JP2018177906A - Resin composition, prepreg, metal-clad laminate, printed wiring board, and flex-rigid printed wiring board - Google Patents

Resin composition, prepreg, metal-clad laminate, printed wiring board, and flex-rigid printed wiring board Download PDF

Info

Publication number
JP2018177906A
JP2018177906A JP2017077043A JP2017077043A JP2018177906A JP 2018177906 A JP2018177906 A JP 2018177906A JP 2017077043 A JP2017077043 A JP 2017077043A JP 2017077043 A JP2017077043 A JP 2017077043A JP 2018177906 A JP2018177906 A JP 2018177906A
Authority
JP
Japan
Prior art keywords
printed wiring
wiring board
resin
composition
flex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017077043A
Other languages
Japanese (ja)
Other versions
JP6928908B2 (en
Inventor
章裕 山内
Akihiro Yamauchi
章裕 山内
中村 善彦
Yoshihiko Nakamura
善彦 中村
洋之 藤澤
Hiroyuki Fujisawa
洋之 藤澤
孝 新保
Takashi Shinpo
孝 新保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2017077043A priority Critical patent/JP6928908B2/en
Priority to PCT/JP2018/005422 priority patent/WO2018186030A1/en
Priority to KR1020197021161A priority patent/KR102480537B1/en
Priority to CN201880005369.8A priority patent/CN110121532A/en
Priority to TW107106178A priority patent/TWI829631B/en
Publication of JP2018177906A publication Critical patent/JP2018177906A/en
Application granted granted Critical
Publication of JP6928908B2 publication Critical patent/JP6928908B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4014Nitrogen containing compounds
    • C08G59/4028Isocyanates; Thioisocyanates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/092Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/30Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/30Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen
    • C08G59/304Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Epoxy Resins (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a resin composition capable of forming a prepreg having good moldability and high adhesion to a substrate and causing less powder falling, and capable of forming a cured product having a low coefficient of thermal expansion.SOLUTION: The resin composition contains (A) an epoxy resin, (B) dicyandiamide, (C) a phenoxy resin, (D) a core-shell rubber, and (E) an inorganic filler. The phenoxy resin (C) has a weight-average molecular weight of 30,000 or more. The phenoxy resin (C) has a tensile elongation of 20% or more. The content of the phenoxy resin (C) is 5-30 pts.mass based on 100 pts.mass of the epoxy resin (A). The content of the core-shell rubber (D) is 3-20 pts.mass based on 100 pts.mass of the epoxy resin (A).SELECTED DRAWING: Figure 1

Description

本発明は、樹脂組成物、プリプレグ、金属張積層板、プリント配線板及びフレックスリジッドプリント配線板に関する。   The present invention relates to a resin composition, a prepreg, a metal-clad laminate, a printed wiring board and a flex rigid printed wiring board.

プリント配線板等の製造に用いられるプリプレグは、従来、熱硬化性樹脂を含有する樹脂組成物を繊維基材に含侵させると共に、半硬化状態になるまで加熱乾燥して形成されている。そして、このプリプレグを所定寸法に切断後、所要枚数重ねると共に、この片面あるいは両面に金属箔を重ね、これを加熱加圧して積層形成することによって、プリント配線板の製造に用いられる金属張積層板が作製されている。   Conventionally, a prepreg used for producing a printed wiring board or the like is formed by impregnating a fiber base material with a resin composition containing a thermosetting resin and drying by heating to a semi-cured state. Then, after cutting this prepreg to a predetermined size, a required number of sheets are stacked, and a metal foil is stacked on one side or both sides, and this is heated and pressed to form a laminate, thereby forming a metal-clad laminate used in the manufacture of printed wiring boards Has been produced.

しかし、プリプレグは、半硬化状態であるため、脆く、プリプレグを切断する際や積層する際に、粉落ちが発生しやすい。プリプレグの取り扱い時に発生する粉落ちによって、作製された積層板が打痕のように凹み、打痕不良が発生するおそれがある。   However, since the prepreg is in a semi-cured state, it is fragile, and it is easy to cause powdering when cutting or laminating the prepreg. The powder produced during handling of the prepreg may cause a dent in the produced laminated plate like a nick, resulting in a nick defect.

プリプレグから粉落ちが発生することを低減するために、例えば、特許文献1には、エポキシ樹脂とジシアンジアミド等の硬化剤と粒子径が1μm以下の架橋ゴムとを含有する樹脂組成物が開示されている。また、特許文献2には、エポキシ樹脂と酸無水物で変性されたフェノキシ樹脂とを含有するエポキシ樹脂組成物が開示されている。   For example, Patent Document 1 discloses a resin composition containing an epoxy resin, a curing agent such as dicyandiamide, and a crosslinked rubber having a particle diameter of 1 μm or less in order to reduce the occurrence of powder falling off from a prepreg. There is. Patent Document 2 discloses an epoxy resin composition containing an epoxy resin and a phenoxy resin modified with an acid anhydride.

特開2001−302813号公報JP 2001-302813 A 特開2000−336242号公報Unexamined-Japanese-Patent No. 2000-336242

しかしながら、特許文献1及び特許文献2に記載の樹脂組成物から作製されるプリプレグでは、粉落ちの発生はある程度低減されるものの、良好な成型性及び基材への高い密着性を同時に実現することはできず、また、特許文献1及び特許文献2に記載の樹脂組成物では、低い熱膨張率を有する硬化物を形成することは難しい。   However, in the prepregs produced from the resin compositions described in Patent Document 1 and Patent Document 2, although the occurrence of powder dropping is reduced to some extent, simultaneously achieving good moldability and high adhesion to the substrate. In the resin compositions described in Patent Document 1 and Patent Document 2, it is difficult to form a cured product having a low coefficient of thermal expansion.

本発明の目的は、良好な成型性及び基材への高い密着性を有するとともに、粉落ちの発生が少ないプリプレグ、並びに低い熱膨張率を有する硬化物を形成しうる樹脂組成物、この樹脂組成物から作製されるプリプレグ、並びにこの樹脂組成物の硬化物を含む金属張積層板、プリント配線板、及びフレックスリジッドプリント配線板を提供することである。   The object of the present invention is to provide a prepreg which has good moldability and high adhesion to a substrate and which is less likely to generate powder, and a resin composition capable of forming a cured product having a low coefficient of thermal expansion, and this resin composition It is an object of the present invention to provide a prepreg made of metal, a metal-clad laminate, a printed wiring board, and a flex-rigid printed wiring board containing a cured product of the resin composition.

本発明に係る樹脂組成物は、(A)エポキシ樹脂と、(B)ジシアンジアミドと、(C)フェノキシ樹脂と、(D)コアシェルゴムと、(E)無機フィラーと、を含有し、前記(C)フェノキシ樹脂の重量平均分子量は、30000以上であり、前記(C)フェノキシ樹脂の引張り伸び率は、20%以上であり、前記(C)フェノキシ樹脂の含有量は、前記(A)エポキシ樹脂100質量部に対して5〜30質量部であり、前記(D)コアシェルゴムの含有量は、前記(A)エポキシ樹脂100質量部に対して3〜20質量部である。   The resin composition according to the present invention contains (A) epoxy resin, (B) dicyandiamide, (C) phenoxy resin, (D) core shell rubber, and (E) inorganic filler, and the above (C) The weight average molecular weight of the phenoxy resin is 30,000 or more, the tensile elongation rate of the (C) phenoxy resin is 20% or more, and the content of the (C) phenoxy resin is the (A) epoxy resin 100 It is 5-30 mass parts with respect to mass part, and content of said (D) core-shell rubber is 3-20 mass parts with respect to 100 mass parts of said (A) epoxy resin.

本発明に係るプリプレグは、繊維基材と、前記繊維基材に含侵された前記樹脂組成物の半硬化物と、を有する。   The prepreg according to the present invention has a fiber base and a semi-cured product of the resin composition impregnated in the fiber base.

本発明に係る金属張積層板は、前記樹脂組成物の硬化物を含む絶縁層と、前記絶縁層に設けられた金属層と、を有する。   The metal-clad laminate according to the present invention has an insulating layer containing a cured product of the resin composition, and a metal layer provided on the insulating layer.

本発明に係るプリント配線板は、前記樹脂組成物の硬化物を含む絶縁層と、前記絶縁層に設けられた導体配線と、を有する。   The printed wiring board according to the present invention has an insulating layer containing a cured product of the resin composition, and a conductor wiring provided on the insulating layer.

本発明に係るフレックスリジッドプリント配線板は、複数のリジッド部と、前記複数のリジッド部を接続するフレックス部と、前記複数のリジッド部及び前記フレックス部のうちの少なくとも一つに設けられた導体配線と、を有し、前記複数のリジッド部のうちの少なくとも一つは、前記樹脂組成物の硬化物を含む。   A flex-rigid printed wiring board according to the present invention includes a plurality of rigid portions, a flex portion connecting the plurality of rigid portions, a conductor wire provided on at least one of the plurality of rigid portions and the flex portion. And at least one of the plurality of rigid parts contains a cured product of the resin composition.

本発明によれば、良好な成型性及び基材への高い密着性を有するとともに、粉落ちの発生が少ないプリプレグ、並びに低い熱膨張率を有する硬化物を形成しうる樹脂組成物、この樹脂組成物から作製されるプリプレグ、並びにこの樹脂組成物の硬化物を含む金属張積層板、プリント配線板、及びフレックスリジッドプリント配線板を得ることができる。   According to the present invention, a resin composition which has good moldability and high adhesion to a substrate and which is capable of forming a cured product having a low coefficient of thermal expansion, and a prepreg having a low occurrence of powder dropping, and this resin composition It is possible to obtain a prepreg made of metal and a metal-clad laminate, a printed wiring board and a flex-rigid printed wiring board containing a cured product of the resin composition.

図1は、本発明の一実施形態に係るプリプレグの断面図である。FIG. 1 is a cross-sectional view of a prepreg according to an embodiment of the present invention. 図2は、本発明の一実施形態に係る金属張積層板の断面図である。FIG. 2 is a cross-sectional view of a metal-clad laminate according to an embodiment of the present invention. 図3は、本発明の一実施形態に係るプリント配線板の断面図である。図3Aは、単層構造のプリント配線板の断面図であり、図3Bは、多層構造のプリント配線板の断面図である。FIG. 3 is a cross-sectional view of a printed wiring board according to an embodiment of the present invention. FIG. 3A is a cross-sectional view of a single-layer printed wiring board, and FIG. 3B is a cross-sectional view of a multi-layer printed wiring board. 図4は、本発明の第一実施形態に係るフレックスリジッドプリント配線板の断面図である。FIG. 4 is a cross-sectional view of a flex-rigid printed wiring board according to the first embodiment of the present invention. 図5は、本発明の第二実施形態に係るフレックスリジッドプリント配線板の断面図である。FIG. 5 is a cross-sectional view of a flex-rigid printed wiring board according to a second embodiment of the present invention. 図6は、本発明の第三実施形態に係るフレックスリジッドプリント配線板の断面図である。FIG. 6 is a cross-sectional view of a flex-rigid printed wiring board according to a third embodiment of the present invention.

以下、本発明の実施形態を説明する。   Hereinafter, embodiments of the present invention will be described.

[本実施形態に係る樹脂組成物]
本実施形態に係る樹脂組成物(以下、組成物(X)という)は、(A)エポキシ樹脂と、(B)ジシアンジアミドと、(C)フェノキシ樹脂と、(D)コアシェルゴムと、(E)無機フィラーと、を含有する。(C)フェノキシ樹脂の重量平均分子量は、30000以上である。(C)フェノキシ樹脂の引張り伸び率は、20%以上である。(C)フェノキシ樹脂の含有量は、(A)エポキシ樹脂100質量部に対して5〜30質量部である。(D)コアシェルゴムの含有量は、(A)エポキシ樹脂100質量部に対して3〜20質量部である。
[Resin composition according to the present embodiment]
The resin composition according to this embodiment (hereinafter referred to as composition (X)) comprises (A) epoxy resin, (B) dicyandiamide, (C) phenoxy resin, (D) core shell rubber, and (E) And an inorganic filler. The weight average molecular weight of (C) phenoxy resin is 30,000 or more. The tensile elongation percentage of (C) phenoxy resin is 20% or more. The content of (C) phenoxy resin is 5 to 30 parts by mass with respect to 100 parts by mass of (A) epoxy resin. The content of the (D) core-shell rubber is 3 to 20 parts by mass with respect to 100 parts by mass of the (A) epoxy resin.

本実施形態では、組成物(X)が、上記の構成を有するため、組成物(X)から作製されるプリプレグは、良好な成型性及び基材への高い密着性を有するとともに、粉落ちの発生が少ない。さらに、組成物(X)の硬化物は、低い熱膨張率を有する。   In the present embodiment, since the composition (X) has the above-described configuration, the prepreg produced from the composition (X) has good moldability and high adhesion to the substrate, and also has a powdery property There are few occurrences. Furthermore, the cured product of composition (X) has a low coefficient of thermal expansion.

組成物(X)が含有する成分について、更に詳しく説明する。   The components contained in the composition (X) will be described in more detail.

<(A)エポキシ樹脂>
(A)エポキシ樹脂(以下、(A)成分という)は、組成物(X)に熱硬化性を付与することができる。また、組成物(X)が(A)成分を含有することで、組成物(X)の硬化物は良好な耐熱性を有しうる。
<(A) Epoxy resin>
The epoxy resin (A) (hereinafter referred to as component (A)) can impart thermosetting properties to the composition (X). In addition, when the composition (X) contains the component (A), the cured product of the composition (X) can have good heat resistance.

(A)成分としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂等のビスフェノール型エポキシ樹脂;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;ビフェニル型エポキシ樹脂、キシリレン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、ビフェニルジメチレン型エポキシ樹脂、トリスフェノールメタンノボラック型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂等のアリールアルキレン型エポキシ樹脂;4官能ナフタレン型エポキシ樹脂等のナフタレン型エポキシ樹脂;ナフタレン骨格変性クレゾールノボラック型エポキシ樹脂、ナフタレンジオールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、メトキシナフタレン変性クレゾールノボラック型エポキシ樹脂、メトキシナフタレンジメチレン型エポキシ樹脂等のナフタレン骨格変性エポキシ樹脂;トリフェニルメタン型エポキシ樹脂;アントラセン型エポキシ樹脂;ジシクロペンタジエン型エポキシ樹脂;ノルボルネン型エポキシ樹脂;フルオレン型エポキシ樹脂;上記エポキシ樹脂をハロゲン化した難燃化エポキシ樹脂;リン変性エポキシ樹脂等が挙げられる。(A)成分は、これらのうち1種を単独で使用してもよく、2種以上を併用してもよい。   As component (A), for example, bisphenol type epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin; novolak type epoxy resin such as phenol novolac type epoxy resin, cresol novolac type epoxy resin Biphenyl type epoxy resin, xylylene type epoxy resin, phenol aralkyl type epoxy resin, biphenyl aralkyl type epoxy resin, biphenyl novolac type epoxy resin, biphenyl dimethylene type epoxy resin, trisphenolmethane novolac type epoxy resin, tetramethylbiphenyl type epoxy resin Aryl alkylene type epoxy resins such as naphthalene type epoxy resins such as tetrafunctional naphthalene type epoxy resin; naphthalene skeleton modified cresol novo Naphthalene skeleton-modified epoxy resins, such as tack-type epoxy resins, naphthalenediol aralkyl-type epoxy resins, naphthol aralkyl-type epoxy resins, methoxynaphthalene-modified cresol novolac epoxy resins, methoxynaphthalene dimethylene-type epoxy resins; triphenylmethane-type epoxy resins; Anthracene type epoxy resin; dicyclopentadiene type epoxy resin; norbornene type epoxy resin; fluorene type epoxy resin; flame retardant epoxy resin obtained by halogenating the above epoxy resin; phosphorus modified epoxy resin and the like. As the component (A), one of them may be used alone, or two or more may be used in combination.

組成物(X)が、重量平均分子量が30000以上であり、且つ引張り伸び率が20%以上であるビスフェノールA型エポキシ樹脂を含有する場合、このビスフェノールA型エポキシ樹脂は(C)成分のフェノキシ樹脂として組成物(X)に含有される。そのため、(A)成分として含有されるビスフェノールA型エポキシ樹脂は、重量平均分子量が30000未満であるビスフェノールA型エポキシ樹脂、引張伸び率が20%未満であるビスフェノールA型エポキシ樹脂、又は重量平均分子量が30000未満であり且つ引張伸び率が20%未満であるビスフェノールA型エポキシ樹脂である。   When the composition (X) contains a bisphenol A epoxy resin having a weight average molecular weight of 30,000 or more and a tensile elongation rate of 20% or more, the bisphenol A epoxy resin is a phenoxy resin of the component (C). As contained in the composition (X). Therefore, the bisphenol A epoxy resin contained as the component (A) is a bisphenol A epoxy resin having a weight average molecular weight of less than 30,000, a bisphenol A epoxy resin having a tensile elongation percentage of less than 20%, or a weight average molecular weight Is less than 30,000 and the tensile elongation is less than 20%.

(A)成分は、リン変性エポキシ樹脂を含有することが好ましい。リン変性エポキシ樹脂とは、リン原子を含有するエポキシ樹脂を意味する。(A)成分がリン変性エポキシ樹脂を含有する場合、ハロゲン系難燃剤を添加しなくても組成物(X)の硬化物に難燃性を付与することができるため、環境に優しい。   The component (A) preferably contains a phosphorus-modified epoxy resin. The phosphorus-modified epoxy resin means an epoxy resin containing a phosphorus atom. When the component (A) contains a phosphorus-modified epoxy resin, the cured product of the composition (X) can be imparted with flame retardance without the addition of a halogen-based flame retardant, which is environmentally friendly.

リン変性エポキシ樹脂としては、特に限定されないが、例えば、有機リン化合物とキノン化合物とを反応させ、この反応で生成する反応生成物と、エポキシ樹脂とを反応させて得られるリン変性エポキシ樹脂を用いることができる。   The phosphorus-modified epoxy resin is not particularly limited. For example, a phosphorus-modified epoxy resin obtained by reacting an organic phosphorus compound with a quinone compound and reacting a reaction product produced by this reaction with an epoxy resin is used. be able to.

(A)成分がリン変性エポキシ樹脂を含有する場合、リン変性エポキシ樹脂は、下記式(1)で示される構造を有することが好ましい。この場合、組成物(X)の硬化物は優れた難燃性を有しうる。   When the component (A) contains a phosphorus-modified epoxy resin, the phosphorus-modified epoxy resin preferably has a structure represented by the following formula (1). In this case, the cured product of composition (X) may have excellent flame retardancy.

Figure 2018177906
Figure 2018177906

(A)成分の含有量は、組成物(X)100質量部に対して40〜80質量部の範囲内であることが好ましい。この場合、組成物(X)は十分な熱硬化性を有しうる。(A)成分の含有量は、組成物(X)100質量部に対して50〜70質量部の範囲内であることがさらに好ましい。   It is preferable that content of (A) component exists in the range of 40-80 mass parts with respect to 100 mass parts of compositions (X). In this case, the composition (X) may have sufficient thermosetting properties. The content of the component (A) is more preferably in the range of 50 to 70 parts by mass with respect to 100 parts by mass of the composition (X).

(A)成分が、リン変性エポキシ樹脂を含有する場合、リン変性エポキシ樹脂は、(A)成分100質量部中のリン濃度が1%以上となるように含有されていることが好ましい。この場合、組成物(X)の硬化物は、より高い難燃性を有しうる。リン変性エポキシ樹脂は、(A)成分100質量部中のリン濃度が1.5%以上となるように含有されていることがさらに好ましい。   When the component (A) contains a phosphorus-modified epoxy resin, the phosphorus-modified epoxy resin is preferably contained such that the concentration of phosphorus in 100 parts by mass of the component (A) is 1% or more. In this case, the cured product of composition (X) may have higher flame retardancy. The phosphorus-modified epoxy resin is more preferably contained so that the phosphorus concentration in 100 parts by mass of the component (A) is 1.5% or more.

<(B)ジシアンジアミド>
(B)ジシアンジアミド(以下、(B)成分という)は、硬化剤として機能する。組成物(X)が(B)成分を硬化剤として含有すると、例えばフェノール系硬化剤を含有する場合と比較して、組成物(X)が加熱されて硬化する際の硬化速度が遅くなるため、組成物(X)の半硬化物及び硬化物は脆くなりにくい。このため、組成物(X)から作製されるプリプレグの粉落ちを低減することができる。さらに、組成物(X)が(B)成分を硬化剤として含有すると、フェノール系硬化剤を含有する場合と比較して、組成物(X)の半硬化物及び硬化物は、特にポリイミド基材へのより高い密着性を有する。ポリイミド基材は、プリント配線板のカバーレイ等として好適に使用されるため、組成物(X)から作製されるプリプレグは、プリント配線板を作製するための基板材料として有効に利用されうる。
<(B) dicyandiamide>
(B) Dicyandiamide (hereinafter referred to as component (B)) functions as a curing agent. When the composition (X) contains the component (B) as a curing agent, the curing rate when the composition (X) is heated and cured becomes slower as compared to, for example, the case where it contains a phenolic curing agent. The semi-cured product and the cured product of the composition (X) are not easily brittle. For this reason, powdering off of the prepreg produced from composition (X) can be reduced. Furthermore, when the composition (X) contains the component (B) as a curing agent, the semi-cured product and the cured product of the composition (X) in particular have a polyimide substrate, as compared to the case where they contain a phenolic curing agent. It has a higher adhesion to Since a polyimide substrate is suitably used as a coverlay of a printed wiring board etc., the prepreg produced from composition (X) may be effectively used as a substrate material for producing a printed wiring board.

(B)成分は、組成物(X)において、(A)成分のエポキシ当量1に対して、(B)成分の活性水素当量が0.3〜0.8の範囲内となるように含有されていることが好ましく、0.4〜0.7の範囲内となるように含有されていることがより好ましい。なお、エポキシ当量とは、エポキシ樹脂の分子中に含まれるエポキシ基の数に対するエポキシ樹脂の分子量の比である。また、活性水素当量とは、硬化剤として用いる化合物中のアミノ基の窒素原子に直結する活性水素の数に対する硬化剤として用いる化合物の分子量の比である。   The component (B) is contained in the composition (X) such that the active hydrogen equivalent of the component (B) is in the range of 0.3 to 0.8 relative to 1 of the epoxy equivalent of the component (A). It is preferable that the content is within the range of 0.4 to 0.7. The epoxy equivalent is the ratio of the molecular weight of the epoxy resin to the number of epoxy groups contained in the molecule of the epoxy resin. The active hydrogen equivalent is the ratio of the molecular weight of the compound used as the curing agent to the number of active hydrogens directly linked to the nitrogen atom of the amino group in the compound used as the curing agent.

<(C)フェノキシ樹脂>
(C)フェノキシ樹脂(以下、(C)成分という)は、ビスフェノール類とエピクロルヒドリンとの縮合反応により、直鎖状に高分子化した樹脂である。(C)成分は、組成物(X)から作製されるプリプレグに可撓性を付与し、粉落ちの発生を低減させることができる。また、組成物(X)が(C)成分を含有することで、組成物(X)の半硬化物及び硬化物は、特にポリイミド基材への良好な密着性を有しうる。
<(C) phenoxy resin>
The (C) phenoxy resin (hereinafter, referred to as component (C)) is a resin which is linearly polymerized by condensation reaction of bisphenols and epichlorohydrin. The component (C) can impart flexibility to the prepreg produced from the composition (X) to reduce the occurrence of powdering. In addition, when the composition (X) contains the component (C), the semi-cured product and the cured product of the composition (X) can have particularly good adhesion to the polyimide substrate.

(C)成分の重量平均分子量は、30000以上である。(C)成分の重量平均分子量が30000以上であることで、組成物(X)から作製されるプリプレグの粉落ちの発生を低減することができる。(C)成分の重量平均分子量の上限は、特に限定されないが、例えば、100000以下であることが好ましい。   The weight average molecular weight of the component (C) is 30,000 or more. When the weight average molecular weight of the component (C) is 30,000 or more, the occurrence of powder falling off of the prepreg produced from the composition (X) can be reduced. Although the upper limit of the weight average molecular weight of (C) component is not specifically limited, For example, it is preferable that it is 100000 or less.

(C)成分の引張り伸び率は、20%以上である。(C)成分の引張り伸び率が20%以上であることで、組成物(X)から作製されるプリプレグに十分な可撓性を付与することができるため、組成物(X)から作製されるプリプレグの粉落ちを低減することができる。引張り伸び率の測定は、オートグラフを用いて行うことができる。   The tensile elongation of component (C) is at least 20%. When the tensile elongation rate of the component (C) is 20% or more, sufficient flexibility can be imparted to the prepreg produced from the composition (X), so the composition is produced from the composition (X) Powder fall off of the prepreg can be reduced. Measurement of tensile elongation can be performed using an autograph.

(C)成分としては、例えば、新日鉄住金化学株式会社製の品番「YP−50」、「YP50S」等を用いることができる。   As the component (C), for example, product numbers “YP-50” and “YP50S” manufactured by Nippon Steel Sumikin Chemical Co., Ltd. can be used.

(C)成分の含有量は、(A)成分100質量部に対して5〜30質量部である。(C)成分の含有量がこの範囲内である場合、組成物(X)から作製されるプリプレグの成型性を低下させることなく、組成物(X)から作製されるプリプレグの粉落ちの発生を低減させることができる。さらに、(C)成分の含有量がこの範囲内であることで、組成物(X)の半硬化物及び硬化物のポリイミド基材への密着性が低下しにくくなるため、組成物(X)の半硬化物及び硬化物は、特にポリイミド基材への良好な密着性を有しうる。   The content of the component (C) is 5 to 30 parts by mass with respect to 100 parts by mass of the component (A). When the content of the component (C) is within this range, generation of powder of the prepreg produced from the composition (X) can be reduced without reducing the moldability of the prepreg produced from the composition (X). It can be reduced. Furthermore, when the content of the component (C) is within this range, the adhesion of the semi-cured product and the cured product of the composition (X) to the polyimide substrate is unlikely to decrease, so the composition (X) Semi-cured products and cured products can have good adhesion to, in particular, polyimide substrates.

<(D)コアシェルゴム>
(D)コアシェルゴム(以下、(D)成分という)は、組成物(X)を硬化した際の硬化物のガラス転移温度に大きな影響を与えることなく、組成物(X)から作製されるプリプレグ及び硬化物に可撓性を付与することができる。このため、組成物(X)から作製されるプリプレグの粉落ちが低減される。さらに、組成物(X)が(D)成分を含有することで、組成物(X)は良好な基材への含浸性を有し、組成物(X)から作製されるプリプレグは、良好な成型性を有しうる。
<(D) core shell rubber>
(D) Core-shell rubber (hereinafter referred to as component (D)) is a prepreg prepared from composition (X) without significantly affecting the glass transition temperature of the cured product when the composition (X) is cured. And it is possible to impart flexibility to the cured product. For this reason, powdering off of the prepreg produced from composition (X) is reduced. Furthermore, when the composition (X) contains the component (D), the composition (X) has good impregnatability to the substrate, and the prepreg made from the composition (X) is good. It can have moldability.

(D)成分は、ゴム粒子の集合体である。ゴム粒子は、コア部と、コア部を取り囲むシェル部とを有する。すなわち、ゴム粒子は、コア部とシェル部にそれぞれ異なる材料を含む複合材料である。   The component (D) is an aggregate of rubber particles. The rubber particle has a core portion and a shell portion surrounding the core portion. That is, the rubber particles are a composite material including different materials in the core portion and the shell portion.

コア部は、特に限定されないが、例えば、シリコーン・アクリルゴム、アクリルゴム、シリコーンゴム、ニトリルゴム、ブタジエンゴム等を含んでよい。コア部は、シリコーン・アクリルゴム又はアクリルゴムを含むことが好ましい。この場合、組成物(X)から作製されるプリプレグ及び硬化物により高い可撓性を付与することができる。   The core portion is not particularly limited, and may include, for example, silicone / acrylic rubber, acrylic rubber, silicone rubber, nitrile rubber, butadiene rubber and the like. The core portion preferably contains silicone / acrylic rubber or acrylic rubber. In this case, high flexibility can be imparted to the prepreg and the cured product produced from the composition (X).

シェル部は、特に限定されないが、例えば、コア部に結合された複数のグラフト鎖からなっていてよい。グラフト鎖は、官能基を有していてよい。官能基としては、例えば、メタクリル基、アクリル基、ビニル基、エポキシ基、アミノ基、ウレイド基、メルカプト基、イソシアネート基が挙げられる。また、シェル部は、例えば、ポリメタクリル酸メチル、ポリスチレン等の重合体から構成されてもよい。   The shell part is not particularly limited, but may be, for example, a plurality of graft chains linked to the core part. The graft chain may have a functional group. As a functional group, methacryl group, an acryl group, a vinyl group, an epoxy group, an amino group, a ureido group, a mercapto group, an isocyanate group is mentioned, for example. Also, the shell portion may be made of, for example, a polymer such as poly (methyl methacrylate) or polystyrene.

ゴム粒子の形状や粒径は特に限定されない。ゴム粒子の平均粒径は、例えば、0.1〜2.0μmであることが好ましい。ゴム粒子の平均粒径は、レーザー回折・散乱法による粒度分布の測定値から算出される体積基準のメディアン径であり、市販のレーザー解析・散乱式粒度分布測定装置を用いて得られる。   The shape and particle size of the rubber particles are not particularly limited. The average particle diameter of the rubber particles is preferably, for example, 0.1 to 2.0 μm. The average particle diameter of the rubber particles is a volume-based median diameter calculated from the measured value of the particle size distribution by the laser diffraction / scattering method, and can be obtained using a commercially available laser analysis / scattering type particle size distribution measuring device.

(D)成分としては、例えば、三菱レイヨン株式会社製の品番「SRK200A」、「S2100」、「SX−005」、「S−2001」、「S−2006」、「S−2030」、「S−2200」、「SX−006」、「W−450A」、「E−901」、「C−223A」;アイカ工業株式会社製の品番「AC3816」、「AC3816N」、「AC3832」、「AC4030」、「AC3364」、「IM101」;株式会社カネカ製の「MX−217」、「MX−153」「MX−960」等を用いることができる。   As the component (D), for example, product numbers “SRK200A”, “S2100”, “SX-005”, “S-2001”, “S-2006”, “S-2006”, “S-2030”, “S-200” manufactured by Mitsubishi Rayon Co., Ltd. -2200 "," SX-006 "," W-450A "," E-901 "," C-223A "; Part No." AC3816 "," AC3816N "," AC3832 "," AC4030 "manufactured by Aika Kogyo Co., Ltd. “AC 3364”, “IM 101”; “MX-217”, “MX-153”, “MX-960” or the like manufactured by Kaneka Corporation can be used.

(D)成分の含有量は、(A)成分100質量部に対して3〜20質量部である。(D)成分の含有量がこの範囲内である場合、組成物(X)から作製されるプリプレグは、良好な基材密着性を有しうる。さらに、この場合、組成物(X)の硬化物の熱膨張率が高くなりすぎることを抑制しうる。   The content of the component (D) is 3 to 20 parts by mass with respect to 100 parts by mass of the component (A). When the content of the component (D) is within this range, the prepreg produced from the composition (X) may have good substrate adhesion. Furthermore, in this case, it can be suppressed that the thermal expansion coefficient of the cured product of the composition (X) becomes too high.

<(E)無機フィラー>
組成物(X)が(E)無機フィラー(以下、(E)成分という)を含有することで、組成物(X)の硬化物は、低い熱膨張率を有しうる。組成物(X)が(D)成分を含有する場合、組成物(X)の硬化物の熱膨張率は高くなりやすい。しかし、組成物(X)が(E)成分を含有することで、組成物(X)の硬化物は、低い熱膨張率を有することができるため、組成物(X)の硬化物は、熱応力を受けても、反り等の変形やクラックの発生が少ない。
<(E) Inorganic filler>
When the composition (X) contains (E) an inorganic filler (hereinafter referred to as component (E)), the cured product of the composition (X) can have a low coefficient of thermal expansion. When composition (X) contains (D) component, the thermal expansion coefficient of the hardened | cured material of composition (X) tends to become high. However, when the composition (X) contains the component (E), the cured product of the composition (X) can have a low coefficient of thermal expansion. Even if stress is applied, deformation such as warpage and the occurrence of cracks are less.

(E)成分は、特に限定されないが、例えば、水酸化アルミニウム、シリカ、硫酸バリウム、酸化ケイ素粉、破砕シリカ、焼成タルク、モリブデン酸亜鉛被覆タルク、チタン酸バリウム、酸化チタン、クレー、アルミナ、マイカ、ベーマイト、ホウ酸亜鉛、スズ酸亜鉛、その他の金属酸化物や金属水和物、炭酸カルシウム、水酸化マグネシウム、ケイ酸マグネシウム、ガラス短繊維、ホウ酸アルミニウムウィスカ、炭酸ケイ素ウィスカ等を含んでよい。(E)成分として、これらの無機フィラーを1種単独で使用してもよく、2種以上を併用してもよい。(E)成分は、水酸化アルミニウム及びシリカのうちの少なくとも一つを含有することが好ましい。   The component (E) is not particularly limited. For example, aluminum hydroxide, silica, barium sulfate, silicon oxide powder, crushed silica, calcined talc, zinc molybdate coated talc, barium titanate, titanium oxide, clay, alumina, mica , Boehmite, zinc borate, zinc stannate, other metal oxides or hydrates, calcium carbonate, magnesium hydroxide, magnesium silicate, short glass fibers, aluminum borate whiskers, silicon carbonate whiskers, etc. . As the component (E), these inorganic fillers may be used alone or in combination of two or more. The component (E) preferably contains at least one of aluminum hydroxide and silica.

(E)成分の形状や粒径は特に限定されない。(E)成分の平均粒径は、例えば、0.1〜5.0μmであることが好ましい。(E)成分の平均粒径は、レーザー回折・散乱法による粒度分布の測定値から算出される体積基準のメディアン径であり、市販のレーザー解析・散乱式粒度分布測定装置を用いて得られる。   The shape and particle size of the component (E) are not particularly limited. It is preferable that the average particle diameter of (E) component is 0.1-5.0 micrometers, for example. The average particle diameter of the component (E) is a volume-based median diameter calculated from the measured value of particle size distribution by a laser diffraction / scattering method, and can be obtained using a commercially available laser analysis / scattering type particle size distribution analyzer.

(E)成分は、カップリング剤等により表面処理が施されていてもよい。これにより、組成物(X)の硬化物の基材への密着性を高めることができる。カップリング剤としては、例えば、エポキシシランカップリング剤、メルカプトシランカップリング剤等のシランカップリング剤を用いることができる。   The component (E) may be surface-treated with a coupling agent or the like. Thereby, the adhesiveness to the base material of the hardened | cured material of a composition (X) can be improved. As a coupling agent, silane coupling agents, such as an epoxy silane coupling agent and a mercapto silane coupling agent, can be used, for example.

(E)成分の含有量は、(A)成分100質量部に対して5〜100質量部であることが好ましい。(E)成分の含有量がこの範囲内である場合、組成物(X)から作製されるプリプレグの粉落ち性に悪影響を与えることなく、組成物(X)の硬化物の熱膨張率を低くすることができる。(E)成分の含有量は、(A)成分100質量部に対して10〜70質量部であることがさらに好ましい。   It is preferable that content of (E) component is 5-100 mass parts with respect to 100 mass parts of (A) components. When the content of the component (E) is within this range, the coefficient of thermal expansion of the cured product of the composition (X) is lowered without adversely affecting the dusting properties of the prepreg produced from the composition (X) can do. The content of the component (E) is more preferably 10 to 70 parts by mass with respect to 100 parts by mass of the component (A).

<その他の成分>
組成物(X)は、本発明の効果が阻害されない場合、上記の(A)成分、(B)成分、(C)成分、(D)成分、及び(E)成分以外の成分を含んでいてもよい。組成物(X)は、例えば、分散剤、着色剤、密着性付与剤、硬化促進剤、有機溶剤、その他の樹脂、及び添加剤を含んでよい。
<Other ingredients>
Composition (X) contains components other than the components (A), (B), (C), (D), and (E) when the effect of the present invention is not inhibited. It is also good. The composition (X) may contain, for example, a dispersant, a colorant, an adhesion promoter, a curing accelerator, an organic solvent, another resin, and an additive.

組成物(X)は、本発明の効果が阻害されない場合、例えば、(A)成分及び(C)成分以外の樹脂を含有してもよい。組成物(X)は、例えば、フェノール樹脂、ビスマレイミド樹脂、シアネート樹脂等を含有してもよい。   The composition (X) may contain, for example, resins other than the components (A) and (C) when the effects of the present invention are not inhibited. The composition (X) may contain, for example, phenol resin, bismaleimide resin, cyanate resin and the like.

また、組成物(X)は、本発明の効果が阻害されない場合、例えば、(B)成分以外の硬化剤を含有してもよい。(B)成分以外の硬化剤としては、例えば、ジシアンジアミド以外のアミン系硬化剤、尿素系硬化剤、酸無水物系硬化剤等が挙げられる。   In addition, the composition (X) may contain, for example, a curing agent other than the component (B) when the effect of the present invention is not inhibited. Examples of curing agents other than the component (B) include amine curing agents other than dicyandiamide, urea curing agents, acid anhydride curing agents, and the like.

[本実施形態に係るプリプレグ1]
図1を参照して、本実施形態に係るプリプレグ1を説明する。
[Prepreg 1 according to the present embodiment]
The prepreg 1 according to the present embodiment will be described with reference to FIG.

本実施形態に係るプリプレグ1は、繊維基材12と、繊維基材12に含侵された組成物(X)の半硬化物11と、を有する。   The prepreg 1 according to the present embodiment has a fiber base 12 and a semi-cured product 11 of the composition (X) impregnated in the fiber base 12.

繊維基材12は、特に限定されないが、例えば、縦糸及び横糸がほぼ直交するように織られた平織基材等の織布基材を用いることができる。繊維基材12として、例えば、無機繊維からなる織布基材、有機繊維からなる織布基材等を用いることができる。無機繊維からなる織布基材としては、例えば、ガラスクロス等が挙げられる。有機繊維からなる織布基材としては、例えば、アラミドクロス、ポリエステルクロス等が挙げられる。   The fiber substrate 12 is not particularly limited, but, for example, a woven fabric substrate such as a plain weave substrate woven so that the warp yarns and the weft yarns are substantially orthogonal can be used. As the fiber base 12, for example, a woven base made of inorganic fibers, a woven base made of organic fibers, or the like can be used. As a woven fabric base material which consists of inorganic fibers, a glass cloth etc. are mentioned, for example. As a woven fabric base material which consists of organic fibers, an aramid cloth, polyester cloth, etc. are mentioned, for example.

プリプレグ1は、例えば、組成物(X)を繊維基材12に含侵させ、これを半硬化状態となるまで加熱乾燥することによって形成することができる。半硬化状態にさせる際の温度条件や時間は、例えば、170〜200℃、30〜90分間とすることができる。なお、半硬化状態とは、いわゆるプリプレグ等でのBステージ状態のことである。すなわち、Aステージ状態(ワニス状態)の樹脂組成物を加熱により、Cステージ状態(硬化状態)へと硬化させる中間段階にある樹脂組成物である。   The prepreg 1 can be formed, for example, by impregnating the fiber substrate 12 with the composition (X) and heat-drying it until it is in a semi-cured state. The temperature condition and time for setting the semi-cured state can be, for example, 170 to 200 ° C. and 30 to 90 minutes. The semi-cured state is a B-stage state in a so-called prepreg or the like. That is, it is a resin composition in an intermediate stage in which the resin composition in the A-stage state (varnish state) is cured to the C-stage state (cured state) by heating.

このようにして形成されるプリプレグ1は、組成物(X)を使用して形成されているため、上述したように、良好な成型性及び基材への高い密着性を有するだけでなく、粉落ちの発生が少ない。このため、プリプレグ1を取り扱う際やプリプレグ1から積層板を作製する際に発生する粉落ちによって、作製された積層板が打痕のように凹み、打痕不良が発生することを抑制することができる。例えば、後述のようにプリプレグ1を用いてフレックスリジッドプリント配線板を製造する場合、プリプレグ1を金型加工等で打ち抜くことで、プリプレグ1に開口部を設けて用いることがある。開口部が設けられたプリプレグ1をフレックスリジッドプリント配線板の製造に用いられるコア材上に積層する場合に、プリプレグ1の端面や開口部の内周面からの粉落ちによって、コア材上に打痕が発生したり、粉落ちした粉によって不良が生じたりすることを防ぐことができる。そのため、組成物(X)を使用して形成されるプリプレグ1は、高性能のプリント配線板を作製するための材料として有効に利用されうる。   Since the prepreg 1 thus formed is formed using the composition (X), as described above, it has not only good moldability and high adhesion to a substrate, but also powder. There are few falls. For this reason, it is suppressed that the produced laminated board is dented like a dent and generation | occurrence | production of a dent defect is caused by the powder fall which generate | occur | produces when handling a prepreg 1 or producing a laminated board from the prepreg 1 it can. For example, when manufacturing a flex-rigid printed wiring board using the prepreg 1 as described later, the prepreg 1 may be provided with an opening by punching the prepreg 1 by die processing or the like. When laminating the prepreg 1 provided with the opening on the core material used in the manufacture of a flex-rigid printed wiring board, powder falling from the end face of the prepreg 1 or the inner circumferential surface of the opening strikes the core material. It is possible to prevent the generation of a mark or the generation of defects due to the dusted powder. Therefore, the prepreg 1 formed using composition (X) can be effectively utilized as a material for producing a high-performance printed wiring board.

[本実施形態に係る金属張積層板2]
図2を参照して、本実施形態に係る金属張積層板2を説明する。
[Metal-clad laminate 2 according to the present embodiment]
The metal-clad laminate 2 according to the present embodiment will be described with reference to FIG.

本実施形態に係る金属張積層板2は、組成物(X)の硬化物を含む絶縁層10と、絶縁層10に設けられた金属層20と、を有する。   The metal-clad laminate 2 according to the present embodiment has an insulating layer 10 containing a cured product of the composition (X), and a metal layer 20 provided on the insulating layer 10.

金属層20は、絶縁層10の少なくとも一方も面に設けられる。すなわち、金属張積層板2の構成は、絶縁層10と、絶縁層10の一方の面に配置された金属層20とを有する2層構成であってよく、絶縁層10と、絶縁層10の両方の面に配置された二つの金属層20とを有する3層構成であってもよい。図2は、3層構造の金属張積層板2の断面図である。   The metal layer 20 is provided on at least one surface of the insulating layer 10 as well. That is, the configuration of the metal-clad laminate 2 may be a two-layer configuration having the insulating layer 10 and the metal layer 20 disposed on one surface of the insulating layer 10, and the insulating layer 10 and the insulating layer 10 It may be a three-layer structure having two metal layers 20 disposed on both sides. FIG. 2 is a cross-sectional view of the metal-clad laminate 2 having a three-layer structure.

金属張積層板2は、例えば、組成物(X)の半硬化物を有するプリプレグ1を、1枚又は複数枚重ねたものの片面又は両面に金属箔を重ね合わせ、加熱加圧成型して積層一体化することで作製することができる。積層成型は、例えば、多段真空プレス、ホットプレス、ダブルベルト等を用いて、加熱・加圧して行うことができる。この場合、プリプレグ1が硬化することによって、絶縁層10が作製される。   The metal-clad laminate 2 is prepared, for example, by laminating a metal foil on one side or both sides of one or a plurality of laminated prepregs 1 having a semi-cured product of the composition (X), heating and pressing to laminate. It can be produced by Lamination molding can be performed by heating and pressing using, for example, a multistage vacuum press, a hot press, a double belt, and the like. In this case, the insulating layer 10 is produced by curing the prepreg 1.

金属張積層板2は、プリプレグ1を用いずに製造されてもよい。例えば、金属箔からなる金属層20の表面に、直接ワニス状の組成物(X)を塗布し、金属層20及び組成物(X)を加熱・加圧することにより、ワニス状の組成物(X)を硬化させて絶縁層10を作製することができる。   The metal-clad laminate 2 may be manufactured without using the prepreg 1. For example, the varnish-like composition (X) is directly applied to the surface of the metal layer 20 made of metal foil by directly applying the varnish-like composition (X) and heating and pressing the metal layer 20 and the composition (X). ) Can be cured to produce the insulating layer 10.

上記のようにして形成される金属張積層板2の絶縁層10は、組成物(X)の硬化物を含むため、熱膨張率が低い。このため、金属張積層板2は、熱応力を受けても反りやクラックの発生が起こりにくい。そのため、組成物(X)の硬化物を含む絶縁層10を有する金属張積層板2は、高性能のプリント配線板を作製するための基板材料として有効に利用されうる。   The insulating layer 10 of the metal-clad laminate 2 formed as described above has a low coefficient of thermal expansion because it contains a cured product of the composition (X). For this reason, the metal-clad laminate 2 is unlikely to be warped or cracked even if it receives thermal stress. Therefore, the metal-clad laminate 2 having the insulating layer 10 containing the cured product of the composition (X) can be effectively used as a substrate material for producing a high-performance printed wiring board.

[本実施形態に係るプリント配線板3、4]
図3を参照して、本実施形態に係るプリント配線板3、4を説明する。
[Printed wiring board 3, 4 according to the present embodiment]
The printed wiring boards 3 and 4 according to the present embodiment will be described with reference to FIG.

本実施形態に係るプリント配線板3、4は、組成物(X)の硬化物を含む絶縁層10と、絶縁層10に設けられた導体配線30と、を有する。   The printed wiring boards 3 and 4 according to the present embodiment have the insulating layer 10 containing the cured product of the composition (X), and the conductor wiring 30 provided on the insulating layer 10.

プリント配線板3(以下、コア材という場合がある)は、組成物(X)の硬化物を含む一つの絶縁層10と、絶縁層10の片面又は両面に設けられた導体配線30とを備える単層構造のプリント配線板である。図3Aは、一つの絶縁層10と、一つの絶縁層10の両面に設けられた二つの導体配線30とを備える、単層構造のプリント配線板3の断面図である。単層構造のプリント配線板3には、必要に応じて、スルーホール、ビアホール等が形成されてもよい。   A printed wiring board 3 (hereinafter sometimes referred to as a core material) includes one insulating layer 10 containing a cured product of the composition (X) and a conductor wiring 30 provided on one side or both sides of the insulating layer 10. It is a printed wiring board of single layer structure. FIG. 3A is a cross-sectional view of a single-layered printed wiring board 3 including one insulating layer 10 and two conductor wires 30 provided on both sides of one insulating layer 10. Through holes, via holes, and the like may be formed in the printed wiring board 3 having a single-layer structure, if necessary.

プリント配線板4は、コア材3の導体配線30が形成された面上に、さらに絶縁層10と導体配線30とが交互に形成されて構成され、最外層に導体配線31が形成された多層構造のプリント配線板である。多層構造のプリント配線板4においては、複数の絶縁層10のうちの少なくとも一つが組成物(X)の硬化物を含む。多層構造のプリント配線板4においては、複数の絶縁層10の全てが組成物(X)の硬化物を含むことが好ましい。図3Bは、三つの絶縁層10と、四つの導体配線30とを備える多層構造のプリント配線板4の断面図である。多層構造のプリント配線板4には、必要に応じて、スルーホール、ビアホール等が形成されてもよい。   The printed wiring board 4 is a multilayer in which the insulating layers 10 and the conductor wires 30 are further alternately formed on the surface of the core material 3 on which the conductor wires 30 are formed, and the conductor wires 31 are formed in the outermost layer. It is a printed wiring board of structure. In the multilayer printed wiring board 4, at least one of the plurality of insulating layers 10 contains a cured product of the composition (X). In the multilayer printed wiring board 4, it is preferable that all of the plurality of insulating layers 10 contain the cured product of the composition (X). FIG. 3B is a cross-sectional view of the printed wiring board 4 having a multilayer structure provided with three insulating layers 10 and four conductor wirings 30. Through holes, via holes, and the like may be formed in the printed wiring board 4 having a multilayer structure as necessary.

単層構造のプリント配線板3の製造方法としては、特に限定されず、例えば、上記の金属張積層板2の金属層20の一部をエッチングにより除去して導体配線30を形成するサブトラクティブ法;組成物(X)の硬化物を含む絶縁層10からなるアンクラッド板の片面又は両面に無電解めっきによる薄い無電解めっき層を形成し、めっきレジストにより非回路形成部を保護した後、電解めっきにより回路形成部に電解めっき層を厚付けし、その後めっきレジストを除去し、回路形成部以外の無電解めっき層をエッチングにより除去して導体配線30を形成するセミアディティブ法などが挙げられる。多層構造のプリント配線板4の製造方法としては、特に限定されず、例えば、ビルドアッププロセスなどが挙げられる。   It does not specifically limit as a manufacturing method of the printed wiring board 3 of single layer structure, For example, the subtractive method of removing a part of metal layer 20 of said metal tension laminated board 2 by etching, and forming conductor wiring 30 A thin electroless plating layer is formed by electroless plating on one side or both sides of an uncladding plate consisting of the insulating layer 10 containing the cured product of the composition (X), and after protecting the non-circuit forming portion with a plating resist The electrolytic plating layer is thickened on the circuit formation portion by plating, and then the plating resist is removed, and the semi-additive method of removing the electroless plating layer other than the circuit formation portion by etching to form the conductor wiring 30 may be mentioned. It does not specifically limit as a manufacturing method of the printed wiring board 4 of a multilayer structure, For example, a buildup process etc. are mentioned.

[第一実施形態に係るフレックスリジッドプリント配線板5]
図4を参照して、第一実施形態に係るフレックスリジッドプリント配線板5を説明する。
[Flex Rigid Printed Wiring Board 5 According to First Embodiment]
The flex-rigid printed wiring board 5 according to the first embodiment will be described with reference to FIG.

第一実施形態に係るフレックスリジッドプリント配線板5は、複数のリジッド部51と、複数のリジッド部51を接続するフレックス部52と、複数のリジッド部51及びフレックス部52のうちの少なくとも一つに設けられた導体配線30(32)と、を有し、複数のリジッド部51のうちの少なくとも一つは、組成物(X)の硬化物を含む。具体的には、第一実施形態に係るフレックスリジッドプリント配線板5は、二つのリジッド部51と、一つのフレックス部52と、導体配線30(32)とを有し、リジッド部51に設けられた複数の絶縁層10のうちの少なくとも一つは、組成物(X)の硬化物を含む。   The flex-rigid printed wiring board 5 according to the first embodiment includes at least one of a plurality of rigid portions 51, a flex portion 52 connecting the plurality of rigid portions 51, and a plurality of rigid portions 51 and flex portions 52. And at least one of the plurality of rigid portions 51 includes a cured product of the composition (X). Specifically, the flex-rigid printed wiring board 5 according to the first embodiment has two rigid portions 51, one flex portion 52, and a conductor wire 30 (32), and is provided in the rigid portion 51. At least one of the plurality of insulating layers 10 includes a cured product of the composition (X).

リジッド部51は、搭載される部品の重さに耐え、筐体に固定できる硬さと強度を持ったリジッドな部分である。フレックス部52は、折り曲げができる可撓性を持つフレキシブルな部分である。フレックスリジッドプリント配線板5は、フレックス部52で折り曲げて筐体などに収容することによって、例えば携帯用電子機器など小型・軽量の機器に使用される。フレックス部52の厚みは、例えば5〜300μmの範囲内であることが好ましい。この場合、フレックス部52は良好な可撓性を有する。   The rigid portion 51 is a rigid portion having a hardness and a strength that can withstand the weight of the mounted component and can be fixed to the housing. The flex portion 52 is a flexible portion that can be bent. The flex-rigid printed wiring board 5 is used in a small and lightweight device such as a portable electronic device by being bent at the flex portion 52 and housed in a housing or the like. The thickness of the flex portion 52 is preferably, for example, in the range of 5 to 300 μm. In this case, the flex portion 52 has good flexibility.

フレックスリジッドプリント配線板5は、例えば、一つの絶縁層50及び二つの導体配線30を有する単層構造のフレキシブルプリント配線板200をコア材として用いることで製造することができる。コア材200を、フレックス部52となる部分を除いて多層化することで、リジッド部51を形成する。すなわち、コア材200の一部はフレックス部52となり、コア材200の他の部分はリジッド部51となる。コア材200における絶縁層50の材料は、可撓性を有する材料であれば特に限定されず、例えばポリイミド等の可撓性を有する樹脂を含むことができる。また、多層化のための手法は特に限定されず、公知の手法が用いられる。例えば金属箔と組成物(X)を含む樹脂層とを有する金属箔付き樹脂シートを用いてビルドアップ法により多層化することができる。金属箔付き樹脂シートは、例えば、金属箔に組成物(X)を塗布し、組成物(X)が半硬化状態(Bステージ状態)となるまで加熱乾燥することで作製される。コア材200におけるリジッド部51が形成される複数の領域において、コア材200の両面の各々に金属箔付き樹脂シートを重ね、この状態で加熱加圧成型することで、金属箔付き樹脂シートの組成物(X)を含む樹脂層がコア材200に接着すると共に組成物(X)を含む樹脂層が硬化してリジッド部51の絶縁層10が形成される。続いて、金属箔付き樹脂シートに由来する金属箔にエッチング処理等を施すことで、リジッド部51に導体配線32が形成される。これにより、リジッド部51が形成されるとともに、リジッド部51を接続するフレックス部52が形成される。   The flex-rigid printed wiring board 5 can be manufactured, for example, by using, as a core material, a flexible printed wiring board 200 having a single-layer structure having one insulating layer 50 and two conductor wirings 30. The rigid portion 51 is formed by multilayering the core member 200 except for the portion to be the flex portion 52. That is, a part of the core member 200 becomes the flex part 52, and the other part of the core member 200 becomes the rigid part 51. The material of the insulating layer 50 in the core material 200 is not particularly limited as long as it is a material having flexibility, and can include, for example, a resin having flexibility, such as polyimide. In addition, the method for forming a multilayer is not particularly limited, and a known method is used. For example, it can be multilayered by a buildup method using a resin sheet with a metal foil having a metal foil and a resin layer containing the composition (X). The resin sheet with a metal foil is produced, for example, by applying the composition (X) to a metal foil and drying by heating until the composition (X) is in a semi-cured state (B-stage state). In a plurality of regions in the core member 200 in which the rigid portions 51 are formed, the metal foil-attached resin sheet is stacked on each of both surfaces of the core member 200, and heat and pressure molding is performed in this state to make the composition of the metal foil-attached resin sheet While the resin layer containing thing (X) adheres to the core material 200, the resin layer containing a composition (X) hardens | cures, and the insulating layer 10 of the rigid part 51 is formed. Then, the conductor wiring 32 is formed in the rigid part 51 by performing an etching process etc. to metal foil derived from the resin sheet with metal foil. Thus, the rigid portion 51 is formed, and the flex portion 52 connecting the rigid portion 51 is formed.

図4に示すフレックスリジッドプリント配線板5において、リジッド部51は、コア材200の一部と、コア材200上に設けられた絶縁層10と、絶縁層10上に設けられた導体配線32と、を含むが、これに限定されず、リジッド部51は、例えば、最外層に設けられるソルダーレジスト層を備えていてもよい。リジッド部51は、コア材200の両側の各々に、二つ以上の絶縁層10と二つ以上の導体配線32とが交互に設けられた構造を有していてもよい。すなわち、リジッド部51は、ビルドアップ法等により更に多層化されてもよい。リジッド部51には、必要に応じて、スルーホール、ビアホール等が形成されてもよい。   In flex-rigid printed wiring board 5 shown in FIG. 4, rigid portion 51 includes a part of core member 200, insulating layer 10 provided on core member 200, and conductor wiring 32 provided on insulating layer 10. Although not limited thereto, the rigid portion 51 may include, for example, a solder resist layer provided on the outermost layer. The rigid portion 51 may have a structure in which two or more insulating layers 10 and two or more conductor wirings 32 are alternately provided on each of both sides of the core material 200. That is, the rigid unit 51 may be further multilayered by a build-up method or the like. Through holes, via holes, etc. may be formed in the rigid portion 51 as necessary.

図4に示すフレックスリジッドプリント配線板5において、フレックス部52は、コア材200の一部である絶縁層50を含む。すなわち、フレックス部52は、絶縁層50の一部である。フレックス部52の構成は、これに限定されず、フレックス部52は、例えば、導体配線30を含んでもよい。すなわち、フレックス部52の絶縁層50上に導体配線30が形成されてもよい。また、コア材200の導体配線30を覆うカバーレイが設けられてもよく、この場合、フレックス部52は、絶縁層50と、導体配線30と、カバーレイと、を含む。絶縁層50は、一つの絶縁層からなる単層構造であってもよく、複数の絶縁性を有する層が積層された複層構造であってもよい。フレックス部52の可撓性が阻害されない場合、フレックス部52は、多層構造を有してもよく、この場合、例えば多層構造のフレキシブルプリント配線板をコア材として用いることで、リジッドフレックスプリント配線板を作製することができる。   In flex-rigid printed wiring board 5 shown in FIG. 4, flex portion 52 includes an insulating layer 50 which is a part of core member 200. That is, the flex portion 52 is a part of the insulating layer 50. The configuration of the flex portion 52 is not limited to this, and the flex portion 52 may include, for example, the conductor wiring 30. That is, the conductor wiring 30 may be formed on the insulating layer 50 of the flex portion 52. In addition, a cover lay may be provided to cover the conductor wiring 30 of the core material 200. In this case, the flex portion 52 includes the insulating layer 50, the conductor wiring 30, and the cover lay. The insulating layer 50 may have a single-layer structure including one insulating layer, or may have a multilayer structure in which a plurality of layers having insulating properties are stacked. When the flexibility of the flex portion 52 is not impaired, the flex portion 52 may have a multilayer structure. In this case, a rigid flex printed wiring board is used by using, for example, a flexible printed wiring board having a multilayer structure as a core material. Can be made.

図4に示すフレックスリジッドプリント配線板5において、複数の絶縁層10のうちの少なくとも一つは、組成物(X)の硬化物を含む。すなわち、複数のリジッド部51のうちの少なくとも一つは、組成物(X)の硬化物を含む。   In the flex-rigid printed wiring board 5 shown in FIG. 4, at least one of the plurality of insulating layers 10 contains a cured product of the composition (X). That is, at least one of the plurality of rigid parts 51 contains the cured product of the composition (X).

[第二実施形態に係るフレックスリジッドプリント配線板6]
図5を参照して、第二実施形態に係るフレックスリジッドプリント配線板6を説明する。以下では、第一実施形態に係るフレックスリジッドプリント配線板5と同様の構成については図中に同じ符号を付して詳しい説明を省略する。
[Flex Rigid Printed Wiring Board 6 According to Second Embodiment]
A flex rigid printed wiring board 6 according to a second embodiment will be described with reference to FIG. Below, about the structure similar to the flex-rigid printed wiring board 5 which concerns on 1st embodiment, the same code | symbol is attached | subjected in a figure and detailed description is abbreviate | omitted.

第二実施形態に係るフレックスリジッドプリント配線板6は、複数のリジッド部51と、複数のリジッド部51を接続するフレックス部52と、複数のリジッド部51及びフレックス部52のうちの少なくとも一つに設けられた導体配線30(32)と、を有し、複数のリジッド部51のうちの少なくとも一つは、組成物(X)の硬化物を含む。具体的には、第二実施形態に係るフレックスリジッドプリント配線板6は、二つのリジッド部51と、一つのフレックス部52と、導体配線30(32)とを有し、リジッド部51に設けられた複数の絶縁層10のうちの少なくとも一つは、組成物(X)の硬化物を含む。   The flex-rigid printed wiring board 6 according to the second embodiment includes a plurality of rigid portions 51, a flex portion 52 connecting the plurality of rigid portions 51, and at least one of the plurality of rigid portions 51 and the flex portion 52. And at least one of the plurality of rigid portions 51 includes a cured product of the composition (X). Specifically, the flex-rigid printed wiring board 6 according to the second embodiment has two rigid portions 51, one flex portion 52, and the conductor wiring 30 (32), and is provided in the rigid portion 51. At least one of the plurality of insulating layers 10 includes a cured product of the composition (X).

第二実施形態に係るフレックスリジッドプリント配線板6では、リジッド部51の最外層にソルダーレジスト層60が設けられている。また、コア材200の導体配線30を覆うカバーレイ40が設けられている。さらに、リジッド部51には、スルーホール101及びベリードビアホール102が形成されている。フレックスリジッドプリント配線板6の構成は、これに限定されず、フレックスリジッドプリント配線板6は、ソルダーレジスト層60を有さなくてもよい。また、フレックスリジッドプリント配線板6は、カバーレイ40を有さなくてもよい。リジッド部51には、必要に応じて、さらにブラインドビアホールが形成されてもよい。   In the flex-rigid printed wiring board 6 according to the second embodiment, the solder resist layer 60 is provided on the outermost layer of the rigid portion 51. In addition, a cover lay 40 is provided to cover the conductor wiring 30 of the core member 200. Furthermore, in the rigid portion 51, a through hole 101 and a buried via hole 102 are formed. The configuration of the flex-rigid printed wiring board 6 is not limited to this, and the flex-rigid printed wiring board 6 may not have the solder resist layer 60. Also, the flex rigid printed wiring board 6 may not have the cover lay 40. A blind via hole may be further formed in the rigid portion 51 as necessary.

フレックスリジッドプリント配線板6は、例えば、一つの絶縁層50及び二つの導体配線30を有する単層構造のフレキシブルプリント配線板200をコア材として用いることで製造することができる。コア材200における絶縁層50の材料は、可撓性を有する材料であれば特に限定されず、例えばポリイミド等の可撓性を有する樹脂を含むことができる。コア材200の両面に、カバーレイフィルムを積層することで導体配線30を覆うカバーレイ40を形成する。これにより、コア材200とカバーレイ40とを有するフレキシブルプリント配線板300を作製する。このフレキシブルプリント配線板300を、フレックス部52となる部分を除いて多層化することで、リジッド部51を形成する。すなわち、フレキシブルプリント配線板300の一部はフレックス部52となり、フレキシブルプリント配線板300の他の部分はリジッド部51となる。多層化のための手法は特に限定されず、公知の手法が用いられ、例えば、上述の第一実施形態のフレックスリジッドプリント配線板5と同様の方法で多層化することができる。具体的には、金属箔と組成物(X)を含む樹脂層とを有する金属箔付き樹脂シートを用いてビルドアップ法により多層化することができる。金属箔付き樹脂シートは、金属箔に組成物(X)を塗布し、組成物(X)が半硬化状態(Bステージ状態)となるまで加熱乾燥することで作製される。フレキシブルプリント配線板300におけるリジッド部51が形成される複数の領域において、フレキシブルプリント配線板300の両面の各々に金属箔付き樹脂シートを重ね、この状態で加熱加圧成型することで、金属箔付き樹脂シートの組成物(X)を含む樹脂層がフレキシブルプリント配線板300に接着すると共に組成物(X)を含む樹脂層が硬化して、組成物(X)の硬化物を含む絶縁層10がリジッド部51に形成される。続いて、金属箔付き樹脂シートに由来する金属箔にエッチング処理等を施すことで、リジッド部51に導体配線32が形成される。絶縁層10の形成と導体配線32の形成とを交互に繰り返し、最外層にソルダーレジスト層60を形成する。これにより、リジッド部51が形成されるとともに、リジッド部51を接続するフレックス部52が形成される。スルーホール101及びベリードビアホール102は、公知の方法で形成することができる。   The flex-rigid printed wiring board 6 can be manufactured by using, for example, the flexible printed wiring board 200 having a single-layer structure having one insulating layer 50 and two conductor wirings 30 as a core material. The material of the insulating layer 50 in the core material 200 is not particularly limited as long as it is a material having flexibility, and can include, for example, a resin having flexibility, such as polyimide. Coverlay films are formed on both sides of the core member 200 to form coverlays 40 covering the conductor wires 30. Thereby, the flexible printed wiring board 300 which has the core material 200 and the cover lay 40 is produced. A rigid portion 51 is formed by multilayering the flexible printed wiring board 300 except for the portion to be the flex portion 52. That is, a part of the flexible printed wiring board 300 is the flex part 52, and the other part of the flexible printed wiring board 300 is the rigid part 51. The method for forming a multilayer is not particularly limited, and a known method may be used, and, for example, multilayering can be performed in the same manner as the flex-rigid printed wiring board 5 of the first embodiment described above. Specifically, it can be multilayered by a buildup method using a resin sheet with a metal foil having a metal foil and a resin layer containing the composition (X). The resin sheet with a metal foil is produced by applying the composition (X) to a metal foil and drying by heating until the composition (X) is in a semi-cured state (B-stage state). In a plurality of regions where the rigid portions 51 of the flexible printed wiring board 300 are formed, metal foil-attached resin sheets are stacked on each of both surfaces of the flexible printed wiring board 300, and heat and pressure are molded in this state to attach metal foils. While the resin layer containing the composition (X) of the resin sheet adheres to the flexible printed wiring board 300, the resin layer containing the composition (X) cures, and the insulating layer 10 containing the cured product of the composition (X) It is formed in the rigid portion 51. Then, the conductor wiring 32 is formed in the rigid part 51 by performing an etching process etc. to metal foil derived from the resin sheet with metal foil. The formation of the insulating layer 10 and the formation of the conductor wiring 32 are alternately repeated to form the solder resist layer 60 as the outermost layer. Thus, the rigid portion 51 is formed, and the flex portion 52 connecting the rigid portion 51 is formed. The through holes 101 and the via holes 102 can be formed by a known method.

フレックスリジッドプリント配線板6を製造する他の方法としては、図1に示す繊維基材12と繊維基材12に含侵された組成物(X)の半硬化物11とを有するプリプレグ1を用いる方法が挙げられる。プリプレグ1を金型加工等で打ち抜くことで、プリプレグ1に開口部を作る。この開口部は、フレックスリジッドプリント配線板6のフレックス部52に対応する。開口部を有するプリプレグ1をフレキシブルプリント配線板300に重ね、この状態で加熱加圧成型することで、プリプレグ1が硬化して、組成物(X)の硬化物を含む絶縁層10がリジッド部51に形成される。一方、プリプレグ1の開口部はフレックス部52に対応するため、フレックス部52には絶縁層10は形成されない。続いて、絶縁層10上に、公知の方法で導体配線32を形成する。開口部を有するプリプレグ1を用いた絶縁層10の形成と、導体配線32の形成とを交互に繰り返し、最外層にソルダーレジスト層60を形成する。これにより、リジッド部51が形成されるとともに、リジッド部51を接続するフレックス部52が形成される。   As another method of manufacturing the flex-rigid printed wiring board 6, a prepreg 1 having a fiber base 12 shown in FIG. 1 and a semi-cured product 11 of the composition (X) impregnated in the fiber base 12 is used. The method is mentioned. An opening is made in the prepreg 1 by punching out the prepreg 1 by die processing or the like. The opening corresponds to the flex portion 52 of the flex rigid printed wiring board 6. The prepreg 1 having the opening is stacked on the flexible printed wiring board 300, and heat and pressure molding is performed in this state, whereby the prepreg 1 is cured and the insulating layer 10 including the cured product of the composition (X) is rigid 51 Is formed. On the other hand, since the opening of the prepreg 1 corresponds to the flex portion 52, the insulating layer 10 is not formed on the flex portion 52. Subsequently, the conductor wiring 32 is formed on the insulating layer 10 by a known method. The formation of the insulating layer 10 using the prepreg 1 having the opening and the formation of the conductor wiring 32 are alternately repeated to form the solder resist layer 60 as the outermost layer. Thus, the rigid portion 51 is formed, and the flex portion 52 connecting the rigid portion 51 is formed.

[第三実施形態に係るフレックスリジッドプリント配線板7]
図6を参照して、第三実施形態に係るフレックスリジッドプリント配線板7を説明する。以下では、第一実施形態に係るフレックスリジッドプリント配線板5及び第二実施形態に係るフレックスリジッドプリント配線板6と同様の構成については図中に同じ符号を付して詳しい説明を省略する。
[Flex Rigid Printed Wiring Board 7 According to Third Embodiment]
The flex-rigid printed wiring board 7 according to the third embodiment will be described with reference to FIG. Below, about the structure similar to the flex-rigid printed wiring board 5 which concerns on 1st embodiment, and the flex-rigid printed wiring board 6 which concerns on 2nd embodiment, the same code | symbol is attached in a figure and detailed description is abbreviate | omitted.

第三実施形態に係るフレックスリジッドプリント配線板7は、複数のリジッド部51と、複数のリジッド部51を接続するフレックス部52と、複数のリジッド部51及びフレックス部52のうちの少なくとも一つに設けられた導体配線30(32)と、を有し、複数のリジッド部51のうちの少なくとも一つは、組成物(X)の硬化物を含む。具体的には、第三実施形態に係るフレックスリジッドプリント配線板7は、二つのリジッド部51と、一つのフレックス部52と、導体配線30(32)とを有し、リジッド部51に設けられた複数のボンディングシート70のうちの少なくとも一つは、組成物(X)の硬化物を含む。   The flex-rigid printed wiring board 7 according to the third embodiment includes at least one of a plurality of rigid portions 51, a flex portion 52 connecting the plurality of rigid portions 51, and a plurality of rigid portions 51 and flex portions 52. And at least one of the plurality of rigid portions 51 includes a cured product of the composition (X). Specifically, the flex-rigid printed wiring board 7 according to the third embodiment has two rigid portions 51, one flex portion 52, and a conductor wire 30 (32), and is provided in the rigid portion 51. At least one of the plurality of bonding sheets 70 includes a cured product of the composition (X).

第三実施形態に係るフレックスリジッドプリント配線板7では、コア材200の導体配線30を覆うカバーレイ40が設けられている。また、リジッド部51には、スルーホール101及びブラインドビアホール102が形成されている。フレックスリジッドプリント配線板7の構成は、これに限定されず、フレックスリジッドプリント配線板7は、カバーレイ40を有さなくてもよい。また、リジッド部51には、必要に応じて、さらにベリードビアホールが形成されてもよい。また、リジッド部51は、最外層に設けられるソルダーレジスト層を備えていてもよい。   In the flex-rigid printed wiring board 7 according to the third embodiment, a cover lay 40 for covering the conductor wiring 30 of the core material 200 is provided. Further, in the rigid portion 51, a through hole 101 and a blind via hole 102 are formed. The configuration of the flex-rigid printed wiring board 7 is not limited to this, and the flex-rigid printed wiring board 7 may not have the cover lay 40. Further, in the rigid portion 51, a via hole may be further formed, if necessary. In addition, the rigid portion 51 may include a solder resist layer provided in the outermost layer.

フレックスリジッドプリント配線板7は、例えば、第二実施形態のフレックスリジッドプリント配線板6を製造するのに用いられるのと同様のフレキシブルプリント配線板300と、リジッドプリント配線板400と、図1に示すプリプレグ1とを用いて製造することができる。フレキシブルプリント配線板300は、一つの絶縁層50及び二つの導体配線30を含むコア材200と、二つのカバーレイ40とを有する。リジッドプリント配線板400は、二つの絶縁層10と三つの導体配線32とを有する多層構造のプリント配線板であり、公知の方法を用いてブラインドビアホール103が形成されている。まず、プリプレグ1を金型加工等で打ち抜くことで、プリプレグ1に開口部を作る。この開口部は、フレックスリジッドプリント配線板7のフレックス部52に対応する。開口部を有するプリプレグ1をフレキシブルプリント配線板300に重ね、プリプレグ1の各々にリジッドプリント配線板400を重ねる。この状態で加熱加圧成型することで、プリプレグ1が硬化して組成物(X)を含むボンディングシート70が形成されるとともに、フレキシブルプリント配線板300とリジッドプリント配線板400とがボンディングシート70を介して接着される。その後、スルーホール101を、公知の方法で形成することができる。なお、プリプレグ1の開口部はフレックス部52に対応するため、フレックス部52にはボンディングシート70は形成されない。   The flex-rigid printed wiring board 7 is shown, for example, in a flexible printed wiring board 300 similar to that used for producing the flex-rigid printed wiring board 6 of the second embodiment, a rigid printed wiring board 400, and FIG. It can be manufactured using the prepreg 1. The flexible printed wiring board 300 has a core material 200 including one insulating layer 50 and two conductor wirings 30 and two cover lays 40. The rigid printed wiring board 400 is a multilayer printed wiring board having two insulating layers 10 and three conductor wirings 32, and the blind via holes 103 are formed using a known method. First, an opening is made in the prepreg 1 by punching out the prepreg 1 by die processing or the like. The opening corresponds to the flex portion 52 of the flex rigid printed wiring board 7. The prepreg 1 having the opening is stacked on the flexible printed wiring board 300, and the rigid printed wiring board 400 is stacked on each of the prepregs 1. By heating and pressing in this state, the prepreg 1 is cured to form the bonding sheet 70 containing the composition (X), and the flexible printed wiring board 300 and the rigid printed wiring board 400 are bonded. Bonded through. Thereafter, through holes 101 can be formed by a known method. In addition, since the opening of the prepreg 1 corresponds to the flex portion 52, the bonding sheet 70 is not formed on the flex portion 52.

リジッドプリント配線板400の構成は、図6に示す構成に限定されない。リジッドプリント配線板400は、例えば、一つの絶縁層10と二つの導体配線30とを有する図3Aに示す単層構造のプリント配線板3と同様の構成を有してもよい。また、リジッドプリント配線板400は、三つの絶縁層10と四つの導体配線30とを有する図3Bに示す多層構造のプリント配線板4と同様の構成を有してもよく、四つの絶縁層10と五つの導体配線30とを有する構成であってもよい。なお、第三実施形態のフレックスリジッドプリント配線板7では、リジッドプリント配線板400の絶縁層10は、組成物(X)の硬化物を含んでいてもよく、含んでいなくてもよい。   The configuration of rigid printed wiring board 400 is not limited to the configuration shown in FIG. The rigid printed wiring board 400 may have, for example, the same configuration as the single-layered printed wiring board 3 shown in FIG. 3A having one insulating layer 10 and two conductor wirings 30. Also, the rigid printed wiring board 400 may have the same configuration as the printed wiring board 4 of the multilayer structure shown in FIG. 3B having three insulating layers 10 and four conductor wirings 30, and four insulating layers 10. And five conductor wirings 30 may be provided. In the flex-rigid printed wiring board 7 of the third embodiment, the insulating layer 10 of the rigid printed wiring board 400 may or may not contain the cured product of the composition (X).

以下、本発明を実施例によって具体的に説明する。   Hereinafter, the present invention will be specifically described by way of examples.

1.樹脂組成物の製造
後掲の表1及び2の「組成」欄に示す成分のうち、(D)成分、(E)成分、及び硬化促進剤を除いた成分を、メチルエチルケトン及びジメチルホルムアミドの混合溶媒を用いて、表1及び2に示す割合で混合し、この混合物を30分間攪拌させた。次に、この混合物に、表1及び2の「組成」欄に示す(D)成分、(E)成分、及び硬化促進剤を、表1及び2に示す割合で添加し、ボールミルで分散させることによって実施例1〜11及び比較例1〜13の樹脂組成物(樹脂ワニス)を得た。
1. Production of Resin Composition Of the components shown in the “Composition” column of Tables 1 and 2 listed later, the components excluding the component (D), the component (E) and the curing accelerator are a mixed solvent of methyl ethyl ketone and dimethylformamide The mixture was mixed in the proportions shown in Tables 1 and 2 and allowed to stir for 30 minutes. Next, to this mixture, add the (D) component, the (E) component, and the curing accelerator shown in the “composition” column of Tables 1 and 2 in the proportions shown in Tables 1 and 2 and disperse in a ball mill The resin composition (resin varnish) of Examples 1-11 and Comparative Examples 1-13 was obtained by this.

表1及び2の「組成」の欄における、成分の詳細は次の通りである。
・リン変性エポキシ樹脂:新日鉄住金化学株式会社製、品番FX−289
・ビスフェノールA型エポキシ樹脂1:DIC株式会社製、品番850−S、エポキシ当量183〜193g/eq
・ビスフェノールA型エポキシ樹脂2:新日鉄住金化学株式会社製、品番YD−011、エポキシ当量450〜500g/eq
・ビスフェノールA型エポキシ樹脂3:新日鉄住金化学株式会社製、品番YD−927、エポキシ当量1750〜2100g/eq
・ビスフェノールA型エポキシ樹脂4:新日鉄住金化学株式会社製、品番YD−020、エポキシ当量4000〜6000g/eq
・フェノール樹脂:DIC株式会社製、品番TD−2093、水酸基当量104
・フェノキシ樹脂1:新日鉄住金化学株式会社製、品番YP−50、重量平均分子量70000、引張り伸び率33%
・フェノキシ樹脂2:新日鉄住金化学株式会社製、品番YP50S、重量平均分子量60000、引張り伸び率30%
・フェノキシ樹脂3:新日鉄住金化学株式会社製、品番YP−70、重量平均分子量55000、引張り伸び率10%
・フェノキシ樹脂4:新日鉄住金化学株式会社製、品番ZX−1356−2、重量平均分子量70000、引張り伸び率12%
・コアシェルゴム1:シリコーン・アクリルゴム、三菱レイヨン株式会社製、品番SRK−200A
・コアシェルゴム2:アクリルゴム、アイカ工業株式会社製、品番AC−3816N
・水酸化アルミニウム:住友化学株式会社製、品番CL−303M
・破砕シリカ:シベルコ・ジャパン株式会社製、品番Megasil525
・硬化促進剤:2−エチル−4−イミダゾール、四国化成工業株式会社製、品番2E4MZ
なお、フェノキシ樹脂1、フェノキシ樹脂2、及びフェノキシ樹脂3の引張り伸び率は次のようにして測定した。フェノキシ樹脂1〜3のそれぞれの樹脂板(長さ15cm、幅1mm、厚み100μm)を準備し、この樹脂板の引張り伸び率を、オートグラフ(株式会社島津製作所製、型番AG−IS)を用いて、23±2℃、引張速度1mm/分で測定した。
The details of the components in the "composition" column of Tables 1 and 2 are as follows.
Phosphorus-modified epoxy resin: manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., part number FX-289
-Bisphenol A epoxy resin 1: manufactured by DIC Corporation, part number 850-S, epoxy equivalent 183 to 193 g / eq
-Bisphenol A epoxy resin 2: manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., part number YD-011, epoxy equivalent 450 to 500 g / eq
-Bisphenol A epoxy resin 3: manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., product number YD-927, epoxy equivalent weight 1750-2100 g / eq
-Bisphenol A type epoxy resin 4: manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., part number YD-020, epoxy equivalent 4000 to 6000 g / eq
-Phenolic resin: DIC Corporation, product number TD-2093, hydroxyl group equivalent 104
・ Phenoxy resin 1: Made by Nippon Steel & Sumikin Chemical Co., Ltd., product number YP-50, weight average molecular weight 70000, tensile elongation rate 33%
-Phenoxy resin 2: manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., product number YP50S, weight average molecular weight 60000, tensile elongation 30%
-Phenoxy resin 3: manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., product number YP-70, weight average molecular weight 55000, tensile elongation rate 10%
-Phenoxy resin 4: manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., product number ZX-1356-2, weight average molecular weight 70000, tensile elongation 12%
Core-shell rubber 1: silicone / acrylic rubber, manufactured by Mitsubishi Rayon Co., Ltd., part number SRK-200A
Core-shell rubber 2: Acrylic rubber, manufactured by Aika Kogyo Co., Ltd., part number AC-3816N
Aluminum hydroxide: manufactured by Sumitomo Chemical Co., Ltd., part number CL-303M
・ Crushed silica: manufactured by Sibelco Japan Ltd., part number Megasil 525
Hardening accelerator: 2-ethyl-4-imidazole, manufactured by Shikoku Kasei Kogyo Co., Ltd., part number 2E4MZ
The tensile elongation of phenoxy resin 1, phenoxy resin 2 and phenoxy resin 3 was measured as follows. Each resin plate (length 15 cm, width 1 mm, thickness 100 μm) of phenoxy resin 1 to 3 is prepared, and the tensile elongation rate of this resin plate is measured using an autograph (manufactured by Shimadzu Corporation, model number AG-IS) And the tensile rate was 1 mm / min.

2.プリプレグの作製
各実施例及び比較例の樹脂ワニスを、ガラスクロス(日東紡績株式会社製、♯1078タイプ、WEA1078)に硬化後の厚みが80μmとなるように含侵させ、170℃で溶融粘度が60000〜150000Poiseになるまで加熱乾燥させることにより、半硬化状態の樹脂組成物を含むプリプレグを得た。なお、溶融粘度の測定は、高化式フローテスター(株式会社島津製作所製、CFT−100)を用い、フローテスターの温度は130℃、圧力は1.96MPa(20kgf/cm)の条件下で、ノズルは径が1mm、厚みが1mmのものを用いて行った。
2. Preparation of Prepreg The resin varnish of each Example and Comparative Example is impregnated into a glass cloth (# 1078 type, WEA 1078, manufactured by Nitto Boseki Co., Ltd.) so that the thickness after curing is 80 μm, and the melt viscosity is 170 ° C. By heating and drying to 6,000 to 150,000 Poise, a prepreg containing the resin composition in a semi-cured state was obtained. In addition, the measurement of the melt viscosity is carried out under the conditions of 130 ° C. and pressure of 1.96 MPa (20 kgf / cm 2 ) at a flow tester using a Koka type flow tester (CFT-100, manufactured by Shimadzu Corporation) The nozzle had a diameter of 1 mm and a thickness of 1 mm.

3.銅張積層板の作製
各実施例及び比較例のプリプレグ1枚の両側に厚み18μmの銅箔(三井金属鉱業株式会社製、3EC−III)を配置して被圧体とし、この被圧体を190℃及び2.94MPa(30kgf/cm)の圧力下で60分間加熱・加圧することで、両面に銅箔が接着された厚み80μmの銅張積層板を得た。また、各実施例及び比較例のプリプレグ10枚を積層した積層体の両側に厚み18μmの銅箔(三井金属鉱業株式会社製、3EC−III)を配置して被圧体とし、この被圧体を上記と同様の条件で加熱・加圧することで、両面に銅箔が接着された厚み800μmの銅張積層板を得た。なお、被圧体の成型には、ホットプレスを用い、成型機の熱盤の温度が100℃に温められた状態で被圧体の投入を行った。
3. Preparation of copper-clad laminate: 18 μm thick copper foil (3EC-III manufactured by Mitsui Mining & Smelting Co., Ltd.) was placed on both sides of one prepreg of each example and comparative example to make a pressure-bearing body, and this pressure-bearing body By heating and pressurizing for 60 minutes under the pressure of 190 ° C. and 2.94 MPa (30 kgf / cm 2 ), an 80 μm-thick copper-clad laminate in which copper foils are adhered on both sides was obtained. In addition, a copper foil (3EC-III manufactured by Mitsui Mining & Smelting Co., Ltd.) having a thickness of 18 μm is disposed on both sides of a laminate obtained by laminating 10 prepregs of each of Examples and Comparative Examples, and this pressured body is used. By heating and pressing under the same conditions as described above, a copper clad laminate with a thickness of 800 μm, in which copper foils were adhered on both sides, was obtained. In addition, in shaping | molding of a pressure receiving body, the pressure receiving body was charged in the state in which the temperature of the hot platen of the molding machine was heated to 100 ° C. using a hot press.

4.評価試験
4−1.粉落ち性
上記2で作製した各実施例及び比較例のプリプレグを11×10cm(縦×横)の大きさに切断し、テストピースとして用いて試験を行った。まず、粉やゴミ等の付着物を、ハンディモップを用いて10枚のテストピースから除去した。次に、テストピース10枚の重量を測定した。続いて、10枚のテストピースのそれぞれに、カッターナイフ(エヌティー株式会社製、A型カッター替刃)を用いて長さ10cmの切り込みを等間隔で10本入れ、切り込みを入れた10枚のテストピースから粉やゴミ等の付着物を除去した。そして、切り込みを入れた10枚のテストピースの重量を測定した。切り込みを入れる前のテストピース10枚の重量から切り込みを入れた後のテストピース10枚の重量を減じた値を粉落ち量とした。切り込みを入れる前のテストピース10枚の重量に対する粉落ち量の百分比を、粉落ち性とした。
4. Evaluation test 4-1. Dustability The prepregs of each of the Examples and Comparative Examples prepared in 2 above were cut into a size of 11 × 10 cm (length × width), and were used as a test piece to conduct a test. First, attached substances such as powder and dust were removed from 10 test pieces using a handy mop. Next, the weight of 10 test pieces was measured. Subsequently, 10 test pieces of 10 cm in length were inserted at equal intervals into each of the 10 test pieces using a cutter knife (A-type cutter replaceable blade made by NTY Co., Ltd.), and 10 test pieces were inserted. The pieces were cleaned of dust, dirt and other deposits. And the weight of ten test pieces which made the incision was measured. The weight of 10 test pieces after cutting was reduced from the weight of 10 test pieces before making a cut was defined as the amount of powder loss. The percentage of the amount of powder removal to the weight of the 10 test pieces before making the incision was taken as the powder removal property.

4−2.成型性
上記3で作製した各実施例及び比較例の厚み18μmの銅張積層板の両面の銅箔に対して、それぞれ残銅率が50%となるように格子状のパターンを形成して導体配線を形成し、プリント配線板を得た。このプリント配線板の両面の導体配線上に、それぞれ上記2で作製したプリプレグを1枚積層し、190℃及び2.94MPa(30kgf/cm)の圧力下で60分間加熱・加圧して、積層体を得た。この積層体を50×50mmの大きさに切断しテストピースを得た。このテストピースを4時間煮沸してから、260℃の半田槽に20秒間浸漬し、テストピースの外観を観察してその結果を次に示すように評価した。
A:ふくれが認められる。
B:ふくれが認められない。
4-2. Formability A grid-like pattern is formed on the copper foils on both sides of the 18 μm-thick copper-clad laminate of each of the Examples and Comparative Examples produced in 3 above so that the percentage of remaining copper is 50%. Wiring was formed to obtain a printed wiring board. One sheet of each of the prepregs prepared in 2 above is laminated on the conductor wiring on both sides of this printed wiring board, and heated and pressurized for 60 minutes under a pressure of 190 ° C. and 2.94 MPa (30 kgf / cm 2 ) to laminate. I got a body. The laminate was cut into a size of 50 × 50 mm to obtain a test piece. The test piece was boiled for 4 hours and then immersed in a solder bath at 260 ° C. for 20 seconds, the appearance of the test piece was observed, and the results were evaluated as follows.
A: Blistering is observed.
B: No blistering observed

4−3.銅箔密着性
上記3で作製した各実施例及び比較例の厚み18μmの銅張積層板をテストピースとして用いた。このテストピースの銅箔のピール強度を、IPC−TM−650−2.4.8に準拠して測定した。テストピース上に、幅10mm、長さ100mmの銅箔パターンを形成し、引っ張り試験機により50mm/分の速度で銅箔パターンを引き剥がし、その際のピール強度を測定した。このピール強度を、銅箔密着性とした。
4-3. Copper foil adhesion The 18 μm thick copper-clad laminate of each of the Examples and Comparative Examples produced in the above 3 was used as a test piece. The peel strength of the copper foil of this test piece was measured in accordance with IPC-TM-650-2.4.8. A copper foil pattern having a width of 10 mm and a length of 100 mm was formed on a test piece, and the copper foil pattern was peeled off at a speed of 50 mm / min with a tensile tester, and the peel strength at that time was measured. This peel strength was taken as copper foil adhesion.

4−4.ポリイミド密着性
片面フレキシブル金属張積層板(SKイノベーション株式会社製、Enflex(R)、銅箔厚み12μm、ポリイミド厚み20μm)と、上記2で作製した各実施例及び比較例のプリプレグ1枚を、片面フレキシブル金属張積層板のポリイミド層とプリプレグとが接するように積層し、190℃及び2.94MPa(30kgf/cm)の圧力下で60分間加熱・加圧することで積層体を作製した。この積層体を、10×100mmの大きさに切断し、テストピースを得た。このテストピースから、引っ張り試験機により50mm/分の速度で片面フレキシブル金属張積層板を引き剥がし、その際のピール強度を測定した。このピール強度を、ポリイミド密着性とした。
4-4. Polyimide adhesion Single-sided flexible metal-clad laminate (SK Innovation Co., Ltd., Enflex (R), copper foil thickness 12 μm, polyimide thickness 20 μm), and one prepreg of each of the examples and comparative examples prepared in 2 above. It laminated so that the polyimide layer of a flexible metal-clad laminate and a prepreg might contact, and the laminated body was produced by heating and pressurizing for 60 minutes under the pressure of 190 degreeC and 2.94 Mpa (30 kgf / cm < 2 >). The laminate was cut into a size of 10 × 100 mm to obtain a test piece. From this test piece, a single-sided flexible metal-clad laminate was peeled off at a speed of 50 mm / min with a tensile tester, and the peel strength at that time was measured. This peel strength was taken as polyimide adhesion.

4−5.ガラス転移温度(Tg)
上記3で作製した各実施例及び比較例の厚み80μmの銅張積層板の両面の銅箔を除去し、テストピースを得た。このテストピースのガラス転移温度(Tg)を、IPC−TM−650−2.4.25に準拠して、示差走査熱量測定(DSC)により、昇温速度20℃/分の条件で測定した。なお、表1及び2のガラス転移温度の欄に示す括弧内の数値は、ガラス転移温度をテストピースの2箇所で測定した場合の、低温側のガラス転移温度を示す。
4-5. Glass transition temperature (Tg)
The copper foils on both sides of the 80 μm-thick copper-clad laminate of each of the Examples and Comparative Examples produced in the above 3 were removed to obtain a test piece. The glass transition temperature (Tg) of this test piece was measured by differential scanning calorimetry (DSC) according to IPC-TM-650-2.4.25 under the conditions of a temperature elevation rate of 20 ° C./min. In addition, the numerical value in the parenthesis shown in the column of the glass transition temperature of Tables 1 and 2 shows the glass transition temperature on the low temperature side when the glass transition temperature is measured at two places of the test piece.

4−6.熱膨張率(CTE)
上記3で作製した各実施例及び比較例の厚み800μmの銅張積層板の両面の銅箔を除去し、テストピースを得た。このテストピースの面方向(厚み方向)の熱膨張率(CTE)を、JIS C 6481に準拠して、Thermo−mechanical analysis(TMA)法により測定した。なお、熱膨張率は、上記4−5で測定されたガラス転移温度未満の温度において測定された。
4-6. Thermal expansion coefficient (CTE)
The copper foils on both sides of the 800 μm-thick copper-clad laminate of each of the Examples and Comparative Examples produced in 3 above were removed to obtain a test piece. The thermal expansion coefficient (CTE) of the surface direction (thickness direction) of this test piece was measured by Thermo-mechanical analysis (TMA) method based on JISC6481. In addition, the thermal expansion coefficient was measured at the temperature below the glass transition temperature measured by said 4-5.

Figure 2018177906
Figure 2018177906

Figure 2018177906
Figure 2018177906

実施例2と比較例13とを比較すると、硬化剤として(B)成分を含有する実施例2の粉落ち性は、硬化剤としてフェノール樹脂を含有する比較例13の粉落ち性よりも低く、さらに銅箔及びポリイミドへの密着性が比較例13よりも高い。また、実施例1と比較例10とを比較すると、(C)成分を含有する実施例1の粉落ち性は、(C)成分を含有しない比較例10の粉落ち性の半分以下である。また、実施例3と比較例7とを比較すると、(D)成分を含有する実施例3の粉落ち性は、(D)成分を含有しない比較例7の粉落ち性の半分である。以上のように、(B)成分、(C)成分及び(D)成分は、組成物(X)から作製されるプリプレグの粉落ちの発生を低減させることが確認された。また、(B)成分は、銅箔及びポリイミドへの密着性を向上させることが確認された。   Comparing Example 2 with Comparative Example 13, the powder removal properties of Example 2 containing the component (B) as a curing agent are lower than the powder removal properties of Comparative Example 13 containing a phenol resin as a curing agent, Furthermore, the adhesion to copper foil and polyimide is higher than that of Comparative Example 13. Moreover, when Example 1 and Comparative Example 10 are compared, the dusting property of Example 1 which contains (C) component is half or less of the dusting property of Comparative Example 10 which does not contain (C) component. Moreover, when Example 3 and Comparative Example 7 are compared, the dusting properties of Example 3 containing the component (D) are half of the dusting properties of Comparative Example 7 not containing the component (D). As described above, it has been confirmed that the components (B), (C) and (D) reduce the occurrence of powdering off of the prepreg produced from the composition (X). Moreover, it was confirmed that (B) component improves the adhesiveness to copper foil and a polyimide.

また、表1及び2から明らかなように、実施例は、比較例に比べて、粉落ち性、成形性、銅箔及びポリイミド密着性、ガラス転移温度、並びに熱膨張率の特性が良好なレベルでバランスよく得られていることが確認された。一方、比較例では、これらの特性の全てが良好な樹脂組成物は得られなかった。   Moreover, as is clear from Tables 1 and 2, the examples have better properties of powder removal property, moldability, copper foil and polyimide adhesion, glass transition temperature, and coefficient of thermal expansion than the comparative examples. It was confirmed that they were obtained in good balance. On the other hand, in the comparative example, the resin composition in which all of these characteristics were good was not obtained.

1 プリプレグ
11 半硬化物
12 繊維基材
2 金属張積層板
10 絶縁層
20 金属層
3、4 プリント配線板
30 導体配線
5 フレックスリジッドプリント配線板
51 リジッド部
52 フレックス部
DESCRIPTION OF SYMBOLS 1 Prepreg 11 Semi-hardened 12 Fiber base 2 Metal-clad laminate 10 Insulating layer 20 Metal layer 3, 4 Printed wiring board 30 Conductor wiring 5 Flex rigid printed wiring board 51 Rigid part 52 Flex part

Claims (8)

(A)エポキシ樹脂と、
(B)ジシアンジアミドと、
(C)フェノキシ樹脂と、
(D)コアシェルゴムと、
(E)無機フィラーと、を含有し、
前記(C)フェノキシ樹脂の重量平均分子量は、30000以上であり、
前記(C)フェノキシ樹脂の引張り伸び率は、20%以上であり、
前記(C)フェノキシ樹脂の含有量は、前記(A)エポキシ樹脂100質量部に対して5〜30質量部であり、
前記(D)コアシェルゴムの含有量は、前記(A)エポキシ樹脂100質量部に対して3〜20質量部である
樹脂組成物。
(A) epoxy resin,
(B) dicyandiamide,
(C) phenoxy resin,
(D) Core shell rubber,
(E) containing an inorganic filler,
The weight average molecular weight of the (C) phenoxy resin is 30,000 or more,
The tensile elongation of the (C) phenoxy resin is 20% or more,
The content of the (C) phenoxy resin is 5 to 30 parts by mass with respect to 100 parts by mass of the (A) epoxy resin,
Resin composition whose content of said (D) core-shell rubber is 3-20 mass parts with respect to 100 mass parts of said (A) epoxy resins.
前記(D)コアシェルゴムは、ゴム粒子の集合体であり、
前記ゴム粒子は、コア部と、前記コア部を取り囲むシェル部と、を有し、
前記コア部は、シリコーン・アクリルゴム又はアクリルゴムを含む
請求項1に記載の樹脂組成物。
The (D) core-shell rubber is an aggregate of rubber particles,
The rubber particle has a core portion and a shell portion surrounding the core portion,
The resin composition according to claim 1, wherein the core portion comprises silicone / acrylic rubber or acrylic rubber.
前記(A)エポキシ樹脂は、リン変性エポキシ樹脂を含有する
請求項1又は2に記載の樹脂組成物。
The resin composition according to claim 1, wherein the (A) epoxy resin contains a phosphorus-modified epoxy resin.
前記リン変性エポキシ樹脂は、下記式(1)で示される構造を有する
請求項3に記載の樹脂組成物。
Figure 2018177906
The resin composition according to claim 3, wherein the phosphorus-modified epoxy resin has a structure represented by the following formula (1).
Figure 2018177906
繊維基材と、
前記繊維基材に含侵された請求項1〜4のいずれか1項に記載の樹脂組成物の半硬化物と、を有する
プリプレグ。
A fiber substrate,
The semi-cured material of the resin composition according to any one of claims 1 to 4, which is impregnated in the fiber base material.
請求項1〜4のいずれか1項に記載の樹脂組成物の硬化物を含む絶縁層と、
前記絶縁層に設けられた金属層と、を有する
金属張積層板。
The insulating layer containing the hardened | cured material of the resin composition of any one of Claims 1-4,
A metal-clad laminate, comprising: a metal layer provided on the insulating layer.
請求項1〜4のいずれか1項に記載の樹脂組成物の硬化物を含む絶縁層と、
前記絶縁層に設けられた導体配線と、を有する
プリント配線板。
The insulating layer containing the hardened | cured material of the resin composition of any one of Claims 1-4,
And a conductor wiring provided on the insulating layer.
複数のリジッド部と、
前記複数のリジッド部を接続するフレックス部と、
前記複数のリジッド部及び前記フレックス部のうちの少なくとも一つに設けられた導体配線と、を有し、
前記複数のリジッド部のうちの少なくとも一つは、請求項1〜4のいずれか1項に記載の樹脂組成物の硬化物を含む
フレックスリジッドプリント配線板。
With multiple rigid parts,
A flex section connecting the plurality of rigid sections;
Conductor wires provided on at least one of the plurality of rigid portions and the flex portion;
A flex-rigid printed wiring board, wherein at least one of the plurality of rigid parts includes a cured product of the resin composition according to any one of claims 1 to 4.
JP2017077043A 2017-04-07 2017-04-07 Prepreg, metal-clad laminate, printed wiring board and flex rigid printed wiring board Active JP6928908B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017077043A JP6928908B2 (en) 2017-04-07 2017-04-07 Prepreg, metal-clad laminate, printed wiring board and flex rigid printed wiring board
PCT/JP2018/005422 WO2018186030A1 (en) 2017-04-07 2018-02-16 Resin composition, prepreg, metal-clad laminate, printed wiring board, and flex-rigid printed wiring board
KR1020197021161A KR102480537B1 (en) 2017-04-07 2018-02-16 Resin compositions, prepregs, metal clad laminates, printed wiring boards and flex-rigid printed wiring boards
CN201880005369.8A CN110121532A (en) 2017-04-07 2018-02-16 Resin combination, prepreg, metal-clad, printed circuit board and flexible rigid print circuit board
TW107106178A TWI829631B (en) 2017-04-07 2018-02-23 Resin compositions, prepregs, metallized laminated boards, printed wiring boards, and flexible rigid printed wiring boards

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017077043A JP6928908B2 (en) 2017-04-07 2017-04-07 Prepreg, metal-clad laminate, printed wiring board and flex rigid printed wiring board

Publications (2)

Publication Number Publication Date
JP2018177906A true JP2018177906A (en) 2018-11-15
JP6928908B2 JP6928908B2 (en) 2021-09-01

Family

ID=63713494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017077043A Active JP6928908B2 (en) 2017-04-07 2017-04-07 Prepreg, metal-clad laminate, printed wiring board and flex rigid printed wiring board

Country Status (5)

Country Link
JP (1) JP6928908B2 (en)
KR (1) KR102480537B1 (en)
CN (1) CN110121532A (en)
TW (1) TWI829631B (en)
WO (1) WO2018186030A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020066210A1 (en) * 2018-09-27 2020-04-02 パナソニックIpマネジメント株式会社 Resin composition, prepreg, film provided with resin, metallic foil provided with resin, metal clad laminated board, and printed wiring board
KR102424462B1 (en) * 2021-03-31 2022-07-25 주식회사 자연바이오 Glass fiber reinforcement and manufacturing device thereof
CN115003752A (en) * 2020-01-30 2022-09-02 横滨橡胶株式会社 Epoxy resin composition for prepreg and prepreg

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114302907A (en) * 2019-09-06 2022-04-08 松下知识产权经营株式会社 Resin composition, prepreg, film with resin, metal foil with resin, metal-clad laminate, and printed wiring board

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007246861A (en) * 2006-03-20 2007-09-27 Nippon Steel Chem Co Ltd Resin composition, and varnish obtained using the resin composition, film adhesive, and copper foil attached with film adhesive
JP2007254709A (en) * 2005-11-29 2007-10-04 Ajinomoto Co Inc Resin composition for insulation layer of multi-layer printed circuit board
JP2009074036A (en) * 2007-02-23 2009-04-09 Panasonic Electric Works Co Ltd Epoxy resin composition, prepreg, laminate and printed wiring board
JP2010253822A (en) * 2009-04-24 2010-11-11 Panasonic Electric Works Co Ltd Sheet material and printed wiring board
JP2012031428A (en) * 2001-08-31 2012-02-16 Sumitomo Bakelite Co Ltd Prepreg with metal foil, laminated board, and semiconductor package
WO2012110230A1 (en) * 2011-02-15 2012-08-23 Zephyros Inc Improved structural adhesives
JP2013036042A (en) * 2012-09-18 2013-02-21 Taiyo Holdings Co Ltd Thermosetting resin composition for interlayer insulating material of multilayer printed wiring board
WO2013183667A1 (en) * 2012-06-05 2013-12-12 三菱レイヨン株式会社 Epoxy resin composition
JP2015193704A (en) * 2014-03-31 2015-11-05 新日鉄住金化学株式会社 High heat conductive ceramic powder-containing resin composition and cured article thereof
WO2016024569A1 (en) * 2014-08-15 2016-02-18 ユニチカ株式会社 Resin composition and the laminate using same
JP2016047921A (en) * 2014-08-27 2016-04-07 パナソニックIpマネジメント株式会社 Prepreg, metal clad laminated board and printed wiring board
JP2017039842A (en) * 2015-08-19 2017-02-23 新日鉄住金化学株式会社 Flame-retardant epoxy resin composition and cured product thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS621719A (en) * 1985-06-28 1987-01-07 Nippon Oil Co Ltd Epoxy resin composition
JPH0820654A (en) * 1994-07-06 1996-01-23 Mitsubishi Chem Corp Epoxy resin composition and prepreg using the same
JP2000336242A (en) 1999-05-26 2000-12-05 Matsushita Electric Works Ltd Epoxy resin composition, prepreg, metal foil coated with resin, and laminate
JP4362937B2 (en) 2000-04-25 2009-11-11 パナソニック電工株式会社 Prepreg and laminate
CN102311614B (en) * 2011-04-03 2013-09-18 广东生益科技股份有限公司 Resin composition and prepreg prepared by using same
TWI544843B (en) * 2011-11-22 2016-08-01 松下知識產權經營股份有限公司 Flexible metal clad substrate, method for manufacturing flexible metal clad substrate, printed wiring board, multilayer flexible printed wiring board, and flex-rigid printed wiring board
TWI621639B (en) * 2013-01-07 2018-04-21 東麗股份有限公司 Epoxy resin composition and prepreg
DE112015001407T5 (en) * 2014-03-25 2016-12-22 Dic Corporation Epoxy resin, process for producing epoxy resin, curable resin composition and cured product thereof, fiber-reinforced composite material and molded article
JP6327980B2 (en) * 2014-07-04 2018-05-23 菱電化成株式会社 Manufacturing method of rotating electrical machine
CN105602195A (en) * 2015-12-30 2016-05-25 广东生益科技股份有限公司 Resin composition, prepreg and copper-clad plate
CN105585821B (en) * 2016-01-26 2018-02-27 广东汕头超声电子股份有限公司覆铜板厂 A kind of halogen-free resin composition and not flow prepreg and preparation method thereof using its making

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012031428A (en) * 2001-08-31 2012-02-16 Sumitomo Bakelite Co Ltd Prepreg with metal foil, laminated board, and semiconductor package
JP2007254709A (en) * 2005-11-29 2007-10-04 Ajinomoto Co Inc Resin composition for insulation layer of multi-layer printed circuit board
JP2007246861A (en) * 2006-03-20 2007-09-27 Nippon Steel Chem Co Ltd Resin composition, and varnish obtained using the resin composition, film adhesive, and copper foil attached with film adhesive
JP2009074036A (en) * 2007-02-23 2009-04-09 Panasonic Electric Works Co Ltd Epoxy resin composition, prepreg, laminate and printed wiring board
JP2010253822A (en) * 2009-04-24 2010-11-11 Panasonic Electric Works Co Ltd Sheet material and printed wiring board
WO2012110230A1 (en) * 2011-02-15 2012-08-23 Zephyros Inc Improved structural adhesives
WO2013183667A1 (en) * 2012-06-05 2013-12-12 三菱レイヨン株式会社 Epoxy resin composition
JP2013036042A (en) * 2012-09-18 2013-02-21 Taiyo Holdings Co Ltd Thermosetting resin composition for interlayer insulating material of multilayer printed wiring board
JP2015193704A (en) * 2014-03-31 2015-11-05 新日鉄住金化学株式会社 High heat conductive ceramic powder-containing resin composition and cured article thereof
WO2016024569A1 (en) * 2014-08-15 2016-02-18 ユニチカ株式会社 Resin composition and the laminate using same
JP2016047921A (en) * 2014-08-27 2016-04-07 パナソニックIpマネジメント株式会社 Prepreg, metal clad laminated board and printed wiring board
JP2017039842A (en) * 2015-08-19 2017-02-23 新日鉄住金化学株式会社 Flame-retardant epoxy resin composition and cured product thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020066210A1 (en) * 2018-09-27 2020-04-02 パナソニックIpマネジメント株式会社 Resin composition, prepreg, film provided with resin, metallic foil provided with resin, metal clad laminated board, and printed wiring board
CN115003752A (en) * 2020-01-30 2022-09-02 横滨橡胶株式会社 Epoxy resin composition for prepreg and prepreg
KR102424462B1 (en) * 2021-03-31 2022-07-25 주식회사 자연바이오 Glass fiber reinforcement and manufacturing device thereof

Also Published As

Publication number Publication date
KR20190130121A (en) 2019-11-21
CN110121532A (en) 2019-08-13
TWI829631B (en) 2024-01-21
WO2018186030A1 (en) 2018-10-11
JP6928908B2 (en) 2021-09-01
KR102480537B1 (en) 2022-12-22
TW201842045A (en) 2018-12-01

Similar Documents

Publication Publication Date Title
JP5493853B2 (en) Epoxy resin composition, prepreg, laminate, multilayer printed wiring board, semiconductor device, insulating resin sheet, and method for producing multilayer printed wiring board
JP3946626B2 (en) Resin composition, prepreg and printed wiring board using the same
EP2457725A1 (en) Resin composite electrolytic copper foil, copper-clad laminate, and printed wiring board
KR102480537B1 (en) Resin compositions, prepregs, metal clad laminates, printed wiring boards and flex-rigid printed wiring boards
TWI698481B (en) Resin composition, prepreg and resin sheet using the resin composition, laminate and printed wiring board using the same
KR20130102654A (en) Pre-preg, laminate board, printed wiring board, and semiconductor device
JP2006342238A (en) Thermosetting adhesive sheet, copper-clad laminate and flexible printed wiring board
KR20110008044A (en) Insulating resin sheet and method for manufacturing multilayer printed wiring board using the insulating resin sheet
JPWO2017183621A1 (en) Prepreg, metal-clad laminate and printed wiring board
JP2012131947A (en) Resin composition for printed wiring board, prepreg, metal-clad laminate, resin sheet, printed wiring board, and semiconductor device
TWI775996B (en) Copper foil with insulating resin layer
JP4400191B2 (en) Resin composition and substrate using the same
JP3963662B2 (en) Laminate production method
TWI822812B (en) Resin compositions, prepregs, resin-coated films, resin-coated metal foils, metal-clad laminates and printed wiring boards
JP2003340952A (en) Method for manufacturing b-stage resin composition sheet containing fibrous cloth base material for additive
JP2012131946A (en) Resin composition for printed wiring board, prepreg, laminate, resin sheet, printed wiring board, and semiconductor device
JP6624545B2 (en) Thermosetting resin composition, metal-clad laminate, insulating sheet, printed wiring board, method for manufacturing printed wiring board, and package substrate
JP2012158637A (en) Resin composition for printed wiring board, prepreg, laminated board, resin sheet, printed wiring board, and semiconductor device
JP2010222391A (en) Epoxy resin composition, sheet-shaped formed body, prepreg, cured product, laminate and multilayered laminate
JP2012131948A (en) Resin composition, prepreg, laminate plate, resin sheet, printed wiring board, and semiconductor device
JP2017039898A (en) Resin composition, prepreg, resin sheet, metal foil-clad laminate and printed wiring board
JP2003246843A (en) Curable resin composition
JP2004098493A (en) Method for manufacturing laminated sheet
KR100644749B1 (en) Copper clad laminate and multi layer board
JP2004130593A (en) Method for manufacturing laminated sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210726

R151 Written notification of patent or utility model registration

Ref document number: 6928908

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151