WO2018186030A1 - Resin composition, prepreg, metal-clad laminate, printed wiring board, and flex-rigid printed wiring board - Google Patents

Resin composition, prepreg, metal-clad laminate, printed wiring board, and flex-rigid printed wiring board Download PDF

Info

Publication number
WO2018186030A1
WO2018186030A1 PCT/JP2018/005422 JP2018005422W WO2018186030A1 WO 2018186030 A1 WO2018186030 A1 WO 2018186030A1 JP 2018005422 W JP2018005422 W JP 2018005422W WO 2018186030 A1 WO2018186030 A1 WO 2018186030A1
Authority
WO
WIPO (PCT)
Prior art keywords
printed wiring
wiring board
resin
composition
flex
Prior art date
Application number
PCT/JP2018/005422
Other languages
French (fr)
Japanese (ja)
Inventor
章裕 山内
中村 善彦
洋之 藤澤
孝 新保
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201880005369.8A priority Critical patent/CN110121532A/en
Priority to KR1020197021161A priority patent/KR102480537B1/en
Publication of WO2018186030A1 publication Critical patent/WO2018186030A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4014Nitrogen containing compounds
    • C08G59/4028Isocyanates; Thioisocyanates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/092Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/30Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/30Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen
    • C08G59/304Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits

Definitions

  • the present disclosure relates to a resin composition, a prepreg, a metal-clad laminate, a printed wiring board, and a flex-rigid printed wiring board.
  • a prepreg used for manufacturing a printed wiring board or the like is conventionally formed by impregnating a fiber base material with a resin composition containing a thermosetting resin and heating and drying it until it is in a semi-cured state. And after cutting this prepreg to a predetermined dimension, the required number of sheets are stacked, and metal foil is stacked on one or both sides, and this is heated and pressed to form a metal-clad laminate used for manufacturing printed wiring boards Has been made.
  • the prepreg since the prepreg is in a semi-cured state, it is fragile, and powder is likely to fall off when the prepreg is cut or laminated. Due to the powder falling that occurs during the handling of the prepreg, the produced laminate may be dented like a dent and a dent defect may occur.
  • Patent Document 1 discloses a resin composition containing an epoxy resin, a curing agent such as dicyandiamide, and a crosslinked rubber having a particle size of 1 ⁇ m or less.
  • Patent Document 2 discloses an epoxy resin composition containing an epoxy resin and a phenoxy resin modified with an acid anhydride.
  • An object of the present disclosure is to provide a resin composition capable of forming a prepreg having good moldability and high adhesion to a base material, and having less powder falling off, and a cured product having a low coefficient of thermal expansion, and this resin composition And a metal-clad laminate, a printed wiring board, and a flex-rigid printed wiring board containing a cured product of the resin composition.
  • the resin composition according to the present disclosure contains (A) an epoxy resin, (B) dicyandiamide, (C) a phenoxy resin, (D) a core-shell rubber, and (E) an inorganic filler.
  • C) The weight average molecular weight of the phenoxy resin is 30000 or more.
  • C) The tensile elongation of the phenoxy resin is 20% or more.
  • C) Content of a phenoxy resin is 5 mass parts or more and 30 mass parts or less with respect to 100 mass parts of (A) epoxy resins.
  • (D) Content of core shell rubber is 3 to 20 mass parts with respect to 100 mass parts of (A) epoxy resin.
  • the prepreg according to the present disclosure has a fiber base material and a semi-cured product of the resin composition impregnated by the fiber base material.
  • the metal-clad laminate according to the present disclosure has an insulating layer containing a cured product of the resin composition and a metal layer provided on the insulating layer.
  • the printed wiring board according to the present disclosure has an insulating layer containing a cured product of the resin composition and a conductor wiring provided on the insulating layer.
  • a flex rigid printed wiring board includes a plurality of rigid portions, a flex portion connecting the plurality of rigid portions, and a conductor wiring provided in at least one of the plurality of rigid portions and the flex portion. And at least one of the plurality of rigid portions includes a cured product of the resin composition.
  • a resin composition capable of forming a prepreg having good moldability and high adhesion to a base material, and having less powder falling off, and a cured product having a low coefficient of thermal expansion, and this resin composition
  • a metal-clad laminate, a printed wiring board, and a flex-rigid printed wiring board containing a prepreg produced from the product and a cured product of this resin composition can be obtained.
  • FIG. 1 is a cross-sectional view of a prepreg according to an embodiment of the present disclosure.
  • FIG. 2 is a cross-sectional view of a metal-clad laminate according to an embodiment of the present disclosure.
  • FIG. 3A is a cross-sectional view of a printed wiring board having a single-layer structure according to an embodiment of the present disclosure.
  • FIG. 3B is a cross-sectional view of a printed wiring board having a multilayer structure according to an embodiment of the present disclosure.
  • FIG. 4 is a cross-sectional view of the flex-rigid printed wiring board according to the first embodiment of the present disclosure.
  • FIG. 5 is a cross-sectional view of a flex-rigid printed wiring board according to the second embodiment of the present disclosure.
  • FIG. 6 is a cross-sectional view of a flex-rigid printed wiring board according to the third embodiment of the present disclosure.
  • composition (X) includes (A) an epoxy resin, (B) dicyandiamide, (C) a phenoxy resin, (D) a core shell rubber, and (E) And an inorganic filler.
  • C The weight average molecular weight of the phenoxy resin is 30000 or more.
  • C The tensile elongation of the phenoxy resin is 20% or more.
  • C Content of a phenoxy resin is 5 mass parts or more and 30 mass parts or less with respect to 100 mass parts of (A) epoxy resins.
  • (D) Content of core shell rubber is 3 to 20 mass parts with respect to 100 mass parts of (A) epoxy resin.
  • the prepreg produced from the composition (X) has good moldability and high adhesion to the base material, and is free from powder falling off. There is little outbreak. Furthermore, the cured product of the composition (X) has a low coefficient of thermal expansion.
  • composition (X) The components contained in the composition (X) will be described in more detail.
  • composition (X) An epoxy resin (hereinafter referred to as “component (A)”) can impart thermosetting properties to the composition (X). Moreover, the cured
  • component (A) examples include bisphenol type epoxy resins such as bisphenol A type epoxy resins, bisphenol F type epoxy resins, and bisphenol S type epoxy resins; novolak type epoxy resins such as phenol novolac type epoxy resins and cresol novolak type epoxy resins.
  • Biphenyl type epoxy resin xylylene type epoxy resin, phenol aralkyl type epoxy resin, biphenyl aralkyl type epoxy resin, biphenyl novolac type epoxy resin, biphenyl dimethylene type epoxy resin, trisphenol methane novolak type epoxy resin, tetramethylbiphenyl type epoxy resin
  • Arylalkylene type epoxy resins such as naphthalene type epoxy resins such as tetrafunctional naphthalene type epoxy resins; naphthalene skeleton modified cresolno Rack-type epoxy resin, naphthalene all-aralkyl epoxy resin, naphthol aralkyl-type epoxy resin, methoxynaphthalene-modified cresol novolac-type epoxy resin, methoxynaphthalenedi-methylene-type epoxy resin, etc.
  • a component may be used individually by 1 type in these, and may use 2 or more types together.
  • the composition (X) contains a bisphenol A type epoxy resin having a weight average molecular weight of 30000 or more and a tensile elongation of 20% or more
  • this bisphenol A type epoxy resin is a phenoxy resin of component (C) As contained in the composition (X). Therefore, the bisphenol A type epoxy resin contained as component (A) is a bisphenol A type epoxy resin having a weight average molecular weight of less than 30000, a bisphenol A type epoxy resin having a tensile elongation of less than 20%, or a weight average molecular weight. Is a bisphenol A type epoxy resin having a tensile elongation of less than 20%.
  • the component (A) preferably contains a phosphorus-modified epoxy resin.
  • the phosphorus-modified epoxy resin means an epoxy resin containing a phosphorus atom.
  • it is environmentally friendly because it can impart flame retardancy to the cured product of the composition (X) without adding a halogen-based flame retardant.
  • the phosphorus-modified epoxy resin is not particularly limited.
  • a phosphorus-modified epoxy resin obtained by reacting an organic phosphorus compound and a quinone compound and reacting the reaction product generated by this reaction with the epoxy resin is used. be able to.
  • the phosphorus-modified epoxy resin preferably has a structure represented by the following formula (1).
  • the cured product of the composition (X) can have excellent flame retardancy.
  • content of (A) component exists in the range of 40 to 80 mass parts with respect to 100 mass parts of compositions (X).
  • the composition (X) can have sufficient thermosetting properties.
  • content of a component exists in the range of 50 to 70 mass parts with respect to 100 mass parts of composition (X).
  • the phosphorus-modified epoxy resin is preferably contained so that the phosphorus concentration in 100 parts by mass of the component (A) is 1% or more.
  • the cured product of the composition (X) can have higher flame retardancy.
  • the phosphorus-modified epoxy resin is contained so that the phosphorus concentration in 100 parts by mass of the component (A) is 1.5% or more.
  • composition (X) contains (B) component as a hardening
  • the composition (X) contains the component (B) as a curing agent
  • the semi-cured product and the cured product of the composition (X) are particularly polyimide base materials as compared with the case of containing a phenolic curing agent. Has higher adhesion to. Since the polyimide base material is suitably used as a cover lay or the like of a printed wiring board, the prepreg produced from the composition (X) can be effectively used as a substrate material for producing the printed wiring board.
  • the component (B) is such that the active hydrogen equivalent of the component (B) is within the range of 0.3 to 0.8 with respect to the epoxy equivalent 1 of the component (A). It is preferable to contain, and it is more preferable to contain so that it may become in the range of 0.4 or more and 0.7 or less.
  • an epoxy equivalent is ratio of the molecular weight of an epoxy resin with respect to the number of the epoxy groups contained in the molecule
  • the active hydrogen equivalent is the ratio of the molecular weight of the compound used as the curing agent to the number of active hydrogens directly bonded to the nitrogen atom of the amino group in the compound used as the curing agent.
  • a phenoxy resin (hereinafter referred to as “component (C)”) is a resin that has been polymerized in a straight chain by a condensation reaction of bisphenols and epichlorohydrin.
  • component (C) can give flexibility to the prepreg produced from composition (X), and can reduce generation
  • the composition (X) contains the component (C)
  • the semi-cured product and the cured product of the composition (X) can have particularly good adhesion to the polyimide substrate.
  • the weight average molecular weight of a component is 30000 or more.
  • the upper limit of the weight average molecular weight of (C) component is not specifically limited, For example, it is preferable that it is 100,000 or less.
  • the tensile elongation of the component is 20% or more.
  • component (C) for example, product numbers “YP-50” and “YP50S” manufactured by Nippon Steel & Sumikin Chemical Co., Ltd. can be used.
  • the content of the component (C) is 5 to 30 parts by mass with respect to 100 parts by mass of the component (A).
  • (C) When content of a component exists in this range, generation
  • component (D)) is a prepreg produced from composition (X) without significantly affecting the glass transition temperature of the cured product when composition (X) is cured. In addition, flexibility can be imparted to the cured product. For this reason, the powder fall of the prepreg produced from composition (X) is reduced. Furthermore, since the composition (X) contains the component (D), the composition (X) has a good substrate impregnation property, and the prepreg produced from the composition (X) is good. Can have moldability.
  • Component is an aggregate of rubber particles.
  • the rubber particles have a core part and a shell part surrounding the core part. That is, the rubber particle is a composite material containing different materials in the core part and the shell part.
  • the core portion is not particularly limited, but may include, for example, silicone / acrylic rubber, acrylic rubber, silicone rubber, nitrile rubber, butadiene rubber, and the like.
  • the core part preferably contains silicone / acrylic rubber or acrylic rubber. In this case, high flexibility can be imparted to the prepreg and cured product produced from the composition (X).
  • the shell part is not particularly limited, and may be composed of, for example, a plurality of graft chains bonded to the core part.
  • the graft chain may have a functional group.
  • the functional group include a methacryl group, an acryl group, a vinyl group, an epoxy group, an amino group, a ureido group, a mercapto group, and an isocyanate group.
  • the shell part may be comprised from polymers, such as polymethyl methacrylate and a polystyrene, for example.
  • the shape and particle size of the rubber particles are not particularly limited.
  • the average particle size of the rubber particles is preferably 0.1 to 2.0 ⁇ m, for example.
  • the average particle diameter of the rubber particles is a volume-based median diameter calculated from the measured value of the particle size distribution by the laser diffraction / scattering method, and is obtained using a commercially available laser analysis / scattering particle size distribution measuring apparatus.
  • Examples of the component (D) include product numbers “SRK200A”, “S2100”, “SX-005”, “S-2001”, “S-2006”, “S-2030”, “S” manufactured by Mitsubishi Rayon Co., Ltd. -2200 ",” SX-006 “,” W-450A “,” E-901 “,” C-223A “; product numbers” AC3816 “,” AC3816N “,” AC3832 “,” AC4030 “manufactured by Aika Industry Co., Ltd. , “AC3364”, “IM101”; “MX-217”, “MX-153”, “MX-960” manufactured by Kaneka Corporation, etc. can be used.
  • the content of the component (D) is 3 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the component (A).
  • content of (D) component exists in this range, the prepreg produced from composition (X) can have favorable base-material adhesiveness. Furthermore, in this case, it can be suppressed that the coefficient of thermal expansion of the cured product of the composition (X) becomes too high.
  • composition (X) contains the (E) inorganic filler (hereinafter referred to as the (E) component)
  • the cured product of the composition (X) can have a low coefficient of thermal expansion.
  • composition (X) contains (D) component
  • cured material of composition (X) tends to become high.
  • the cured product of the composition (X) can have a low coefficient of thermal expansion because the composition (X) contains the component (E)
  • the cured product of the composition (X) Even when subjected to stress, deformation such as warpage and generation of cracks are small.
  • the component (E) is not particularly limited.
  • these inorganic fillers may be used alone or in combination of two or more.
  • the component (E) preferably contains at least one of aluminum hydroxide and silica.
  • the shape and particle size of the component are not particularly limited.
  • the average particle diameter of the component (E) is preferably 0.1 to 5.0 ⁇ m, for example.
  • the average particle diameter of the component (E) is a volume-based median diameter calculated from the measured value of the particle size distribution by the laser diffraction / scattering method, and is obtained using a commercially available laser analysis / scattering particle size distribution measuring apparatus.
  • the component may be surface-treated with a coupling agent or the like. Thereby, the adhesiveness to the base material of the hardened
  • a coupling agent for example, a silane coupling agent such as an epoxy silane coupling agent or a mercaptosilane coupling agent can be used.
  • content of (E) component is 5 to 100 mass parts with respect to 100 mass parts of (A) component.
  • content of the component (E) is within this range, the coefficient of thermal expansion of the cured product of the composition (X) is lowered without adversely affecting the powderability of the prepreg produced from the composition (X). can do.
  • the content of component (E) is more preferably 10 parts by weight and 70 parts by weight with respect to 100 parts by weight of component (A).
  • the composition (X) contains components other than the components (A), (B), (C), (D), and (E). Also good.
  • the composition (X) may contain, for example, a dispersant, a colorant, an adhesion promoter, a curing accelerator, an organic solvent, other resins, and additives.
  • Composition (X) may contain, for example, a resin other than the components (A) and (C) when the effects of the present invention are not inhibited.
  • the composition (X) may contain, for example, a phenol resin, a bismaleimide resin, a cyanate resin, and the like.
  • composition (X) may contain a curing agent other than the component (B), for example, when the effects of the present invention are not inhibited.
  • a curing agent other than the component (B) include amine curing agents other than dicyandiamide, urea curing agents, and acid anhydride curing agents.
  • the prepreg 1 includes a fiber base 12 and a semi-cured product 11 of the composition (X) impregnated by the fiber base 12.
  • the fiber base material 12 is not particularly limited, and for example, a woven fabric base material such as a plain woven base material woven so that warp and weft yarns are substantially orthogonal can be used.
  • a woven fabric base material such as a plain woven base material woven so that warp and weft yarns are substantially orthogonal
  • the fiber base 12 for example, a woven base made of inorganic fibers, a woven base made of organic fibers, or the like can be used.
  • Examples of the woven fabric substrate made of inorganic fibers include glass cloth.
  • Examples of the woven fabric substrate made of organic fibers include aramid cloth and polyester cloth.
  • the prepreg 1 can be formed, for example, by impregnating the composition (X) into the fiber base material 12 and heating and drying it until it is in a semi-cured state.
  • the temperature conditions and time for making the semi-cured state may be, for example, 170 to 200 ° C. and 30 to 90 minutes.
  • the semi-cured state is a B-stage state with a so-called prepreg or the like. That is, it is a resin composition in an intermediate stage in which the resin composition in the A stage state (varnish state) is cured to the C stage state (cured state) by heating.
  • the prepreg 1 thus formed is formed using the composition (X), as described above, not only has good moldability and high adhesion to the substrate, but also powder. There are few drops. For this reason, it is possible to prevent the produced laminated board from being dented like a dent due to dust falling that occurs when handling the prepreg 1 or when producing a laminated board from the prepreg 1. it can.
  • the prepreg 1 may be used by providing an opening in the prepreg 1 by punching the mold.
  • the prepreg 1 provided with the opening is laminated on the core material used for manufacturing the flex-rigid printed wiring board, the prepreg 1 is struck onto the core material due to powder falling off from the end surface of the prepreg 1 or the inner peripheral surface of the opening. It is possible to prevent the generation of a mark or a defect due to powder that has fallen off. Therefore, the prepreg 1 formed using the composition (X) can be effectively used as a material for producing a high-performance printed wiring board.
  • Metal-clad laminate 2 With reference to FIG. 2, the metal-clad laminated board 2 which concerns on this embodiment is demonstrated.
  • the metal-clad laminate 2 includes an insulating layer 10 containing a cured product of the composition (X) and a metal layer 20 provided on the insulating layer 10.
  • the metal layer 20 is provided on at least one of the insulating layers 10. That is, the configuration of the metal-clad laminate 2 may be a two-layer configuration including the insulating layer 10 and the metal layer 20 disposed on one surface of the insulating layer 10. A three-layer configuration having two metal layers 20 arranged on both sides may be used.
  • FIG. 2 is a cross-sectional view of the metal-clad laminate 2 having a three-layer structure.
  • the metal-clad laminate 2 is formed by stacking metal foils on one or both sides of one or a plurality of prepregs 1 having a semi-cured product of the composition (X), and heating and press-molding to laminate them integrally. It is possible to make it. Lamination molding can be performed by heating and pressurizing using, for example, a multistage vacuum press, a hot press, a double belt, or the like. In this case, the insulating layer 10 is produced by the prepreg 1 being cured.
  • the metal-clad laminate 2 may be manufactured without using the prepreg 1.
  • the varnish-like composition (X) is directly applied to the surface of the metal layer 20 made of a metal foil, and the metal layer 20 and the composition (X) are heated and pressurized to form a varnish-like composition (X ) Can be cured to produce the insulating layer 10.
  • the insulating layer 10 of the metal-clad laminate 2 formed as described above contains a cured product of the composition (X), the coefficient of thermal expansion is low. For this reason, the metal-clad laminate 2 is less likely to be warped or cracked even when subjected to thermal stress. Therefore, the metal-clad laminate 2 having the insulating layer 10 containing the cured product of the composition (X) can be effectively used as a substrate material for producing a high-performance printed wiring board.
  • the printed wiring boards 3 and 4 include an insulating layer 10 containing a cured product of the composition (X) and a conductor wiring 30 provided on the insulating layer 10.
  • the printed wiring board 3 (hereinafter sometimes referred to as a core material) includes one insulating layer 10 containing a cured product of the composition (X), and conductor wiring 30 provided on one or both surfaces of the insulating layer 10. This is a printed wiring board having a single layer structure.
  • FIG. 3A is a cross-sectional view of a printed wiring board 3 having a single layer structure including one insulating layer 10 and two conductor wirings 30 provided on both surfaces of one insulating layer 10. A through-hole, a via hole, or the like may be formed in the printed wiring board 3 having a single layer structure as necessary.
  • the printed wiring board 4 is formed by alternately forming the insulating layers 10 and the conductor wirings 30 on the surface of the core material 3 on which the conductor wirings 30 are formed, and a multilayer in which the conductor wirings 31 are formed in the outermost layer.
  • a printed wiring board having a structure In the printed wiring board 4 having a multilayer structure, at least one of the plurality of insulating layers 10 includes a cured product of the composition (X). In the printed wiring board 4 having a multilayer structure, it is preferable that all of the plurality of insulating layers 10 include a cured product of the composition (X).
  • 3B is a cross-sectional view of a printed wiring board 4 having a multilayer structure including three insulating layers 10 and four conductor wirings 30.
  • a through-hole, a via hole, or the like may be formed in the multilayer printed wiring board 4 as necessary.
  • a method for manufacturing the printed wiring board 3 having a single layer structure is not particularly limited.
  • a thin electroless plating layer is formed by electroless plating on one or both sides of the unclad plate made of the insulating layer 10 containing the cured product of the composition (X), and the non-circuit forming portion is protected with a plating resist, and then electrolysis is performed.
  • Examples include a semi-additive method in which the electroplating layer is thickened on the circuit forming portion by plating, the plating resist is removed, and the electroless plating layer other than the circuit forming portion is removed by etching to form the conductor wiring 30.
  • the method for producing the multilayer printed wiring board 4 is not particularly limited, and examples thereof include a build-up process.
  • the flex-rigid printed wiring board 5 according to the first embodiment includes a plurality of rigid portions 51, a flex portion 52 that connects the plurality of rigid portions 51, and at least one of the plurality of rigid portions 51 and the flex portion 52. And at least one of the plurality of rigid portions 51 includes a cured product of the composition (X).
  • the flex-rigid printed wiring board 5 according to the first embodiment includes two rigid portions 51, one flex portion 52, and conductor wiring 30 (32), and is provided in the rigid portion 51.
  • At least one of the plurality of insulating layers 10 includes a cured product of the composition (X).
  • the rigid portion 51 is a rigid portion having a hardness and strength that can withstand the weight of the mounted component and can be fixed to the housing.
  • the flex portion 52 is a flexible portion that can be bent.
  • the flex-rigid printed wiring board 5 is used in a small and lightweight device such as a portable electronic device by being bent at the flex portion 52 and housed in a housing or the like.
  • the thickness of the flex portion 52 is preferably in the range of 5 to 300 ⁇ m, for example. In this case, the flex part 52 has good flexibility.
  • the flex-rigid printed wiring board 5 can be manufactured by using, for example, a flexible printed wiring board 200 having a single layer structure having one insulating layer 50 and two conductor wirings 30 as a core material.
  • the rigid part 51 is formed by multilayering the core material 200 except for the part that becomes the flex part 52. That is, a part of the core material 200 becomes the flex part 52 and the other part of the core material 200 becomes the rigid part 51.
  • the material of the insulating layer 50 in the core material 200 is not particularly limited as long as it is a flexible material, and may include, for example, a flexible resin such as polyimide.
  • the method for multilayering is not particularly limited, and a known method is used.
  • the resin sheet with metal foil has a metal foil and a resin layer containing the composition (X).
  • the resin sheet with metal foil is produced, for example, by applying composition (X) to metal foil and drying by heating until the composition (X) is in a semi-cured state (B stage state).
  • the resin sheet with metal foil is stacked on each of both surfaces of the core material 200, and in this state, the composition of the resin sheet with metal foil is formed by heating and pressing.
  • the resin layer containing the product (X) adheres to the core material 200 and the resin layer containing the composition (X) is cured to form the insulating layer 10 of the rigid portion 51.
  • the conductor wiring 32 is formed in the rigid part 51 by performing an etching process etc. to the metal foil originating in the resin sheet with a metal foil. As a result, a rigid portion 51 is formed, and a flex portion 52 that connects the rigid portion 51 is formed.
  • the rigid portion 51 includes a part of the core material 200, the insulating layer 10 provided on the core material 200, and the conductor wiring 32 provided on the insulating layer 10.
  • the rigid part 51 may be provided with the soldering resist layer provided in outermost layer, for example.
  • the rigid portion 51 may have a structure in which two or more insulating layers 10 and two or more conductor wirings 32 are alternately provided on both sides of the core material 200. That is, the rigid portion 51 may be further multilayered by a build-up method or the like. A through hole, a via hole, or the like may be formed in the rigid portion 51 as necessary.
  • the flex portion 52 includes an insulating layer 50 that is a part of the core material 200. That is, the flex part 52 is a part of the insulating layer 50.
  • the configuration of the flex portion 52 is not limited to this, and the flex portion 52 may include the conductor wiring 30, for example. That is, the conductor wiring 30 may be formed on the insulating layer 50 of the flex part 52.
  • a coverlay that covers the conductor wiring 30 of the core material 200 may be provided.
  • the flex portion 52 includes the insulating layer 50, the conductor wiring 30, and the coverlay.
  • the insulating layer 50 may have a single-layer structure including a single insulating layer, or may have a multilayer structure in which a plurality of insulating layers are stacked.
  • the flex part 52 may have a multilayer structure.
  • a rigid flex printed wiring board is used. Can be produced.
  • At least one of the plurality of insulating layers 10 contains a cured product of the composition (X). That is, at least one of the plurality of rigid portions 51 includes a cured product of the composition (X).
  • the flex-rigid printed wiring board 6 according to the second embodiment includes a plurality of rigid portions 51, a flex portion 52 connecting the plurality of rigid portions 51, and at least one of the plurality of rigid portions 51 and the flex portion 52. And at least one of the plurality of rigid portions 51 includes a cured product of the composition (X).
  • the flex-rigid printed wiring board 6 according to the second embodiment includes two rigid portions 51, one flex portion 52, and conductor wiring 30 (32), and is provided in the rigid portion 51.
  • At least one of the plurality of insulating layers 10 includes a cured product of the composition (X).
  • the solder resist layer 60 is provided on the outermost layer of the rigid portion 51. Further, a cover lay 40 that covers the conductor wiring 30 of the core material 200 is provided. Further, a through hole 101 and a buried via hole 102 are formed in the rigid portion 51.
  • the configuration of the flex-rigid printed wiring board 6 is not limited to this, and the flex-rigid printed wiring board 6 may not have the solder resist layer 60. Further, the flex-rigid printed wiring board 6 may not have the coverlay 40. Blind via holes may be further formed in the rigid portion 51 as necessary.
  • the flex-rigid printed wiring board 6 can be manufactured by using, for example, a flexible printed wiring board 200 having a single layer structure having one insulating layer 50 and two conductor wirings 30 as a core material.
  • the material of the insulating layer 50 in the core material 200 is not particularly limited as long as it is a flexible material, and may include, for example, a flexible resin such as polyimide.
  • the coverlay 40 which covers the conductor wiring 30 is formed by laminating coverlay films on both surfaces of the core material 200. Thereby, the flexible printed wiring board 300 which has the core material 200 and the coverlay 40 is produced.
  • the flexible printed wiring board 300 is multilayered except for the portion that becomes the flex portion 52, thereby forming the rigid portion 51.
  • the technique for multilayering is not particularly limited, and a known technique is used.
  • multilayering can be performed by the same method as the flex-rigid printed wiring board 5 of the first embodiment described above. Specifically, it can be multilayered by a build-up method using a resin sheet with a metal foil having a metal foil and a resin layer containing the composition (X). The resin sheet with a metal foil is produced by applying the composition (X) to the metal foil and drying by heating until the composition (X) is in a semi-cured state (B stage state).
  • a resin sheet with a metal foil is stacked on each of both surfaces of the flexible printed wiring board 300, and in this state, the metal foil is attached by heating and pressing.
  • the resin layer containing the composition (X) of the resin sheet adheres to the flexible printed wiring board 300 and the resin layer containing the composition (X) is cured, so that the insulating layer 10 containing the cured product of the composition (X) is formed. It is formed in the rigid part 51.
  • the conductor wiring 32 is formed in the rigid part 51 by performing an etching process etc. to the metal foil originating in the resin sheet with a metal foil.
  • the formation of the insulating layer 10 and the formation of the conductor wiring 32 are alternately repeated to form the solder resist layer 60 as the outermost layer. As a result, a rigid portion 51 is formed, and a flex portion 52 that connects the rigid portion 51 is formed.
  • the through hole 101 and the buried via hole 102 can be formed by a known method.
  • the prepreg 1 having the fiber base 12 and the semi-cured product 11 of the composition (X) impregnated in the fiber base 12 shown in FIG. A method is mentioned. An opening is made in the prepreg 1 by punching the prepreg 1 by die processing or the like. This opening corresponds to the flex portion 52 of the flex-rigid printed wiring board 6.
  • the prepreg 1 having an opening is overlaid on the flexible printed wiring board 300 and heated and pressed in this state, whereby the prepreg 1 is cured and the insulating layer 10 containing a cured product of the composition (X) is rigid. Formed.
  • the insulating layer 10 is not formed in the flex part 52.
  • the conductor wiring 32 is formed on the insulating layer 10 by a known method. The formation of the insulating layer 10 using the prepreg 1 having the opening and the formation of the conductor wiring 32 are alternately repeated to form the solder resist layer 60 as the outermost layer. As a result, a rigid portion 51 is formed, and a flex portion 52 that connects the rigid portion 51 is formed.
  • the flex-rigid printed wiring board 7 according to the third embodiment includes a plurality of rigid portions 51, a flex portion 52 connecting the plurality of rigid portions 51, and at least one of the plurality of rigid portions 51 and the flex portion 52. And at least one of the plurality of rigid portions 51 includes a cured product of the composition (X).
  • the flex-rigid printed wiring board 7 according to the third embodiment includes two rigid portions 51, one flex portion 52, and conductor wiring 30 (32), and is provided in the rigid portion 51.
  • At least one of the plurality of bonding sheets 70 includes a cured product of the composition (X).
  • a cover lay 40 that covers the conductor wiring 30 of the core material 200 is provided.
  • a through hole 101 and a blind via hole 103 are formed.
  • the configuration of the flex-rigid printed wiring board 7 is not limited to this, and the flex-rigid printed wiring board 7 may not have the cover lay 40.
  • a buried via hole may be further formed in the rigid portion 51 as necessary.
  • the rigid part 51 may be provided with the soldering resist layer provided in the outermost layer.
  • the flex-rigid printed wiring board 7 includes, for example, a flexible printed wiring board 300 similar to that used to manufacture the flex-rigid printed wiring board 6 of the second embodiment, a rigid printed wiring board 400, and FIG. It can be manufactured using the prepreg 1.
  • the flexible printed wiring board 300 includes a core material 200 including one insulating layer 50 and two conductor wirings 30, and two coverlays 40.
  • the rigid printed wiring board 400 is a multilayer printed wiring board having two insulating layers 10 and three conductor wirings 32, and a blind via hole 103 is formed using a known method. First, an opening is formed in the prepreg 1 by punching the prepreg 1 by die processing or the like. This opening corresponds to the flex portion 52 of the flex-rigid printed wiring board 7.
  • the prepreg 1 having an opening is stacked on the flexible printed wiring board 300, and the rigid printed wiring board 400 is stacked on each of the prepregs 1.
  • the prepreg 1 is cured to form the bonding sheet 70 containing the composition (X), and the flexible printed wiring board 300 and the rigid printed wiring board 400 form the bonding sheet 70.
  • the through hole 101 can be formed by a known method. Since the opening of the prepreg 1 corresponds to the flex part 52, the bonding sheet 70 is not formed on the flex part 52.
  • the configuration of the rigid printed wiring board 400 is not limited to the configuration shown in FIG.
  • the rigid printed wiring board 400 may have the same configuration as the single-layer printed wiring board 3 shown in FIG. 3A having one insulating layer 10 and two conductor wirings 30, for example.
  • the rigid printed wiring board 400 may have a configuration similar to that of the multilayer printed wiring board 4 shown in FIG. 3B having three insulating layers 10 and four conductor wirings 30, and the four insulating layers 10. And five conductor wirings 30 may be used.
  • the insulating layer 10 of the rigid printed wiring board 400 may or may not contain a cured product of the composition (X).
  • prepreg The resin varnishes of the examples and comparative examples were impregnated into glass cloth (manufactured by Nitto Boseki Co., Ltd., # 1078 type, WEA1078) so that the thickness after curing was 80 ⁇ m, and the melt viscosity at 170 ° C.
  • a prepreg containing a semi-cured resin composition was obtained by drying by heating to 60000 to 150,000 poise.
  • the melt viscosity was measured using a Koka flow tester (manufactured by Shimadzu Corporation, CFT-100) under the conditions of a flow tester temperature of 130 ° C. and a pressure of 1.96 MPa (20 kgf / cm 2 ).
  • a nozzle having a diameter of 1 mm and a thickness of 1 mm was used.
  • a copper foil (Mitsui Metal Mining Co., Ltd., 3EC-III) having a thickness of 18 ⁇ m is arranged on both sides of one prepreg of each example and comparative example to form a pressure-receiving body.
  • a copper-clad laminate having a thickness of 80 ⁇ m with a copper foil bonded to both surfaces was obtained.
  • a copper foil (Mitsui Metal Mining Co., Ltd., 3EC-III) having a thickness of 18 ⁇ m is arranged on both sides of a laminate obtained by laminating 10 prepregs of each Example and Comparative Example, and this pressure body was heated and pressed under the same conditions as above to obtain a copper-clad laminate having a thickness of 800 ⁇ m with copper foil bonded to both sides.
  • a hot press was used, and the heated body was put in a state where the temperature of the hot platen of the molding machine was heated to 100 ° C.
  • Evaluation test 4-1 Powder fall-off property
  • the prepregs of Examples and Comparative Examples prepared in 2 above were cut into a size of 11 ⁇ 10 cm (length ⁇ width) and tested as test pieces. First, deposits such as powder and dust were removed from 10 test pieces using a handy mop. Next, the weight of 10 test pieces was measured. Subsequently, 10 test pieces with a length of 10 cm were cut at equal intervals using a cutter knife (manufactured by NTT Co., Ltd., A-type cutter replacement blade) in each of the 10 test pieces, and 10 test pieces with cuts made. Deposits such as powder and dust were removed from the piece. Then, the weights of 10 test pieces with cuts were measured. A value obtained by subtracting the weight of 10 test pieces after making a cut from the weight of 10 test pieces before making the cut was defined as the amount of powder falling. The percentage of the amount of powder falling with respect to the weight of 10 test pieces before cutting was defined as powder falling.
  • Copper foil adhesion The 18- ⁇ m thick copper-clad laminate of each Example and Comparative Example prepared in 3 above was used as a test piece. The peel strength of the copper foil of this test piece was measured according to IPC-TM-650-2.4.8. A copper foil pattern having a width of 10 mm and a length of 100 mm was formed on the test piece, the copper foil pattern was peeled off at a rate of 50 mm / min by a tensile tester, and the peel strength at that time was measured. This peel strength was defined as copper foil adhesion.
  • Polyimide adhesion Single-sided flexible metal-clad laminate manufactured by SK Innovation Co., Ltd., Enflex®, copper foil thickness 12 ⁇ m, polyimide thickness 20 ⁇ m
  • the laminate was prepared by laminating the polyimide layer of the flexible metal-clad laminate so that the prepreg was in contact, and heating and pressurizing at 190 ° C. and a pressure of 2.94 MPa (30 kgf / cm 2 ) for 60 minutes.
  • This laminate was cut into a size of 10 ⁇ 100 mm to obtain a test piece. From this test piece, the single-sided flexible metal-clad laminate was peeled off at a speed of 50 mm / min with a tensile tester, and the peel strength at that time was measured. This peel strength was defined as polyimide adhesion.
  • Glass transition temperature (Tg) The copper foils on both sides of the 80 ⁇ m thick copper-clad laminate of each of the examples and comparative examples prepared in 3 above were removed to obtain test pieces.
  • the glass transition temperature (Tg) of this test piece was measured by differential scanning calorimetry (DSC) according to IPC-TM-650-2.4.25 at a temperature rising rate of 20 ° C./min.
  • DSC differential scanning calorimetry
  • parenthesis shown in the column of the glass transition temperature of Table 1 and 2 shows the glass transition temperature of the low temperature side at the time of measuring a glass transition temperature in two places of a test piece.
  • CTE Thermal expansion coefficient
  • the test pieces were obtained by removing the copper foils on both sides of the 800- ⁇ m-thick copper-clad laminate of each example and comparative example prepared in 3 above.
  • the coefficient of thermal expansion (CTE) in the surface direction (thickness direction) of the test piece was measured by a thermo-mechanical analysis (TMA) method in accordance with JIS C 6481.
  • TMA thermo-mechanical analysis
  • Example 2 and Comparative Example 13 When Example 2 and Comparative Example 13 are compared, the powderability of Example 2 containing the component (B) as a curing agent is lower than the powderiness of Comparative Example 13 containing a phenol resin as the curing agent, Furthermore, the adhesiveness to copper foil and polyimide is higher than that of Comparative Example 13. Moreover, when Example 1 and Comparative Example 10 are compared, the powder-off property of Example 1 containing the component (C) is less than half of the powder-off property of Comparative Example 10 not containing the component (C). Moreover, when Example 3 and Comparative Example 7 are compared, the powder-off property of Example 3 containing the component (D) is half of the powder-off property of Comparative Example 7 containing no component (D).
  • component (B), the component (C) and the component (D) reduce the occurrence of powder falling of the prepreg produced from the composition (X). Moreover, it was confirmed that (B) component improves the adhesiveness to copper foil and a polyimide.
  • the examples have better levels of powder-off properties, moldability, copper foil and polyimide adhesion, glass transition temperature, and coefficient of thermal expansion than the comparative examples. It was confirmed that a good balance was obtained. On the other hand, in the comparative example, a resin composition in which all of these characteristics were favorable was not obtained.

Abstract

Provided is a resin composition capable of: giving a prepreg which has satisfactory formability and high adhesiveness to the base and is reduced in dusting; and forming a cured object having a low coefficient of thermal expansion. The resin composition comprises an epoxy resin, dicyandiamide, a phenoxy resin, a core-shell rubber, and an inorganic filler. The phenoxy resin has a weight-average molecular weight of 30,000 or higher. The phenoxy resin has a tensile elongation of 20% or higher. The content of the phenoxy resin is 5-30 parts by mass per 100 parts by mass of the epoxy resin. The content of the core-shell rubber is 3-20 parts by mass per 100 parts by mass of the epoxy resin.

Description

樹脂組成物、プリプレグ、金属張積層板、プリント配線板及びフレックスリジッドプリント配線板Resin composition, prepreg, metal-clad laminate, printed wiring board, and flex-rigid printed wiring board
 本開示は、樹脂組成物、プリプレグ、金属張積層板、プリント配線板及びフレックスリジッドプリント配線板に関する。 The present disclosure relates to a resin composition, a prepreg, a metal-clad laminate, a printed wiring board, and a flex-rigid printed wiring board.
 プリント配線板等の製造に用いられるプリプレグは、従来、熱硬化性樹脂を含有する樹脂組成物を繊維基材に含侵させると共に、半硬化状態になるまで加熱乾燥して形成されている。そして、このプリプレグを所定寸法に切断後、所要枚数重ねると共に、この片面あるいは両面に金属箔を重ね、これを加熱加圧して積層形成することによって、プリント配線板の製造に用いられる金属張積層板が作製されている。 A prepreg used for manufacturing a printed wiring board or the like is conventionally formed by impregnating a fiber base material with a resin composition containing a thermosetting resin and heating and drying it until it is in a semi-cured state. And after cutting this prepreg to a predetermined dimension, the required number of sheets are stacked, and metal foil is stacked on one or both sides, and this is heated and pressed to form a metal-clad laminate used for manufacturing printed wiring boards Has been made.
 しかし、プリプレグは、半硬化状態であるため、脆く、プリプレグを切断する際や積層する際に、粉落ちが発生しやすい。プリプレグの取り扱い時に発生する粉落ちによって、作製された積層板が打痕のように凹み、打痕不良が発生するおそれがある。 However, since the prepreg is in a semi-cured state, it is fragile, and powder is likely to fall off when the prepreg is cut or laminated. Due to the powder falling that occurs during the handling of the prepreg, the produced laminate may be dented like a dent and a dent defect may occur.
 プリプレグから粉落ちが発生することを低減するために、例えば、特許文献1には、エポキシ樹脂とジシアンジアミド等の硬化剤と粒子径が1μm以下の架橋ゴムとを含有する樹脂組成物が開示されている。また、特許文献2には、エポキシ樹脂と酸無水物で変性されたフェノキシ樹脂とを含有するエポキシ樹脂組成物が開示されている。 In order to reduce the occurrence of powder falling from the prepreg, for example, Patent Document 1 discloses a resin composition containing an epoxy resin, a curing agent such as dicyandiamide, and a crosslinked rubber having a particle size of 1 μm or less. Yes. Patent Document 2 discloses an epoxy resin composition containing an epoxy resin and a phenoxy resin modified with an acid anhydride.
特開2001-302813号公報Japanese Patent Laid-Open No. 2001-302813 特開2000-336242号公報JP 2000-336242 A
 しかしながら、特許文献1及び特許文献2に記載の樹脂組成物から作製されるプリプレグでは、粉落ちの発生はある程度低減されるものの、良好な成型性及び基材への高い密着性を同時に実現することはできず、また、特許文献1及び特許文献2に記載の樹脂組成物では、低い熱膨張率を有する硬化物を形成することは難しい。 However, in the prepreg produced from the resin composition described in Patent Document 1 and Patent Document 2, the occurrence of powder falling is reduced to some extent, but simultaneously achieves good moldability and high adhesion to the substrate. In addition, it is difficult to form a cured product having a low coefficient of thermal expansion with the resin compositions described in Patent Document 1 and Patent Document 2.
 本開示の目的は、良好な成型性及び基材への高い密着性を有するとともに、粉落ちの発生が少ないプリプレグ、並びに低い熱膨張率を有する硬化物を形成しうる樹脂組成物、この樹脂組成物から作製されるプリプレグ、並びにこの樹脂組成物の硬化物を含む金属張積層板、プリント配線板、及びフレックスリジッドプリント配線板を提供することである。 An object of the present disclosure is to provide a resin composition capable of forming a prepreg having good moldability and high adhesion to a base material, and having less powder falling off, and a cured product having a low coefficient of thermal expansion, and this resin composition And a metal-clad laminate, a printed wiring board, and a flex-rigid printed wiring board containing a cured product of the resin composition.
 本開示に係る樹脂組成物は、(A)エポキシ樹脂と、(B)ジシアンジアミドと、(C)フェノキシ樹脂と、(D)コアシェルゴムと、(E)無機フィラーと、を含有する。(C)フェノキシ樹脂の重量平均分子量は、30000以上である。(C)フェノキシ樹脂の引張り伸び率は、20%以上である。(C)フェノキシ樹脂の含有量は、(A)エポキシ樹脂100質量部に対して5質量部以上かつ30質量部以下である。(D)コアシェルゴムの含有量は、(A)エポキシ樹脂100質量部に対して3質量部以上かつ20質量部以下である。 The resin composition according to the present disclosure contains (A) an epoxy resin, (B) dicyandiamide, (C) a phenoxy resin, (D) a core-shell rubber, and (E) an inorganic filler. (C) The weight average molecular weight of the phenoxy resin is 30000 or more. (C) The tensile elongation of the phenoxy resin is 20% or more. (C) Content of a phenoxy resin is 5 mass parts or more and 30 mass parts or less with respect to 100 mass parts of (A) epoxy resins. (D) Content of core shell rubber is 3 to 20 mass parts with respect to 100 mass parts of (A) epoxy resin.
 本開示に係るプリプレグは、繊維基材と、繊維基材に含侵された樹脂組成物の半硬化物と、を有する。 The prepreg according to the present disclosure has a fiber base material and a semi-cured product of the resin composition impregnated by the fiber base material.
 本開示に係る金属張積層板は、樹脂組成物の硬化物を含む絶縁層と、絶縁層に設けられた金属層と、を有する。 The metal-clad laminate according to the present disclosure has an insulating layer containing a cured product of the resin composition and a metal layer provided on the insulating layer.
 本開示に係るプリント配線板は、樹脂組成物の硬化物を含む絶縁層と、絶縁層に設けられた導体配線と、を有する。 The printed wiring board according to the present disclosure has an insulating layer containing a cured product of the resin composition and a conductor wiring provided on the insulating layer.
 本開示に係るフレックスリジッドプリント配線板は、複数のリジッド部と、複数のリジッド部を接続するフレックス部と、複数のリジッド部及びフレックス部のうちの少なくとも一つに設けられた導体配線と、を有し、複数のリジッド部のうちの少なくとも一つは、樹脂組成物の硬化物を含む。 A flex rigid printed wiring board according to the present disclosure includes a plurality of rigid portions, a flex portion connecting the plurality of rigid portions, and a conductor wiring provided in at least one of the plurality of rigid portions and the flex portion. And at least one of the plurality of rigid portions includes a cured product of the resin composition.
 本開示によれば、良好な成型性及び基材への高い密着性を有するとともに、粉落ちの発生が少ないプリプレグ、並びに低い熱膨張率を有する硬化物を形成しうる樹脂組成物、この樹脂組成物から作製されるプリプレグ、並びにこの樹脂組成物の硬化物を含む金属張積層板、プリント配線板、及びフレックスリジッドプリント配線板を得ることができる。 According to the present disclosure, a resin composition capable of forming a prepreg having good moldability and high adhesion to a base material, and having less powder falling off, and a cured product having a low coefficient of thermal expansion, and this resin composition A metal-clad laminate, a printed wiring board, and a flex-rigid printed wiring board containing a prepreg produced from the product and a cured product of this resin composition can be obtained.
図1は、本開示の一実施形態に係るプリプレグの断面図である。FIG. 1 is a cross-sectional view of a prepreg according to an embodiment of the present disclosure. 図2は、本開示の一実施形態に係る金属張積層板の断面図である。FIG. 2 is a cross-sectional view of a metal-clad laminate according to an embodiment of the present disclosure. 図3Aは、本開示の一実施形態に係る、単層構造のプリント配線板の断面図である。FIG. 3A is a cross-sectional view of a printed wiring board having a single-layer structure according to an embodiment of the present disclosure. 図3Bは、本開示の一実施形態に係る、多層構造のプリント配線板の断面図である。FIG. 3B is a cross-sectional view of a printed wiring board having a multilayer structure according to an embodiment of the present disclosure. 図4は、本開示の第一実施形態に係るフレックスリジッドプリント配線板の断面図である。FIG. 4 is a cross-sectional view of the flex-rigid printed wiring board according to the first embodiment of the present disclosure. 図5は、本開示の第二実施形態に係るフレックスリジッドプリント配線板の断面図である。FIG. 5 is a cross-sectional view of a flex-rigid printed wiring board according to the second embodiment of the present disclosure. 図6は、本開示の第三実施形態に係るフレックスリジッドプリント配線板の断面図である。FIG. 6 is a cross-sectional view of a flex-rigid printed wiring board according to the third embodiment of the present disclosure.
 以下、本開示の実施形態を説明する。 Hereinafter, embodiments of the present disclosure will be described.
 [本実施形態に係る樹脂組成物]
 本実施形態に係る樹脂組成物(以下、組成物(X)という)は、(A)エポキシ樹脂と、(B)ジシアンジアミドと、(C)フェノキシ樹脂と、(D)コアシェルゴムと、(E)無機フィラーと、を含有する。(C)フェノキシ樹脂の重量平均分子量は、30000以上である。(C)フェノキシ樹脂の引張り伸び率は、20%以上である。(C)フェノキシ樹脂の含有量は、(A)エポキシ樹脂100質量部に対して5質量部以上かつ30質量部以下である。(D)コアシェルゴムの含有量は、(A)エポキシ樹脂100質量部に対して3質量部以上かつ20質量部以下である。
[Resin composition according to this embodiment]
The resin composition according to the present embodiment (hereinafter referred to as composition (X)) includes (A) an epoxy resin, (B) dicyandiamide, (C) a phenoxy resin, (D) a core shell rubber, and (E) And an inorganic filler. (C) The weight average molecular weight of the phenoxy resin is 30000 or more. (C) The tensile elongation of the phenoxy resin is 20% or more. (C) Content of a phenoxy resin is 5 mass parts or more and 30 mass parts or less with respect to 100 mass parts of (A) epoxy resins. (D) Content of core shell rubber is 3 to 20 mass parts with respect to 100 mass parts of (A) epoxy resin.
 本実施形態では、組成物(X)が、上記の構成を有するため、組成物(X)から作製されるプリプレグは、良好な成型性及び基材への高い密着性を有するとともに、粉落ちの発生が少ない。さらに、組成物(X)の硬化物は、低い熱膨張率を有する。 In the present embodiment, since the composition (X) has the above-described configuration, the prepreg produced from the composition (X) has good moldability and high adhesion to the base material, and is free from powder falling off. There is little outbreak. Furthermore, the cured product of the composition (X) has a low coefficient of thermal expansion.
 組成物(X)が含有する成分について、更に詳しく説明する。 The components contained in the composition (X) will be described in more detail.
 <(A)エポキシ樹脂>
 (A)エポキシ樹脂(以下、(A)成分という)は、組成物(X)に熱硬化性を付与することができる。また、組成物(X)が(A)成分を含有することで、組成物(X)の硬化物は良好な耐熱性を有しうる。
<(A) Epoxy resin>
(A) An epoxy resin (hereinafter referred to as “component (A)”) can impart thermosetting properties to the composition (X). Moreover, the cured | curing material of composition (X) can have favorable heat resistance because composition (X) contains (A) component.
 (A)成分としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂等のビスフェノール型エポキシ樹脂;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;ビフェニル型エポキシ樹脂、キシリレン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、ビフェニルジメチレン型エポキシ樹脂、トリスフェノールメタンノボラック型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂等のアリールアルキレン型エポキシ樹脂;4官能ナフタレン型エポキシ樹脂等のナフタレン型エポキシ樹脂;ナフタレン骨格変性クレゾールノボラック型エポキシ樹脂、ナフタレンジオールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、メトキシナフタレン変性クレゾールノボラック型エポキシ樹脂、メトキシナフタレンジメチレン型エポキシ樹脂等のナフタレン骨格変性エポキシ樹脂;トリフェニルメタン型エポキシ樹脂;アントラセン型エポキシ樹脂;ジシクロペンタジエン型エポキシ樹脂;ノルボルネン型エポキシ樹脂;フルオレン型エポキシ樹脂;上記エポキシ樹脂をハロゲン化した難燃化エポキシ樹脂;リン変性エポキシ樹脂等が挙げられる。(A)成分は、これらのうち1種を単独で使用してもよく、2種以上を併用してもよい。 Examples of the component (A) include bisphenol type epoxy resins such as bisphenol A type epoxy resins, bisphenol F type epoxy resins, and bisphenol S type epoxy resins; novolak type epoxy resins such as phenol novolac type epoxy resins and cresol novolak type epoxy resins. Biphenyl type epoxy resin, xylylene type epoxy resin, phenol aralkyl type epoxy resin, biphenyl aralkyl type epoxy resin, biphenyl novolac type epoxy resin, biphenyl dimethylene type epoxy resin, trisphenol methane novolak type epoxy resin, tetramethylbiphenyl type epoxy resin Arylalkylene type epoxy resins such as naphthalene type epoxy resins such as tetrafunctional naphthalene type epoxy resins; naphthalene skeleton modified cresolno Rack-type epoxy resin, naphthalene all-aralkyl epoxy resin, naphthol aralkyl-type epoxy resin, methoxynaphthalene-modified cresol novolac-type epoxy resin, methoxynaphthalenedi-methylene-type epoxy resin, etc. naphthalene skeleton-modified epoxy resin; triphenylmethane-type epoxy resin; anthracene Type epoxy resin; dicyclopentadiene type epoxy resin; norbornene type epoxy resin; fluorene type epoxy resin; flame retardant epoxy resin obtained by halogenating the above epoxy resin; (A) A component may be used individually by 1 type in these, and may use 2 or more types together.
 組成物(X)が、重量平均分子量が30000以上であり、且つ引張り伸び率が20%以上であるビスフェノールA型エポキシ樹脂を含有する場合、このビスフェノールA型エポキシ樹脂は(C)成分のフェノキシ樹脂として組成物(X)に含有される。そのため、(A)成分として含有されるビスフェノールA型エポキシ樹脂は、重量平均分子量が30000未満であるビスフェノールA型エポキシ樹脂、引張伸び率が20%未満であるビスフェノールA型エポキシ樹脂、又は重量平均分子量が30000未満であり且つ引張伸び率が20%未満であるビスフェノールA型エポキシ樹脂である。 When the composition (X) contains a bisphenol A type epoxy resin having a weight average molecular weight of 30000 or more and a tensile elongation of 20% or more, this bisphenol A type epoxy resin is a phenoxy resin of component (C) As contained in the composition (X). Therefore, the bisphenol A type epoxy resin contained as component (A) is a bisphenol A type epoxy resin having a weight average molecular weight of less than 30000, a bisphenol A type epoxy resin having a tensile elongation of less than 20%, or a weight average molecular weight. Is a bisphenol A type epoxy resin having a tensile elongation of less than 20%.
 (A)成分は、リン変性エポキシ樹脂を含有することが好ましい。リン変性エポキシ樹脂とは、リン原子を含有するエポキシ樹脂を意味する。(A)成分がリン変性エポキシ樹脂を含有する場合、ハロゲン系難燃剤を添加しなくても組成物(X)の硬化物に難燃性を付与することができるため、環境に優しい。 The component (A) preferably contains a phosphorus-modified epoxy resin. The phosphorus-modified epoxy resin means an epoxy resin containing a phosphorus atom. When the component (A) contains a phosphorus-modified epoxy resin, it is environmentally friendly because it can impart flame retardancy to the cured product of the composition (X) without adding a halogen-based flame retardant.
 リン変性エポキシ樹脂としては、特に限定されないが、例えば、有機リン化合物とキノン化合物とを反応させ、この反応で生成する反応生成物と、エポキシ樹脂とを反応させて得られるリン変性エポキシ樹脂を用いることができる。 The phosphorus-modified epoxy resin is not particularly limited. For example, a phosphorus-modified epoxy resin obtained by reacting an organic phosphorus compound and a quinone compound and reacting the reaction product generated by this reaction with the epoxy resin is used. be able to.
 (A)成分がリン変性エポキシ樹脂を含有する場合、リン変性エポキシ樹脂は、下記式(1)で示される構造を有することが好ましい。この場合、組成物(X)の硬化物は優れた難燃性を有しうる。 When the component (A) contains a phosphorus-modified epoxy resin, the phosphorus-modified epoxy resin preferably has a structure represented by the following formula (1). In this case, the cured product of the composition (X) can have excellent flame retardancy.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 (A)成分の含有量は、組成物(X)100質量部に対して40質量部以上かつ80質量部以下の範囲内であることが好ましい。この場合、組成物(X)は十分な熱硬化性を有しうる。(A)成分の含有量は、組成物(X)100質量部に対して50質量部以上かつ70質量部以下の範囲内であることがさらに好ましい。 It is preferable that content of (A) component exists in the range of 40 to 80 mass parts with respect to 100 mass parts of compositions (X). In this case, the composition (X) can have sufficient thermosetting properties. (A) It is further more preferable that content of a component exists in the range of 50 to 70 mass parts with respect to 100 mass parts of composition (X).
 (A)成分が、リン変性エポキシ樹脂を含有する場合、リン変性エポキシ樹脂は、(A)成分100質量部中のリン濃度が1%以上となるように含有されていることが好ましい。この場合、組成物(X)の硬化物は、より高い難燃性を有しうる。リン変性エポキシ樹脂は、(A)成分100質量部中のリン濃度が1.5%以上となるように含有されていることがさらに好ましい。 When the component (A) contains a phosphorus-modified epoxy resin, the phosphorus-modified epoxy resin is preferably contained so that the phosphorus concentration in 100 parts by mass of the component (A) is 1% or more. In this case, the cured product of the composition (X) can have higher flame retardancy. More preferably, the phosphorus-modified epoxy resin is contained so that the phosphorus concentration in 100 parts by mass of the component (A) is 1.5% or more.
 <(B)ジシアンジアミド>
 (B)ジシアンジアミド(以下、(B)成分という)は、硬化剤として機能する。組成物(X)が(B)成分を硬化剤として含有すると、例えばフェノール系硬化剤を含有する場合と比較して、組成物(X)が加熱されて硬化する際の硬化速度が遅くなるため、組成物(X)の半硬化物及び硬化物は脆くなりにくい。このため、組成物(X)から作製されるプリプレグの粉落ちを低減することができる。さらに、組成物(X)が(B)成分を硬化剤として含有すると、フェノール系硬化剤を含有する場合と比較して、組成物(X)の半硬化物及び硬化物は、特にポリイミド基材へのより高い密着性を有する。ポリイミド基材は、プリント配線板のカバーレイ等として好適に使用されるため、組成物(X)から作製されるプリプレグは、プリント配線板を作製するための基板材料として有効に利用されうる。
<(B) Dicyandiamide>
(B) Dicyandiamide (hereinafter referred to as component (B)) functions as a curing agent. When composition (X) contains (B) component as a hardening | curing agent, compared with the case where a phenol type hardening | curing agent is contained, for example, since the cure rate at the time of hardening composition (X) will be slowed down. The semi-cured product and the cured product of the composition (X) are not easily brittle. For this reason, powder falling of the prepreg produced from the composition (X) can be reduced. Further, when the composition (X) contains the component (B) as a curing agent, the semi-cured product and the cured product of the composition (X) are particularly polyimide base materials as compared with the case of containing a phenolic curing agent. Has higher adhesion to. Since the polyimide base material is suitably used as a cover lay or the like of a printed wiring board, the prepreg produced from the composition (X) can be effectively used as a substrate material for producing the printed wiring board.
 (B)成分は、組成物(X)において、(A)成分のエポキシ当量1に対して、(B)成分の活性水素当量が0.3以上かつ0.8以下の範囲内となるように含有されていることが好ましく、0.4以上かつ0.7以下の範囲内となるように含有されていることがより好ましい。なお、エポキシ当量とは、エポキシ樹脂の分子中に含まれるエポキシ基の数に対するエポキシ樹脂の分子量の比である。また、活性水素当量とは、硬化剤として用いる化合物中のアミノ基の窒素原子に直結する活性水素の数に対する硬化剤として用いる化合物の分子量の比である。 In the composition (X), the component (B) is such that the active hydrogen equivalent of the component (B) is within the range of 0.3 to 0.8 with respect to the epoxy equivalent 1 of the component (A). It is preferable to contain, and it is more preferable to contain so that it may become in the range of 0.4 or more and 0.7 or less. In addition, an epoxy equivalent is ratio of the molecular weight of an epoxy resin with respect to the number of the epoxy groups contained in the molecule | numerator of an epoxy resin. The active hydrogen equivalent is the ratio of the molecular weight of the compound used as the curing agent to the number of active hydrogens directly bonded to the nitrogen atom of the amino group in the compound used as the curing agent.
 <(C)フェノキシ樹脂>
 (C)フェノキシ樹脂(以下、(C)成分という)は、ビスフェノール類とエピクロルヒドリンとの縮合反応により、直鎖状に高分子化した樹脂である。(C)成分は、組成物(X)から作製されるプリプレグに可撓性を付与し、粉落ちの発生を低減させることができる。また、組成物(X)が(C)成分を含有することで、組成物(X)の半硬化物及び硬化物は、特にポリイミド基材への良好な密着性を有しうる。
<(C) Phenoxy resin>
(C) A phenoxy resin (hereinafter referred to as “component (C)”) is a resin that has been polymerized in a straight chain by a condensation reaction of bisphenols and epichlorohydrin. (C) A component can give flexibility to the prepreg produced from composition (X), and can reduce generation | occurrence | production of powder fall-off. In addition, since the composition (X) contains the component (C), the semi-cured product and the cured product of the composition (X) can have particularly good adhesion to the polyimide substrate.
 (C)成分の重量平均分子量は、30000以上である。(C)成分の重量平均分子量が30000以上であることで、組成物(X)から作製されるプリプレグの粉落ちの発生を低減することができる。(C)成分の重量平均分子量の上限は、特に限定されないが、例えば、100000以下であることが好ましい。 (C) The weight average molecular weight of a component is 30000 or more. (C) Since the weight average molecular weight of a component is 30000 or more, generation | occurrence | production of the powder-off of the prepreg produced from composition (X) can be reduced. Although the upper limit of the weight average molecular weight of (C) component is not specifically limited, For example, it is preferable that it is 100,000 or less.
 (C)成分の引張り伸び率は、20%以上である。(C)成分の引張り伸び率が20%以上であることで、組成物(X)から作製されるプリプレグに十分な可撓性を付与することができるため、組成物(X)から作製されるプリプレグの粉落ちを低減することができる。引張り伸び率の測定は、オートグラフを用いて行うことができる。 (C) The tensile elongation of the component is 20% or more. (C) Since the tensile elongation rate of a component is 20% or more, since sufficient flexibility can be provided to the prepreg produced from composition (X), it is produced from composition (X). It is possible to reduce prepreg dusting. Measurement of tensile elongation can be performed using an autograph.
 (C)成分としては、例えば、新日鉄住金化学株式会社製の品番「YP-50」、「YP50S」等を用いることができる。 As the component (C), for example, product numbers “YP-50” and “YP50S” manufactured by Nippon Steel & Sumikin Chemical Co., Ltd. can be used.
 (C)成分の含有量は、(A)成分100質量部に対して5~30質量部である。(C)成分の含有量がこの範囲内である場合、組成物(X)から作製されるプリプレグの成型性を低下させることなく、組成物(X)から作製されるプリプレグの粉落ちの発生を低減させることができる。さらに、(C)成分の含有量がこの範囲内であることで、組成物(X)の半硬化物及び硬化物のポリイミド基材への密着性が低下しにくくなるため、組成物(X)の半硬化物及び硬化物は、特にポリイミド基材への良好な密着性を有しうる。 The content of the component (C) is 5 to 30 parts by mass with respect to 100 parts by mass of the component (A). (C) When content of a component exists in this range, generation | occurrence | production of the powder-off of the prepreg produced from a composition (X), without reducing the moldability of the prepreg produced from a composition (X). Can be reduced. Furthermore, since the adhesiveness to the polyimide base material of the semi-hardened | cured material of a composition (X) and hardened | cured material becomes difficult to fall because content of (C) component exists in this range, composition (X) These semi-cured products and cured products can have particularly good adhesion to a polyimide substrate.
 <(D)コアシェルゴム>
 (D)コアシェルゴム(以下、(D)成分という)は、組成物(X)を硬化した際の硬化物のガラス転移温度に大きな影響を与えることなく、組成物(X)から作製されるプリプレグ及び硬化物に可撓性を付与することができる。このため、組成物(X)から作製されるプリプレグの粉落ちが低減される。さらに、組成物(X)が(D)成分を含有することで、組成物(X)は良好な基材への含浸性を有し、組成物(X)から作製されるプリプレグは、良好な成型性を有しうる。
<(D) Core shell rubber>
(D) Core shell rubber (hereinafter referred to as component (D)) is a prepreg produced from composition (X) without significantly affecting the glass transition temperature of the cured product when composition (X) is cured. In addition, flexibility can be imparted to the cured product. For this reason, the powder fall of the prepreg produced from composition (X) is reduced. Furthermore, since the composition (X) contains the component (D), the composition (X) has a good substrate impregnation property, and the prepreg produced from the composition (X) is good. Can have moldability.
 (D)成分は、ゴム粒子の集合体である。ゴム粒子は、コア部と、コア部を取り囲むシェル部とを有する。すなわち、ゴム粒子は、コア部とシェル部にそれぞれ異なる材料を含む複合材料である。 (D) Component is an aggregate of rubber particles. The rubber particles have a core part and a shell part surrounding the core part. That is, the rubber particle is a composite material containing different materials in the core part and the shell part.
 コア部は、特に限定されないが、例えば、シリコーン・アクリルゴム、アクリルゴム、シリコーンゴム、ニトリルゴム、ブタジエンゴム等を含んでよい。コア部は、シリコーン・アクリルゴム又はアクリルゴムを含むことが好ましい。この場合、組成物(X)から作製されるプリプレグ及び硬化物により高い可撓性を付与することができる。 The core portion is not particularly limited, but may include, for example, silicone / acrylic rubber, acrylic rubber, silicone rubber, nitrile rubber, butadiene rubber, and the like. The core part preferably contains silicone / acrylic rubber or acrylic rubber. In this case, high flexibility can be imparted to the prepreg and cured product produced from the composition (X).
 シェル部は、特に限定されないが、例えば、コア部に結合された複数のグラフト鎖からなっていてよい。グラフト鎖は、官能基を有していてよい。官能基としては、例えば、メタクリル基、アクリル基、ビニル基、エポキシ基、アミノ基、ウレイド基、メルカプト基、イソシアネート基が挙げられる。また、シェル部は、例えば、ポリメタクリル酸メチル、ポリスチレン等の重合体から構成されてもよい。 The shell part is not particularly limited, and may be composed of, for example, a plurality of graft chains bonded to the core part. The graft chain may have a functional group. Examples of the functional group include a methacryl group, an acryl group, a vinyl group, an epoxy group, an amino group, a ureido group, a mercapto group, and an isocyanate group. Moreover, the shell part may be comprised from polymers, such as polymethyl methacrylate and a polystyrene, for example.
 ゴム粒子の形状や粒径は特に限定されない。ゴム粒子の平均粒径は、例えば、0.1~2.0μmであることが好ましい。ゴム粒子の平均粒径は、レーザー回折・散乱法による粒度分布の測定値から算出される体積基準のメディアン径であり、市販のレーザー解析・散乱式粒度分布測定装置を用いて得られる。 The shape and particle size of the rubber particles are not particularly limited. The average particle size of the rubber particles is preferably 0.1 to 2.0 μm, for example. The average particle diameter of the rubber particles is a volume-based median diameter calculated from the measured value of the particle size distribution by the laser diffraction / scattering method, and is obtained using a commercially available laser analysis / scattering particle size distribution measuring apparatus.
 (D)成分としては、例えば、三菱レイヨン株式会社製の品番「SRK200A」、「S2100」、「SX-005」、「S-2001」、「S-2006」、「S-2030」、「S-2200」、「SX-006」、「W-450A」、「E-901」、「C-223A」;アイカ工業株式会社製の品番「AC3816」、「AC3816N」、「AC3832」、「AC4030」、「AC3364」、「IM101」;株式会社カネカ製の「MX-217」、「MX-153」「MX-960」等を用いることができる。 Examples of the component (D) include product numbers “SRK200A”, “S2100”, “SX-005”, “S-2001”, “S-2006”, “S-2030”, “S” manufactured by Mitsubishi Rayon Co., Ltd. -2200 "," SX-006 "," W-450A "," E-901 "," C-223A "; product numbers" AC3816 "," AC3816N "," AC3832 "," AC4030 "manufactured by Aika Industry Co., Ltd. , “AC3364”, “IM101”; “MX-217”, “MX-153”, “MX-960” manufactured by Kaneka Corporation, etc. can be used.
 (D)成分の含有量は、(A)成分100質量部に対して3質量部以上かつ20質量部以下である。(D)成分の含有量がこの範囲内である場合、組成物(X)から作製されるプリプレグは、良好な基材密着性を有しうる。さらに、この場合、組成物(X)の硬化物の熱膨張率が高くなりすぎることを抑制しうる。 The content of the component (D) is 3 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the component (A). When content of (D) component exists in this range, the prepreg produced from composition (X) can have favorable base-material adhesiveness. Furthermore, in this case, it can be suppressed that the coefficient of thermal expansion of the cured product of the composition (X) becomes too high.
 <(E)無機フィラー>
 組成物(X)が(E)無機フィラー(以下、(E)成分という)を含有することで、組成物(X)の硬化物は、低い熱膨張率を有しうる。組成物(X)が(D)成分を含有する場合、組成物(X)の硬化物の熱膨張率は高くなりやすい。しかし、組成物(X)が(E)成分を含有することで、組成物(X)の硬化物は、低い熱膨張率を有することができるため、組成物(X)の硬化物は、熱応力を受けても、反り等の変形やクラックの発生が少ない。
<(E) Inorganic filler>
When the composition (X) contains the (E) inorganic filler (hereinafter referred to as the (E) component), the cured product of the composition (X) can have a low coefficient of thermal expansion. When composition (X) contains (D) component, the thermal expansion coefficient of the hardened | cured material of composition (X) tends to become high. However, since the cured product of the composition (X) can have a low coefficient of thermal expansion because the composition (X) contains the component (E), the cured product of the composition (X) Even when subjected to stress, deformation such as warpage and generation of cracks are small.
 (E)成分は、特に限定されないが、例えば、水酸化アルミニウム、シリカ、硫酸バリウム、酸化ケイ素粉、破砕シリカ、焼成タルク、モリブデン酸亜鉛被覆タルク、チタン酸バリウム、酸化チタン、クレー、アルミナ、マイカ、ベーマイト、ホウ酸亜鉛、スズ酸亜鉛、その他の金属酸化物や金属水和物、炭酸カルシウム、水酸化マグネシウム、ケイ酸マグネシウム、ガラス短繊維、ホウ酸アルミニウムウィスカ、炭酸ケイ素ウィスカ等を含んでよい。(E)成分として、これらの無機フィラーを1種単独で使用してもよく、2種以上を併用してもよい。(E)成分は、水酸化アルミニウム及びシリカのうちの少なくとも一つを含有することが好ましい。 The component (E) is not particularly limited. For example, aluminum hydroxide, silica, barium sulfate, silicon oxide powder, crushed silica, calcined talc, zinc molybdate-coated talc, barium titanate, titanium oxide, clay, alumina, mica , Boehmite, zinc borate, zinc stannate, other metal oxides and hydrates, calcium carbonate, magnesium hydroxide, magnesium silicate, short glass fiber, aluminum borate whisker, silicon carbonate whisker, etc. . As the component (E), these inorganic fillers may be used alone or in combination of two or more. The component (E) preferably contains at least one of aluminum hydroxide and silica.
 (E)成分の形状や粒径は特に限定されない。(E)成分の平均粒径は、例えば、0.1~5.0μmであることが好ましい。(E)成分の平均粒径は、レーザー回折・散乱法による粒度分布の測定値から算出される体積基準のメディアン径であり、市販のレーザー解析・散乱式粒度分布測定装置を用いて得られる。 (E) The shape and particle size of the component are not particularly limited. The average particle diameter of the component (E) is preferably 0.1 to 5.0 μm, for example. The average particle diameter of the component (E) is a volume-based median diameter calculated from the measured value of the particle size distribution by the laser diffraction / scattering method, and is obtained using a commercially available laser analysis / scattering particle size distribution measuring apparatus.
 (E)成分は、カップリング剤等により表面処理が施されていてもよい。これにより、組成物(X)の硬化物の基材への密着性を高めることができる。カップリング剤としては、例えば、エポキシシランカップリング剤、メルカプトシランカップリング剤等のシランカップリング剤を用いることができる。 (E) The component may be surface-treated with a coupling agent or the like. Thereby, the adhesiveness to the base material of the hardened | cured material of composition (X) can be improved. As the coupling agent, for example, a silane coupling agent such as an epoxy silane coupling agent or a mercaptosilane coupling agent can be used.
 (E)成分の含有量は、(A)成分100質量部に対して5質量部以上かつ100質量部以下であることが好ましい。(E)成分の含有量がこの範囲内である場合、組成物(X)から作製されるプリプレグの粉落ち性に悪影響を与えることなく、組成物(X)の硬化物の熱膨張率を低くすることができる。(E)成分の含有量は、(A)成分100質量部に対して10質量部以上かつ70質量部以下であることがさらに好ましい。 It is preferable that content of (E) component is 5 to 100 mass parts with respect to 100 mass parts of (A) component. When the content of the component (E) is within this range, the coefficient of thermal expansion of the cured product of the composition (X) is lowered without adversely affecting the powderability of the prepreg produced from the composition (X). can do. The content of component (E) is more preferably 10 parts by weight and 70 parts by weight with respect to 100 parts by weight of component (A).
 <その他の成分>
 組成物(X)は、本発明の効果が阻害されない場合、上記の(A)成分、(B)成分、(C)成分、(D)成分、及び(E)成分以外の成分を含んでいてもよい。組成物(X)は、例えば、分散剤、着色剤、密着性付与剤、硬化促進剤、有機溶剤、その他の樹脂、及び添加剤を含んでいてもよい。
<Other ingredients>
When the effect of the present invention is not inhibited, the composition (X) contains components other than the components (A), (B), (C), (D), and (E). Also good. The composition (X) may contain, for example, a dispersant, a colorant, an adhesion promoter, a curing accelerator, an organic solvent, other resins, and additives.
 組成物(X)は、本発明の効果が阻害されない場合、例えば、(A)成分及び(C)成分以外の樹脂を含有してもよい。組成物(X)は、例えば、フェノール樹脂、ビスマレイミド樹脂、シアネート樹脂等を含有してもよい。 Composition (X) may contain, for example, a resin other than the components (A) and (C) when the effects of the present invention are not inhibited. The composition (X) may contain, for example, a phenol resin, a bismaleimide resin, a cyanate resin, and the like.
 また、組成物(X)は、本発明の効果が阻害されない場合、例えば、(B)成分以外の硬化剤を含有してもよい。(B)成分以外の硬化剤としては、例えば、ジシアンジアミド以外のアミン系硬化剤、尿素系硬化剤、酸無水物系硬化剤等が挙げられる。 Further, the composition (X) may contain a curing agent other than the component (B), for example, when the effects of the present invention are not inhibited. Examples of the curing agent other than the component (B) include amine curing agents other than dicyandiamide, urea curing agents, and acid anhydride curing agents.
 [本実施形態に係るプリプレグ1]
 図1を参照して、本実施形態に係るプリプレグ1を説明する。
[Prepreg 1 according to this embodiment]
A prepreg 1 according to this embodiment will be described with reference to FIG.
 本実施形態に係るプリプレグ1は、繊維基材12と、繊維基材12に含侵された組成物(X)の半硬化物11と、を有する。 The prepreg 1 according to the present embodiment includes a fiber base 12 and a semi-cured product 11 of the composition (X) impregnated by the fiber base 12.
 繊維基材12は、特に限定されないが、例えば、縦糸及び横糸がほぼ直交するように織られた平織基材等の織布基材を用いることができる。繊維基材12として、例えば、無機繊維からなる織布基材、有機繊維からなる織布基材等を用いることができる。無機繊維からなる織布基材としては、例えば、ガラスクロス等が挙げられる。有機繊維からなる織布基材としては、例えば、アラミドクロス、ポリエステルクロス等が挙げられる。 The fiber base material 12 is not particularly limited, and for example, a woven fabric base material such as a plain woven base material woven so that warp and weft yarns are substantially orthogonal can be used. As the fiber base 12, for example, a woven base made of inorganic fibers, a woven base made of organic fibers, or the like can be used. Examples of the woven fabric substrate made of inorganic fibers include glass cloth. Examples of the woven fabric substrate made of organic fibers include aramid cloth and polyester cloth.
 プリプレグ1は、例えば、組成物(X)を繊維基材12に含侵させ、これを半硬化状態となるまで加熱乾燥することによって形成することができる。半硬化状態にさせる際の温度条件や時間は、例えば、170~200℃、30~90分間とすることができる。なお、半硬化状態とは、いわゆるプリプレグ等でのBステージ状態のことである。すなわち、Aステージ状態(ワニス状態)の樹脂組成物を加熱により、Cステージ状態(硬化状態)へと硬化させる中間段階にある樹脂組成物である。 The prepreg 1 can be formed, for example, by impregnating the composition (X) into the fiber base material 12 and heating and drying it until it is in a semi-cured state. The temperature conditions and time for making the semi-cured state may be, for example, 170 to 200 ° C. and 30 to 90 minutes. The semi-cured state is a B-stage state with a so-called prepreg or the like. That is, it is a resin composition in an intermediate stage in which the resin composition in the A stage state (varnish state) is cured to the C stage state (cured state) by heating.
 このようにして形成されるプリプレグ1は、組成物(X)を使用して形成されているため、上述したように、良好な成型性及び基材への高い密着性を有するだけでなく、粉落ちの発生が少ない。このため、プリプレグ1を取り扱う際やプリプレグ1から積層板を作製する際に発生する粉落ちによって、作製された積層板が打痕のように凹み、打痕不良が発生することを抑制することができる。例えば、後述のようにプリプレグ1を用いてフレックスリジッドプリント配線板を製造する場合、プリプレグ1を金型加工等で打ち抜くことで、プリプレグ1に開口部を設けて用いることがある。開口部が設けられたプリプレグ1をフレックスリジッドプリント配線板の製造に用いられるコア材上に積層する場合に、プリプレグ1の端面や開口部の内周面からの粉落ちによって、コア材上に打痕が発生したり、粉落ちした粉によって不良が生じたりすることを防ぐことができる。そのため、組成物(X)を使用して形成されるプリプレグ1は、高性能のプリント配線板を作製するための材料として有効に利用されうる。 Since the prepreg 1 thus formed is formed using the composition (X), as described above, not only has good moldability and high adhesion to the substrate, but also powder. There are few drops. For this reason, it is possible to prevent the produced laminated board from being dented like a dent due to dust falling that occurs when handling the prepreg 1 or when producing a laminated board from the prepreg 1. it can. For example, when a flex-rigid printed wiring board is manufactured using the prepreg 1 as will be described later, the prepreg 1 may be used by providing an opening in the prepreg 1 by punching the mold. When the prepreg 1 provided with the opening is laminated on the core material used for manufacturing the flex-rigid printed wiring board, the prepreg 1 is struck onto the core material due to powder falling off from the end surface of the prepreg 1 or the inner peripheral surface of the opening. It is possible to prevent the generation of a mark or a defect due to powder that has fallen off. Therefore, the prepreg 1 formed using the composition (X) can be effectively used as a material for producing a high-performance printed wiring board.
 [本実施形態に係る金属張積層板2]
 図2を参照して、本実施形態に係る金属張積層板2を説明する。
[Metal-clad laminate 2 according to this embodiment]
With reference to FIG. 2, the metal-clad laminated board 2 which concerns on this embodiment is demonstrated.
 本実施形態に係る金属張積層板2は、組成物(X)の硬化物を含む絶縁層10と、絶縁層10に設けられた金属層20と、を有する。 The metal-clad laminate 2 according to this embodiment includes an insulating layer 10 containing a cured product of the composition (X) and a metal layer 20 provided on the insulating layer 10.
 金属層20は、絶縁層10の少なくとも一方も面に設けられる。すなわち、金属張積層板2の構成は、絶縁層10と、絶縁層10の一方の面に配置された金属層20とを有する2層構成であってよく、絶縁層10と、絶縁層10の両方の面に配置された二つの金属層20とを有する3層構成であってもよい。図2は、3層構造の金属張積層板2の断面図である。 The metal layer 20 is provided on at least one of the insulating layers 10. That is, the configuration of the metal-clad laminate 2 may be a two-layer configuration including the insulating layer 10 and the metal layer 20 disposed on one surface of the insulating layer 10. A three-layer configuration having two metal layers 20 arranged on both sides may be used. FIG. 2 is a cross-sectional view of the metal-clad laminate 2 having a three-layer structure.
 金属張積層板2は、例えば、組成物(X)の半硬化物を有するプリプレグ1を、1枚又は複数枚重ねたものの片面又は両面に金属箔を重ね合わせ、加熱加圧成型して積層一体化することで作製することができる。積層成型は、例えば、多段真空プレス、ホットプレス、ダブルベルト等を用いて、加熱・加圧して行うことができる。この場合、プリプレグ1が硬化することによって、絶縁層10が作製される。 For example, the metal-clad laminate 2 is formed by stacking metal foils on one or both sides of one or a plurality of prepregs 1 having a semi-cured product of the composition (X), and heating and press-molding to laminate them integrally. It is possible to make it. Lamination molding can be performed by heating and pressurizing using, for example, a multistage vacuum press, a hot press, a double belt, or the like. In this case, the insulating layer 10 is produced by the prepreg 1 being cured.
 金属張積層板2は、プリプレグ1を用いずに製造されてもよい。例えば、金属箔からなる金属層20の表面に、直接ワニス状の組成物(X)を塗布し、金属層20及び組成物(X)を加熱・加圧することにより、ワニス状の組成物(X)を硬化させて絶縁層10を作製することができる。 The metal-clad laminate 2 may be manufactured without using the prepreg 1. For example, the varnish-like composition (X) is directly applied to the surface of the metal layer 20 made of a metal foil, and the metal layer 20 and the composition (X) are heated and pressurized to form a varnish-like composition (X ) Can be cured to produce the insulating layer 10.
 上記のようにして形成される金属張積層板2の絶縁層10は、組成物(X)の硬化物を含むため、熱膨張率が低い。このため、金属張積層板2は、熱応力を受けても反りやクラックの発生が起こりにくい。そのため、組成物(X)の硬化物を含む絶縁層10を有する金属張積層板2は、高性能のプリント配線板を作製するための基板材料として有効に利用されうる。 Since the insulating layer 10 of the metal-clad laminate 2 formed as described above contains a cured product of the composition (X), the coefficient of thermal expansion is low. For this reason, the metal-clad laminate 2 is less likely to be warped or cracked even when subjected to thermal stress. Therefore, the metal-clad laminate 2 having the insulating layer 10 containing the cured product of the composition (X) can be effectively used as a substrate material for producing a high-performance printed wiring board.
 [本実施形態に係るプリント配線板3、4]
 図3Aおよび図3Bを参照して、本実施形態に係るプリント配線板3、4を説明する。
[Printed wiring boards 3 and 4 according to this embodiment]
With reference to FIG. 3A and FIG. 3B, the printed wiring boards 3 and 4 which concern on this embodiment are demonstrated.
 本実施形態に係るプリント配線板3、4は、組成物(X)の硬化物を含む絶縁層10と、絶縁層10に設けられた導体配線30と、を有する。 The printed wiring boards 3 and 4 according to the present embodiment include an insulating layer 10 containing a cured product of the composition (X) and a conductor wiring 30 provided on the insulating layer 10.
 プリント配線板3(以下、コア材という場合がある)は、組成物(X)の硬化物を含む一つの絶縁層10と、絶縁層10の片面又は両面に設けられた導体配線30とを備える単層構造のプリント配線板である。図3Aは、一つの絶縁層10と、一つの絶縁層10の両面に設けられた二つの導体配線30とを備える、単層構造のプリント配線板3の断面図である。単層構造のプリント配線板3には、必要に応じて、スルーホール、ビアホール等が形成されてもよい。 The printed wiring board 3 (hereinafter sometimes referred to as a core material) includes one insulating layer 10 containing a cured product of the composition (X), and conductor wiring 30 provided on one or both surfaces of the insulating layer 10. This is a printed wiring board having a single layer structure. FIG. 3A is a cross-sectional view of a printed wiring board 3 having a single layer structure including one insulating layer 10 and two conductor wirings 30 provided on both surfaces of one insulating layer 10. A through-hole, a via hole, or the like may be formed in the printed wiring board 3 having a single layer structure as necessary.
 プリント配線板4は、コア材3の導体配線30が形成された面上に、さらに絶縁層10と導体配線30とが交互に形成されて構成され、最外層に導体配線31が形成された多層構造のプリント配線板である。多層構造のプリント配線板4においては、複数の絶縁層10のうちの少なくとも一つが組成物(X)の硬化物を含む。多層構造のプリント配線板4においては、複数の絶縁層10の全てが組成物(X)の硬化物を含むことが好ましい。図3Bは、三つの絶縁層10と、四つの導体配線30とを備える多層構造のプリント配線板4の断面図である。多層構造のプリント配線板4には、必要に応じて、スルーホール、ビアホール等が形成されてもよい。 The printed wiring board 4 is formed by alternately forming the insulating layers 10 and the conductor wirings 30 on the surface of the core material 3 on which the conductor wirings 30 are formed, and a multilayer in which the conductor wirings 31 are formed in the outermost layer. A printed wiring board having a structure. In the printed wiring board 4 having a multilayer structure, at least one of the plurality of insulating layers 10 includes a cured product of the composition (X). In the printed wiring board 4 having a multilayer structure, it is preferable that all of the plurality of insulating layers 10 include a cured product of the composition (X). FIG. 3B is a cross-sectional view of a printed wiring board 4 having a multilayer structure including three insulating layers 10 and four conductor wirings 30. A through-hole, a via hole, or the like may be formed in the multilayer printed wiring board 4 as necessary.
 単層構造のプリント配線板3の製造方法としては、特に限定されず、例えば、上記の金属張積層板2の金属層20の一部をエッチングにより除去して導体配線30を形成するサブトラクティブ法;組成物(X)の硬化物を含む絶縁層10からなるアンクラッド板の片面又は両面に無電解めっきによる薄い無電解めっき層を形成し、めっきレジストにより非回路形成部を保護した後、電解めっきにより回路形成部に電解めっき層を厚付けし、その後めっきレジストを除去し、回路形成部以外の無電解めっき層をエッチングにより除去して導体配線30を形成するセミアディティブ法などが挙げられる。多層構造のプリント配線板4の製造方法としては、特に限定されず、例えば、ビルドアッププロセスなどが挙げられる。 A method for manufacturing the printed wiring board 3 having a single layer structure is not particularly limited. For example, a subtractive method of forming a conductor wiring 30 by removing a part of the metal layer 20 of the metal-clad laminate 2 by etching. A thin electroless plating layer is formed by electroless plating on one or both sides of the unclad plate made of the insulating layer 10 containing the cured product of the composition (X), and the non-circuit forming portion is protected with a plating resist, and then electrolysis is performed. Examples include a semi-additive method in which the electroplating layer is thickened on the circuit forming portion by plating, the plating resist is removed, and the electroless plating layer other than the circuit forming portion is removed by etching to form the conductor wiring 30. The method for producing the multilayer printed wiring board 4 is not particularly limited, and examples thereof include a build-up process.
 [第一実施形態に係るフレックスリジッドプリント配線板5]
 図4を参照して、第一実施形態に係るフレックスリジッドプリント配線板5を説明する。
[Flex-rigid printed wiring board 5 according to the first embodiment]
The flex-rigid printed wiring board 5 according to the first embodiment will be described with reference to FIG.
 第一実施形態に係るフレックスリジッドプリント配線板5は、複数のリジッド部51と、複数のリジッド部51を接続するフレックス部52と、複数のリジッド部51及びフレックス部52のうちの少なくとも一つに設けられた導体配線30(32)と、を有し、複数のリジッド部51のうちの少なくとも一つは、組成物(X)の硬化物を含む。具体的には、第一実施形態に係るフレックスリジッドプリント配線板5は、二つのリジッド部51と、一つのフレックス部52と、導体配線30(32)とを有し、リジッド部51に設けられた複数の絶縁層10のうちの少なくとも一つは、組成物(X)の硬化物を含む。 The flex-rigid printed wiring board 5 according to the first embodiment includes a plurality of rigid portions 51, a flex portion 52 that connects the plurality of rigid portions 51, and at least one of the plurality of rigid portions 51 and the flex portion 52. And at least one of the plurality of rigid portions 51 includes a cured product of the composition (X). Specifically, the flex-rigid printed wiring board 5 according to the first embodiment includes two rigid portions 51, one flex portion 52, and conductor wiring 30 (32), and is provided in the rigid portion 51. At least one of the plurality of insulating layers 10 includes a cured product of the composition (X).
 リジッド部51は、搭載される部品の重さに耐え、筐体に固定できる硬さと強度を持ったリジッドな部分である。フレックス部52は、折り曲げができる可撓性を持つフレキシブルな部分である。フレックスリジッドプリント配線板5は、フレックス部52で折り曲げて筐体などに収容することによって、例えば携帯用電子機器など小型・軽量の機器に使用される。フレックス部52の厚みは、例えば5~300μmの範囲内であることが好ましい。この場合、フレックス部52は良好な可撓性を有する。 The rigid portion 51 is a rigid portion having a hardness and strength that can withstand the weight of the mounted component and can be fixed to the housing. The flex portion 52 is a flexible portion that can be bent. The flex-rigid printed wiring board 5 is used in a small and lightweight device such as a portable electronic device by being bent at the flex portion 52 and housed in a housing or the like. The thickness of the flex portion 52 is preferably in the range of 5 to 300 μm, for example. In this case, the flex part 52 has good flexibility.
 フレックスリジッドプリント配線板5は、例えば、一つの絶縁層50及び二つの導体配線30を有する単層構造のフレキシブルプリント配線板200をコア材として用いることで製造することができる。コア材200を、フレックス部52となる部分を除いて多層化することで、リジッド部51を形成する。すなわち、コア材200の一部はフレックス部52となり、コア材200の他の部分はリジッド部51となる。コア材200における絶縁層50の材料は、可撓性を有する材料であれば特に限定されず、例えばポリイミド等の可撓性を有する樹脂を含むことができる。また、多層化のための手法は特に限定されず、公知の手法が用いられる。例えば金属箔と組成物(X)を含む樹脂層とを有する金属箔付き樹脂シートを用いてビルドアップ法により多層化することができる。金属箔付き樹脂シートは、例えば、金属箔に組成物(X)を塗布し、組成物(X)が半硬化状態(Bステージ状態)となるまで加熱乾燥することで作製される。コア材200におけるリジッド部51が形成される複数の領域において、コア材200の両面の各々に金属箔付き樹脂シートを重ね、この状態で加熱加圧成型することで、金属箔付き樹脂シートの組成物(X)を含む樹脂層がコア材200に接着すると共に組成物(X)を含む樹脂層が硬化してリジッド部51の絶縁層10が形成される。続いて、金属箔付き樹脂シートに由来する金属箔にエッチング処理等を施すことで、リジッド部51に導体配線32が形成される。これにより、リジッド部51が形成されるとともに、リジッド部51を接続するフレックス部52が形成される。 The flex-rigid printed wiring board 5 can be manufactured by using, for example, a flexible printed wiring board 200 having a single layer structure having one insulating layer 50 and two conductor wirings 30 as a core material. The rigid part 51 is formed by multilayering the core material 200 except for the part that becomes the flex part 52. That is, a part of the core material 200 becomes the flex part 52 and the other part of the core material 200 becomes the rigid part 51. The material of the insulating layer 50 in the core material 200 is not particularly limited as long as it is a flexible material, and may include, for example, a flexible resin such as polyimide. Moreover, the method for multilayering is not particularly limited, and a known method is used. For example, it can be multilayered by a build-up method using a resin sheet with metal foil having a metal foil and a resin layer containing the composition (X). The resin sheet with metal foil is produced, for example, by applying composition (X) to metal foil and drying by heating until the composition (X) is in a semi-cured state (B stage state). In a plurality of regions in the core material 200 where the rigid portion 51 is formed, the resin sheet with metal foil is stacked on each of both surfaces of the core material 200, and in this state, the composition of the resin sheet with metal foil is formed by heating and pressing. The resin layer containing the product (X) adheres to the core material 200 and the resin layer containing the composition (X) is cured to form the insulating layer 10 of the rigid portion 51. Then, the conductor wiring 32 is formed in the rigid part 51 by performing an etching process etc. to the metal foil originating in the resin sheet with a metal foil. As a result, a rigid portion 51 is formed, and a flex portion 52 that connects the rigid portion 51 is formed.
 図4に示すフレックスリジッドプリント配線板5において、リジッド部51は、コア材200の一部と、コア材200上に設けられた絶縁層10と、絶縁層10上に設けられた導体配線32と、を含むが、これに限定されず、リジッド部51は、例えば、最外層に設けられるソルダーレジスト層を備えていてもよい。リジッド部51は、コア材200の両側の各々に、二つ以上の絶縁層10と二つ以上の導体配線32とが交互に設けられた構造を有していてもよい。すなわち、リジッド部51は、ビルドアップ法等により更に多層化されてもよい。リジッド部51には、必要に応じて、スルーホール、ビアホール等が形成されてもよい。 In the flex-rigid printed wiring board 5 shown in FIG. 4, the rigid portion 51 includes a part of the core material 200, the insulating layer 10 provided on the core material 200, and the conductor wiring 32 provided on the insulating layer 10. However, it is not limited to this, The rigid part 51 may be provided with the soldering resist layer provided in outermost layer, for example. The rigid portion 51 may have a structure in which two or more insulating layers 10 and two or more conductor wirings 32 are alternately provided on both sides of the core material 200. That is, the rigid portion 51 may be further multilayered by a build-up method or the like. A through hole, a via hole, or the like may be formed in the rigid portion 51 as necessary.
 図4に示すフレックスリジッドプリント配線板5において、フレックス部52は、コア材200の一部である絶縁層50を含む。すなわち、フレックス部52は、絶縁層50の一部である。フレックス部52の構成は、これに限定されず、フレックス部52は、例えば、導体配線30を含んでもよい。すなわち、フレックス部52の絶縁層50上に導体配線30が形成されてもよい。また、コア材200の導体配線30を覆うカバーレイが設けられてもよく、この場合、フレックス部52は、絶縁層50と、導体配線30と、カバーレイと、を含む。絶縁層50は、一つの絶縁層からなる単層構造であってもよく、複数の絶縁性を有する層が積層された複層構造であってもよい。フレックス部52の可撓性が阻害されない場合、フレックス部52は、多層構造を有してもよく、この場合、例えば多層構造のフレキシブルプリント配線板をコア材として用いることで、リジッドフレックスプリント配線板を作製することができる。 4, the flex portion 52 includes an insulating layer 50 that is a part of the core material 200. That is, the flex part 52 is a part of the insulating layer 50. The configuration of the flex portion 52 is not limited to this, and the flex portion 52 may include the conductor wiring 30, for example. That is, the conductor wiring 30 may be formed on the insulating layer 50 of the flex part 52. In addition, a coverlay that covers the conductor wiring 30 of the core material 200 may be provided. In this case, the flex portion 52 includes the insulating layer 50, the conductor wiring 30, and the coverlay. The insulating layer 50 may have a single-layer structure including a single insulating layer, or may have a multilayer structure in which a plurality of insulating layers are stacked. In the case where the flexibility of the flex part 52 is not hindered, the flex part 52 may have a multilayer structure. In this case, for example, by using a flexible printed wiring board having a multilayer structure as a core material, a rigid flex printed wiring board is used. Can be produced.
 図4に示すフレックスリジッドプリント配線板5において、複数の絶縁層10のうちの少なくとも一つは、組成物(X)の硬化物を含む。すなわち、複数のリジッド部51のうちの少なくとも一つは、組成物(X)の硬化物を含む。 In the flex-rigid printed wiring board 5 shown in FIG. 4, at least one of the plurality of insulating layers 10 contains a cured product of the composition (X). That is, at least one of the plurality of rigid portions 51 includes a cured product of the composition (X).
 [第二実施形態に係るフレックスリジッドプリント配線板6]
 図5を参照して、第二実施形態に係るフレックスリジッドプリント配線板6を説明する。以下では、第一実施形態に係るフレックスリジッドプリント配線板5と同様の構成については図中に同じ符号を付して詳しい説明を省略する。
[Flex-rigid printed wiring board 6 according to the second embodiment]
The flex-rigid printed wiring board 6 according to the second embodiment will be described with reference to FIG. Below, about the structure similar to the flex-rigid printed wiring board 5 which concerns on 1st embodiment, the same code | symbol is attached | subjected in a figure and detailed description is abbreviate | omitted.
 第二実施形態に係るフレックスリジッドプリント配線板6は、複数のリジッド部51と、複数のリジッド部51を接続するフレックス部52と、複数のリジッド部51及びフレックス部52のうちの少なくとも一つに設けられた導体配線30(32)と、を有し、複数のリジッド部51のうちの少なくとも一つは、組成物(X)の硬化物を含む。具体的には、第二実施形態に係るフレックスリジッドプリント配線板6は、二つのリジッド部51と、一つのフレックス部52と、導体配線30(32)とを有し、リジッド部51に設けられた複数の絶縁層10のうちの少なくとも一つは、組成物(X)の硬化物を含む。 The flex-rigid printed wiring board 6 according to the second embodiment includes a plurality of rigid portions 51, a flex portion 52 connecting the plurality of rigid portions 51, and at least one of the plurality of rigid portions 51 and the flex portion 52. And at least one of the plurality of rigid portions 51 includes a cured product of the composition (X). Specifically, the flex-rigid printed wiring board 6 according to the second embodiment includes two rigid portions 51, one flex portion 52, and conductor wiring 30 (32), and is provided in the rigid portion 51. At least one of the plurality of insulating layers 10 includes a cured product of the composition (X).
 第二実施形態に係るフレックスリジッドプリント配線板6では、リジッド部51の最外層にソルダーレジスト層60が設けられている。また、コア材200の導体配線30を覆うカバーレイ40が設けられている。さらに、リジッド部51には、スルーホール101及びベリードビアホール102が形成されている。フレックスリジッドプリント配線板6の構成は、これに限定されず、フレックスリジッドプリント配線板6は、ソルダーレジスト層60を有さなくてもよい。また、フレックスリジッドプリント配線板6は、カバーレイ40を有さなくてもよい。リジッド部51には、必要に応じて、さらにブラインドビアホールが形成されてもよい。 In the flex-rigid printed wiring board 6 according to the second embodiment, the solder resist layer 60 is provided on the outermost layer of the rigid portion 51. Further, a cover lay 40 that covers the conductor wiring 30 of the core material 200 is provided. Further, a through hole 101 and a buried via hole 102 are formed in the rigid portion 51. The configuration of the flex-rigid printed wiring board 6 is not limited to this, and the flex-rigid printed wiring board 6 may not have the solder resist layer 60. Further, the flex-rigid printed wiring board 6 may not have the coverlay 40. Blind via holes may be further formed in the rigid portion 51 as necessary.
 フレックスリジッドプリント配線板6は、例えば、一つの絶縁層50及び二つの導体配線30を有する単層構造のフレキシブルプリント配線板200をコア材として用いることで製造することができる。コア材200における絶縁層50の材料は、可撓性を有する材料であれば特に限定されず、例えばポリイミド等の可撓性を有する樹脂を含むことができる。コア材200の両面に、カバーレイフィルムを積層することで導体配線30を覆うカバーレイ40を形成する。これにより、コア材200とカバーレイ40とを有するフレキシブルプリント配線板300を作製する。このフレキシブルプリント配線板300を、フレックス部52となる部分を除いて多層化することで、リジッド部51を形成する。すなわち、フレキシブルプリント配線板300の一部はフレックス部52となり、フレキシブルプリント配線板300の他の部分はリジッド部51となる。多層化のための手法は特に限定されず、公知の手法が用いられ、例えば、上述の第一実施形態のフレックスリジッドプリント配線板5と同様の方法で多層化することができる。具体的には、金属箔と組成物(X)を含む樹脂層とを有する金属箔付き樹脂シートを用いてビルドアップ法により多層化することができる。金属箔付き樹脂シートは、金属箔に組成物(X)を塗布し、組成物(X)が半硬化状態(Bステージ状態)となるまで加熱乾燥することで作製される。フレキシブルプリント配線板300におけるリジッド部51が形成される複数の領域において、フレキシブルプリント配線板300の両面の各々に金属箔付き樹脂シートを重ね、この状態で加熱加圧成型することで、金属箔付き樹脂シートの組成物(X)を含む樹脂層がフレキシブルプリント配線板300に接着すると共に組成物(X)を含む樹脂層が硬化して、組成物(X)の硬化物を含む絶縁層10がリジッド部51に形成される。続いて、金属箔付き樹脂シートに由来する金属箔にエッチング処理等を施すことで、リジッド部51に導体配線32が形成される。絶縁層10の形成と導体配線32の形成とを交互に繰り返し、最外層にソルダーレジスト層60を形成する。これにより、リジッド部51が形成されるとともに、リジッド部51を接続するフレックス部52が形成される。スルーホール101及びベリードビアホール102は、公知の方法で形成することができる。 The flex-rigid printed wiring board 6 can be manufactured by using, for example, a flexible printed wiring board 200 having a single layer structure having one insulating layer 50 and two conductor wirings 30 as a core material. The material of the insulating layer 50 in the core material 200 is not particularly limited as long as it is a flexible material, and may include, for example, a flexible resin such as polyimide. The coverlay 40 which covers the conductor wiring 30 is formed by laminating coverlay films on both surfaces of the core material 200. Thereby, the flexible printed wiring board 300 which has the core material 200 and the coverlay 40 is produced. The flexible printed wiring board 300 is multilayered except for the portion that becomes the flex portion 52, thereby forming the rigid portion 51. That is, a part of the flexible printed wiring board 300 becomes the flex part 52, and the other part of the flexible printed wiring board 300 becomes the rigid part 51. The technique for multilayering is not particularly limited, and a known technique is used. For example, multilayering can be performed by the same method as the flex-rigid printed wiring board 5 of the first embodiment described above. Specifically, it can be multilayered by a build-up method using a resin sheet with a metal foil having a metal foil and a resin layer containing the composition (X). The resin sheet with a metal foil is produced by applying the composition (X) to the metal foil and drying by heating until the composition (X) is in a semi-cured state (B stage state). In a plurality of regions where the rigid portion 51 in the flexible printed wiring board 300 is formed, a resin sheet with a metal foil is stacked on each of both surfaces of the flexible printed wiring board 300, and in this state, the metal foil is attached by heating and pressing. The resin layer containing the composition (X) of the resin sheet adheres to the flexible printed wiring board 300 and the resin layer containing the composition (X) is cured, so that the insulating layer 10 containing the cured product of the composition (X) is formed. It is formed in the rigid part 51. Then, the conductor wiring 32 is formed in the rigid part 51 by performing an etching process etc. to the metal foil originating in the resin sheet with a metal foil. The formation of the insulating layer 10 and the formation of the conductor wiring 32 are alternately repeated to form the solder resist layer 60 as the outermost layer. As a result, a rigid portion 51 is formed, and a flex portion 52 that connects the rigid portion 51 is formed. The through hole 101 and the buried via hole 102 can be formed by a known method.
 フレックスリジッドプリント配線板6を製造する他の方法としては、図1に示す繊維基材12と繊維基材12に含侵された組成物(X)の半硬化物11とを有するプリプレグ1を用いる方法が挙げられる。プリプレグ1を金型加工等で打ち抜くことで、プリプレグ1に開口部を作る。この開口部は、フレックスリジッドプリント配線板6のフレックス部52に対応する。開口部を有するプリプレグ1をフレキシブルプリント配線板300に重ね、この状態で加熱加圧成型することで、プリプレグ1が硬化して、組成物(X)の硬化物を含む絶縁層10がリジッド部51に形成される。一方、プリプレグ1の開口部はフレックス部52に対応するため、フレックス部52には絶縁層10は形成されない。続いて、絶縁層10上に、公知の方法で導体配線32を形成する。開口部を有するプリプレグ1を用いた絶縁層10の形成と、導体配線32の形成とを交互に繰り返し、最外層にソルダーレジスト層60を形成する。これにより、リジッド部51が形成されるとともに、リジッド部51を接続するフレックス部52が形成される。 As another method of manufacturing the flex-rigid printed wiring board 6, the prepreg 1 having the fiber base 12 and the semi-cured product 11 of the composition (X) impregnated in the fiber base 12 shown in FIG. A method is mentioned. An opening is made in the prepreg 1 by punching the prepreg 1 by die processing or the like. This opening corresponds to the flex portion 52 of the flex-rigid printed wiring board 6. The prepreg 1 having an opening is overlaid on the flexible printed wiring board 300 and heated and pressed in this state, whereby the prepreg 1 is cured and the insulating layer 10 containing a cured product of the composition (X) is rigid. Formed. On the other hand, since the opening of the prepreg 1 corresponds to the flex part 52, the insulating layer 10 is not formed in the flex part 52. Subsequently, the conductor wiring 32 is formed on the insulating layer 10 by a known method. The formation of the insulating layer 10 using the prepreg 1 having the opening and the formation of the conductor wiring 32 are alternately repeated to form the solder resist layer 60 as the outermost layer. As a result, a rigid portion 51 is formed, and a flex portion 52 that connects the rigid portion 51 is formed.
 [第三実施形態に係るフレックスリジッドプリント配線板7]
 図6を参照して、第三実施形態に係るフレックスリジッドプリント配線板7を説明する。以下では、第一実施形態に係るフレックスリジッドプリント配線板5及び第二実施形態に係るフレックスリジッドプリント配線板6と同様の構成については図中に同じ符号を付して詳しい説明を省略する。
[Flex-rigid printed wiring board 7 according to the third embodiment]
With reference to FIG. 6, the flex-rigid printed wiring board 7 which concerns on 3rd embodiment is demonstrated. Below, the same code | symbol is attached | subjected about the structure similar to the flex-rigid printed wiring board 5 which concerns on 1st embodiment, and the flex-rigid printed wiring board 6 which concerns on 2nd embodiment, and detailed description is abbreviate | omitted.
 第三実施形態に係るフレックスリジッドプリント配線板7は、複数のリジッド部51と、複数のリジッド部51を接続するフレックス部52と、複数のリジッド部51及びフレックス部52のうちの少なくとも一つに設けられた導体配線30(32)と、を有し、複数のリジッド部51のうちの少なくとも一つは、組成物(X)の硬化物を含む。具体的には、第三実施形態に係るフレックスリジッドプリント配線板7は、二つのリジッド部51と、一つのフレックス部52と、導体配線30(32)とを有し、リジッド部51に設けられた複数のボンディングシート70のうちの少なくとも一つは、組成物(X)の硬化物を含む。 The flex-rigid printed wiring board 7 according to the third embodiment includes a plurality of rigid portions 51, a flex portion 52 connecting the plurality of rigid portions 51, and at least one of the plurality of rigid portions 51 and the flex portion 52. And at least one of the plurality of rigid portions 51 includes a cured product of the composition (X). Specifically, the flex-rigid printed wiring board 7 according to the third embodiment includes two rigid portions 51, one flex portion 52, and conductor wiring 30 (32), and is provided in the rigid portion 51. At least one of the plurality of bonding sheets 70 includes a cured product of the composition (X).
 第三実施形態に係るフレックスリジッドプリント配線板7では、コア材200の導体配線30を覆うカバーレイ40が設けられている。また、リジッド部51には、スルーホール101及びブラインドビアホール103が形成されている。フレックスリジッドプリント配線板7の構成は、これに限定されず、フレックスリジッドプリント配線板7は、カバーレイ40を有さなくてもよい。また、リジッド部51には、必要に応じて、さらにベリードビアホールが形成されてもよい。また、リジッド部51は、最外層に設けられるソルダーレジスト層を備えていてもよい。 In the flex-rigid printed wiring board 7 according to the third embodiment, a cover lay 40 that covers the conductor wiring 30 of the core material 200 is provided. In the rigid portion 51, a through hole 101 and a blind via hole 103 are formed. The configuration of the flex-rigid printed wiring board 7 is not limited to this, and the flex-rigid printed wiring board 7 may not have the cover lay 40. Further, a buried via hole may be further formed in the rigid portion 51 as necessary. Moreover, the rigid part 51 may be provided with the soldering resist layer provided in the outermost layer.
 フレックスリジッドプリント配線板7は、例えば、第二実施形態のフレックスリジッドプリント配線板6を製造するのに用いられるのと同様のフレキシブルプリント配線板300と、リジッドプリント配線板400と、図1に示すプリプレグ1とを用いて製造することができる。フレキシブルプリント配線板300は、一つの絶縁層50及び二つの導体配線30を含むコア材200と、二つのカバーレイ40とを有する。リジッドプリント配線板400は、二つの絶縁層10と三つの導体配線32とを有する多層構造のプリント配線板であり、公知の方法を用いてブラインドビアホール103が形成されている。まず、プリプレグ1を金型加工等で打ち抜くことで、プリプレグ1に開口部を作る。この開口部は、フレックスリジッドプリント配線板7のフレックス部52に対応する。開口部を有するプリプレグ1をフレキシブルプリント配線板300に重ね、プリプレグ1の各々にリジッドプリント配線板400を重ねる。この状態で加熱加圧成型することで、プリプレグ1が硬化して組成物(X)を含むボンディングシート70が形成されるとともに、フレキシブルプリント配線板300とリジッドプリント配線板400とがボンディングシート70を介して接着される。その後、スルーホール101を、公知の方法で形成することができる。なお、プリプレグ1の開口部はフレックス部52に対応するため、フレックス部52にはボンディングシート70は形成されない。 The flex-rigid printed wiring board 7 includes, for example, a flexible printed wiring board 300 similar to that used to manufacture the flex-rigid printed wiring board 6 of the second embodiment, a rigid printed wiring board 400, and FIG. It can be manufactured using the prepreg 1. The flexible printed wiring board 300 includes a core material 200 including one insulating layer 50 and two conductor wirings 30, and two coverlays 40. The rigid printed wiring board 400 is a multilayer printed wiring board having two insulating layers 10 and three conductor wirings 32, and a blind via hole 103 is formed using a known method. First, an opening is formed in the prepreg 1 by punching the prepreg 1 by die processing or the like. This opening corresponds to the flex portion 52 of the flex-rigid printed wiring board 7. The prepreg 1 having an opening is stacked on the flexible printed wiring board 300, and the rigid printed wiring board 400 is stacked on each of the prepregs 1. By heating and pressing in this state, the prepreg 1 is cured to form the bonding sheet 70 containing the composition (X), and the flexible printed wiring board 300 and the rigid printed wiring board 400 form the bonding sheet 70. Glued through. Thereafter, the through hole 101 can be formed by a known method. Since the opening of the prepreg 1 corresponds to the flex part 52, the bonding sheet 70 is not formed on the flex part 52.
 リジッドプリント配線板400の構成は、図6に示す構成に限定されない。リジッドプリント配線板400は、例えば、一つの絶縁層10と二つの導体配線30とを有する図3Aに示す単層構造のプリント配線板3と同様の構成を有してもよい。また、リジッドプリント配線板400は、三つの絶縁層10と四つの導体配線30とを有する図3Bに示す多層構造のプリント配線板4と同様の構成を有してもよく、四つの絶縁層10と五つの導体配線30とを有する構成であってもよい。なお、第三実施形態のフレックスリジッドプリント配線板7では、リジッドプリント配線板400の絶縁層10は、組成物(X)の硬化物を含んでいてもよく、含んでいなくてもよい。 The configuration of the rigid printed wiring board 400 is not limited to the configuration shown in FIG. The rigid printed wiring board 400 may have the same configuration as the single-layer printed wiring board 3 shown in FIG. 3A having one insulating layer 10 and two conductor wirings 30, for example. The rigid printed wiring board 400 may have a configuration similar to that of the multilayer printed wiring board 4 shown in FIG. 3B having three insulating layers 10 and four conductor wirings 30, and the four insulating layers 10. And five conductor wirings 30 may be used. In the flex-rigid printed wiring board 7 of the third embodiment, the insulating layer 10 of the rigid printed wiring board 400 may or may not contain a cured product of the composition (X).
 [実施例]
 以下、本発明を実施例によって具体的に説明する。
[Example]
Hereinafter, the present invention will be specifically described by way of examples.
 1.樹脂組成物の製造
 後掲の表1及び2の「組成」欄に示す成分のうち、(D)成分、(E)成分、及び硬化促進剤を除いた成分を、メチルエチルケトン及びジメチルホルムアミドの混合溶媒を用いて、表1及び2に示す割合で混合し、この混合物を30分間攪拌させた。次に、この混合物に、表1及び2の「組成」欄に示す(D)成分、(E)成分、及び硬化促進剤を、表1及び2に示す割合で添加し、ボールミルで分散させることによって実施例1~11及び比較例1~13の樹脂組成物(樹脂ワニス)を得た。
1. Production of Resin Composition Among the components shown in “Composition” column of Tables 1 and 2 below, (D) component, (E) component, and components excluding curing accelerator are mixed solvents of methyl ethyl ketone and dimethylformamide Were mixed at the ratios shown in Tables 1 and 2, and the mixture was allowed to stir for 30 minutes. Next, to this mixture, the (D) component, (E) component, and curing accelerator shown in the “Composition” column of Tables 1 and 2 are added in the proportions shown in Tables 1 and 2, and dispersed by a ball mill. Thus, resin compositions (resin varnishes) of Examples 1 to 11 and Comparative Examples 1 to 13 were obtained.
 表1及び2の「組成」の欄における、成分の詳細は次の通りである。
・リン変性エポキシ樹脂:新日鉄住金化学株式会社製、品番FX-289
・ビスフェノールA型エポキシ樹脂1:DIC株式会社製、品番850-S、エポキシ当量183~193g/eq
・ビスフェノールA型エポキシ樹脂2:新日鉄住金化学株式会社製、品番YD-011、エポキシ当量450~500g/eq
・ビスフェノールA型エポキシ樹脂3:新日鉄住金化学株式会社製、品番YD-927、エポキシ当量1750~2100g/eq
・ビスフェノールA型エポキシ樹脂4:新日鉄住金化学株式会社製、品番YD-020、エポキシ当量4000~6000g/eq
・フェノール樹脂:DIC株式会社製、品番TD-2093、水酸基当量104
・フェノキシ樹脂1:新日鉄住金化学株式会社製、品番YP-50、重量平均分子量70000、引張り伸び率33%
・フェノキシ樹脂2:新日鉄住金化学株式会社製、品番YP50S、重量平均分子量60000、引張り伸び率30%
・フェノキシ樹脂3:新日鉄住金化学株式会社製、品番YP-70、重量平均分子量55000、引張り伸び率10%
・フェノキシ樹脂4:新日鉄住金化学株式会社製、品番ZX-1356-2、重量平均分子量70000、引張り伸び率12%
・コアシェルゴム1:シリコーン・アクリルゴム、三菱レイヨン株式会社製、品番SRK-200A
・コアシェルゴム2:アクリルゴム、アイカ工業株式会社製、品番AC-3816N
・水酸化アルミニウム:住友化学株式会社製、品番CL-303M
・破砕シリカ:シベルコ・ジャパン株式会社製、品番Megasil525
・硬化促進剤:2-エチル-4-イミダゾール、四国化成工業株式会社製、品番2E4MZ
 なお、フェノキシ樹脂1、フェノキシ樹脂2、及びフェノキシ樹脂3の引張り伸び率は次のようにして測定した。フェノキシ樹脂1~3のそれぞれの樹脂板(長さ15cm、幅1mm、厚み100μm)を準備し、この樹脂板の引張り伸び率を、オートグラフ(株式会社島津製作所製、型番AG-IS)を用いて、23±2℃、引張速度1mm/分で測定した。
Details of the components in the “Composition” column of Tables 1 and 2 are as follows.
-Phosphorus-modified epoxy resin: manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., part number FX-289
Bisphenol A type epoxy resin 1: manufactured by DIC Corporation, product number 850-S, epoxy equivalent 183 to 193 g / eq
Bisphenol A type epoxy resin 2: manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., product number YD-011, epoxy equivalent 450-500 g / eq
Bisphenol A type epoxy resin 3: manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., product number YD-927, epoxy equivalent of 1750-2100 g / eq
Bisphenol A type epoxy resin 4: manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., product number YD-020, epoxy equivalent of 4000 to 6000 g / eq
・ Phenolic resin: DIC Corporation, product number TD-2093, hydroxyl equivalent 104
・ Phenoxy resin 1: manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., product number YP-50, weight average molecular weight 70000, tensile elongation 33%
-Phenoxy resin 2: manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., product number YP50S, weight average molecular weight 60000, tensile elongation 30%
-Phenoxy resin 3: manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., product number YP-70, weight average molecular weight 55000, tensile elongation 10%
-Phenoxy resin 4: manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., product number ZX-1356-2, weight average molecular weight 70000, tensile elongation 12%
・ Core shell rubber 1: Silicone acrylic rubber, manufactured by Mitsubishi Rayon Co., Ltd., part number SRK-200A
Core shell rubber 2: Acrylic rubber, manufactured by Aika Industries, part number AC-3816N
Aluminum hydroxide: manufactured by Sumitomo Chemical Co., Ltd., product number CL-303M
・ Fractured silica: Product number Megasil 525, manufactured by Sibelco Japan
Curing accelerator: 2-ethyl-4-imidazole, manufactured by Shikoku Kasei Kogyo Co., Ltd., product number 2E4MZ
In addition, the tensile elongation rate of the phenoxy resin 1, the phenoxy resin 2, and the phenoxy resin 3 was measured as follows. Prepare resin plates (length 15 cm, width 1 mm, thickness 100 μm) of phenoxy resins 1 to 3, and use the autograph (model number AG-IS, manufactured by Shimadzu Corporation) to determine the tensile elongation of this resin plate. And measured at 23 ± 2 ° C. and a tensile speed of 1 mm / min.
 2.プリプレグの作製
 各実施例及び比較例の樹脂ワニスを、ガラスクロス(日東紡績株式会社製、♯1078タイプ、WEA1078)に硬化後の厚みが80μmとなるように含侵させ、170℃で溶融粘度が60000~150000Poiseになるまで加熱乾燥させることにより、半硬化状態の樹脂組成物を含むプリプレグを得た。なお、溶融粘度の測定は、高化式フローテスター(株式会社島津製作所製、CFT-100)を用い、フローテスターの温度は130℃、圧力は1.96MPa(20kgf/cm)の条件下で、ノズルは径が1mm、厚みが1mmのものを用いて行った。
2. Preparation of prepreg The resin varnishes of the examples and comparative examples were impregnated into glass cloth (manufactured by Nitto Boseki Co., Ltd., # 1078 type, WEA1078) so that the thickness after curing was 80 μm, and the melt viscosity at 170 ° C. A prepreg containing a semi-cured resin composition was obtained by drying by heating to 60000 to 150,000 poise. The melt viscosity was measured using a Koka flow tester (manufactured by Shimadzu Corporation, CFT-100) under the conditions of a flow tester temperature of 130 ° C. and a pressure of 1.96 MPa (20 kgf / cm 2 ). A nozzle having a diameter of 1 mm and a thickness of 1 mm was used.
 3.銅張積層板の作製
 各実施例及び比較例のプリプレグ1枚の両側に厚み18μmの銅箔(三井金属鉱業株式会社製、3EC-III)を配置して被圧体とし、この被圧体を190℃及び2.94MPa(30kgf/cm)の圧力下で60分間加熱・加圧することで、両面に銅箔が接着された厚み80μmの銅張積層板を得た。また、各実施例及び比較例のプリプレグ10枚を積層した積層体の両側に厚み18μmの銅箔(三井金属鉱業株式会社製、3EC-III)を配置して被圧体とし、この被圧体を上記と同様の条件で加熱・加圧することで、両面に銅箔が接着された厚み800μmの銅張積層板を得た。なお、被圧体の成型には、ホットプレスを用い、成型機の熱盤の温度が100℃に温められた状態で被圧体の投入を行った。
3. Preparation of copper-clad laminate A copper foil (Mitsui Metal Mining Co., Ltd., 3EC-III) having a thickness of 18 μm is arranged on both sides of one prepreg of each example and comparative example to form a pressure-receiving body. By heating and pressurizing for 60 minutes under a pressure of 190 ° C. and 2.94 MPa (30 kgf / cm 2 ), a copper-clad laminate having a thickness of 80 μm with a copper foil bonded to both surfaces was obtained. In addition, a copper foil (Mitsui Metal Mining Co., Ltd., 3EC-III) having a thickness of 18 μm is arranged on both sides of a laminate obtained by laminating 10 prepregs of each Example and Comparative Example, and this pressure body Was heated and pressed under the same conditions as above to obtain a copper-clad laminate having a thickness of 800 μm with copper foil bonded to both sides. In addition, for the molding of the pressurized body, a hot press was used, and the heated body was put in a state where the temperature of the hot platen of the molding machine was heated to 100 ° C.
 4.評価試験
 4-1.粉落ち性
 上記2で作製した各実施例及び比較例のプリプレグを11×10cm(縦×横)の大きさに切断し、テストピースとして用いて試験を行った。まず、粉やゴミ等の付着物を、ハンディモップを用いて10枚のテストピースから除去した。次に、テストピース10枚の重量を測定した。続いて、10枚のテストピースのそれぞれに、カッターナイフ(エヌティー株式会社製、A型カッター替刃)を用いて長さ10cmの切り込みを等間隔で10本入れ、切り込みを入れた10枚のテストピースから粉やゴミ等の付着物を除去した。そして、切り込みを入れた10枚のテストピースの重量を測定した。切り込みを入れる前のテストピース10枚の重量から切り込みを入れた後のテストピース10枚の重量を減じた値を粉落ち量とした。切り込みを入れる前のテストピース10枚の重量に対する粉落ち量の百分比を、粉落ち性とした。
4). Evaluation test 4-1. Powder fall-off property The prepregs of Examples and Comparative Examples prepared in 2 above were cut into a size of 11 × 10 cm (length × width) and tested as test pieces. First, deposits such as powder and dust were removed from 10 test pieces using a handy mop. Next, the weight of 10 test pieces was measured. Subsequently, 10 test pieces with a length of 10 cm were cut at equal intervals using a cutter knife (manufactured by NTT Co., Ltd., A-type cutter replacement blade) in each of the 10 test pieces, and 10 test pieces with cuts made. Deposits such as powder and dust were removed from the piece. Then, the weights of 10 test pieces with cuts were measured. A value obtained by subtracting the weight of 10 test pieces after making a cut from the weight of 10 test pieces before making the cut was defined as the amount of powder falling. The percentage of the amount of powder falling with respect to the weight of 10 test pieces before cutting was defined as powder falling.
 4-2.成型性
 上記3で作製した各実施例及び比較例の厚み18μmの銅張積層板の両面の銅箔に対して、それぞれ残銅率が50%となるように格子状のパターンを形成して導体配線を形成し、プリント配線板を得た。このプリント配線板の両面の導体配線上に、それぞれ上記2で作製したプリプレグを1枚積層し、190℃及び2.94MPa(30kgf/cm)の圧力下で60分間加熱・加圧して、積層体を得た。この積層体を50×50mmの大きさに切断しテストピースを得た。このテストピースを4時間煮沸してから、260℃の半田槽に20秒間浸漬し、テストピースの外観を観察してその結果を次に示すように評価した。
A:ふくれが認められる。
B:ふくれが認められない。
4-2. Formability With respect to the copper foils on both sides of the 18 μm thick copper-clad laminate of each of the examples and comparative examples prepared in 3 above, a lattice-like pattern was formed so that the remaining copper ratio was 50%, respectively, and the conductor Wiring was formed to obtain a printed wiring board. One sheet of the prepreg produced in 2 above is laminated on the conductor wiring on both sides of this printed wiring board, and heated and pressurized for 60 minutes at 190 ° C. and 2.94 MPa (30 kgf / cm 2 ) to laminate Got the body. This laminate was cut into a size of 50 × 50 mm to obtain a test piece. The test piece was boiled for 4 hours, then immersed in a solder bath at 260 ° C. for 20 seconds, the appearance of the test piece was observed, and the result was evaluated as follows.
A: Blistering is recognized.
B: No blistering is recognized.
 4-3.銅箔密着性
 上記3で作製した各実施例及び比較例の厚み18μmの銅張積層板をテストピースとして用いた。このテストピースの銅箔のピール強度を、IPC-TM-650-2.4.8に準拠して測定した。テストピース上に、幅10mm、長さ100mmの銅箔パターンを形成し、引っ張り試験機により50mm/分の速度で銅箔パターンを引き剥がし、その際のピール強度を測定した。このピール強度を、銅箔密着性とした。
4-3. Copper foil adhesion The 18-μm thick copper-clad laminate of each Example and Comparative Example prepared in 3 above was used as a test piece. The peel strength of the copper foil of this test piece was measured according to IPC-TM-650-2.4.8. A copper foil pattern having a width of 10 mm and a length of 100 mm was formed on the test piece, the copper foil pattern was peeled off at a rate of 50 mm / min by a tensile tester, and the peel strength at that time was measured. This peel strength was defined as copper foil adhesion.
 4-4.ポリイミド密着性
 片面フレキシブル金属張積層板(SKイノベーション株式会社製、Enflex(R)、銅箔厚み12μm、ポリイミド厚み20μm)と、上記2で作製した各実施例及び比較例のプリプレグ1枚を、片面フレキシブル金属張積層板のポリイミド層とプリプレグとが接するように積層し、190℃及び2.94MPa(30kgf/cm)の圧力下で60分間加熱・加圧することで積層体を作製した。この積層体を、10×100mmの大きさに切断し、テストピースを得た。このテストピースから、引っ張り試験機により50mm/分の速度で片面フレキシブル金属張積層板を引き剥がし、その際のピール強度を測定した。このピール強度を、ポリイミド密着性とした。
4-4. Polyimide adhesion Single-sided flexible metal-clad laminate (manufactured by SK Innovation Co., Ltd., Enflex®, copper foil thickness 12 μm, polyimide thickness 20 μm) and one prepreg of each Example and Comparative Example prepared in 2 above The laminate was prepared by laminating the polyimide layer of the flexible metal-clad laminate so that the prepreg was in contact, and heating and pressurizing at 190 ° C. and a pressure of 2.94 MPa (30 kgf / cm 2 ) for 60 minutes. This laminate was cut into a size of 10 × 100 mm to obtain a test piece. From this test piece, the single-sided flexible metal-clad laminate was peeled off at a speed of 50 mm / min with a tensile tester, and the peel strength at that time was measured. This peel strength was defined as polyimide adhesion.
 4-5.ガラス転移温度(Tg)
 上記3で作製した各実施例及び比較例の厚み80μmの銅張積層板の両面の銅箔を除去し、テストピースを得た。このテストピースのガラス転移温度(Tg)を、IPC-TM-650-2.4.25に準拠して、示差走査熱量測定(DSC)により、昇温速度20℃/分の条件で測定した。なお、表1及び2のガラス転移温度の欄に示す括弧内の数値は、ガラス転移温度をテストピースの2箇所で測定した場合の、低温側のガラス転移温度を示す。
4-5. Glass transition temperature (Tg)
The copper foils on both sides of the 80 μm thick copper-clad laminate of each of the examples and comparative examples prepared in 3 above were removed to obtain test pieces. The glass transition temperature (Tg) of this test piece was measured by differential scanning calorimetry (DSC) according to IPC-TM-650-2.4.25 at a temperature rising rate of 20 ° C./min. In addition, the numerical value in the bracket | parenthesis shown in the column of the glass transition temperature of Table 1 and 2 shows the glass transition temperature of the low temperature side at the time of measuring a glass transition temperature in two places of a test piece.
 4-6.熱膨張率(CTE)
 上記3で作製した各実施例及び比較例の厚み800μmの銅張積層板の両面の銅箔を除去し、テストピースを得た。このテストピースの面方向(厚み方向)の熱膨張率(CTE)を、JIS C 6481に準拠して、Thermo-mechanical analysis(TMA)法により測定した。なお、熱膨張率は、上記4-5で測定されたガラス転移温度未満の温度において測定された。
4-6. Thermal expansion coefficient (CTE)
The test pieces were obtained by removing the copper foils on both sides of the 800-μm-thick copper-clad laminate of each example and comparative example prepared in 3 above. The coefficient of thermal expansion (CTE) in the surface direction (thickness direction) of the test piece was measured by a thermo-mechanical analysis (TMA) method in accordance with JIS C 6481. The coefficient of thermal expansion was measured at a temperature lower than the glass transition temperature measured in 4-5 above.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 実施例2と比較例13とを比較すると、硬化剤として(B)成分を含有する実施例2の粉落ち性は、硬化剤としてフェノール樹脂を含有する比較例13の粉落ち性よりも低く、さらに銅箔及びポリイミドへの密着性が比較例13よりも高い。また、実施例1と比較例10とを比較すると、(C)成分を含有する実施例1の粉落ち性は、(C)成分を含有しない比較例10の粉落ち性の半分以下である。また、実施例3と比較例7とを比較すると、(D)成分を含有する実施例3の粉落ち性は、(D)成分を含有しない比較例7の粉落ち性の半分である。以上のように、(B)成分、(C)成分及び(D)成分は、組成物(X)から作製されるプリプレグの粉落ちの発生を低減させることが確認された。また、(B)成分は、銅箔及びポリイミドへの密着性を向上させることが確認された。 When Example 2 and Comparative Example 13 are compared, the powderability of Example 2 containing the component (B) as a curing agent is lower than the powderiness of Comparative Example 13 containing a phenol resin as the curing agent, Furthermore, the adhesiveness to copper foil and polyimide is higher than that of Comparative Example 13. Moreover, when Example 1 and Comparative Example 10 are compared, the powder-off property of Example 1 containing the component (C) is less than half of the powder-off property of Comparative Example 10 not containing the component (C). Moreover, when Example 3 and Comparative Example 7 are compared, the powder-off property of Example 3 containing the component (D) is half of the powder-off property of Comparative Example 7 containing no component (D). As described above, it was confirmed that the component (B), the component (C) and the component (D) reduce the occurrence of powder falling of the prepreg produced from the composition (X). Moreover, it was confirmed that (B) component improves the adhesiveness to copper foil and a polyimide.
 また、表1及び2から明らかなように、実施例は、比較例に比べて、粉落ち性、成形性、銅箔及びポリイミド密着性、ガラス転移温度、並びに熱膨張率の特性が良好なレベルでバランスよく得られていることが確認された。一方、比較例では、これらの特性の全てが良好な樹脂組成物は得られなかった。 In addition, as is clear from Tables 1 and 2, the examples have better levels of powder-off properties, moldability, copper foil and polyimide adhesion, glass transition temperature, and coefficient of thermal expansion than the comparative examples. It was confirmed that a good balance was obtained. On the other hand, in the comparative example, a resin composition in which all of these characteristics were favorable was not obtained.
 1   プリプレグ
 11  半硬化物
 12  繊維基材
 2   金属張積層板
 10,50  絶縁層
 20  金属層
 3,4 プリント配線板
 30,31,32  導体配線
 5,6,7  フレックスリジッドプリント配線板
 51  リジッド部
 52  フレックス部
DESCRIPTION OF SYMBOLS 1 Prepreg 11 Semi-cured material 12 Fiber base material 2 Metal-clad laminate 10, 50 Insulating layer 20 Metal layer 3, 4 Printed wiring board 30, 31, 32 Conductor wiring 5, 6, 7 Flex rigid printed wiring board 51 Rigid part 52 Flex part

Claims (8)

  1.  (A)エポキシ樹脂と、
     (B)ジシアンジアミドと、
     (C)フェノキシ樹脂と、
     (D)コアシェルゴムと、
     (E)無機フィラーと、を含有し、
     前記(C)フェノキシ樹脂の重量平均分子量は、30000以上であり、
     前記(C)フェノキシ樹脂の引張り伸び率は、20%以上であり、
     前記(C)フェノキシ樹脂の含有量は、前記(A)エポキシ樹脂100質量部に対して5質量部以上かつ30質量部以下であり、
     前記(D)コアシェルゴムの含有量は、前記(A)エポキシ樹脂100質量部に対して3質量部以上かつ20質量部以下である
     樹脂組成物。
    (A) an epoxy resin;
    (B) dicyandiamide;
    (C) a phenoxy resin;
    (D) core shell rubber;
    (E) an inorganic filler,
    The weight average molecular weight of the (C) phenoxy resin is 30000 or more,
    The tensile elongation of the (C) phenoxy resin is 20% or more,
    The content of the (C) phenoxy resin is 5 parts by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the (A) epoxy resin,
    The content of the (D) core shell rubber is 3 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the (A) epoxy resin.
  2.  前記(D)コアシェルゴムは、ゴム粒子の集合体であり、
     前記ゴム粒子は、コア部と、前記コア部を取り囲むシェル部と、を有し、
     前記コア部は、シリコーン・アクリルゴム又はアクリルゴムを含む
     請求項1に記載の樹脂組成物。
    The (D) core shell rubber is an aggregate of rubber particles,
    The rubber particles have a core part and a shell part surrounding the core part,
    The resin composition according to claim 1, wherein the core portion includes silicone / acrylic rubber or acrylic rubber.
  3.  前記(A)エポキシ樹脂は、リン変性エポキシ樹脂を含有する
     請求項1又は2に記載の樹脂組成物。
    The resin composition according to claim 1, wherein the (A) epoxy resin contains a phosphorus-modified epoxy resin.
  4.  前記リン変性エポキシ樹脂は、下記式(1)で示される構造を有する
     請求項3に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    The resin composition according to claim 3, wherein the phosphorus-modified epoxy resin has a structure represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001
  5.  繊維基材と、
     前記繊維基材に含侵された請求項1~4のいずれか1項に記載の樹脂組成物の半硬化物と、を有する
     プリプレグ。
    A fiber substrate;
    A prepreg having a semi-cured product of the resin composition according to any one of claims 1 to 4 impregnated in the fiber base material.
  6.  請求項1~4のいずれか1項に記載の樹脂組成物の硬化物を含む絶縁層と、
     前記絶縁層に設けられた金属層と、を有する
     金属張積層板。
    An insulating layer containing a cured product of the resin composition according to any one of claims 1 to 4,
    And a metal layer provided on the insulating layer.
  7.  請求項1~4のいずれか1項に記載の樹脂組成物の硬化物を含む絶縁層と、
     前記絶縁層に設けられた導体配線と、を有する
     プリント配線板。
    An insulating layer containing a cured product of the resin composition according to any one of claims 1 to 4,
    A printed wiring board having conductor wiring provided on the insulating layer.
  8.  複数のリジッド部と、
     前記複数のリジッド部を接続するフレックス部と、
     前記複数のリジッド部及び前記フレックス部のうちの少なくとも一つに設けられた導体配線と、を有し、
     前記複数のリジッド部のうちの少なくとも一つは、請求項1~4のいずれか1項に記載の樹脂組成物の硬化物を含む
     フレックスリジッドプリント配線板。
    A plurality of rigid parts;
    A flex portion connecting the plurality of rigid portions;
    Conductor wiring provided in at least one of the plurality of rigid portions and the flex portion, and
    The flex-rigid printed wiring board, wherein at least one of the plurality of rigid portions includes a cured product of the resin composition according to any one of claims 1 to 4.
PCT/JP2018/005422 2017-04-07 2018-02-16 Resin composition, prepreg, metal-clad laminate, printed wiring board, and flex-rigid printed wiring board WO2018186030A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880005369.8A CN110121532A (en) 2017-04-07 2018-02-16 Resin combination, prepreg, metal-clad, printed circuit board and flexible rigid print circuit board
KR1020197021161A KR102480537B1 (en) 2017-04-07 2018-02-16 Resin compositions, prepregs, metal clad laminates, printed wiring boards and flex-rigid printed wiring boards

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-077043 2017-04-07
JP2017077043A JP6928908B2 (en) 2017-04-07 2017-04-07 Prepreg, metal-clad laminate, printed wiring board and flex rigid printed wiring board

Publications (1)

Publication Number Publication Date
WO2018186030A1 true WO2018186030A1 (en) 2018-10-11

Family

ID=63713494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005422 WO2018186030A1 (en) 2017-04-07 2018-02-16 Resin composition, prepreg, metal-clad laminate, printed wiring board, and flex-rigid printed wiring board

Country Status (5)

Country Link
JP (1) JP6928908B2 (en)
KR (1) KR102480537B1 (en)
CN (1) CN110121532A (en)
TW (1) TWI829631B (en)
WO (1) WO2018186030A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020050797A (en) * 2018-09-27 2020-04-02 パナソニックIpマネジメント株式会社 Resin composition, prepreg, film with resin, metal foil with resin, metal-clad laminate, and printed wiring board
CN114302907A (en) * 2019-09-06 2022-04-08 松下知识产权经营株式会社 Resin composition, prepreg, film with resin, metal foil with resin, metal-clad laminate, and printed wiring board
JP6904441B1 (en) * 2020-01-30 2021-07-14 横浜ゴム株式会社 Epoxy resin composition for prepreg and prepreg
KR102424462B1 (en) * 2021-03-31 2022-07-25 주식회사 자연바이오 Glass fiber reinforcement and manufacturing device thereof

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS621719A (en) * 1985-06-28 1987-01-07 Nippon Oil Co Ltd Epoxy resin composition
JPH0820654A (en) * 1994-07-06 1996-01-23 Mitsubishi Chem Corp Epoxy resin composition and prepreg using the same
JP2007246861A (en) * 2006-03-20 2007-09-27 Nippon Steel Chem Co Ltd Resin composition, and varnish obtained using the resin composition, film adhesive, and copper foil attached with film adhesive
JP2009074036A (en) * 2007-02-23 2009-04-09 Panasonic Electric Works Co Ltd Epoxy resin composition, prepreg, laminate and printed wiring board
JP2010253822A (en) * 2009-04-24 2010-11-11 Panasonic Electric Works Co Ltd Sheet material and printed wiring board
JP2012031428A (en) * 2001-08-31 2012-02-16 Sumitomo Bakelite Co Ltd Prepreg with metal foil, laminated board, and semiconductor package
WO2012110230A1 (en) * 2011-02-15 2012-08-23 Zephyros Inc Improved structural adhesives
JP2013036042A (en) * 2012-09-18 2013-02-21 Taiyo Holdings Co Ltd Thermosetting resin composition for interlayer insulating material of multilayer printed wiring board
WO2013183667A1 (en) * 2012-06-05 2013-12-12 三菱レイヨン株式会社 Epoxy resin composition
JP2015193704A (en) * 2014-03-31 2015-11-05 新日鉄住金化学株式会社 High heat conductive ceramic powder-containing resin composition and cured article thereof
JP2016017079A (en) * 2014-07-04 2016-02-01 菱電化成株式会社 Thermosetting resin composition sheet and method for manufacturing rotary electric machine
WO2016024569A1 (en) * 2014-08-15 2016-02-18 ユニチカ株式会社 Resin composition and the laminate using same
JP2016047921A (en) * 2014-08-27 2016-04-07 パナソニックIpマネジメント株式会社 Prepreg, metal clad laminated board and printed wiring board
JP2017039842A (en) * 2015-08-19 2017-02-23 新日鉄住金化学株式会社 Flame-retardant epoxy resin composition and cured product thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000336242A (en) 1999-05-26 2000-12-05 Matsushita Electric Works Ltd Epoxy resin composition, prepreg, metal foil coated with resin, and laminate
JP4362937B2 (en) 2000-04-25 2009-11-11 パナソニック電工株式会社 Prepreg and laminate
JP4983228B2 (en) * 2005-11-29 2012-07-25 味の素株式会社 Resin composition for insulating layer of multilayer printed wiring board
CN102311614B (en) * 2011-04-03 2013-09-18 广东生益科技股份有限公司 Resin composition and prepreg prepared by using same
JP5834251B2 (en) * 2011-11-22 2015-12-16 パナソニックIpマネジメント株式会社 Flexible metal-clad substrate, method for producing flexible metal-clad substrate, printed wiring board, multilayer flexible printed wiring board, and flex-rigid printed wiring board
TWI621639B (en) * 2013-01-07 2018-04-21 東麗股份有限公司 Epoxy resin composition and prepreg
JP6309973B2 (en) * 2014-03-25 2018-04-11 Dic株式会社 Epoxy resin, method for producing epoxy resin, curable resin composition, cured product thereof, fiber-reinforced composite material, and molded article
CN105602195A (en) * 2015-12-30 2016-05-25 广东生益科技股份有限公司 Resin composition, prepreg and copper-clad plate
CN105585821B (en) * 2016-01-26 2018-02-27 广东汕头超声电子股份有限公司覆铜板厂 A kind of halogen-free resin composition and not flow prepreg and preparation method thereof using its making

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS621719A (en) * 1985-06-28 1987-01-07 Nippon Oil Co Ltd Epoxy resin composition
JPH0820654A (en) * 1994-07-06 1996-01-23 Mitsubishi Chem Corp Epoxy resin composition and prepreg using the same
JP2012031428A (en) * 2001-08-31 2012-02-16 Sumitomo Bakelite Co Ltd Prepreg with metal foil, laminated board, and semiconductor package
JP2007246861A (en) * 2006-03-20 2007-09-27 Nippon Steel Chem Co Ltd Resin composition, and varnish obtained using the resin composition, film adhesive, and copper foil attached with film adhesive
JP2009074036A (en) * 2007-02-23 2009-04-09 Panasonic Electric Works Co Ltd Epoxy resin composition, prepreg, laminate and printed wiring board
JP2010253822A (en) * 2009-04-24 2010-11-11 Panasonic Electric Works Co Ltd Sheet material and printed wiring board
WO2012110230A1 (en) * 2011-02-15 2012-08-23 Zephyros Inc Improved structural adhesives
WO2013183667A1 (en) * 2012-06-05 2013-12-12 三菱レイヨン株式会社 Epoxy resin composition
JP2013036042A (en) * 2012-09-18 2013-02-21 Taiyo Holdings Co Ltd Thermosetting resin composition for interlayer insulating material of multilayer printed wiring board
JP2015193704A (en) * 2014-03-31 2015-11-05 新日鉄住金化学株式会社 High heat conductive ceramic powder-containing resin composition and cured article thereof
JP2016017079A (en) * 2014-07-04 2016-02-01 菱電化成株式会社 Thermosetting resin composition sheet and method for manufacturing rotary electric machine
WO2016024569A1 (en) * 2014-08-15 2016-02-18 ユニチカ株式会社 Resin composition and the laminate using same
JP2016047921A (en) * 2014-08-27 2016-04-07 パナソニックIpマネジメント株式会社 Prepreg, metal clad laminated board and printed wiring board
JP2017039842A (en) * 2015-08-19 2017-02-23 新日鉄住金化学株式会社 Flame-retardant epoxy resin composition and cured product thereof

Also Published As

Publication number Publication date
KR102480537B1 (en) 2022-12-22
KR20190130121A (en) 2019-11-21
JP2018177906A (en) 2018-11-15
CN110121532A (en) 2019-08-13
TWI829631B (en) 2024-01-21
TW201842045A (en) 2018-12-01
JP6928908B2 (en) 2021-09-01

Similar Documents

Publication Publication Date Title
JP5493853B2 (en) Epoxy resin composition, prepreg, laminate, multilayer printed wiring board, semiconductor device, insulating resin sheet, and method for producing multilayer printed wiring board
KR100920535B1 (en) Resin composition, prepreg, laminated sheet and semiconductor package
EP2457725B1 (en) Resin composite electrolytic copper foil, copper-clad laminate, and printed wiring board
JP5353241B2 (en) Multilayer printed wiring board and semiconductor device
JP3946626B2 (en) Resin composition, prepreg and printed wiring board using the same
WO2018186030A1 (en) Resin composition, prepreg, metal-clad laminate, printed wiring board, and flex-rigid printed wiring board
TWI698481B (en) Resin composition, prepreg and resin sheet using the resin composition, laminate and printed wiring board using the same
JP5445442B2 (en) Resin composition for printed wiring board, prepreg, laminate, resin sheet, printed wiring board, and semiconductor device
KR20110008044A (en) Insulating resin sheet and method for manufacturing multilayer printed wiring board using the insulating resin sheet
JP2006342238A (en) Thermosetting adhesive sheet, copper-clad laminate and flexible printed wiring board
KR20180135900A (en) Prepreg, metal clad laminate and printed wiring board
JP2012131947A (en) Resin composition for printed wiring board, prepreg, metal-clad laminate, resin sheet, printed wiring board, and semiconductor device
JP2012153752A (en) Resin composition, prepreg, laminate, resin sheet, printed wiring board and semiconductor device
JP2006328214A (en) Thermosetting resin composition, resin film, and film-attached product
JP4400191B2 (en) Resin composition and substrate using the same
JP6819921B2 (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
JP2014024970A (en) Resin composition, prepreg, resin sheet, metal foil-clad laminate, and printed wiring board
JP2003340952A (en) Method for manufacturing b-stage resin composition sheet containing fibrous cloth base material for additive
JP5594128B2 (en) Resin composition for printed wiring board, prepreg, laminate, resin sheet, printed wiring board, and semiconductor device
KR20230049098A (en) Copper foil with a resin layer and a laminate using the same
JP2012131946A (en) Resin composition for printed wiring board, prepreg, laminate, resin sheet, printed wiring board, and semiconductor device
JP2012158637A (en) Resin composition for printed wiring board, prepreg, laminated board, resin sheet, printed wiring board, and semiconductor device
TWI822812B (en) Resin compositions, prepregs, resin-coated films, resin-coated metal foils, metal-clad laminates and printed wiring boards
JP2010222391A (en) Epoxy resin composition, sheet-shaped formed body, prepreg, cured product, laminate and multilayered laminate
JP2012158645A (en) Epoxy resin composition for printed wiring board, prepreg, metal-clad laminate, resin sheet, printed wiring board, and semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18781410

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197021161

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18781410

Country of ref document: EP

Kind code of ref document: A1