 車両用充電システム
JP2017216785A (ja) 電源システム、移動体、及び制御方法
WO2018113681A1 (zh) 充放电设备及移动充电车
JP5696617B2 (ja) 充電制御装置および充電制御方法
JP2017070077A (ja) 蓄電装置、輸送機器及び制御方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181224

R150 Certificate of patent or registration of utility model

Ref document number: 6465146

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150