WO2016024569A1 - Resin composition and the laminate using same - Google Patents

Resin composition and the laminate using same Download PDF

Info

Publication number
WO2016024569A1
WO2016024569A1 PCT/JP2015/072648 JP2015072648W WO2016024569A1 WO 2016024569 A1 WO2016024569 A1 WO 2016024569A1 JP 2015072648 W JP2015072648 W JP 2015072648W WO 2016024569 A1 WO2016024569 A1 WO 2016024569A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
group
hydrocarbon group
resin
resin composition
Prior art date
Application number
PCT/JP2015/072648
Other languages
French (fr)
Japanese (ja)
Inventor
浩治 今西
穣 鍋島
Original Assignee
ユニチカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニチカ株式会社 filed Critical ユニチカ株式会社
Priority to JP2016542578A priority Critical patent/JP6676529B2/en
Priority to KR1020177000936A priority patent/KR102376600B1/en
Priority to CN201580043146.7A priority patent/CN106661197B/en
Publication of WO2016024569A1 publication Critical patent/WO2016024569A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/19Hydroxy compounds containing aromatic rings
    • C08G63/193Hydroxy compounds containing aromatic rings containing two or more aromatic rings
    • C08G63/197Hydroxy compounds containing aromatic rings containing two or more aromatic rings containing condensed aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D167/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/092Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising epoxy resins

Definitions

  • the present invention relates to a resin composition having high heat resistance and capable of forming an adhesive layer having excellent solder resistance after moisture absorption.
  • a build-up type multilayer printed wiring board manufacturing technique in which a conductor layer (mainly copper or silver is used) and an organic insulating layer are alternately laminated is attracting attention.
  • a common method of alternately stacking a conductor layer and an organic insulating layer is to laminate a laminate composed of a conductor layer and an organic insulating base material (mainly polyimide is used) with an insulating adhesive layer.
  • This insulating adhesive layer must be firmly bonded to both the conductor layer forming the circuit and the organic insulating base material, and further, it must be embedded in the gap of the conductor layer in the circuit pattern. ing.
  • Adhesives for flexible wiring boards containing polyarylate and epoxy resin as essential components (Patent Documents 1 and 2), polyester polyurethane having a specific acid value And an adhesive composition containing an epoxy resin as a main component (for example, Patent Document 3), an urethane-modified carboxyl group-containing polyester resin, an adhesive composition containing an epoxy resin and a curing agent (for example, Patent Document 4), and the like are disclosed. ing.
  • thermosetting elastomer excellent in heat resistance and flexibility obtained by heat curing a resin composition containing epoxy resin, polyarylate resin and amine-based curing agent in specific ratios is disclosed. .
  • JP-A-5-263058 Japanese Patent Laid-Open No. 5-271737 Japanese Patent Laid-Open No. 11-116930 JP 2007-51212 A JP 2013-189544 A
  • solder resistance may decrease due to moisture absorption of the adhesive layer. Specifically, after the adhesive layer absorbs moisture under high temperature and high humidity, when heated due to melting of the solder, bubbles are generated due to evaporated water, causing the adhesive layer to swell or peel off from the conductor layer or organic insulating substrate. There was a problem. Furthermore, when the hot pressing is performed to cure the adhesive layer, the flowability of the resin composition is too good, so that a large amount of protrusion occurs.
  • An object of the present invention is to provide a resin composition that is excellent in adhesion to both a conductor layer and an organic insulating substrate, has high heat resistance, and can form an adhesive layer with excellent solder resistance after moisture absorption.
  • the present invention is also excellent in adhesion to both the conductor layer and the organic insulating substrate, has high heat resistance, excellent solder resistance after moisture absorption, and good anti-extrusion characteristics during hot pressing for curing.
  • An object is to provide a resin composition capable of forming an adhesive layer.
  • the gist of the present invention is as follows.
  • the polyarylate resin (B) is one or more divalents selected from the group consisting of aromatic dicarboxylic acid residues and dihydric phenol residues represented by the following general formulas (i) to (iv):
  • R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom, a halogen atom, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, or an alicyclic group having 3 to 20 carbon atoms.
  • R 11 , R 12 , R 13 and R 14 are each independently a hydrogen atom, a halogen atom, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, or an alicyclic group having 3 to 20 carbon atoms.
  • R 15 is selected from the group consisting of a hydrocarbon group and an aromatic hydrocarbon group having 6 to 20 carbon atoms, and R 15 is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or 6 carbon atoms.
  • R 21 , R 22 , R 23 and R 24 are each independently a hydrogen atom, a halogen atom, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, or an alicyclic group having 3 to 20 carbon atoms.
  • R 25 independently represents an aliphatic hydrocarbon group having 1 to 20 carbon atoms and an alicyclic group having 3 to 20 carbon atoms.
  • R 31 , R 32 , R 33 and R 34 are each independently a hydrogen atom, a halogen atom, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, or an alicyclic group having 3 to 20 carbon atoms.
  • R 35 is selected from the group consisting of a hydrocarbon group and an aromatic hydrocarbon group having 6 to 20 carbon atoms, and R 35 is a hydrogen atom, a halogen atom, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, an oil having 3 to 20 carbon atoms
  • the cyclic hydrocarbon group is selected from the group consisting of an aromatic hydrocarbon group having 6 to 20 carbon atoms, and R 36 is selected from the group consisting of an aromatic hydrocarbon group having 6 to 20 carbon atoms].
  • the resin composition which has high heat resistance and can form the contact bonding layer excellent in the solder tolerance after moisture absorption is obtained.
  • a laminate using such a resin composition can be suitably used particularly for a wiring board and the like, and even when the wiring board is heated by melting of solder, the adhesive insulating layer swells or peels off. Can be suppressed.
  • the resin composition of this invention can form the contact bonding layer excellent also in the adhesiveness with respect to both a conductor layer and an organic insulating base material.
  • the resin composition of the present invention can also form an adhesive layer excellent in the anti-extrusion property at the time of hot pressing for curing.
  • the resin composition of the present invention can also form an adhesive layer having excellent dielectric properties.
  • the number of epoxy groups contained in the epoxy resin (A) used in the present invention is not particularly limited as long as it is 2 or more per molecule.
  • the epoxy resin (A) a known epoxy resin can be used, and an epoxy resin having 2 or more and 5 or less epoxy groups in one molecule is preferably used. When the number of epoxy groups contained in one molecule exceeds 5, when the resin varnish is produced from the resulting resin composition, the increase in viscosity may be significant.
  • the number of epoxy groups means the average number of epoxy groups per molecule because the epoxy resin has a molecular weight distribution.
  • the epoxy equivalent of the epoxy resin (A) having two or more epoxy groups in one molecule is preferably 90 to 500 g / eq, more preferably 90 to 300 g / eq, and 90 to 250 g / eq. More preferably. If the epoxy equivalent is less than 90 g / eq, the epoxy group is too dense to reduce the reactivity with the curing agent, while the crosslinking density is too high, so the viscosity of the resin varnish in which the resin composition is dissolved in an organic solvent is low. May be excessively high. When the epoxy equivalent exceeds 500 g / eq, the crosslink density of the epoxy resin after the curing reaction is lowered, so that the glass transition temperature of the obtained resin composition is not high, and the heat resistance cannot be improved.
  • Examples of the epoxy resin (A) having two or more epoxy groups in one molecule include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, naphthalene type epoxy resin, biphenyl type epoxy resin, Phenol novolac type epoxy resin, cresol novolac type epoxy resin, glycidylamine type epoxy resin, isocyanurate type epoxy resin, hydantoin type epoxy resin, alicyclic epoxy resin, biphenyl type epoxy resin, acrylic acid modified epoxy resin, polyfunctional epoxy resin , Brominated epoxy resins and phosphorus-modified epoxy resins.
  • bisphenol A type epoxy resins and phenol novolac type epoxy resins can be suitably used.
  • Such an epoxy resin is commercially available.
  • Commercially available products include: product name: GAN (manufactured by Nippon Kayaku Co., Ltd.), product name: jER630 (manufactured by Mitsubishi Chemical), product name: HP4032 (manufactured by DIC), product name: Celoxide 2081 (Daicel Chemical Industries)
  • Product name: jER828 Mitsubishi Chemical
  • product name: jER807 Mitsubishi Chemical
  • product name: Epicron EXA-1514 DIC Corporation
  • product name: jER152 Mitsubishi Chemical Corporation
  • Product name: jER604 Mitsubishi Chemical
  • Product name: MY-0500 Huntsman
  • Product: TETRAD-X Mitsubishi Gas Chemical
  • Product Name: SR-HHPA Sakamoto Pharmaceutical Co., Ltd.
  • Product name: EXA-4580-1000 DIC Corporation
  • bisphenol A type epoxy resins examples of commercial products: jER828, etc.
  • phenol novolac type epoxy resins examples of commercial products: jER152, etc.
  • bisphenol F type epoxy resins examples of commercial products: jER807, etc.
  • Glycidylamine type epoxy resins examples of commercial products: jER604, etc.
  • bisphenol A type epoxy resins and phenol novolac type epoxy resins are highly effective in improving adhesion to the copper foil and polyimide film of the resulting coating. Is particularly preferred.
  • the above-mentioned bisphenol A type epoxy resin may be liquid at room temperature or solid at room temperature depending on the number of repeating units of the bisphenol skeleton.
  • a bisphenol A type epoxy resin having 1 to 3 repeating units of the main chain bisphenol skeleton is liquid at room temperature, and a bisphenol A type epoxy resin having 2 to 10 repeating units of the main chain bisphenol skeleton at room temperature. It is solid. Therefore, in the step of forming a film on a substrate to obtain a laminate, the film adheres to the adherend by heating and solidifies by solidifying the film and the adherend, thereby increasing the adhesive strength. Can do.
  • such a relatively low molecular weight bisphenol A type epoxy resin has a high crosslink density, and therefore has high mechanical strength, good chemical resistance, high curability, and hygroscopicity (because the free volume is small). ) Is also small.
  • the bisphenol A type epoxy resin that is solid at room temperature and a bisphenol A type epoxy resin that is liquid at room temperature, as described above, as the bisphenol A type epoxy resin.
  • a solid and a liquid at room temperature it is possible to obtain flexibility while maintaining mechanical strength, so that flexibility is obtained while maintaining the mechanical strength inherent in the resin composition. be able to.
  • the bonding strength between adherends can be improved.
  • the bisphenol A type epoxy resin that is solid at normal temperature those having a glass transition temperature in the range of 50 to 150 ° C. are preferable from the viewpoint of mechanical strength and heat resistance.
  • jER828 (manufactured by Mitsubishi Chemical Corporation) is a solid at room temperature.
  • Examples of the bisphenol A type epoxy resin having 2 to 10 repeating units of the chain bisphenol skeleton include jER1001 (manufactured by Mitsubishi Chemical Corporation).
  • the viscosity of the epoxy resin (A) having two or more epoxy groups in one molecule is preferably 5 to 30 Pa ⁇ s, and more preferably 8 to 25 Pa ⁇ s at 25 ° C. More preferably, it is 10 to 20 Pa ⁇ s.
  • the epoxy resin (A) may have a viscosity at 52 ° C. within a predetermined range instead of the viscosity at 25 ° C. within the above range.
  • the viscosity at 52 ° C. is preferably 0.5 to 10 Pa ⁇ s, more preferably 0.8 to 8 Pa ⁇ s, and still more preferably 1 to 3 Pa ⁇ s.
  • the polyarylate resin (B) used in the present invention is an aromatic polyester polymer comprising an aromatic dicarboxylic acid and / or a derivative thereof and a dihydric phenol and / or a derivative thereof. It is produced by a method such as polymerization.
  • the polyarylate raw material for introducing the aromatic dicarboxylic acid residue is not particularly limited.
  • terephthalic acid and isophthalic acid are preferable, and it is particularly preferable to use a mixture of both from the viewpoint of solubility in a solvent.
  • the mixing ratio (terephthalic acid / isophthalic acid) is arbitrarily in the range of 100/0 to 0/100 (mol%), preferably 80/20 to 10/90 (mol%), more preferably 75.
  • the ratio is in the range of / 25 to 25/75 (mol%), the resulting polyarylate resin (B) has excellent solubility.
  • aliphatic dicarboxylic acids may be used together with the aromatic dicarboxylic acids.
  • the aliphatic dicarboxylic acids are not particularly limited, and examples thereof include dicarboxymethylcyclohexane, cyclohexanedicarboxylic acid, adipic acid, sebacic acid, glutaric acid, and dodecanedioic acid.
  • the polyarylate raw material for introducing the dihydric phenol residue is not particularly limited, but from the viewpoint of improving the heat resistance of the resulting resin composition and improving the solubility in organic solvents, the following general formula (i It is preferable to introduce one or more dihydric phenol residues (hereinafter sometimes referred to as bisphenol I residues) selected from the group consisting of dihydric phenol residues represented by) to (iv).
  • R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom, a halogen atom, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, or an alicyclic carbon atom having 3 to 20 carbon atoms. Selected from the group consisting of a hydrogen group and an aromatic hydrocarbon group having 6 to 20 carbon atoms.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • Preferred halogen atoms are a fluorine atom, a chlorine atom and a bromine atom.
  • Examples of the aliphatic hydrocarbon group include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, and an alkyl group such as a decyl group, and a vinyl group and an allyl group.
  • An alkenyl group is mentioned.
  • a preferred aliphatic hydrocarbon group is an alkyl group, more preferably an alkyl group having 1 to 10, more preferably 1 to 5, particularly 1 to 3 carbon atoms.
  • Examples of the alicyclic hydrocarbon group include cycloalkyl groups such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a cyclononyl group, and a cyclodecyl group.
  • Preferred alicyclic hydrocarbon groups are cycloalkyl groups having 3 to 10 carbon atoms, particularly 3 to 6 carbon atoms.
  • Examples of the aromatic hydrocarbon group include aryl groups such as a phenyl group, a naphthyl group, and an anthranyl group.
  • Preferred aromatic hydrocarbon groups are aryl groups having 6 to 14 carbon atoms, particularly 6 to 10 carbon atoms.
  • R 1 and R 3 are each independently, preferably simultaneously, a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, particularly 1 to 3 carbon atoms, or a carbon number. 6-14, especially 6-10 aryl groups; R 2 and R 4 are each independently, preferably simultaneously a hydrogen atom or an alkyl group having 1-10 carbon atoms, especially 1-3.
  • R 1 and R 3 are each independently and preferably simultaneously an alkyl group having 1 to 10 carbon atoms, especially 1 to 3 carbon atoms; R 2 and R 4 is simultaneously a hydrogen atom.
  • Examples of the compound for introducing the dihydric phenol residue of the general formula (i) include 9,9-bis (4-hydroxyphenyl) fluorene (BPF), 9,9-bis (4-hydroxy-3). -Methylphenyl) fluorene (BCF), 9,9-bis (4-hydroxy-3,5-dimethylphenyl) fluorene, 9,9-bis (4-hydroxy-3-phenylphenyl) fluorene and the like.
  • R 11 , R 12 , R 13 and R 14 are each independently a hydrogen atom, a halogen atom, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, or an alicyclic carbon atom having 3 to 20 carbon atoms. Selected from the group consisting of a hydrogen group and an aromatic hydrocarbon group having 6 to 20 carbon atoms.
  • the halogen atom is the same as the halogen atom in the general formula (i), and preferred halogen atoms are a fluorine atom, a chlorine atom, and a bromine atom.
  • the aliphatic hydrocarbon group is the same as the aliphatic hydrocarbon group in the general formula (i), and the preferred aliphatic hydrocarbon group is an alkyl group, more preferably 1 to 10 carbon atoms, still more preferably 1 to 1 carbon atom. 5, especially 1-3 alkyl groups.
  • the alicyclic hydrocarbon group is the same as the alicyclic hydrocarbon group in the general formula (i), and a preferred alicyclic hydrocarbon group is a cycloalkyl group having 3 to 10 carbon atoms, particularly 3 to 6 carbon atoms.
  • the aromatic hydrocarbon group is the same as the aromatic hydrocarbon group in the general formula (i), and a preferable aromatic hydrocarbon group is an aryl group having 6 to 14 carbon atoms, particularly 6 to 10 carbon atoms.
  • R 15 is selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms.
  • the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, and a decyl group.
  • Preferred alkyl groups are those having 1 to 5 carbon atoms, especially 1 to 3 carbon atoms.
  • alkenyl group examples include a vinyl group and an allyl group.
  • a preferred alkenyl group is an alkenyl group having 2 to 3 carbon atoms.
  • the aryl group examples include a phenyl group, a naphthyl group, and an anthranyl group. Preferred aryl groups are those having 6 to 14 carbon atoms, especially 6 to 10 carbon atoms.
  • R 11 and R 13 are each independently, preferably simultaneously a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, particularly 1 to 3 carbon atoms;
  • R 12 and R 14 are each independently, preferably simultaneously, a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, particularly 1 to 3 carbon atoms;
  • R 15 is a group having 1 to 10 carbon atoms, particularly 1 to 3 carbon atoms.
  • R 11 to R 14 are simultaneously a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, particularly 1 to 3 carbon atoms;
  • R 15 is a carbon atom An alkyl group having 1 to 10, particularly 1 to 3, or an aryl group having 6 to 20 carbon atoms, particularly 6 to 10 carbon atoms.
  • Examples of the compound for introducing the dihydric phenol residue of the general formula (ii) include N-phenyl-3,3-bis (4-hydroxyphenyl) phthalimidine (PPPBP), N-methyl-3,3. -Bis (4-hydroxyphenyl) phthalimidine and the like.
  • R 21 , R 22 , R 23 and R 24 are each independently a hydrogen atom, a halogen atom, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, or an alicyclic carbon atom having 3 to 20 carbon atoms. Selected from the group consisting of a hydrogen group and an aromatic hydrocarbon group having 6 to 20 carbon atoms.
  • the halogen atom is the same as the halogen atom in the general formula (i), and preferred halogen atoms are a fluorine atom, a chlorine atom, and a bromine atom.
  • the aliphatic hydrocarbon group is the same as the aliphatic hydrocarbon group in the general formula (i), and the preferred aliphatic hydrocarbon group is an alkyl group, more preferably 1 to 10 carbon atoms, still more preferably 1 to 1 carbon atom. 5, especially 1-3 alkyl groups.
  • the alicyclic hydrocarbon group is the same as the alicyclic hydrocarbon group in the general formula (i), and a preferred alicyclic hydrocarbon group is a cycloalkyl group having 3 to 10 carbon atoms, particularly 3 to 6 carbon atoms.
  • the aromatic hydrocarbon group is the same as the aromatic hydrocarbon group in the general formula (i), and a preferable aromatic hydrocarbon group is an aryl group having 6 to 14 carbon atoms, particularly 6 to 10 carbon atoms.
  • R 25 represents an aliphatic hydrocarbon group having 1 to 20 carbon atoms, an alicyclic hydrocarbon group having 3 to 20 carbon atoms, an aromatic hydrocarbon group having 6 to 20 carbon atoms, or an alkyl halide having 1 to 20 carbon atoms. Selected from the group consisting of groups.
  • the aliphatic hydrocarbon group is the same as the aliphatic hydrocarbon group in the general formula (i), and the preferred aliphatic hydrocarbon group is an alkyl group, more preferably 1 to 10 carbon atoms, still more preferably 1 to 1 carbon atom. 5, especially 1-3 alkyl groups.
  • the alicyclic hydrocarbon group is the same as the alicyclic hydrocarbon group in the general formula (i), and a preferred alicyclic hydrocarbon group is a cycloalkyl group having 3 to 10 carbon atoms, particularly 3 to 6 carbon atoms.
  • the aromatic hydrocarbon group is the same as the aromatic hydrocarbon group in the general formula (i), and a preferable aromatic hydrocarbon group is an aryl group having 6 to 14 carbon atoms, particularly 6 to 10 carbon atoms.
  • the halogenated alkyl group has 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms, particularly 1 to 3 carbon atoms, and 1 to 2 hydrogen atoms are halogen atoms (for example, fluorine atom, chlorine atom, bromine atom). ) Substituted with an alkyl group.
  • Preferred halogenated alkyl groups include a monofluoromethyl group, a difluoromethyl group, a monochloromethyl group, and a dichloromethyl group.
  • the R 25 of 2 or more may be independently selected from the above group.
  • k is an integer of 2 to 12, preferably 4 to 11, more preferably an integer of 4 to 6.
  • the hydrogen atom of each carbon atom is omitted.
  • m is 1 or more, the one or more R 25 is substituted with a hydrogen atom of a carbon atom constituting the carbocycle.
  • m is an integer of 0 or more and 2k or less, preferably 0 to 4, more preferably 1 to 4.
  • R 21 and R 23 are each independently, preferably simultaneously a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, especially 1 to 3 carbon atoms;
  • R 22 and R 24 are each independently, preferably simultaneously, a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, particularly 1 to 3 carbon atoms;
  • R 25 is a group having 1 to 10 carbon atoms, particularly 1 to 3 carbon atoms.
  • K is an integer from 4 to 11, in particular from 4 to 6;
  • m is an integer from 0 to 4, in particular from 1 to 4.
  • R 21 to R 24 are simultaneously a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, particularly 1 to 3 carbon atoms;
  • R 25 is carbon An alkyl group having a number of 1 to 10, particularly 1 to 3; particularly when m is an integer of 2 or more, the R 25 of 2 or more is an alkyl group having 1 to 10 carbon atoms, particularly 1 to 3 carbon atoms;
  • k is an integer from 4 to 6;
  • m is an integer from 2 to 4.
  • Examples of the compound for introducing the dihydric phenol residue of the general formula (iii) include 1,1-bis (4-hydroxyphenyl) cyclohexane (BPZ), 1,1-bis (4-hydroxy-3) , 5-dimethylphenyl) cyclohexane, 1,1-bis (4-hydroxy-3-methylphenyl) cyclohexane (DMBPC), 1,1-bis (4-hydroxyphenyl) cyclopentane, 1,1-bis (4- Hydroxy-3,5-dimethylphenyl) cyclopentane, 1,1-bis (4-hydroxy-3-methylphenyl) cyclopentane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane (BPTMC), 1,1-bis (4-hydroxy-3,5-dimethylphenyl) -3,3,5-trimethylcycle Hexane, 1,1-bis (4-hydroxy-3-methylphenyl) -3,3,5-trimethylcyclohexane
  • R 31 , R 32 , R 33 and R 34 are each independently a hydrogen atom, a halogen atom, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, or an alicyclic carbon atom having 3 to 20 carbon atoms. Selected from the group consisting of a hydrogen group and an aromatic hydrocarbon group having 6 to 20 carbon atoms.
  • the halogen atom is the same as the halogen atom in formula (i), and preferred halogen atoms are a fluorine atom, a chlorine atom, and a bromine atom.
  • the aliphatic hydrocarbon group is the same as the aliphatic hydrocarbon group in the general formula (i), and the preferred aliphatic hydrocarbon group is an alkyl group, more preferably 1 to 10 carbon atoms, still more preferably 1 to 1 carbon atom. 5, especially 1-3 alkyl groups.
  • the alicyclic hydrocarbon group is the same as the alicyclic hydrocarbon group in the general formula (i), and a preferred alicyclic hydrocarbon group is a cycloalkyl group having 3 to 10 carbon atoms, particularly 3 to 6 carbon atoms.
  • the aromatic hydrocarbon group is the same as the aromatic hydrocarbon group in the general formula (i), and a preferable aromatic hydrocarbon group is an aryl group having 6 to 14 carbon atoms, particularly 6 to 10 carbon atoms.
  • R 35 is selected from the group consisting of a hydrogen atom, a halogen atom, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, an alicyclic hydrocarbon group having 3 to 20 carbon atoms, and an aromatic hydrocarbon group having 6 to 20 carbon atoms. It is.
  • the halogen atom is the same as the halogen atom in the general formula (i), and preferred halogen atoms are a fluorine atom, a chlorine atom, and a bromine atom.
  • the aliphatic hydrocarbon group is the same as the aliphatic hydrocarbon group in the general formula (i), and the preferred aliphatic hydrocarbon group is an alkyl group, more preferably 1 to 10 carbon atoms, still more preferably 1 to 1 carbon atom. 5, especially 1-3 alkyl groups.
  • the alicyclic hydrocarbon group is the same as the alicyclic hydrocarbon group in the general formula (i), and a preferred alicyclic hydrocarbon group is a cycloalkyl group having 3 to 10 carbon atoms, particularly 3 to 6 carbon atoms.
  • the aromatic hydrocarbon group is the same as the aromatic hydrocarbon group in the general formula (i), and a preferable aromatic hydrocarbon group is an aryl group having 6 to 14 carbon atoms, particularly 6 to 10 carbon atoms.
  • R 36 is selected from the group consisting of aromatic hydrocarbon groups having 6 to 20 carbon atoms.
  • the aromatic hydrocarbon group is the same as the aromatic hydrocarbon group in the general formula (i), and a preferable aromatic hydrocarbon group is an aryl group having 6 to 14 carbon atoms, particularly 6 to 10 carbon atoms.
  • R 36 is a hydrogen atom or an alkyl group, the heat resistance is lowered, and particularly after the moisture absorption of the adhesive layer, the solder resistance is lowered.
  • R 31 and R 33 are each independently and preferably simultaneously a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, particularly 1 to 3 carbon atoms, Or an aryl group having 6 to 20 carbon atoms, particularly 6 to 10 carbon atoms;
  • R 32 and R 34 are each independently, preferably simultaneously, a hydrogen atom, a halogen atom, or a carbon atom having 1 to 10 carbon atoms, particularly 1 to 3 carbon atoms.
  • R 35 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, particularly 1 to 3 carbon atoms;
  • R 36 is an aryl group having 6 to 20 carbon atoms, particularly 6 to 10 carbon atoms.
  • R 31 to R 34 are simultaneously a hydrogen atom, a halogen atom, or an alkyl group having 1 to 10 carbon atoms, particularly 1 to 3 carbon atoms;
  • R 35 Is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, particularly 1 to 3 carbon atoms;
  • R 36 is an aryl group having 6 to 20 carbon atoms, particularly 6 to 10 carbon atoms.
  • Examples of the compound for introducing the dihydric phenol residue of the general formula (iv) include bis (4-hydroxyphenyl) phenylmethane, 1,1-bis (4-hydroxyphenyl) -1-phenylethane (BPAP), 1,1-bis (4-hydroxy-3-methylphenyl) -1-phenylethane, 1,1-bis (4-hydroxy-3,5-dimethylphenyl) -1-phenylethane, 1,1 -Bis (4-hydroxy-3,5-dibromophenyl) -1-phenylethane, 1,1-bis (4-hydroxy-3-phenylphenyl) -1-phenylethane and the like.
  • BPAP 1,1-bis (4-hydroxy-3-methylphenyl) -1-phenylethane
  • 1,1-bis (4-hydroxy-3,5-dimethylphenyl) -1-phenylethane 1,1 -Bis (4-hydroxy-3,5-dibromophenyl) -1-phenyle
  • 9,9-bis (4-hydroxyphenyl) fluorene (BPF), 9,9-bis (4-hydroxy) is used from the viewpoint of improving heat resistance and solubility.
  • BCF -3-methylphenyl) fluorene
  • PPPBP N-phenyl-3,3-bis (4-hydroxyphenyl) phthalimidine
  • BPZ 1,1-bis (4-hydroxyphenyl) cyclohexane
  • DMBPC 1,1 -Bis (4-hydroxy-3-methylphenyl) cyclohexane
  • BPTMC 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane
  • BPAP 1,1-bis (4-hydroxy) Phenyl) -1-phenylethane
  • a dihydric phenol residue represented by the following general formula (v) (hereinafter referred to as bisphenol II residue).
  • bisphenol II residue a dihydric phenol residue represented by the following general formula (v)
  • R 5 , R 6 , R 7 and R 8 are each independently a hydrogen atom, a halogen atom, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, or an alicyclic carbon atom having 3 to 20 carbon atoms. Selected from the group consisting of a hydrogen group and an aromatic hydrocarbon group having 6 to 20 carbon atoms.
  • the halogen atom is the same as the halogen atom in the general formula (i), and preferred halogen atoms are a fluorine atom, a chlorine atom, and a bromine atom.
  • the aliphatic hydrocarbon group is the same as the aliphatic hydrocarbon group in the general formula (i), and the preferred aliphatic hydrocarbon group is an alkyl group, more preferably 1 to 10 carbon atoms, still more preferably 1 to 1 carbon atom. 5, especially 1-3 alkyl groups.
  • the alicyclic hydrocarbon group is the same as the alicyclic hydrocarbon group in the general formula (i), and a preferred alicyclic hydrocarbon group is a cycloalkyl group having 3 to 10 carbon atoms, particularly 3 to 6 carbon atoms.
  • the aromatic hydrocarbon group is the same as the aromatic hydrocarbon group in the general formula (i), and a preferable aromatic hydrocarbon group is an aryl group having 6 to 14 carbon atoms, particularly 6 to 10 carbon atoms.
  • R 5 and R 7 are each independently, preferably simultaneously, a hydrogen atom, a halogen atom, or an alkyl group having 1 to 10 carbon atoms, particularly 1 to 3 carbon atoms.
  • R 6 and R 8 are each independently, preferably simultaneously, a hydrogen atom, a halogen atom, or an alkyl group having 1 to 10 carbon atoms, particularly 1 to 3 carbon atoms.
  • Examples of the compound for introducing the dihydric phenol residue of the general formula (v) include 2,2-bis (4-hydroxyphenyl) propane (BPA) and 2,2-bis (4-hydroxy-3). , 5-dimethylphenyl) propane, 2,2-bis (4-hydroxy-3-methylphenyl) propane (BPC), 2,2-bis (4-hydroxy-3,5-dibromophenyl) propane, 2,2 -Bis (4-hydroxy-3,5-dichlorophenyl) propane and the like. These compounds may be used alone or in combination of two or more.
  • 2-bis (4-hydroxyphenyl) propane (BPA), 2,2-bis ( 4-hydroxy-3-methylphenyl) propane (BPC) and 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane (TMBPA) can be preferably used, and the balance between heat resistance and economical efficiency In view of superiority, 2-bis (4-hydroxyphenyl) propane (BPA) is particularly preferred.
  • BPA 2,2-bis ( 4-hydroxy-3-methylphenyl) propane
  • TMBPA 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane
  • BPA 2-bis (4-hydroxyphenyl) propane
  • the divalent phenol residues represented by the above general formulas (i) to (iv) are introduced from the viewpoint of heat resistance and economy of the polyarylate resin (B) obtained.
  • (bisphenol I residue) / (bisphenol I residue + bisphenol II) The residue is preferably 10/100 to 100/100 (molar ratio), more preferably 30/100 to 100/100 (molar ratio).
  • the heat resistance of the polyarylate resin (B) may be inferior.
  • (bisphenol I residue) / (bisphenol I residue + bisphenol II residue) is preferably 10/100 to 80/100 (molar ratio), and 20/100 to More preferably, it is 80/100 (molar ratio).
  • a bisphenol residue other than the bisphenol I residue or the bisphenol II residue may be introduced as long as the characteristics and effects of the present invention are not impaired.
  • bisphenols include 4,4′-dihydroxybiphenyl, 4,4′-dihydroxydiphenylmethane, 4,4′-dihydroxydiphenylmethane, 4,4′-dihydroxydiphenylsulfone, 4,4′-dihydroxydiphenyl ether, 4,4′-dihydroxydiphenyl sulfide, 4,4′-dihydroxydiphenyl ketone, 1,1-bis (4-hydroxyphenyl) ethane, 2,2-bis (4-hydroxyphenyl) butane, 4-methyl-2, And 2-bis (4-hydroxyphenyl) pentane.
  • aliphatic glycols or dihydroxybenzene may be used as long as the characteristics and effects of the present invention are not impaired.
  • Aliphatic glycols are not particularly limited, but ethylene glycol, propylene glycol, butanediol, pentanediol, hexanediol, nonanediol, decanediol, cyclohexanedimethanol, ethylene oxide adducts of bisphenol A, and propylene oxide adducts thereof
  • dihydroxybenzenes such as ethylene oxide adducts of bisphenol S, hydroquinone, resorcinol, and catechol.
  • the inherent viscosity of the polyarylate resin (B) is preferably 0.30 to 1.00 dL / g, and more preferably 0.35 to 0.80 dL / g.
  • the inherent viscosity is less than 0.30 dL / g, the resulting resin composition has inferior flexibility, and the resin composition falls off in powder form from the end face of the laminate when punching or router processing.
  • the inherent viscosity exceeds 1.00 dL / g, the viscosity at the time of mixing with an epoxy resin or an organic solvent increases, so that dispersibility and coatability may deteriorate, which is not preferable.
  • Inherent viscosity is an index of molecular weight, and dissolved at a concentration of 1 g / dL in a 60/40 (mass ratio) mixture of phenol / 1,1,2,2-tetrachloroethane under a temperature of 25 ° C. Measured using the prepared resin solution.
  • a method of adjusting the molecular weight by controlling the reaction rate by adjusting the polymerization time, an aromatic dicarboxylic acid component or a dihydric phenol component A method of adjusting the molecular weight by polymerizing by adding a slight excess of any of the components in the blending ratio of the monomer, aliphatic monoalcohols having only one reactive functional group in the molecule, phenols, or Examples thereof include a method of adjusting the molecular weight by adding monocarboxylic acids together with monomers as end-capping agents. Among these, the method of adding a terminal blocking agent is preferable because the molecular weight can be easily controlled.
  • Examples of the end-capping agent include aliphatic monoalcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, 2-butanol, pentanol, hexanol, dodecyl alcohol, stearyl alcohol, benzyl alcohol, and phenethyl alcohol; Phenols such as phenol, cresol, 2,6-xylenol, 2,4-xylenol, p-tert-butylphenol (PTBP), p-tert-octylphenol, cumylphenol; and benzoic acid, methylbenzoic acid, naphthoic acid, Examples thereof include monocarboxylic acids such as acetic acid, propionic acid, butyric acid, oleic acid and stearic acid, and derivatives thereof.
  • monocarboxylic acids such as acetic acid, propionic acid, butyric acid, oleic
  • the glass transition temperature of the polyarylate resin (B) used in the present invention is 200 ° C. or higher, preferably 200 ° C. or higher and lower than 320 ° C., more preferably 210 ° C. or higher and lower than 310 ° C., 220 ° C. or higher and 300 ° C. or higher. It is more preferable that the temperature is lower than °C, and it is most preferable that the temperature is 230 ° C or higher and lower than 290 ° C.
  • the resulting resin composition has high heat resistance. When the glass transition temperature is less than 200 ° C., the heat resistance of the resin composition is inferior. When the glass transition temperature is 320 ° C. or higher, the glass transition temperature of the resin composition becomes too high, so that the curing reaction does not proceed sufficiently.
  • the carboxyl value of the polyarylate resin (B) is preferably 10 mol / ton or more, more preferably 20 mol / ton or more, and further preferably 30 mol / ton or more.
  • the carboxyl value of the polyarylate resin (B) represents the content ratio of the terminal carboxyl group in the polyarylate resin (B), but it is cured by reacting the carboxyl group with the epoxy group of the epoxy resin (A). It becomes easy to compatibilize the epoxy resin (A) and the polyarylate resin (B) in the product.
  • Examples of the method for introducing a terminal carboxyl group into the polyarylate resin (B) include a method in which the polymerization reaction is stopped before the reaction is completed, and a method in which an ester bond is hydrolyzed with an alkali or the like.
  • the content ratio of the epoxy resin (A) and the polyarylate resin (B) is (A) / (B) of 30/70 to 90/10 (mass ratio), and 35/65 Is preferably 85/15 (mass ratio), more preferably 40/60 to 80/20 (mass ratio), and still more preferably 40/60 to 70/30 (mass ratio).
  • the content of the epoxy resin (A) is less than 30% by mass, the adhesion of the resin composition to the adherend is insufficient.
  • the content of the epoxy resin (A) exceeds 90% by mass, the heat resistance after the wet heat treatment is not sufficient.
  • the curing agent (C) used in the present invention is not particularly limited as long as it cures by reacting with the epoxy resin (A).
  • a fat such as diethylenetriamine, triethylenetetonlamine or tetraethylenepentamine.
  • polyamine compounds such as metaphenylenediamine, polyamine compounds such as dicyandiamide, adipic dihydrazide and polyamide polyamine, or phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyl tet Monofunctional acid anhydrides such as hydrophthalic anhydride,
  • the content of the curing agent (C) is not particularly limited, and is generally a ratio of the stoichiometric amount of the epoxy group of the epoxy resin (A) and the stoichiometric amount of the functional group of the curing agent (epoxy / curing).
  • the agent is preferably in the range of 0.5 to 1.5.
  • the reaction mechanism and the stoichiometric amount differ depending on the type of the curing agent, it cannot be generally stated, but the content of the curing agent can be determined by the ratio of the equivalent of active hydrogen and the epoxy equivalent of the curing agent.
  • the compounding amount of the amine compound can be calculated based on the ratio between the equivalent of active hydrogen bonded to the amino group and the epoxy equivalent.
  • the epoxy equivalent is a value obtained by dividing the average molecular weight of the epoxy resin by the number of epoxy groups per molecule.
  • the active hydrogen equivalent is a value obtained by dividing the average molecular weight of the amine compound by the number of hydrogens bonded to amino groups per molecule.
  • a curing accelerator can be used instead of or together with the curing agent.
  • the curing accelerator is not particularly limited, and examples thereof include imidazoles such as 2-methylimidazole, 2-ethyl-4-methylimidazole and 2-phenylimidazole, benzyldimethylamine, 2- (dimethylaminomethyl) phenol, Tertiary amines such as 2,4,6-tris (dimethylaminomethyl) phenol can be used.
  • the compounding quantity of a hardening accelerator can also be set suitably.
  • a resin other than the polyarylate resin (B) may be blended within the range of the performance required in the present invention in order to impart desired performance.
  • other resins include polycarbonate, polystyrene, polyester, acrylic resin, polyphenylene ether, polysulfone, polyethersulfone, and polyetherimide.
  • additives such as an antioxidant, a flame retardant, an ultraviolet absorber, a fluidity modifier, and a fine particle inorganic filler may be mixed and used.
  • the manufacturing method of the resin composition of this invention is demonstrated.
  • the resin composition of the present invention can be prepared by dissolving and mixing at least the epoxy resin (A), the polyarylate resin (B), and the curing agent (C) in an organic solvent so as to have a predetermined ratio.
  • the epoxy resin (A), the polyarylate resin (B) and the curing agent (C) are collectively put in an organic solvent and mixed while being dissolved, the epoxy resin (A), the polyarylate resin (B) and the curing agent (C) are mixed and then dissolved in an organic solvent.
  • the organic compound is added while adding the curing agent (C).
  • a method of charging in a solvent and dissolving The epoxy resin (A), the polyarylate resin (B) and the curing agent (C) are collectively treated in that it is easy to improve the workability during dissolution and mixing and to increase the uniformity of the resulting resin composition.
  • a method of mixing while dissolving in an organic solvent is particularly preferred.
  • a method of melt-mixing the epoxy resin (A), the polyarylate resin (B), and the curing agent (C) is also conceivable.
  • the resulting resin composition becomes too viscous and is applied in a thin film on the substrate. Since it becomes difficult to work, it should not be employed in the present invention unless necessary.
  • the organic solvent to be used That is, the epoxy resin (A) and the polyarylate resin (B) are different from each other in the kind of organic solvent that is easily dissolved. If an organic solvent in which one of them is difficult to dissolve is used, it becomes difficult to make the resulting resin composition uniform.
  • the epoxy resin (A) and polyarylate resin (B) used in the present invention can be dissolved in a common organic solvent and mixed in a resin solution to obtain a resin varnish.
  • a resin varnish it is preferable that a highly compatible resin varnish can be obtained without the components of the epoxy resin (A) and the polyarylate resin (B) being separated from each other.
  • the epoxy resin (A) and the polyarylate resin (B) are not separated inside the resin composition, resulting in a uniform resin composition. Can be made.
  • the polyarylate resin (B) must be dissolved in the same organic solvent as the organic solvent that dissolves the epoxy resin (A), but the polyarylate resin (B) used in the present invention is particularly soluble. Since there are many kinds of solvents and there are a wide range of solvent options, various organic solvents can be selected according to the purpose, and various coatings can be formed.
  • organic solvent to be used those capable of dissolving the polyarylate resin (B) alone at a solid concentration of 20% by mass or more are preferable, and those capable of dissolving at 30% by mass or more are more preferable.
  • the cured resin composition tends to have excellent mechanical properties and heat resistance, but the curing agent (C) together with the epoxy resin (A) and the polyarylate resin (B). Soluble organic solvents are often limited. In such a case, it is preferable to pulverize the curing agent (C) as finely as possible and uniformly disperse it in a solution in which the epoxy resin (A) and the polyarylate resin (B) are dissolved.
  • the solid content concentration is preferably 10 to 70% by mass, more preferably 15 to 60% by mass, and 20 to 50% by mass. More preferably.
  • the solid content concentration is less than 10% by mass, it is difficult to obtain a thickness necessary for forming a film, and when the solid content concentration exceeds 70% by mass, not only the formation of the film becomes difficult, but also the obtained film. This is not preferable because the thickness accuracy is reduced.
  • a film can be formed by applying and drying on various substrates using a known coating method such as Meyer bar coating, gravure coating, kiss coating, spin coating, and the like. .
  • a coating film made of a resin composition can be formed by coating on a film substrate made of polyethylene terephthalate (PET) resin or the like that has been subjected to a mold release treatment and then drying.
  • PET polyethylene terephthalate
  • the coating can be peeled off from the film substrate and used as a resin composition coating alone or as a laminate in which a coating is formed on the substrate.
  • the drying temperature at the time of forming the coating film made of the resin composition has a great influence on the adhesive properties when used in applications such as adhesion as a coating film or a laminate in the present invention, its selection is very important.
  • the heating temperature at the time of drying is a temperature that promotes evaporation of the organic solvent from the resin varnish, and also a temperature at which the epoxy resin (A) and the curing agent (C) in the resin composition react.
  • This reaction temperature differs depending on the combination of the epoxy resin (A) and the curing agent (C), and cannot be generally determined, but it is preferably performed in the range of 80 to 160 ° C. Therefore, it is preferable to select an organic solvent that can be dried in this temperature range, in addition to the solubility.
  • the heating time should be set not only to remove the organic solvent but also to allow the resin composition to reach a desired reaction rate. However, since the reaction rate depends on the heating temperature, it cannot be determined unconditionally.
  • the heating time is 5 to 50 minutes.
  • the reaction rate of the resin composition after heating is preferably set so that the epoxy resin reaches the semi-cured B stage. In this way, a film made of the resin composition can be formed. Drying is preferably performed in multiple stages with different reaction temperatures (drying temperatures). In this case, drying may be performed in multiple stages so that the temperature increases stepwise within the above range, and the drying time for each stage may be set so that the total time is within the above range.
  • an antifoaming agent When dissolving the resin composition of the present invention in an organic solvent, an antifoaming agent, a leveling agent, an ion repairing agent, or the like may be added as long as the object of the present invention is not impaired.
  • the laminate of the present invention or a laminate having a coating formed on a substrate can be used for various purposes. In particular, it can be suitably used for electrical and electronic component applications.
  • a specific example of use will be described using a bonding sheet as an example.
  • the bonding sheet is a so-called adhesive layer for bonding circuits, components or other substrates to each other on a substrate, and usually an adhesive layer is formed on a film base material. Its usage varies in application. Taking the case of producing a multilayer printed wiring board as an example, first, after laminating on a circuit board patterned as a bonding sheet, the film substrate is peeled off from the adhesive layer, and an organic insulating layer, conductor, or A separately manufactured circuit board is stacked.
  • the heat curing temperature is preferably 100 ° C. or higher and 250 ° C. or lower, more preferably 120 ° C. or higher and 200 ° C. or lower, further preferably 130 ° C. or higher and 190 ° C. or lower.
  • the heat curing time is not particularly limited as long as sufficient curing is achieved. For example, in the case of the above heat curing temperature, the heat curing time is 30 to 120 minutes, particularly 60 to 100 minutes.
  • the film or laminate formed from the resin composition of the present invention is excellent in heat resistance, chemical resistance, flexibility and smoothness, and is used for laminating a multilayer printed wiring of a build-up system, particularly a multilayer flexible printed wiring board. Suitable for sheets.
  • the inner layer circuit is formed by pattern etching on each of the copper foils attached to both surfaces of the flexible substrate material made of polyimide resin.
  • a cover lay made of a polyimide resin is pressure-bonded so as to cover the entire inner circuit forming surfaces on both sides to obtain a flexible printed wiring board.
  • an outer layer flexible board that is copper-plated only on the opposite surface of the flexible printed wiring board of another base material made of polyimide resin, for example, is bonded to the both surfaces by an adhesive, and is pressure-bonded by pressure processing to mount an electronic component. Therefore, a multilayer flexible printed wiring board having a multilayer structure is obtained.
  • the flex-rigid printed wiring board is a multilayer wiring board in which a rigid board material obtained by laminating a prepreg obtained by impregnating a base material with a resin is laminated on a flexible printed wiring board similar to the above with an adhesive.
  • An adhesive sheet formed from the resin composition of the present invention is used as an adhesive in such a multilayer flexible printed wiring board and a flex-rigid printed wiring board.
  • the PET film substrate was released from the laminate to obtain a laminate [B] in which a film was laminated on the copper foil surface of the copper-clad laminate.
  • the laminated body [B] is laminated on the copper foil side of another single-sided CCL in the same manner as described above, so that the laminated body [C] is sandwiched between two single-sided CCL copper foils [C] ] Was obtained.
  • This laminate [C] was hot-pressed at a heating temperature of 190 ° C. and a press pressure of 3 MPa for 90 minutes to completely cure the coating film, and used as a sample for evaluating adhesiveness.
  • the sample was cut into a strip shape having a width of 10 mm, and the peel strength at an angle of 90 ° was measured under the test conditions of a tensile speed of 100 mm / min.
  • the peel strength is “ ⁇ ” when it exceeds 2.0 N / cm, “ ⁇ ” when it exceeds 1.5 N / cm, “ ⁇ ” when it exceeds 1.0 N / cm (no problem in practical use)
  • the case of 1.0 N / cm or less was determined as “x”.
  • it is practically preferable that the evaluation result is “ ⁇ ” or more, particularly “ ⁇ ”.
  • the sample was cut into a strip shape having a width of 10 mm, and a peeling test at an angle of 90 ° was performed under the test condition of a tensile speed of 100 mm / min to evaluate the fracture mode.
  • the failure mode is from excellent to "material destruction” where the polyimide film breaks, “cohesive failure” where the adhesive layer breaks (no problem in practical use), and “interface peeling” where the adhesive layer peels from the polyimide film. .
  • the evaluation result is “material destruction”.
  • the heat resistance can be evaluated based on the evaluation result of the absolutely dry sample.
  • the solder resistance after moisture absorption can be evaluated based on the evaluation result of the moisture absorption sample.
  • a laminate was produced in the same manner as the laminate [C] in “(3) Adhesiveness with copper foil” except that a glass substrate was used as the substrate. The laminate was hot-pressed at a heating temperature of 190 ° C. and a press pressure of 3 MPa for 90 minutes, and then the film was peeled from the glass substrate. A sample was cut into a size of 50 mm ⁇ 50 mm. The obtained coating film alone was set in the following measurement jig, and the relative dielectric constant and dielectric loss tangent were measured at room temperature using the following apparatus. ⁇ Device> Impedance / Material Analyzer E4991A manufactured by Agilent Technologies (currently Keysight Technology) ⁇ Jig for measurement> 16453A
  • Number of epoxy groups present in 2 2
  • Curing agent (c1) Dicyandiamide (DD manufactured by Nippon Carbide Industries Co., Ltd.) (C2) Diaminodiphenyl sulfone (special grade reagent manufactured by Kanto Chemical Co., Inc.)
  • Production Example 1 A reaction vessel equipped with a stirrer was charged with 1.2 L of water, 0.79 mol of sodium hydroxide, and 0.194 mol of divalent phenol 9,9-bis (4-hydroxy-3-methylphenyl) fluorene (BCF). Then, 0.0116 mol of p-tert-butylphenol (PTBP) was dissolved as a molecular weight modifier, 0.0013 mol of a polymerization catalyst (tributylbenzylammonium chloride) was added, and the mixture was vigorously stirred (alkaline aqueous solution).
  • PTBP p-tert-butylphenol
  • TPC terephthalic acid chloride
  • IPC isophthalic acid chloride
  • the methylene chloride is evaporated while gradually adding the obtained organic phase into a 50 ° C. hot water tank equipped with a homomixer to precipitate a powdered polymer, which is taken out and dehydrated and dried.
  • a polyarylate resin (b1) was obtained.
  • the inherent viscosity of this polyarylate resin (b1) was 0.49 dL / g.
  • DSC measurement was performed, no crystal melting peak was observed, and the glass transition temperature was 285 ° C. The results are shown in Table 1.
  • Production Example 2 A polyarylate resin (b2) was obtained in the same manner as in Production Example 1 except that N-phenyl-3,3-bis (4-hydroxyphenyl) phthalimidine (PPPBP) was used as the dihydric phenol.
  • PPPBP N-phenyl-3,3-bis (4-hydroxyphenyl) phthalimidine
  • the inherent viscosity of this polyarylate resin (b2) was 0.49 dL / g. When DSC measurement was performed, no crystal melting peak was observed, and the glass transition temperature was 300 ° C. The results are shown in Table 1.
  • Production Example 3 A polyarylate resin (b3) was obtained in the same manner as in Production Example 1, except that 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane (BPTMC) was used as the dihydric phenol.
  • BPTMC 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane
  • the inherent viscosity of the polyarylate resin (b3) was 0.49 dL / g. When DSC measurement was performed, no crystal melting peak was observed, and the glass transition temperature was 255 ° C. The results are shown in Table 1.
  • Production Example 4 A polyarylate resin (b4) was obtained in the same manner as in Production Example 1, except that 1,1-bis (4-hydroxyphenyl) -1-phenylethane (BPAP) was used as the dihydric phenol.
  • the inherent viscosity of the polyarylate resin (b4) was 0.49 dL / g. When DSC measurement was performed, no crystal melting peak was observed, and the glass transition temperature was 240 ° C. The results are shown in Table 1.
  • Production Example 5 The same procedure as in Production Example 1 except that 1,1-bis (4-hydroxyphenyl) -1-phenylethane (BPAP) was used as the dihydric phenol, and the amounts of TPC and IPC were 0.14 mol and 0.06 mol, respectively. Thus, a polyarylate resin (b5) was obtained. The inherent viscosity of the polyarylate resin (b5) was 0.48 dL / g. When DSC measurement was performed, no crystal melting peak was observed, and the glass transition temperature was 265 ° C. The results are shown in Table 1.
  • BPAP 1,1-bis (4-hydroxyphenyl) -1-phenylethane
  • Production Example 6 A polyarylate resin (b6) was obtained in the same manner as in Production Example 5 except that the blending amounts of TPC and IPC were 0.06 mol and 0.14 mol, respectively.
  • the inherent viscosity of the polyarylate resin (b6) was 0.49 dL / g. When DSC measurement was performed, no crystal melting peak was observed, and the glass transition temperature was 220 ° C. The results are shown in Table 1.
  • Production Example 8 Dihydric phenol was mixed with 0.058 mol of 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane (BPTMC) and 0.136 mol of 2,2-bis (4-hydroxyphenyl) propane (BPA). Except that, polyarylate resin (b8) was obtained in the same manner as in Production Example 7. The inherent viscosity of this polyarylate resin (b8) was 0.48 dL / g. When DSC measurement was performed, no crystal melting peak was observed, and the glass transition temperature was 215 ° C. The results are shown in Table 1.
  • Production Example 9 A polyarylate resin (b9) was obtained in the same manner as in Production Example 7, except that the dihydric phenol was changed to 0.194 mol of 2,2-bis (4-hydroxyphenyl) propane (BPA). The inherent viscosity of the polyarylate resin (b9) was 0.48 dL / g. When DSC measurement was performed, no crystal melting peak was observed, and the glass transition temperature was 190 ° C. The results are shown in Table 1.
  • Example 1 A separable flask equipped with a stirrer and a condenser was used, and 250 parts by mass of N, N-dimethylformamide was used as the organic solvent. First, 50 parts by mass of the epoxy resin (a1) is heated and dissolved at 60 ° C. in the organic solvent, and then 50 parts by mass of the polyarylate resin (b1) is dissolved. Then, the epoxy resin curing agent (c1) 2. 8 parts by mass and 0.35 parts by mass of 2-ethyl-4-methylimidazole as a curing accelerator were dissolved. Then, the resin varnish which consists of a resin composition was prepared by stopping stirring and deaeration.
  • Examples 2 to 11 and Comparative Examples 1 to 4 A coating and a laminate were formed in the same manner as in Example 1 except that the types and blending amounts of the epoxy resin, polyarylate resin, and curing agent were changed as shown in Table 2, and various evaluations were performed. The results are shown in Tables 2 and 3.
  • Example 12 A separable flask equipped with a stirrer and a cooling tube was used, and 200 parts by mass of toluene was used as an organic solvent. First, 50 parts by mass of the epoxy resin (a1) was heated and dissolved at 60 ° C. in the organic solvent, and then 50 parts by mass of the polyarylate resin (b4) was dissolved. Into this solution, an entire amount of a solution obtained by dissolving 16.3 parts by mass of the epoxy resin curing agent (c2) was added to 50 parts by mass of methyl ethyl ketone as an organic solvent in another container and uniformly mixed. Then, the resin varnish was obtained by stopping stirring and deaeration. In the same manner as in Example 1, a film and a laminate were formed and various evaluations were performed. The results are shown in Table 2.
  • Comparative Example 5 A separable flask equipped with a stirrer and a condenser was used, and 300 parts by mass of N, N-dimethylformamide was used as the organic solvent. In the organic solvent, 100 parts by mass of polyarylate resin (b4) was dissolved by heating at 60 ° C. Then, the resin varnish was obtained by stopping stirring and deaeration. In the same manner as in Example 1, a film and a laminate were formed and various evaluations were performed. The results are shown in Table 3.
  • Comparative Example 6 Except for using 50 parts by mass of a polycarbonate resin (Iupilon S-3000 manufactured by Mitsubishi Engineering Plastics, Inc., inherent viscosity is 0.48 dL / g, glass transition temperature 145 ° C.) instead of the polyarylate resin, the same procedure as in Example 1 was performed. An attempt was made to produce a resin varnish. However, although an attempt was made to dissolve by heating at 60 ° C., the test was stopped because insoluble matter was generated with almost no dissolution.
  • a polycarbonate resin Iupilon S-3000 manufactured by Mitsubishi Engineering Plastics, Inc., inherent viscosity is 0.48 dL / g, glass transition temperature 145 ° C.
  • Example 3 relative dielectric constant 3.1, dielectric loss tangent 0.010;
  • Example 8 dielectric constant 3.2, dielectric loss tangent 0.011;
  • the resin compositions obtained in Examples 1 to 12 had a predetermined composition, they had good adhesion to copper foil or polyimide film and improved heat resistance. Furthermore, it had excellent solder resistance after moisture absorption.
  • Comparative Example 6 a polycarbonate resin was used instead of the polyarylate resin, but the resin composition with an epoxy resin could not be obtained because it was not dissolved in a solvent.
  • the resin composition of the present invention is useful for applications in which adhesiveness and heat resistance are required at the same time.
  • it is useful for forming an adhesive layer in a wiring board, in particular, a multilayer flexible printed wiring board and a flex-rigid printed wiring board. .

Abstract

The purpose of the present invention is to provide a resin composition which can form an adhesive layer which has excellent adhesiveness to both a conductive layer and an organic insulating substance, and which has high heat resistance and excellent solder resistance after moisture absorption. This resin composition contains an epoxy resin (A) having two or more epoxy groups in one molecule, a polyarylate resin (B) and a curing agent (C), wherein the glass transition temperature of the polyarylate resin (B) is greater than or equal to 200°C, and the content ratio (A)/(B) of the epoxy resin (A) to the polyarylate resin (B) is 30/70-90/10 (mass ratio).

Description

樹脂組成物およびそれを用いた積層体Resin composition and laminate using the same
 本発明は、耐熱性が高く、吸湿後のハンダ耐性に優れた接着層を形成可能な樹脂組成物に関する。 The present invention relates to a resin composition having high heat resistance and capable of forming an adhesive layer having excellent solder resistance after moisture absorption.
 近年、エレクトロニクス分野の発展が目覚しく、特に電子機器の小型化、軽量化、高密度化が進み、これらの性能に対する要求が強まっている。このような要求に対応するため、電子材料の薄型化、多層化、高精細化の検討が盛んに行われている。プリント配線板は、フレキシブルプリント配線板が使用されるケースが多く、さらには高集積化、多層化されることが多い。 In recent years, the development of the electronics field has been remarkable, and in particular, electronic devices have become smaller, lighter, and more dense, and demands for these performances have increased. In order to meet such demands, thinning, multilayering, and high definition of electronic materials have been actively studied. In many cases, a flexible printed wiring board is used as the printed wiring board, and further, the printed wiring board is often highly integrated and multilayered.
 このようなプリント配線板の多層化の手法として、導体層(主として銅あるいは銀が用いられる)と有機絶縁層とを交互に積層するビルドアップ方式の多層プリント配線板の製造技術が注目されている。導体層と有機絶縁層を交互に積み上げる一般的な手法は、導体層と有機絶縁基材(主としてポリイミドが用いられる)とからなる積層物どうしを絶縁接着層で接着して積層される場合が多い。この絶縁接着層は回路を形成している導体層および有機絶縁基材の両方と強固に接着することが必須特性であり、さらには、回路パターンにおける導体層の隙間への埋め込み性も必要とされている。 As a technique for multilayering such a printed wiring board, a build-up type multilayer printed wiring board manufacturing technique in which a conductor layer (mainly copper or silver is used) and an organic insulating layer are alternately laminated is attracting attention. . In general, a common method of alternately stacking a conductor layer and an organic insulating layer is to laminate a laminate composed of a conductor layer and an organic insulating base material (mainly polyimide is used) with an insulating adhesive layer. . This insulating adhesive layer must be firmly bonded to both the conductor layer forming the circuit and the organic insulating base material, and further, it must be embedded in the gap of the conductor layer in the circuit pattern. ing.
 このような要求に応えるため、様々な検討が行われており、ポリアリレートおよびエポキシ樹脂を必須成分とするフレキシブル配線板用接着剤(特許文献1,2)、特定の酸価を有するポリエステル・ポリウレタンおよびエポキシ樹脂を主成分とする接着剤組成物(例えば、特許文献3)、ウレタン変性カルボキシル基含有ポリエステル樹脂、エポキシ樹脂および硬化剤を含む接着剤組成物(例えば、特許文献4)等が開示されている。 In order to meet such demands, various studies have been made. Adhesives for flexible wiring boards containing polyarylate and epoxy resin as essential components (Patent Documents 1 and 2), polyester polyurethane having a specific acid value And an adhesive composition containing an epoxy resin as a main component (for example, Patent Document 3), an urethane-modified carboxyl group-containing polyester resin, an adhesive composition containing an epoxy resin and a curing agent (for example, Patent Document 4), and the like are disclosed. ing.
 一方、エポキシ樹脂、ポリアリレート樹脂およびアミン系硬化剤を特定比率で含有する樹脂組成物を加熱硬化してなる、耐熱性、柔軟性に優れる熱硬化性エラストマー(特許文献5)が開示されている。 On the other hand, a thermosetting elastomer excellent in heat resistance and flexibility (Patent Document 5) obtained by heat curing a resin composition containing epoxy resin, polyarylate resin and amine-based curing agent in specific ratios is disclosed. .
特開平5-263058号公報JP-A-5-263058 特開平5-271637号公報Japanese Patent Laid-Open No. 5-271737 特開平11-116930号公報Japanese Patent Laid-Open No. 11-116930 特開2007-51212号公報JP 2007-51212 A 特開2013-189544号公報JP 2013-189544 A
 本発明者らは、以下のようなことを見出した。
 特許文献1~5のような技術によると、導体層および有機絶縁基材の両方または一方に対して優れた接着性が得られないことがあった。たとえ導体層および有機絶縁基材の両方に対して優れた接着性が得られたとしても、耐熱性が低下した。詳しくは、フレキシブルプリント配線板は、近年その薄さや柔軟性のほか、微細な回路が作製可能なことなどの特徴を活かし、幅広い分野で利用されており、電子機器用途では使用温度が100℃以下であるが、照明や車載用途では150℃以上の使用温度に耐え得る耐熱性が求められている。しかしながら、上記特許文献1~5の組成物を接着層に用いたフレキシブルプリント配線板は、照明や車載用途での使用に耐えられなかった。
The present inventors have found the following.
According to techniques such as Patent Documents 1 to 5, excellent adhesion to both or one of the conductor layer and the organic insulating substrate may not be obtained. Even though excellent adhesion to both the conductor layer and the organic insulating substrate was obtained, the heat resistance was reduced. Specifically, flexible printed wiring boards have been used in a wide range of fields in recent years, taking advantage of their thinness and flexibility, as well as the ability to produce fine circuits. However, heat resistance that can withstand a use temperature of 150 ° C. or higher is required for lighting and in-vehicle applications. However, the flexible printed wiring board using the composition of Patent Documents 1 to 5 as an adhesive layer cannot withstand use in lighting or in-vehicle applications.
 また接着層の吸湿により、ハンダ耐性が低下することがあった。詳しくは接着層が高温高湿下で吸湿した後、ハンダの溶融により、加熱された際、蒸発した水分により気泡が発生することで接着層が膨れたり、導体層あるいは有機絶縁基材から剥離したりするという問題があった。
 さらには接着層を硬化するために加熱プレスすると、樹脂組成物の流動性が良すぎるためにはみ出しが多く発生する点も問題であった。
Further, solder resistance may decrease due to moisture absorption of the adhesive layer. Specifically, after the adhesive layer absorbs moisture under high temperature and high humidity, when heated due to melting of the solder, bubbles are generated due to evaporated water, causing the adhesive layer to swell or peel off from the conductor layer or organic insulating substrate. There was a problem.
Furthermore, when the hot pressing is performed to cure the adhesive layer, the flowability of the resin composition is too good, so that a large amount of protrusion occurs.
 本発明は、導体層および有機絶縁基材の両方に対する接着性に優れているとともに、耐熱性が高く、吸湿後のハンダ耐性に優れた接着層を形成可能な樹脂組成物を提供することを目的とする。 An object of the present invention is to provide a resin composition that is excellent in adhesion to both a conductor layer and an organic insulating substrate, has high heat resistance, and can form an adhesive layer with excellent solder resistance after moisture absorption. And
 本発明はまた、導体層および有機絶縁基材の両方に対する接着性に優れているとともに、耐熱性が高く、吸湿後のハンダ耐性に優れ、硬化のための加熱プレス時の耐はみ出し特性が良好な接着層を形成可能な樹脂組成物を提供することを目的とする。 The present invention is also excellent in adhesion to both the conductor layer and the organic insulating substrate, has high heat resistance, excellent solder resistance after moisture absorption, and good anti-extrusion characteristics during hot pressing for curing. An object is to provide a resin composition capable of forming an adhesive layer.
 本発明者らは、前記課題を解決するために鋭意研究を重ねた結果、本発明に到達した。
 すなわち本発明の要旨は下記の通りである。
(1)一分子中に2個以上のエポキシ基を有するエポキシ樹脂(A)、ポリアリレート樹脂(B)および硬化剤(C)を含有する樹脂組成物であって、
 前記ポリアリレート樹脂(B)のガラス転移温度が200℃以上であり、
 前記エポキシ樹脂(A)の前記ポリアリレート樹脂(B)に対する含有比率(A)/(B)が30/70~90/10(質量比)である、樹脂組成物。
(2)前記エポキシ樹脂(A)のエポキシ当量が90~500g/eqである、(1)に記載の樹脂組成物。
(3)前記ポリアリレート樹脂(B)が芳香族ジカルボン酸残基および下記一般式(i)~(iv)で表される二価フェノール残基からなる群から選択される1種以上の二価フェノール残基を含む、(1)または(2)に記載の樹脂組成物:
Figure JPOXMLDOC01-appb-C000006
[一般式(i)中、R、R、RおよびRは各々独立に水素原子、ハロゲン原子、炭素数1~20の脂肪族炭化水素基、炭素数3~20の脂環族炭化水素基、炭素数6~20の芳香族炭化水素基からなる群から選ばれる];
Figure JPOXMLDOC01-appb-C000007
[一般式(ii)中、R11、R12、R13およびR14は各々独立に水素原子、ハロゲン原子、炭素数1~20の脂肪族炭化水素基、炭素数3~20の脂環族炭化水素基、炭素数6~20の芳香族炭化水素基からなる群から選ばれ、R15は水素原子、炭素数1~10のアルキル基、炭素数2~10のアルケニル基、あるいは炭素数6~20のアリール基からなる群から選ばれる];
Figure JPOXMLDOC01-appb-C000008
[一般式(iii)中、R21、R22、R23およびR24は各々独立に水素原子、ハロゲン原子、炭素数1~20の脂肪族炭化水素基、炭素数3~20の脂環族炭化水素基、炭素数6~20の芳香族炭化水素基からなる群から選ばれ、R25は各々独立に、炭素数1~20の脂肪族炭化水素基、炭素数3~20の脂環族炭化水素基、炭素数6~20の芳香族炭化水素基、炭素数1~20のハロゲン化アルキル基からなる群より選ばれ、kは2~12の整数であり、mは0以上であって、2k以下の整数である];および
Figure JPOXMLDOC01-appb-C000009
[一般式(iv)中、R31、R32、R33およびR34は各々独立に水素原子、ハロゲン原子、炭素数1~20の脂肪族炭化水素基、炭素数3~20の脂環族炭化水素基、炭素数6~20の芳香族炭化水素基からなる群から選ばれ、R35は水素原子、ハロゲン原子、炭素数1~20の脂肪族炭化水素基、炭素数3~20の脂環族炭化水素基、炭素数6~20の芳香族炭化水素基からなる群から選ばれ、R36は炭素数6~20の芳香族炭化水素基からなる群より選ばれる]。
(4)前記ポリアリレート樹脂(B)がさらに下記一般式(v)で表される二価フェノール残基を含んでいる、(1)~(3)のいずれかに記載の樹脂組成物:
Figure JPOXMLDOC01-appb-C000010
[一般式(v)中、R5、R6、RおよびRは各々独立に水素原子、ハロゲン原子、炭素数1~20の脂肪族炭化水素基、炭素数3~20の脂環族炭化水素基、炭素数6~20の芳香族炭化水素基からなる群から選ばれる]。
(5)前記樹脂組成物が接着シート用樹脂組成物である、(1)~(4)のいずれかに記載の樹脂組成物。
(6)(1)~(5)のいずれかに記載の樹脂組成物を有機溶剤に溶解して得られる樹脂ワニス。
(7)(5)に記載の樹脂ワニスを乾燥してなる被膜。
(8)基材上に、(7)に記載の被膜を形成してなる積層体。
(9)(8)に記載の積層体を用いた配線板。
The inventors of the present invention have arrived at the present invention as a result of intensive studies to solve the above problems.
That is, the gist of the present invention is as follows.
(1) A resin composition containing an epoxy resin (A) having two or more epoxy groups in one molecule, a polyarylate resin (B) and a curing agent (C),
The glass transition temperature of the polyarylate resin (B) is 200 ° C. or higher,
A resin composition having a content ratio (A) / (B) of the epoxy resin (A) to the polyarylate resin (B) of 30/70 to 90/10 (mass ratio).
(2) The resin composition according to (1), wherein the epoxy equivalent of the epoxy resin (A) is 90 to 500 g / eq.
(3) The polyarylate resin (B) is one or more divalents selected from the group consisting of aromatic dicarboxylic acid residues and dihydric phenol residues represented by the following general formulas (i) to (iv): The resin composition according to (1) or (2), which contains a phenol residue:
Figure JPOXMLDOC01-appb-C000006
[In general formula (i), R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom, a halogen atom, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, or an alicyclic group having 3 to 20 carbon atoms. Selected from the group consisting of hydrocarbon groups and aromatic hydrocarbon groups having 6 to 20 carbon atoms];
Figure JPOXMLDOC01-appb-C000007
[In the general formula (ii), R 11 , R 12 , R 13 and R 14 are each independently a hydrogen atom, a halogen atom, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, or an alicyclic group having 3 to 20 carbon atoms. R 15 is selected from the group consisting of a hydrocarbon group and an aromatic hydrocarbon group having 6 to 20 carbon atoms, and R 15 is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or 6 carbon atoms. Selected from the group consisting of ˜20 aryl groups];
Figure JPOXMLDOC01-appb-C000008
[In general formula (iii), R 21 , R 22 , R 23 and R 24 are each independently a hydrogen atom, a halogen atom, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, or an alicyclic group having 3 to 20 carbon atoms. Selected from the group consisting of a hydrocarbon group and an aromatic hydrocarbon group having 6 to 20 carbon atoms, and each R 25 independently represents an aliphatic hydrocarbon group having 1 to 20 carbon atoms and an alicyclic group having 3 to 20 carbon atoms. Selected from the group consisting of a hydrocarbon group, an aromatic hydrocarbon group having 6 to 20 carbon atoms, and a halogenated alkyl group having 1 to 20 carbon atoms, k is an integer of 2 to 12, and m is 0 or more. 2 or less integer]; and
Figure JPOXMLDOC01-appb-C000009
[In the general formula (iv), R 31 , R 32 , R 33 and R 34 are each independently a hydrogen atom, a halogen atom, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, or an alicyclic group having 3 to 20 carbon atoms. R 35 is selected from the group consisting of a hydrocarbon group and an aromatic hydrocarbon group having 6 to 20 carbon atoms, and R 35 is a hydrogen atom, a halogen atom, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, an oil having 3 to 20 carbon atoms The cyclic hydrocarbon group is selected from the group consisting of an aromatic hydrocarbon group having 6 to 20 carbon atoms, and R 36 is selected from the group consisting of an aromatic hydrocarbon group having 6 to 20 carbon atoms].
(4) The resin composition according to any one of (1) to (3), wherein the polyarylate resin (B) further contains a dihydric phenol residue represented by the following general formula (v):
Figure JPOXMLDOC01-appb-C000010
[In the general formula (v), R 5 , R 6 , R 7 and R 8 are each independently a hydrogen atom, a halogen atom, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, or an alicyclic group having 3 to 20 carbon atoms. Selected from the group consisting of hydrocarbon groups and aromatic hydrocarbon groups having 6 to 20 carbon atoms].
(5) The resin composition according to any one of (1) to (4), wherein the resin composition is a resin composition for an adhesive sheet.
(6) A resin varnish obtained by dissolving the resin composition according to any one of (1) to (5) in an organic solvent.
(7) A film formed by drying the resin varnish according to (5).
(8) A laminate obtained by forming the coating according to (7) on a substrate.
(9) A wiring board using the laminate according to (8).
 本発明によれば、耐熱性が高く、吸湿後のハンダ耐性に優れた接着層を形成可能な樹脂組成物が得られる。
 このような樹脂組成物を用いた積層体は、特に配線板等で好適に使用ができ、ハンダの溶融により配線板が加熱される場合であっても、接着絶縁層の膨れや剥離の発生を抑制することができる。
 本発明の樹脂組成物は、導体層および有機絶縁基材の両方に対する接着性にも優れた接着層を形成できる。
 本発明の樹脂組成物はまた、硬化のための加熱プレス時の耐はみ出し特性にも優れた接着層を形成できる。
 本発明の樹脂組成物はまた、誘電特性にも優れた接着層を形成できる。
ADVANTAGE OF THE INVENTION According to this invention, the resin composition which has high heat resistance and can form the contact bonding layer excellent in the solder tolerance after moisture absorption is obtained.
A laminate using such a resin composition can be suitably used particularly for a wiring board and the like, and even when the wiring board is heated by melting of solder, the adhesive insulating layer swells or peels off. Can be suppressed.
The resin composition of this invention can form the contact bonding layer excellent also in the adhesiveness with respect to both a conductor layer and an organic insulating base material.
The resin composition of the present invention can also form an adhesive layer excellent in the anti-extrusion property at the time of hot pressing for curing.
The resin composition of the present invention can also form an adhesive layer having excellent dielectric properties.
 以下、本発明を詳細に説明する。
 本発明で用いられるエポキシ樹脂(A)が有するエポキシ基の数は、一分子中に2個以上であれば特に制限はない。エポキシ樹脂(A)は、公知のエポキシ樹脂を用いることができ、好ましくは、一分子中のエポキシ基が2個以上、5個以下であるエポキシ樹脂を用いる。一分子中に含まれるエポキシ基数が5個を超えると、得られる樹脂組成物から樹脂ワニスを作製する際、粘度上昇が顕著となることがある。なお、前記エポキシ基数はエポキシ樹脂が分子量分布を有するため、1分子あたりのエポキシ基数の平均を意味する。
Hereinafter, the present invention will be described in detail.
The number of epoxy groups contained in the epoxy resin (A) used in the present invention is not particularly limited as long as it is 2 or more per molecule. As the epoxy resin (A), a known epoxy resin can be used, and an epoxy resin having 2 or more and 5 or less epoxy groups in one molecule is preferably used. When the number of epoxy groups contained in one molecule exceeds 5, when the resin varnish is produced from the resulting resin composition, the increase in viscosity may be significant. The number of epoxy groups means the average number of epoxy groups per molecule because the epoxy resin has a molecular weight distribution.
 一分子中に2個以上のエポキシ基を有するエポキシ樹脂(A)のエポキシ当量は、90~500g/eqであることが好ましく、90~300g/eqであることがより好ましく、90~250g/eqであることがさらに好ましい。エポキシ当量が90g/eq未満であると、エポキシ基が密集しすぎるため硬化剤との反応性が低下し、一方架橋密度が上がりすぎるため、樹脂組成物を有機溶剤に溶解した樹脂ワニスの粘度が過度に高くなることがある。エポキシ当量が500g/eqを超えると、硬化反応後のエポキシ樹脂の架橋密度が低くなるため、得られる樹脂組成物のガラス転移温度が高いものとならず、耐熱性を向上することができない。 The epoxy equivalent of the epoxy resin (A) having two or more epoxy groups in one molecule is preferably 90 to 500 g / eq, more preferably 90 to 300 g / eq, and 90 to 250 g / eq. More preferably. If the epoxy equivalent is less than 90 g / eq, the epoxy group is too dense to reduce the reactivity with the curing agent, while the crosslinking density is too high, so the viscosity of the resin varnish in which the resin composition is dissolved in an organic solvent is low. May be excessively high. When the epoxy equivalent exceeds 500 g / eq, the crosslink density of the epoxy resin after the curing reaction is lowered, so that the glass transition temperature of the obtained resin composition is not high, and the heat resistance cannot be improved.
 一分子中に2個以上のエポキシ基を有するエポキシ樹脂(A)としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、イソシアヌレート型エポキシ樹脂、ヒダントイン型エポキシ樹脂、脂環式エポキシ樹脂、ビフェニル型エポキシ樹脂、アクリル酸変性エポキシ樹脂、多官能エポキシ樹脂、臭素化エポキシ樹脂及びリン変性エポキシ樹脂等が挙げられる。中でも、ビスフェノールA型エポキシ樹脂およびフェノールノボラック型エポキシ樹脂、特にビスフェノールA型エポキシ樹脂は、好適に使用できる。このようなエポキシ樹脂は市販品として入手が可能である。市販品の具体例としては、製品名:GAN(日本化薬社製)、製品名:jER630(三菱化学社製)、製品名:HP4032(DIC社製)、製品名:セロキサイド2081(ダイセル化学工業社製)、製品名:jER828(三菱化学社製)、製品名:jER807(三菱化学社製)、製品名:エピクロンEXA-1514(DIC社製)、製品名:jER152(三菱化学社製)、製品名:jER604(三菱化学社製)、製品名:MY-0500(ハンツマン社製)、製品名:MY-0600(ハンツマン社製)、製品名:TETRAD-X(三菱瓦斯化学社製)、製品名:SR-HHPA(阪本薬品工業社製)、製品名:EXA-4580-1000(DIC社製)、製品名:アラルダイトAER4152(旭化成イーマテリアルズ株式会社製)などを例示することができるが、これらに限定されるものではない。前記エポキシ樹脂は1種単独で用いても、2種以上を併用してもよい。エポキシ樹脂(A)は、一分子中に2個以上のエポキシ基を有するものであれば、それ以外の他の官能基を有してもよい。 Examples of the epoxy resin (A) having two or more epoxy groups in one molecule include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, naphthalene type epoxy resin, biphenyl type epoxy resin, Phenol novolac type epoxy resin, cresol novolac type epoxy resin, glycidylamine type epoxy resin, isocyanurate type epoxy resin, hydantoin type epoxy resin, alicyclic epoxy resin, biphenyl type epoxy resin, acrylic acid modified epoxy resin, polyfunctional epoxy resin , Brominated epoxy resins and phosphorus-modified epoxy resins. Among these, bisphenol A type epoxy resins and phenol novolac type epoxy resins, particularly bisphenol A type epoxy resins, can be suitably used. Such an epoxy resin is commercially available. Specific examples of commercially available products include: product name: GAN (manufactured by Nippon Kayaku Co., Ltd.), product name: jER630 (manufactured by Mitsubishi Chemical), product name: HP4032 (manufactured by DIC), product name: Celoxide 2081 (Daicel Chemical Industries) Product name: jER828 (Mitsubishi Chemical Corporation), product name: jER807 (Mitsubishi Chemical Corporation), product name: Epicron EXA-1514 (DIC Corporation), product name: jER152 (Mitsubishi Chemical Corporation), Product name: jER604 (Mitsubishi Chemical), Product name: MY-0500 (Huntsman), Product name: MY-0600 (Huntsman), Product: TETRAD-X (Mitsubishi Gas Chemical), Product Name: SR-HHPA (Sakamoto Pharmaceutical Co., Ltd.), Product name: EXA-4580-1000 (DIC Corporation), Product name: Araldite AER4152 (Asahi Kasei E-material) It can be exemplified such as manufactured) Ltd., but is not limited thereto. The said epoxy resin may be used individually by 1 type, or may use 2 or more types together. The epoxy resin (A) may have other functional groups as long as it has two or more epoxy groups in one molecule.
 上記エポキシ樹脂の中でも、ビスフェノールA型エポキシ樹脂(市販品の例:jER828等)、フェノールノボラック型エポキシ樹脂(市販品の例:jER152等)、ビスフェノールF型エポキシ樹脂(市販品の例:jER807等)、グリシジルアミン型エポキシ樹脂(市販品の例:jER604等)が好ましく、得られる被膜の銅箔やポリイミドフィルムとの接着性向上の効果が高い点で、ビスフェノールA型エポキシ樹脂、フェノールノボラック型エポキシ樹脂が特に好ましい。 Among the above epoxy resins, bisphenol A type epoxy resins (examples of commercial products: jER828, etc.), phenol novolac type epoxy resins (examples of commercial products: jER152, etc.), bisphenol F type epoxy resins (examples of commercial products: jER807, etc.) , Glycidylamine type epoxy resins (examples of commercial products: jER604, etc.) are preferable, and bisphenol A type epoxy resins and phenol novolac type epoxy resins are highly effective in improving adhesion to the copper foil and polyimide film of the resulting coating. Is particularly preferred.
 上記したビスフェノールA型エポキシ樹脂は、ビスフェノール骨格の繰り返し単位の数によって、常温で液体のものと、常温で固体のものが存在する。主鎖のビスフェノール骨格の繰り返し単位の数が1~3のビスフェノールA型エポキシ樹脂は常温で液体であり、主鎖のビスフェノール骨格の繰り返し単位の数が2~10のビスフェノールA型エポキシ樹脂は常温で固体である。したがって、基材上に被膜を形成し積層体を得る工程において、加熱によって被膜が被着体に密着し、固化することによって被膜と被着体とが強固に接着するため、接着強度を高めることができる。また、このような比較的低分子量のビスフェノールA型エポキシ樹脂は、架橋密度が高くなるため、機械的強度が高く、耐薬品性がよく、硬化性が高く、吸湿性(自由体積が小さくなるため)が小さくなる特徴もある。 The above-mentioned bisphenol A type epoxy resin may be liquid at room temperature or solid at room temperature depending on the number of repeating units of the bisphenol skeleton. A bisphenol A type epoxy resin having 1 to 3 repeating units of the main chain bisphenol skeleton is liquid at room temperature, and a bisphenol A type epoxy resin having 2 to 10 repeating units of the main chain bisphenol skeleton at room temperature. It is solid. Therefore, in the step of forming a film on a substrate to obtain a laminate, the film adheres to the adherend by heating and solidifies by solidifying the film and the adherend, thereby increasing the adhesive strength. Can do. In addition, such a relatively low molecular weight bisphenol A type epoxy resin has a high crosslink density, and therefore has high mechanical strength, good chemical resistance, high curability, and hygroscopicity (because the free volume is small). ) Is also small.
 本発明においては、ビスフェノールA型エポキシ樹脂として、上記したような常温で固体のビスフェノールA型エポキシ樹脂と、常温で液体のビスフェノールA型エポキシ樹脂とを併用して使用することが好ましい。常温で固体のものと液体のものとを併用することにより、機械的強度を保ちつつ、柔軟性を得ることが出来るため、樹脂組成物が本来有する機械的強度を維持しつつ、柔軟性を得ることができる。その結果、被着体どうしの接合強度を向上させることができる。常温で固体のビスフェノールA型エポキシ樹脂としては、機械的強度および耐熱性の観点から、ガラス転移温度が50~150℃の範囲にあるものが好ましい。具体的には、常温で液体である、主鎖のビスフェノール骨格の繰り返し単位の数が1~3のビスフェノールA型エポキシ樹脂としては、jER828(三菱化学社製)が、常温で固体である、主鎖のビスフェノール骨格の繰り返し単位の数が2~10のビスフェノールA型エポキシ樹脂としては、jER1001(三菱化学社製)などが例示できる。 In the present invention, it is preferable to use a bisphenol A type epoxy resin that is solid at room temperature and a bisphenol A type epoxy resin that is liquid at room temperature, as described above, as the bisphenol A type epoxy resin. By combining a solid and a liquid at room temperature, it is possible to obtain flexibility while maintaining mechanical strength, so that flexibility is obtained while maintaining the mechanical strength inherent in the resin composition. be able to. As a result, the bonding strength between adherends can be improved. As the bisphenol A type epoxy resin that is solid at normal temperature, those having a glass transition temperature in the range of 50 to 150 ° C. are preferable from the viewpoint of mechanical strength and heat resistance. Specifically, as a bisphenol A type epoxy resin having 1 to 3 repeating units of the main chain bisphenol skeleton that is liquid at room temperature, jER828 (manufactured by Mitsubishi Chemical Corporation) is a solid at room temperature. Examples of the bisphenol A type epoxy resin having 2 to 10 repeating units of the chain bisphenol skeleton include jER1001 (manufactured by Mitsubishi Chemical Corporation).
 一分子中に2個以上のエポキシ基を有するエポキシ樹脂(A)の粘度は、上記理由から、25℃における粘度が5~30Pa・sであることが好ましく、8~25Pa・sであることがより好ましく、10~20Pa・sであることがさらに好ましい。エポキシ樹脂(A)は、25℃における粘度が上記範囲内である代わりに、52℃における粘度が所定の範囲内であってもよい。例えば、52℃における粘度は0.5~10Pa・sであることが好ましく、0.8~8Pa・sであることがより好ましく、1~3Pa・sであることがさらに好ましい。 For the above reasons, the viscosity of the epoxy resin (A) having two or more epoxy groups in one molecule is preferably 5 to 30 Pa · s, and more preferably 8 to 25 Pa · s at 25 ° C. More preferably, it is 10 to 20 Pa · s. The epoxy resin (A) may have a viscosity at 52 ° C. within a predetermined range instead of the viscosity at 25 ° C. within the above range. For example, the viscosity at 52 ° C. is preferably 0.5 to 10 Pa · s, more preferably 0.8 to 8 Pa · s, and still more preferably 1 to 3 Pa · s.
 本発明で用いられるポリアリレート樹脂(B)は、芳香族ジカルボン酸および/またはその誘導体と、二価フェノールおよび/またはその誘導体とよりなる芳香族ポリエステル重合体であり、溶液重合、溶融重合、界面重合などの方法により製造される。 The polyarylate resin (B) used in the present invention is an aromatic polyester polymer comprising an aromatic dicarboxylic acid and / or a derivative thereof and a dihydric phenol and / or a derivative thereof. It is produced by a method such as polymerization.
 芳香族ジカルボン酸残基を導入するためのポリアリレート原料としては、特に制限はないが、例えば、テレフタル酸、イソフタル酸、フタル酸、クロルフタル酸、ニトロフタル酸、2,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、メチルテレフタル酸、4,4’-ビフェニルジカルボン酸、2,2’-ビフェニルジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、4,4’-ジフェニルメタンジカルボン酸、4,4’-ジフェニルスルフォンジカルボン酸、4,4’-ジフェニルイソプロピリデンジカルボン酸、1,2-ビス(4-カルボキシフェノキシ)エタン、5-ナトリウムスルホイソフタル酸等が挙げられる。中でも、テレフタル酸およびイソフタル酸が好ましく、溶剤に対する溶解性の観点から、両者を混合して用いることが特に好ましい。その場合、混合比率(テレフタル酸/イソフタル酸)は100/0~0/100(モル%)の範囲の任意であるが、好ましくは80/20~10/90(モル%)、より好ましくは75/25~25/75(モル%)の範囲とすると、得られるポリアリレート樹脂(B)の溶解性が優れたものとなる。 The polyarylate raw material for introducing the aromatic dicarboxylic acid residue is not particularly limited. For example, terephthalic acid, isophthalic acid, phthalic acid, chlorophthalic acid, nitrophthalic acid, 2,5-naphthalenedicarboxylic acid, 2, 6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, methyl terephthalic acid, 4,4'-biphenyldicarboxylic acid, 2,2'-biphenyldicarboxylic acid, 4,4'-diphenyl ether Dicarboxylic acid, 4,4'-diphenylmethane dicarboxylic acid, 4,4'-diphenylsulfone dicarboxylic acid, 4,4'-diphenylisopropylidenedicarboxylic acid, 1,2-bis (4-carboxyphenoxy) ethane, 5-sodium sulfo Examples include isophthalic acid. Among these, terephthalic acid and isophthalic acid are preferable, and it is particularly preferable to use a mixture of both from the viewpoint of solubility in a solvent. In this case, the mixing ratio (terephthalic acid / isophthalic acid) is arbitrarily in the range of 100/0 to 0/100 (mol%), preferably 80/20 to 10/90 (mol%), more preferably 75. When the ratio is in the range of / 25 to 25/75 (mol%), the resulting polyarylate resin (B) has excellent solubility.
 本発明の特性や効果を損なわない範囲で、上記芳香族ジカルボン酸類と共に、脂肪族ジカルボン酸類を用いてもよい。脂肪族ジカルボン酸類としては、特に限定されず、ジカルボキシメチルシクロヘキサン、シクロヘキサンジカルボン酸、アジピン酸、セバシン酸、グルタル酸、ドデカン二酸等を挙げることができる。 As long as the characteristics and effects of the present invention are not impaired, aliphatic dicarboxylic acids may be used together with the aromatic dicarboxylic acids. The aliphatic dicarboxylic acids are not particularly limited, and examples thereof include dicarboxymethylcyclohexane, cyclohexanedicarboxylic acid, adipic acid, sebacic acid, glutaric acid, and dodecanedioic acid.
 二価フェノール残基を導入するためのポリアリレート原料としては、特に制限はないが、得られる樹脂組成物の耐熱性を向上し、有機溶剤に対する溶解性を向上させる観点から、下記一般式(i)~(iv)で表される二価フェノール残基からなる群から選択される1種以上の二価フェノール残基(以下、ビスフェノールI残基ということがある)を導入することが好ましい。 The polyarylate raw material for introducing the dihydric phenol residue is not particularly limited, but from the viewpoint of improving the heat resistance of the resulting resin composition and improving the solubility in organic solvents, the following general formula (i It is preferable to introduce one or more dihydric phenol residues (hereinafter sometimes referred to as bisphenol I residues) selected from the group consisting of dihydric phenol residues represented by) to (iv).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 一般式(i)中、R、R、RおよびRは各々独立に水素原子、ハロゲン原子、炭素数1~20の脂肪族炭化水素基、炭素数3~20の脂環族炭化水素基、炭素数6~20の芳香族炭化水素基からなる群から選ばれる。前記ハロゲン原子として、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。好ましいハロゲン原子はフッ素原子、塩素原子、臭素原子である。前記脂肪族炭化水素基として、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基などのアルキル基、およびビニル基、アリル基などのアルケニル基が挙げられる。好ましい脂肪族炭化水素基はアルキル基であり、より好ましくは炭素数1~10、さらに好ましくは1~5、特に1~3のアルキル基である。前記脂環族炭化水素基として、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基などのシクロアルキル基が挙げられる。好ましい脂環族炭化水素基は炭素数3~10、特に3~6のシクロアルキル基である。前記芳香族炭化水素基として、フェニル基、ナフチル基、アントラニル基などのアリール基が挙げられる。好ましい芳香族炭化水素基は炭素数6~14、特に6~10のアリール基である。 In general formula (i), R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom, a halogen atom, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, or an alicyclic carbon atom having 3 to 20 carbon atoms. Selected from the group consisting of a hydrogen group and an aromatic hydrocarbon group having 6 to 20 carbon atoms. Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Preferred halogen atoms are a fluorine atom, a chlorine atom and a bromine atom. Examples of the aliphatic hydrocarbon group include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, and an alkyl group such as a decyl group, and a vinyl group and an allyl group. An alkenyl group is mentioned. A preferred aliphatic hydrocarbon group is an alkyl group, more preferably an alkyl group having 1 to 10, more preferably 1 to 5, particularly 1 to 3 carbon atoms. Examples of the alicyclic hydrocarbon group include cycloalkyl groups such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a cyclononyl group, and a cyclodecyl group. Preferred alicyclic hydrocarbon groups are cycloalkyl groups having 3 to 10 carbon atoms, particularly 3 to 6 carbon atoms. Examples of the aromatic hydrocarbon group include aryl groups such as a phenyl group, a naphthyl group, and an anthranyl group. Preferred aromatic hydrocarbon groups are aryl groups having 6 to 14 carbon atoms, particularly 6 to 10 carbon atoms.
 好ましい一般式(i)の二価フェノール残基においては、RおよびRは、各々独立に、好ましくは同時に、水素原子、炭素数1~10、特に1~3のアルキル基、または炭素数6~14、特に6~10のアリール基である;RおよびRは、各々独立に、好ましくは同時に、水素原子、または炭素数1~10、特に1~3のアルキル基、である。 In the preferred divalent phenol residue of the general formula (i), R 1 and R 3 are each independently, preferably simultaneously, a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, particularly 1 to 3 carbon atoms, or a carbon number. 6-14, especially 6-10 aryl groups; R 2 and R 4 are each independently, preferably simultaneously a hydrogen atom or an alkyl group having 1-10 carbon atoms, especially 1-3.
 より好ましい一般式(i)の二価フェノール残基においては、RおよびRは、各々独立に、好ましくは同時に、炭素数1~10、特に1~3のアルキル基である;RおよびRは、同時に、水素原子である。 In a more preferred dihydric phenol residue of general formula (i), R 1 and R 3 are each independently and preferably simultaneously an alkyl group having 1 to 10 carbon atoms, especially 1 to 3 carbon atoms; R 2 and R 4 is simultaneously a hydrogen atom.
 上記一般式(i)の二価フェノール残基を導入するための化合物としては、例えば、9,9-ビス(4-ヒドロキシフェニル)フルオレン(BPF)、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン(BCF)、9,9-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-フェニルフェニル)フルオレン等が挙げられる。 Examples of the compound for introducing the dihydric phenol residue of the general formula (i) include 9,9-bis (4-hydroxyphenyl) fluorene (BPF), 9,9-bis (4-hydroxy-3). -Methylphenyl) fluorene (BCF), 9,9-bis (4-hydroxy-3,5-dimethylphenyl) fluorene, 9,9-bis (4-hydroxy-3-phenylphenyl) fluorene and the like.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 一般式(ii)中、R11、R12、R13およびR14は各々独立に水素原子、ハロゲン原子、炭素数1~20の脂肪族炭化水素基、炭素数3~20の脂環族炭化水素基、炭素数6~20の芳香族炭化水素基からなる群から選ばれる。前記ハロゲン原子は、一般式(i)におけるハロゲン原子と同様であり、好ましいハロゲン原子はフッ素原子、塩素原子、臭素原子である。前記脂肪族炭化水素基は、一般式(i)における脂肪族炭化水素基と同様であり、好ましい脂肪族炭化水素基はアルキル基であり、より好ましくは炭素数1~10、さらに好ましくは1~5、特に1~3のアルキル基である。前記脂環族炭化水素基は、一般式(i)における脂環族炭化水素基と同様であり、好ましい脂環族炭化水素基は炭素数3~10、特に3~6のシクロアルキル基である。前記芳香族炭化水素基は、一般式(i)における芳香族炭化水素基と同様であり、好ましい芳香族炭化水素基は炭素数6~14、特に6~10のアリール基である。 In the general formula (ii), R 11 , R 12 , R 13 and R 14 are each independently a hydrogen atom, a halogen atom, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, or an alicyclic carbon atom having 3 to 20 carbon atoms. Selected from the group consisting of a hydrogen group and an aromatic hydrocarbon group having 6 to 20 carbon atoms. The halogen atom is the same as the halogen atom in the general formula (i), and preferred halogen atoms are a fluorine atom, a chlorine atom, and a bromine atom. The aliphatic hydrocarbon group is the same as the aliphatic hydrocarbon group in the general formula (i), and the preferred aliphatic hydrocarbon group is an alkyl group, more preferably 1 to 10 carbon atoms, still more preferably 1 to 1 carbon atom. 5, especially 1-3 alkyl groups. The alicyclic hydrocarbon group is the same as the alicyclic hydrocarbon group in the general formula (i), and a preferred alicyclic hydrocarbon group is a cycloalkyl group having 3 to 10 carbon atoms, particularly 3 to 6 carbon atoms. . The aromatic hydrocarbon group is the same as the aromatic hydrocarbon group in the general formula (i), and a preferable aromatic hydrocarbon group is an aryl group having 6 to 14 carbon atoms, particularly 6 to 10 carbon atoms.
 R15は水素原子、炭素数1~10のアルキル基、炭素数2~10のアルケニル基、あるいは炭素数6~20のアリール基からなる群から選ばれる。前記アルキル基として、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基が挙げられる。好ましいアルキル基は炭素数1~5、特に1~3のアルキル基である。前記アルケニル基として、ビニル基、アリル基が挙げられる。好ましいアルケニル基は、炭素数2~3のアルケニル基である。前記アリール基として、フェニル基、ナフチル基、アントラニル基が挙げられる。好ましいアリール基は炭素数6~14、特に6~10のアリール基である。 R 15 is selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms. Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, and a decyl group. Preferred alkyl groups are those having 1 to 5 carbon atoms, especially 1 to 3 carbon atoms. Examples of the alkenyl group include a vinyl group and an allyl group. A preferred alkenyl group is an alkenyl group having 2 to 3 carbon atoms. Examples of the aryl group include a phenyl group, a naphthyl group, and an anthranyl group. Preferred aryl groups are those having 6 to 14 carbon atoms, especially 6 to 10 carbon atoms.
 好ましい一般式(ii)の二価フェノール残基においては、R11およびR13は、各々独立に、好ましくは同時に、水素原子、または炭素数1~10、特に1~3のアルキル基である;R12およびR14は、各々独立に、好ましくは同時に、水素原子、または炭素数1~10、特に1~3のアルキル基である;R15は、炭素数1~10、特に1~3のアルキル基、または炭素数6~20、特に6~10のアリール基である。 In a preferred dihydric phenol residue of the general formula (ii), R 11 and R 13 are each independently, preferably simultaneously a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, particularly 1 to 3 carbon atoms; R 12 and R 14 are each independently, preferably simultaneously, a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, particularly 1 to 3 carbon atoms; R 15 is a group having 1 to 10 carbon atoms, particularly 1 to 3 carbon atoms. An alkyl group or an aryl group having 6 to 20 carbon atoms, particularly 6 to 10 carbon atoms.
 より好ましい一般式(ii)の二価フェノール残基においては、R11~R14は、同時に、水素原子、または炭素数1~10、特に1~3のアルキル基である;R15は、炭素数1~10、特に1~3のアルキル基、または炭素数6~20、特に6~10のアリール基である。 In a more preferred dihydric phenol residue of the general formula (ii), R 11 to R 14 are simultaneously a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, particularly 1 to 3 carbon atoms; R 15 is a carbon atom An alkyl group having 1 to 10, particularly 1 to 3, or an aryl group having 6 to 20 carbon atoms, particularly 6 to 10 carbon atoms.
 上記一般式(ii)の二価フェノール残基を導入するための化合物としては、例えば、N-フェニル-3,3-ビス(4-ヒドロキシフェニル)フタルイミジン(PPPBP)、N-メチル-3,3-ビス(4-ヒドロキシフェニル)フタルイミジン等が挙げられる。 Examples of the compound for introducing the dihydric phenol residue of the general formula (ii) include N-phenyl-3,3-bis (4-hydroxyphenyl) phthalimidine (PPPBP), N-methyl-3,3. -Bis (4-hydroxyphenyl) phthalimidine and the like.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 一般式(iii)中、R21、R22、R23およびR24は各々独立に水素原子、ハロゲン原子、炭素数1~20の脂肪族炭化水素基、炭素数3~20の脂環族炭化水素基、炭素数6~20の芳香族炭化水素基からなる群から選ばれる。前記ハロゲン原子は、一般式(i)におけるハロゲン原子と同様であり、好ましいハロゲン原子はフッ素原子、塩素原子、臭素原子である。前記脂肪族炭化水素基は、一般式(i)における脂肪族炭化水素基と同様であり、好ましい脂肪族炭化水素基はアルキル基であり、より好ましくは炭素数1~10、さらに好ましくは1~5、特に1~3のアルキル基である。前記脂環族炭化水素基は、一般式(i)における脂環族炭化水素基と同様であり、好ましい脂環族炭化水素基は炭素数3~10、特に3~6のシクロアルキル基である。前記芳香族炭化水素基は、一般式(i)における芳香族炭化水素基と同様であり、好ましい芳香族炭化水素基は炭素数6~14、特に6~10のアリール基である。 In general formula (iii), R 21 , R 22 , R 23 and R 24 are each independently a hydrogen atom, a halogen atom, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, or an alicyclic carbon atom having 3 to 20 carbon atoms. Selected from the group consisting of a hydrogen group and an aromatic hydrocarbon group having 6 to 20 carbon atoms. The halogen atom is the same as the halogen atom in the general formula (i), and preferred halogen atoms are a fluorine atom, a chlorine atom, and a bromine atom. The aliphatic hydrocarbon group is the same as the aliphatic hydrocarbon group in the general formula (i), and the preferred aliphatic hydrocarbon group is an alkyl group, more preferably 1 to 10 carbon atoms, still more preferably 1 to 1 carbon atom. 5, especially 1-3 alkyl groups. The alicyclic hydrocarbon group is the same as the alicyclic hydrocarbon group in the general formula (i), and a preferred alicyclic hydrocarbon group is a cycloalkyl group having 3 to 10 carbon atoms, particularly 3 to 6 carbon atoms. . The aromatic hydrocarbon group is the same as the aromatic hydrocarbon group in the general formula (i), and a preferable aromatic hydrocarbon group is an aryl group having 6 to 14 carbon atoms, particularly 6 to 10 carbon atoms.
 R25は、炭素数1~20の脂肪族炭化水素基、炭素数3~20の脂環族炭化水素基、炭素数6~20の芳香族炭化水素基、炭素数1~20のハロゲン化アルキル基からなる群より選ばれる。前記脂肪族炭化水素基は、一般式(i)における脂肪族炭化水素基と同様であり、好ましい脂肪族炭化水素基はアルキル基であり、より好ましくは炭素数1~10、さらに好ましくは1~5、特に1~3のアルキル基である。前記脂環族炭化水素基は、一般式(i)における脂環族炭化水素基と同様であり、好ましい脂環族炭化水素基は炭素数3~10、特に3~6のシクロアルキル基である。前記芳香族炭化水素基は、一般式(i)における芳香族炭化水素基と同様であり、好ましい芳香族炭化水素基は炭素数6~14、特に6~10のアリール基である。前記ハロゲン化アルキル基は炭素数が1~10、さらに好ましくは1~5、特に1~3のアルキル基において、1~2個の水素原子がハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子)によって置換されたアルキル基である。好ましいハロゲン化アルキル基として、モノフルオロメチル基、ジフルオロメチル基、モノクロロメチル基、ジクロロメチル基が挙げられる。後述するmが2以上の整数のとき、当該2以上のR25は各々独立に上記群より選ばれればよい。 R 25 represents an aliphatic hydrocarbon group having 1 to 20 carbon atoms, an alicyclic hydrocarbon group having 3 to 20 carbon atoms, an aromatic hydrocarbon group having 6 to 20 carbon atoms, or an alkyl halide having 1 to 20 carbon atoms. Selected from the group consisting of groups. The aliphatic hydrocarbon group is the same as the aliphatic hydrocarbon group in the general formula (i), and the preferred aliphatic hydrocarbon group is an alkyl group, more preferably 1 to 10 carbon atoms, still more preferably 1 to 1 carbon atom. 5, especially 1-3 alkyl groups. The alicyclic hydrocarbon group is the same as the alicyclic hydrocarbon group in the general formula (i), and a preferred alicyclic hydrocarbon group is a cycloalkyl group having 3 to 10 carbon atoms, particularly 3 to 6 carbon atoms. . The aromatic hydrocarbon group is the same as the aromatic hydrocarbon group in the general formula (i), and a preferable aromatic hydrocarbon group is an aryl group having 6 to 14 carbon atoms, particularly 6 to 10 carbon atoms. The halogenated alkyl group has 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms, particularly 1 to 3 carbon atoms, and 1 to 2 hydrogen atoms are halogen atoms (for example, fluorine atom, chlorine atom, bromine atom). ) Substituted with an alkyl group. Preferred halogenated alkyl groups include a monofluoromethyl group, a difluoromethyl group, a monochloromethyl group, and a dichloromethyl group. When m described later is an integer of 2 or more, the R 25 of 2 or more may be independently selected from the above group.
 kは2~12の整数であり、好ましくは4~11、より好ましくは4~6の整数である。当該kの値により構成炭素原子の数が変動する炭素環において、各炭素原子が有する水素原子は省略されている。mが1以上のとき、当該1以上のR25は、当該炭素環を構成する炭素原子が有する水素原子と置換されている。
 mは0以上であって、2k以下の整数であり、好ましくは0~4、より好ましくは1~4の整数である。
k is an integer of 2 to 12, preferably 4 to 11, more preferably an integer of 4 to 6. In the carbocycle in which the number of constituent carbon atoms varies depending on the value of k, the hydrogen atom of each carbon atom is omitted. When m is 1 or more, the one or more R 25 is substituted with a hydrogen atom of a carbon atom constituting the carbocycle.
m is an integer of 0 or more and 2k or less, preferably 0 to 4, more preferably 1 to 4.
 好ましい一般式(iii)の二価フェノール残基においては、R21およびR23は、各々独立に、好ましくは同時に、水素原子、または炭素数1~10、特に1~3のアルキル基である;R22およびR24は、各々独立に、好ましくは同時に、水素原子、または炭素数1~10、特に1~3のアルキル基である;R25は、炭素数1~10、特に1~3のアルキル基である;特にmが2以上の整数のとき、当該2以上のR25は各々独立に上記アルキル基であればよく、好ましくは同時に、炭素数1~10、特に1~3のアルキル基である;kは4~11、特に4~6の整数である;mは0~4、特に1~4の整数である。 In preferred divalent phenol residues of general formula (iii), R 21 and R 23 are each independently, preferably simultaneously a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, especially 1 to 3 carbon atoms; R 22 and R 24 are each independently, preferably simultaneously, a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, particularly 1 to 3 carbon atoms; R 25 is a group having 1 to 10 carbon atoms, particularly 1 to 3 carbon atoms. In particular, when m is an integer of 2 or more, the two or more R 25 s may be independently the above alkyl groups, and preferably at the same time, an alkyl group having 1 to 10 carbon atoms, particularly 1 to 3 carbon atoms. K is an integer from 4 to 11, in particular from 4 to 6; m is an integer from 0 to 4, in particular from 1 to 4.
 より好ましい一般式(iii)の二価フェノール残基においては、R21~R24は、同時に、水素原子、または炭素数1~10、特に1~3のアルキル基である;R25は、炭素数1~10、特に1~3のアルキル基である;特にmが2以上の整数のとき、当該2以上のR25は同時に、炭素数1~10、特に1~3のアルキル基である;kは4~6の整数である;mは2~4の整数である。 In a more preferred dihydric phenol residue of the general formula (iii), R 21 to R 24 are simultaneously a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, particularly 1 to 3 carbon atoms; R 25 is carbon An alkyl group having a number of 1 to 10, particularly 1 to 3; particularly when m is an integer of 2 or more, the R 25 of 2 or more is an alkyl group having 1 to 10 carbon atoms, particularly 1 to 3 carbon atoms; k is an integer from 4 to 6; m is an integer from 2 to 4.
 上記一般式(iii)の二価フェノール残基を導入するための化合物としては、例えば、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン(BPZ)、1,1-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシ-3-メチルフェニル)シクロヘキサン(DMBPC)、1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、1,1-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)シクロペンタン、1,1-ビス(4-ヒドロキシ-3-メチルフェニル)シクロペンタン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン(BPTMC)、1,1-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(4-ヒドロキシ-3-メチルフェニル)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)シクロドデカン、1,1-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)シクロドデカン、1,1-ビス(4-ヒドロキシ-3-メチルフェニル)シクロドデカンが挙げられる。 Examples of the compound for introducing the dihydric phenol residue of the general formula (iii) include 1,1-bis (4-hydroxyphenyl) cyclohexane (BPZ), 1,1-bis (4-hydroxy-3) , 5-dimethylphenyl) cyclohexane, 1,1-bis (4-hydroxy-3-methylphenyl) cyclohexane (DMBPC), 1,1-bis (4-hydroxyphenyl) cyclopentane, 1,1-bis (4- Hydroxy-3,5-dimethylphenyl) cyclopentane, 1,1-bis (4-hydroxy-3-methylphenyl) cyclopentane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane (BPTMC), 1,1-bis (4-hydroxy-3,5-dimethylphenyl) -3,3,5-trimethylcycle Hexane, 1,1-bis (4-hydroxy-3-methylphenyl) -3,3,5-trimethylcyclohexane, 1,1-bis (4-hydroxyphenyl) cyclododecane, 1,1-bis (4-hydroxy -3,5-dimethylphenyl) cyclododecane and 1,1-bis (4-hydroxy-3-methylphenyl) cyclododecane.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 一般式(iv)中、R31、R32、R33およびR34は各々独立に水素原子、ハロゲン原子、炭素数1~20の脂肪族炭化水素基、炭素数3~20の脂環族炭化水素基、炭素数6~20の芳香族炭化水素基からなる群から選ばれる。前記ハロゲン原子は、一般式(i)におけるハロゲン原子と同様であり、好ましいハロゲン原子はフッ素原子、塩素原子、臭素原子)である。前記脂肪族炭化水素基は、一般式(i)における脂肪族炭化水素基と同様であり、好ましい脂肪族炭化水素基はアルキル基であり、より好ましくは炭素数1~10、さらに好ましくは1~5、特に1~3のアルキル基である。前記脂環族炭化水素基は、一般式(i)における脂環族炭化水素基と同様であり、好ましい脂環族炭化水素基は炭素数3~10、特に3~6のシクロアルキル基である。前記芳香族炭化水素基は、一般式(i)における芳香族炭化水素基と同様であり、好ましい芳香族炭化水素基は炭素数6~14、特に6~10のアリール基である。 In the general formula (iv), R 31 , R 32 , R 33 and R 34 are each independently a hydrogen atom, a halogen atom, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, or an alicyclic carbon atom having 3 to 20 carbon atoms. Selected from the group consisting of a hydrogen group and an aromatic hydrocarbon group having 6 to 20 carbon atoms. The halogen atom is the same as the halogen atom in formula (i), and preferred halogen atoms are a fluorine atom, a chlorine atom, and a bromine atom. The aliphatic hydrocarbon group is the same as the aliphatic hydrocarbon group in the general formula (i), and the preferred aliphatic hydrocarbon group is an alkyl group, more preferably 1 to 10 carbon atoms, still more preferably 1 to 1 carbon atom. 5, especially 1-3 alkyl groups. The alicyclic hydrocarbon group is the same as the alicyclic hydrocarbon group in the general formula (i), and a preferred alicyclic hydrocarbon group is a cycloalkyl group having 3 to 10 carbon atoms, particularly 3 to 6 carbon atoms. . The aromatic hydrocarbon group is the same as the aromatic hydrocarbon group in the general formula (i), and a preferable aromatic hydrocarbon group is an aryl group having 6 to 14 carbon atoms, particularly 6 to 10 carbon atoms.
 R35は水素原子、ハロゲン原子、炭素数1~20の脂肪族炭化水素基、炭素数3~20の脂環族炭化水素基、炭素数6~20の芳香族炭化水素基からなる群から選ばれる。前記ハロゲン原子は、一般式(i)におけるハロゲン原子と同様であり、好ましいハロゲン原子はフッ素原子、塩素原子、臭素原子である。前記脂肪族炭化水素基は、一般式(i)における脂肪族炭化水素基と同様であり、好ましい脂肪族炭化水素基はアルキル基であり、より好ましくは炭素数1~10、さらに好ましくは1~5、特に1~3のアルキル基である。前記脂環族炭化水素基は、一般式(i)における脂環族炭化水素基と同様であり、好ましい脂環族炭化水素基は炭素数3~10、特に3~6のシクロアルキル基である。前記芳香族炭化水素基は、一般式(i)における芳香族炭化水素基と同様であり、好ましい芳香族炭化水素基は炭素数6~14、特に6~10のアリール基である。 R 35 is selected from the group consisting of a hydrogen atom, a halogen atom, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, an alicyclic hydrocarbon group having 3 to 20 carbon atoms, and an aromatic hydrocarbon group having 6 to 20 carbon atoms. It is. The halogen atom is the same as the halogen atom in the general formula (i), and preferred halogen atoms are a fluorine atom, a chlorine atom, and a bromine atom. The aliphatic hydrocarbon group is the same as the aliphatic hydrocarbon group in the general formula (i), and the preferred aliphatic hydrocarbon group is an alkyl group, more preferably 1 to 10 carbon atoms, still more preferably 1 to 1 carbon atom. 5, especially 1-3 alkyl groups. The alicyclic hydrocarbon group is the same as the alicyclic hydrocarbon group in the general formula (i), and a preferred alicyclic hydrocarbon group is a cycloalkyl group having 3 to 10 carbon atoms, particularly 3 to 6 carbon atoms. . The aromatic hydrocarbon group is the same as the aromatic hydrocarbon group in the general formula (i), and a preferable aromatic hydrocarbon group is an aryl group having 6 to 14 carbon atoms, particularly 6 to 10 carbon atoms.
 R36は炭素数6~20の芳香族炭化水素基からなる群より選ばれる。前記芳香族炭化水素基は、一般式(i)における芳香族炭化水素基と同様であり、好ましい芳香族炭化水素基は炭素数6~14、特に6~10のアリール基である。R36が水素原子またはアルキル基であると、耐熱性が低下し、特に接着層の吸湿後においてハンダ耐性が低下する。 R 36 is selected from the group consisting of aromatic hydrocarbon groups having 6 to 20 carbon atoms. The aromatic hydrocarbon group is the same as the aromatic hydrocarbon group in the general formula (i), and a preferable aromatic hydrocarbon group is an aryl group having 6 to 14 carbon atoms, particularly 6 to 10 carbon atoms. When R 36 is a hydrogen atom or an alkyl group, the heat resistance is lowered, and particularly after the moisture absorption of the adhesive layer, the solder resistance is lowered.
 好ましい一般式(iv)の二価フェノール残基においては、R31およびR33は、各々独立に、好ましくは同時に、水素原子、ハロゲン原子、炭素数1~10、特に1~3のアルキル基、または炭素数6~20、特に6~10のアリール基である;R32およびR34は、各々独立に、好ましくは同時に、水素原子、ハロゲン原子、または炭素数1~10、特に1~3のアルキル基である;R35は、水素原子、または炭素数1~10、特に1~3のアルキル基である;R36は、炭素数6~20、特に6~10のアリール基である。 In the preferred divalent phenol residue of the general formula (iv), R 31 and R 33 are each independently and preferably simultaneously a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, particularly 1 to 3 carbon atoms, Or an aryl group having 6 to 20 carbon atoms, particularly 6 to 10 carbon atoms; R 32 and R 34 are each independently, preferably simultaneously, a hydrogen atom, a halogen atom, or a carbon atom having 1 to 10 carbon atoms, particularly 1 to 3 carbon atoms. R 35 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, particularly 1 to 3 carbon atoms; R 36 is an aryl group having 6 to 20 carbon atoms, particularly 6 to 10 carbon atoms.
 より好ましい一般式(iv)の二価フェノール残基においては、R31~R34は、同時に、水素原子、ハロゲン原子、または炭素数1~10、特に1~3のアルキル基である;R35は、水素原子、または炭素数1~10、特に1~3のアルキル基である;R36は、炭素数6~20、特に6~10のアリール基である。 In a more preferred dihydric phenol residue of the general formula (iv), R 31 to R 34 are simultaneously a hydrogen atom, a halogen atom, or an alkyl group having 1 to 10 carbon atoms, particularly 1 to 3 carbon atoms; R 35 Is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, particularly 1 to 3 carbon atoms; R 36 is an aryl group having 6 to 20 carbon atoms, particularly 6 to 10 carbon atoms.
 上記一般式(iv)の二価フェノール残基を導入するための化合物としては、例えば、ビス(4-ヒドロキシフェニル)フェニルメタン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン(BPAP)、1,1-ビス(4-ヒドロキシ-3-メチルフェニル)-1-フェニルエタン、1,1-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)-1-フェニルエタン、1,1-ビス(4-ヒドロキシ-3,5-ジブロモフェニル)-1-フェニルエタン、1,1-ビス(4-ヒドロキシ-3-フェニルフェニル)-1-フェニルエタン等が挙げられる。 Examples of the compound for introducing the dihydric phenol residue of the general formula (iv) include bis (4-hydroxyphenyl) phenylmethane, 1,1-bis (4-hydroxyphenyl) -1-phenylethane ( BPAP), 1,1-bis (4-hydroxy-3-methylphenyl) -1-phenylethane, 1,1-bis (4-hydroxy-3,5-dimethylphenyl) -1-phenylethane, 1,1 -Bis (4-hydroxy-3,5-dibromophenyl) -1-phenylethane, 1,1-bis (4-hydroxy-3-phenylphenyl) -1-phenylethane and the like.
 上記ビスフェノールI残基を導入するための化合物の中でも、前記耐熱性、溶解性向上の観点から、9,9-ビス(4-ヒドロキシフェニル)フルオレン(BPF)、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン(BCF)、N-フェニル-3,3-ビス(4-ヒドロキシフェニル)フタルイミジン(PPPBP)、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン(BPZ)、1,1-ビス(4-ヒドロキシ-3-メチルフェニル)シクロヘキサン(DMBPC)、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン(BPTMC)、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン(BPAP)を好ましく用いることができる。これらの化合物は単独で使用してもよいし、あるいは2種類以上混合して使用してもよい。 Among the compounds for introducing the bisphenol I residue, 9,9-bis (4-hydroxyphenyl) fluorene (BPF), 9,9-bis (4-hydroxy) is used from the viewpoint of improving heat resistance and solubility. -3-methylphenyl) fluorene (BCF), N-phenyl-3,3-bis (4-hydroxyphenyl) phthalimidine (PPPBP), 1,1-bis (4-hydroxyphenyl) cyclohexane (BPZ), 1,1 -Bis (4-hydroxy-3-methylphenyl) cyclohexane (DMBPC), 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane (BPTMC), 1,1-bis (4-hydroxy) Phenyl) -1-phenylethane (BPAP) can be preferably used. These compounds may be used alone or in combination of two or more.
 上記した一般式(i)~(iv)で表される1種以上の二価フェノール残基以外に、さらに、下記一般式(v)で表される二価フェノール残基(以下、ビスフェノールII残基ということがある)を導入することで有機溶剤に対する溶解性が増し、得られる被膜の被着体に対する接着性を高めることができる。 In addition to the one or more dihydric phenol residues represented by the general formulas (i) to (iv) described above, a dihydric phenol residue represented by the following general formula (v) (hereinafter referred to as bisphenol II residue). In some cases, the solubility in an organic solvent is increased, and the adhesion of the resulting film to an adherend can be enhanced.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 一般式(v)中、R5、R6、RおよびRは各々独立に水素原子、ハロゲン原子、炭素数1~20の脂肪族炭化水素基、炭素数3~20の脂環族炭化水素基、炭素数6~20の芳香族炭化水素基からなる群から選ばれる。前記ハロゲン原子は、一般式(i)におけるハロゲン原子と同様であり、好ましいハロゲン原子はフッ素原子、塩素原子、臭素原子である。前記脂肪族炭化水素基は、一般式(i)における脂肪族炭化水素基と同様であり、好ましい脂肪族炭化水素基はアルキル基であり、より好ましくは炭素数1~10、さらに好ましくは1~5、特に1~3のアルキル基である。前記脂環族炭化水素基は、一般式(i)における脂環族炭化水素基と同様であり、好ましい脂環族炭化水素基は炭素数3~10、特に3~6のシクロアルキル基である。前記芳香族炭化水素基は、一般式(i)における芳香族炭化水素基と同様であり、好ましい芳香族炭化水素基は炭素数6~14、特に6~10のアリール基である。 In general formula (v), R 5 , R 6 , R 7 and R 8 are each independently a hydrogen atom, a halogen atom, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, or an alicyclic carbon atom having 3 to 20 carbon atoms. Selected from the group consisting of a hydrogen group and an aromatic hydrocarbon group having 6 to 20 carbon atoms. The halogen atom is the same as the halogen atom in the general formula (i), and preferred halogen atoms are a fluorine atom, a chlorine atom, and a bromine atom. The aliphatic hydrocarbon group is the same as the aliphatic hydrocarbon group in the general formula (i), and the preferred aliphatic hydrocarbon group is an alkyl group, more preferably 1 to 10 carbon atoms, still more preferably 1 to 1 carbon atom. 5, especially 1-3 alkyl groups. The alicyclic hydrocarbon group is the same as the alicyclic hydrocarbon group in the general formula (i), and a preferred alicyclic hydrocarbon group is a cycloalkyl group having 3 to 10 carbon atoms, particularly 3 to 6 carbon atoms. . The aromatic hydrocarbon group is the same as the aromatic hydrocarbon group in the general formula (i), and a preferable aromatic hydrocarbon group is an aryl group having 6 to 14 carbon atoms, particularly 6 to 10 carbon atoms.
 好ましい一般式(v)の二価フェノール残基においては、RおよびRは、各々独立に、好ましくは同時に、水素原子、ハロゲン原子、または炭素数1~10、特に1~3のアルキル基である;RおよびRは、各々独立に、好ましくは同時に、水素原子、ハロゲン原子、または炭素数1~10、特に1~3のアルキル基である。 In the preferred divalent phenol residue of the general formula (v), R 5 and R 7 are each independently, preferably simultaneously, a hydrogen atom, a halogen atom, or an alkyl group having 1 to 10 carbon atoms, particularly 1 to 3 carbon atoms. R 6 and R 8 are each independently, preferably simultaneously, a hydrogen atom, a halogen atom, or an alkyl group having 1 to 10 carbon atoms, particularly 1 to 3 carbon atoms.
 上記一般式(v)の二価フェノール残基を導入するための化合物としては、例えば、2,2-ビス(4-ヒドロキシフェニル)プロパン(BPA)、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン(BPC)、2,2-ビス(4-ヒドロキシ-3,5-ジブロモフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジクロロフェニル)プロパン等が挙げられる。これらの化合物は単独で使用してもよいし、あるいは2種類以上混合して使用してもよい。 Examples of the compound for introducing the dihydric phenol residue of the general formula (v) include 2,2-bis (4-hydroxyphenyl) propane (BPA) and 2,2-bis (4-hydroxy-3). , 5-dimethylphenyl) propane, 2,2-bis (4-hydroxy-3-methylphenyl) propane (BPC), 2,2-bis (4-hydroxy-3,5-dibromophenyl) propane, 2,2 -Bis (4-hydroxy-3,5-dichlorophenyl) propane and the like. These compounds may be used alone or in combination of two or more.
 上記一般式(v)の二価フェノール残基を導入するための化合物の中でも、耐熱性のさらなる向上の観点から、2-ビス(4-ヒドロキシフェニル)プロパン(BPA)、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン(BPC)、2,2-ビス(3,5-ジメチル-4-ヒドロキシフェニル)プロパン(TMBPA)を好ましく用いることができ、耐熱性と経済性のバランスが優れる上で、2-ビス(4-ヒドロキシフェニル)プロパン(BPA)が特に好ましい。他のビスフェノール類と混合して用いることもできるが、得られるポリアリレート樹脂(B)の耐熱性と経済性の観点より、上記一般式(i)~(iv)の二価フェノール残基を導入するための化合物に加え、一般式(v)の二価フェノール残基を導入するための化合物として、BPAを含め2種類以下、特にBPAを単独で使用することが好ましい。 Among the compounds for introducing the dihydric phenol residue of the general formula (v), 2-bis (4-hydroxyphenyl) propane (BPA), 2,2-bis ( 4-hydroxy-3-methylphenyl) propane (BPC) and 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane (TMBPA) can be preferably used, and the balance between heat resistance and economical efficiency In view of superiority, 2-bis (4-hydroxyphenyl) propane (BPA) is particularly preferred. Although mixed with other bisphenols, the divalent phenol residues represented by the above general formulas (i) to (iv) are introduced from the viewpoint of heat resistance and economy of the polyarylate resin (B) obtained. In addition to the compound to be used, it is preferable to use not more than two kinds, particularly BPA alone, including BPA as the compound for introducing the dihydric phenol residue of the general formula (v).
 ポリアリレート樹脂(B)に、ビスフェノールI残基から選ばれる二価フェノール残基を導入し、所望によりビスフェノールII残基を導入する場合、(ビスフェノールI残基)/(ビスフェノールI残基+ビスフェノールII残基)が10/100~100/100(モル比)であることが好ましく、30/100~100/100(モル比)であることがより好ましい。二価フェノール成分の合計に対し、ビスフェノールI残基が10モル%未満であると、ポリアリレート樹脂(B)の耐熱性が劣ることがある。経済性のさらなる向上の観点からは、(ビスフェノールI残基)/(ビスフェノールI残基+ビスフェノールII残基)は10/100~80/100(モル比)であることが好ましく、20/100~80/100(モル比)であることがさらに好ましい。 When a dihydric phenol residue selected from bisphenol I residues is introduced into the polyarylate resin (B), and a bisphenol II residue is introduced as desired, (bisphenol I residue) / (bisphenol I residue + bisphenol II) The residue is preferably 10/100 to 100/100 (molar ratio), more preferably 30/100 to 100/100 (molar ratio). When the bisphenol I residue is less than 10 mol% with respect to the total of the dihydric phenol components, the heat resistance of the polyarylate resin (B) may be inferior. From the viewpoint of further improving the economic efficiency, (bisphenol I residue) / (bisphenol I residue + bisphenol II residue) is preferably 10/100 to 80/100 (molar ratio), and 20/100 to More preferably, it is 80/100 (molar ratio).
 ポリアリレート樹脂(B)には、本発明の特性や効果を損なわない範囲で、ビスフェノールI残基やビスフェノールII残基以外のビスフェノール残基を導入してもよい。そのようなビスフェノール類として、例えば、4,4’-ジヒドロキシビフェニル、4,4’-ジヒドロキシジフェニルメタン、4,4’-ジヒドロキシジフェニルメタン、4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシジフェニルスルフィド、4,4’-ジヒドロキシジフェニルケトン、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)ブタン、4-メチル-2,2-ビス(4-ヒドロキシフェニル)ペンタン等を挙げることができる。 In the polyarylate resin (B), a bisphenol residue other than the bisphenol I residue or the bisphenol II residue may be introduced as long as the characteristics and effects of the present invention are not impaired. Examples of such bisphenols include 4,4′-dihydroxybiphenyl, 4,4′-dihydroxydiphenylmethane, 4,4′-dihydroxydiphenylmethane, 4,4′-dihydroxydiphenylsulfone, 4,4′-dihydroxydiphenyl ether, 4,4′-dihydroxydiphenyl sulfide, 4,4′-dihydroxydiphenyl ketone, 1,1-bis (4-hydroxyphenyl) ethane, 2,2-bis (4-hydroxyphenyl) butane, 4-methyl-2, And 2-bis (4-hydroxyphenyl) pentane.
 さらに、ポリアリレート樹脂(B)には、本発明の特性や効果を損なわない範囲で、脂肪族グリコール類やジヒドロキシベンゼンを用いてもよい。脂肪族グリコール類としては、特に限定されず、エチレングリコール、プロピレングリコール、ブタンジオール、ペンタンジオール、ヘキサンジール、ノナンジオール、デカンジオール、シクロヘキサンジメタノール、ビスフェノールAのエチレンオキサイド付加物、同プロピレンオキサイド付加物、ビスフェノールSのエチレンオキサイド付加物等を、ジヒドロキシベンゼンとしては、ヒドロキノン、レゾルシノール、カテコールを挙げることができる。 Furthermore, for the polyarylate resin (B), aliphatic glycols or dihydroxybenzene may be used as long as the characteristics and effects of the present invention are not impaired. Aliphatic glycols are not particularly limited, but ethylene glycol, propylene glycol, butanediol, pentanediol, hexanediol, nonanediol, decanediol, cyclohexanedimethanol, ethylene oxide adducts of bisphenol A, and propylene oxide adducts thereof Examples of dihydroxybenzenes such as ethylene oxide adducts of bisphenol S, hydroquinone, resorcinol, and catechol.
 ポリアリレート樹脂(B)のインヘレント粘度は、0.30~1.00dL/gであることが好ましく、0.35~0.80dL/gであることがより好ましい。インヘレント粘度が0.30dL/g未満であると、得られる樹脂組成物の可撓性が劣ったものとなって、打ち抜きやルーター加工する際に積層体端面より樹脂組成物が粉末状に脱落することがある。インヘレント粘度が1.00dL/gを超えると、エポキシ樹脂や有機溶剤と混合する際の粘度が高まり、分散性や塗工性が悪くなることがあり好ましくない。なお、インヘレント粘度は分子量の指標であり、温度25℃条件下、フェノール/1,1,2,2-テトラクロロエタンの60/40(質量比)の混合液に濃度1g/dLとなるように溶解した樹脂溶液を用い測定されるものである。 The inherent viscosity of the polyarylate resin (B) is preferably 0.30 to 1.00 dL / g, and more preferably 0.35 to 0.80 dL / g. When the inherent viscosity is less than 0.30 dL / g, the resulting resin composition has inferior flexibility, and the resin composition falls off in powder form from the end face of the laminate when punching or router processing. Sometimes. If the inherent viscosity exceeds 1.00 dL / g, the viscosity at the time of mixing with an epoxy resin or an organic solvent increases, so that dispersibility and coatability may deteriorate, which is not preferable. Inherent viscosity is an index of molecular weight, and dissolved at a concentration of 1 g / dL in a 60/40 (mass ratio) mixture of phenol / 1,1,2,2-tetrachloroethane under a temperature of 25 ° C. Measured using the prepared resin solution.
 ポリアリレート樹脂(B)のインヘレント粘度、すなわち分子量を所定の範囲とするには、重合時間を調節することで反応率を制御し分子量を調整する方法、芳香族ジカルボン酸成分あるいは二価フェノール成分のモノマーの配合比率をいずれかの成分をわずかに過剰に配合して重合することで分子量を調整する方法、反応性官能基を分子中に1つだけ有する脂肪族モノアルコール類、フェノール類、あるいは、モノカルボン酸類を末端封鎖剤としてモノマーとともに添加して分子量を調整する方法などが挙げられる。これらの中では末端封鎖剤を添加する方法が分子量の制御をしやすく好適である。 In order to set the inherent viscosity of the polyarylate resin (B), that is, the molecular weight within a predetermined range, a method of adjusting the molecular weight by controlling the reaction rate by adjusting the polymerization time, an aromatic dicarboxylic acid component or a dihydric phenol component A method of adjusting the molecular weight by polymerizing by adding a slight excess of any of the components in the blending ratio of the monomer, aliphatic monoalcohols having only one reactive functional group in the molecule, phenols, or Examples thereof include a method of adjusting the molecular weight by adding monocarboxylic acids together with monomers as end-capping agents. Among these, the method of adding a terminal blocking agent is preferable because the molecular weight can be easily controlled.
 前記末端封鎖剤としては、例えばメタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、2-ブタノール、ペンタノール、ヘキサノール、ドデシルアルコール、ステアリルアルコール、ベンジルアルコール、フェネチルアルコール等の脂肪族モノアルコール類;フェノール、クレゾール、2,6-キシレノール、2,4-キシレノール、p-tert-ブチルフェノール(PTBP)、p-tert-オクチルフェノール、クミルフェノール等のフェノール類;および安息香酸、メチル安息香酸、ナフトエ酸、酢酸、プロピオン酸、酪酸、オレイン酸、ステアリン酸等のモノカルボン酸類、あるいはそれらの誘導体が挙げられる。 Examples of the end-capping agent include aliphatic monoalcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, 2-butanol, pentanol, hexanol, dodecyl alcohol, stearyl alcohol, benzyl alcohol, and phenethyl alcohol; Phenols such as phenol, cresol, 2,6-xylenol, 2,4-xylenol, p-tert-butylphenol (PTBP), p-tert-octylphenol, cumylphenol; and benzoic acid, methylbenzoic acid, naphthoic acid, Examples thereof include monocarboxylic acids such as acetic acid, propionic acid, butyric acid, oleic acid and stearic acid, and derivatives thereof.
 本発明で用いるポリアリレート樹脂(B)のガラス転移温度は200℃以上であり、200℃以上320℃未満であることが好ましく、210℃以上310℃未満であることがより好ましく、220℃以上300℃未満であることがさらに好ましく、230℃以上290℃未満であることが最も好ましい。ガラス転移温度を所定範囲とすることで、得られる樹脂組成物の耐熱性が高いものとなる。ガラス転移温度が200℃未満であると、樹脂組成物の耐熱性が劣ったものとなる。ガラス転移温度が320℃以上であると樹脂組成物のガラス転移温度が高くなりすぎるため、硬化反応が十分に進行しなくなる。 The glass transition temperature of the polyarylate resin (B) used in the present invention is 200 ° C. or higher, preferably 200 ° C. or higher and lower than 320 ° C., more preferably 210 ° C. or higher and lower than 310 ° C., 220 ° C. or higher and 300 ° C. or higher. It is more preferable that the temperature is lower than ℃, and it is most preferable that the temperature is 230 ° C or higher and lower than 290 ° C. By setting the glass transition temperature to a predetermined range, the resulting resin composition has high heat resistance. When the glass transition temperature is less than 200 ° C., the heat resistance of the resin composition is inferior. When the glass transition temperature is 320 ° C. or higher, the glass transition temperature of the resin composition becomes too high, so that the curing reaction does not proceed sufficiently.
 ポリアリレート樹脂(B)のカルボキシル価は、10mol/ton以上であることが好ましく、20mol/ton以上であることがより好ましく、30mol/ton以上であることがさらに好ましい。ポリアリレート樹脂(B)のカルボキシル価は、ポリアリレート樹脂(B)中の末端カルボキシル基の含有比率を表しているが、カルボキシル基がエポキシ樹脂(A)の有するエポキシ基と反応することで、硬化生成物中でのエポキシ樹脂(A)とポリアリレート樹脂(B)とを相溶化しやすくなる。ポリアリレート樹脂(B)に末端カルボキシル基を導入する方法は、重合反応を反応が完結する前に停止する方法、およびアルカリ等によりエステル結合を加水分解する方法などが挙げられる。 The carboxyl value of the polyarylate resin (B) is preferably 10 mol / ton or more, more preferably 20 mol / ton or more, and further preferably 30 mol / ton or more. The carboxyl value of the polyarylate resin (B) represents the content ratio of the terminal carboxyl group in the polyarylate resin (B), but it is cured by reacting the carboxyl group with the epoxy group of the epoxy resin (A). It becomes easy to compatibilize the epoxy resin (A) and the polyarylate resin (B) in the product. Examples of the method for introducing a terminal carboxyl group into the polyarylate resin (B) include a method in which the polymerization reaction is stopped before the reaction is completed, and a method in which an ester bond is hydrolyzed with an alkali or the like.
 本発明の樹脂組成物において、エポキシ樹脂(A)とポリアリレート樹脂(B)の含有比率は、(A)/(B)が30/70~90/10(質量比)であり、35/65~85/15(質量比)であることが好ましく、40/60~80/20(質量比)であることがより好ましく、40/60~70/30(質量比)であることがさらに好ましい。エポキシ樹脂(A)の含有量が30質量%未満では樹脂組成物の被着体に対する接着性が不十分なものとなる。エポキシ樹脂(A)の含有量が90質量%を超えると湿熱処理後の耐熱性が十分なものとならない。 In the resin composition of the present invention, the content ratio of the epoxy resin (A) and the polyarylate resin (B) is (A) / (B) of 30/70 to 90/10 (mass ratio), and 35/65 Is preferably 85/15 (mass ratio), more preferably 40/60 to 80/20 (mass ratio), and still more preferably 40/60 to 70/30 (mass ratio). When the content of the epoxy resin (A) is less than 30% by mass, the adhesion of the resin composition to the adherend is insufficient. When the content of the epoxy resin (A) exceeds 90% by mass, the heat resistance after the wet heat treatment is not sufficient.
 本発明で用いられる硬化剤(C)は、エポキシ樹脂(A)と反応して硬化が進むものであれば特に制限はなく、例えば、ジエチレントリアミン、トリエチレンテトンラミンやテトラエチレンペンタミンのような脂肪族ポリアミン化合物、メンセンジアミン、イソホロンジアミン、ビス(4-アミノ-3-メチルシクロヘキシル)メタンやビス(4-アミノシクロヘキシル)メタン等の脂環族ポリアミン化合物、メタキシレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホンやメタフェニレンジアミン等の芳香族ポリアミン化合物、ジシアンジアミド、アジピン酸ジヒドラジドやポリアミドポリアミン等のポリアミン化合物、あるいは、無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、無水メチルナジック酸、ドデシル無水コハク酸、無水クロレンディック酸等の1官能性酸無水物、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸無水物、エチレングリコールビス(アンヒドロトリメート)やメチルシクロヘキサンテトラカルボン酸無水物等の2官能性酸無水物、無水トリメリット酸やポリアゼライン酸無水物等の遊離酸無水カルボン酸を挙げることができる。これらの硬化剤は単独で用いてもよいし、2種以上を混合して用いてもよい。 The curing agent (C) used in the present invention is not particularly limited as long as it cures by reacting with the epoxy resin (A). For example, a fat such as diethylenetriamine, triethylenetetonlamine or tetraethylenepentamine. Polyamine compounds, mensendiamine, isophoronediamine, alicyclic polyamine compounds such as bis (4-amino-3-methylcyclohexyl) methane and bis (4-aminocyclohexyl) methane, metaxylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone Or polyamine compounds such as metaphenylenediamine, polyamine compounds such as dicyandiamide, adipic dihydrazide and polyamide polyamine, or phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyl tet Monofunctional acid anhydrides such as hydrophthalic anhydride, methylhexahydrophthalic anhydride, methyl nadic anhydride, dodecyl succinic anhydride, chlorendic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic anhydride, ethylene glycol Bifunctional acid anhydrides such as bis (anhydrotrimate) and methylcyclohexanetetracarboxylic anhydride, and free acid carboxylic anhydrides such as trimellitic anhydride and polyazeline acid anhydride can be mentioned. These curing agents may be used alone or in combination of two or more.
 硬化剤(C)の含有量は、特に限定はされず、一般的にはエポキシ樹脂(A)のエポキシ基の化学量論量と硬化剤の官能基の化学量論量の比率(エポキシ/硬化剤)が0.5~1.5となるような範囲とすることが好ましい。硬化剤の種類によって反応メカニズムと化学量論量が異なるため一概には言えないが、硬化剤が有する活性水素の当量とエポキシ当量の比率によって、硬化剤の含有量を決定することができる。例えば、硬化剤がアミン系化合物の場合、アミノ基に結合する活性水素の当量とエポキシ当量の比率によって、アミン系化合物の配合量を算出することができる。ここで、エポキシ当量とはエポキシ樹脂の平均分子量を1分子あたりのエポキシ基数で割った値である。硬化剤がアミン化合物の場合の活性水素当量はアミン化合物の平均分子量を1分子あたりのアミノ基に結合する水素の数で割った値である。 The content of the curing agent (C) is not particularly limited, and is generally a ratio of the stoichiometric amount of the epoxy group of the epoxy resin (A) and the stoichiometric amount of the functional group of the curing agent (epoxy / curing). The agent is preferably in the range of 0.5 to 1.5. Although the reaction mechanism and the stoichiometric amount differ depending on the type of the curing agent, it cannot be generally stated, but the content of the curing agent can be determined by the ratio of the equivalent of active hydrogen and the epoxy equivalent of the curing agent. For example, when the curing agent is an amine compound, the compounding amount of the amine compound can be calculated based on the ratio between the equivalent of active hydrogen bonded to the amino group and the epoxy equivalent. Here, the epoxy equivalent is a value obtained by dividing the average molecular weight of the epoxy resin by the number of epoxy groups per molecule. When the curing agent is an amine compound, the active hydrogen equivalent is a value obtained by dividing the average molecular weight of the amine compound by the number of hydrogens bonded to amino groups per molecule.
 本発明の樹脂組成物において、硬化剤に代えて、あるいは硬化剤とともに硬化促進剤を用いることもできる。硬化促進剤としては、特に限定はされず、例えば、2-メチルイミダゾール、2-エチル-4-メチルイミダゾールや2-フェニルイミダゾール等のイミダゾール類、ベンジルジメチルアミン、2-(ジメチルアミノメチル)フェノールや2,4,6-トリス(ジメチルアミノメチル)フェノール等の3級アミン類を用いることができる。硬化促進剤の配合量も適宜に設定することができる。 In the resin composition of the present invention, a curing accelerator can be used instead of or together with the curing agent. The curing accelerator is not particularly limited, and examples thereof include imidazoles such as 2-methylimidazole, 2-ethyl-4-methylimidazole and 2-phenylimidazole, benzyldimethylamine, 2- (dimethylaminomethyl) phenol, Tertiary amines such as 2,4,6-tris (dimethylaminomethyl) phenol can be used. The compounding quantity of a hardening accelerator can also be set suitably.
 本発明の樹脂組成物において、所望の性能を付与するため、本発明で必要とする性能の範囲内でポリアリレート樹脂(B)以外の他の樹脂を配合してもよい。他の樹脂の一例としては、ポリカーボネート、ポリスチレン、ポリエステル、アクリル樹脂、ポリフェニレンエーテル、ポリスルホン、ポリエーテルスルホン、およびポリエーテルイミド等が挙げられる。また、酸化防止剤、難燃剤、紫外線吸収剤、流動性改質剤、微粒子無機フィラー等の各種添加剤を混合して用いてもよい。 In the resin composition of the present invention, a resin other than the polyarylate resin (B) may be blended within the range of the performance required in the present invention in order to impart desired performance. Examples of other resins include polycarbonate, polystyrene, polyester, acrylic resin, polyphenylene ether, polysulfone, polyethersulfone, and polyetherimide. Various additives such as an antioxidant, a flame retardant, an ultraviolet absorber, a fluidity modifier, and a fine particle inorganic filler may be mixed and used.
 本発明の樹脂組成物の製造方法について説明をする。
 本発明の樹脂組成物は、少なくともエポキシ樹脂(A)、ポリアリレート樹脂(B)および硬化剤(C)を所定比率となるように、有機溶剤に溶解、混合することで調製することができる。
The manufacturing method of the resin composition of this invention is demonstrated.
The resin composition of the present invention can be prepared by dissolving and mixing at least the epoxy resin (A), the polyarylate resin (B), and the curing agent (C) in an organic solvent so as to have a predetermined ratio.
 溶解の方法としては、エポキシ樹脂(A)、ポリアリレート樹脂(B)および硬化剤(C)を一括して有機溶剤に投入して溶解しながら混合する方法、エポキシ樹脂(A)、ポリアリレート樹脂(B)および硬化剤(C)を混合した後、有機溶剤に投入して溶解する方法、エポキシ樹脂(A)とポリアリレート樹脂(B)を混合した後、硬化剤(C)を加えながら有機溶剤に投入し溶解する方法等が挙げられる。溶解、混合時の作業性を向上し、得られる樹脂組成物の均一性を増すことが容易な点で、エポキシ樹脂(A)、ポリアリレート樹脂(B)および硬化剤(C)を一括して有機溶剤に投入して溶解しながら混合する方法が特に好ましい。なお、エポキシ樹脂(A)、ポリアリレート樹脂(B)および硬化剤(C)を溶融混合する方法も考えられるが、得られる樹脂組成物の粘性が高くなりすぎて基材上に薄膜状に塗工することが困難になるため、本発明においては必要がない限り採用すべきでない。 As a dissolution method, the epoxy resin (A), the polyarylate resin (B) and the curing agent (C) are collectively put in an organic solvent and mixed while being dissolved, the epoxy resin (A), the polyarylate resin (B) and the curing agent (C) are mixed and then dissolved in an organic solvent. After mixing the epoxy resin (A) and the polyarylate resin (B), the organic compound is added while adding the curing agent (C). For example, a method of charging in a solvent and dissolving. The epoxy resin (A), the polyarylate resin (B) and the curing agent (C) are collectively treated in that it is easy to improve the workability during dissolution and mixing and to increase the uniformity of the resulting resin composition. A method of mixing while dissolving in an organic solvent is particularly preferred. A method of melt-mixing the epoxy resin (A), the polyarylate resin (B), and the curing agent (C) is also conceivable. However, the resulting resin composition becomes too viscous and is applied in a thin film on the substrate. Since it becomes difficult to work, it should not be employed in the present invention unless necessary.
 用いる有機溶剤については、下記の点に留意する必要がある。すなわち、エポキシ樹脂(A)およびポリアリレート樹脂(B)は個々に溶解のしやすい有機溶剤の種類が異なることである。もし、どちらか一方が溶解しにくい有機溶剤を用いた場合は、得られる樹脂組成物を均一なものとすることが困難となる。 Note the following points regarding the organic solvent to be used. That is, the epoxy resin (A) and the polyarylate resin (B) are different from each other in the kind of organic solvent that is easily dissolved. If an organic solvent in which one of them is difficult to dissolve is used, it becomes difficult to make the resulting resin composition uniform.
 好ましい実施態様においては、本発明で使用するエポキシ樹脂(A)とポリアリレート樹脂(B)は共通の有機溶剤に溶解し、樹脂溶液中でこれらを混合し、樹脂ワニスとすることができる。樹脂ワニスを調製する際、エポキシ樹脂(A)とポリアリレート樹脂(B)の両成分が互いに分離することなく、相溶性の高い樹脂ワニスが得られることが好ましい。このような樹脂ワニスを用いて被膜を形成する場合、樹脂組成物内部でエポキシ樹脂(A)とポリアリレート樹脂(B)が分離せず、均一な樹脂組成物となるため、被膜の品質を均一なものとすることが可能となる。言い換えると、ポリアリレート樹脂(B)は、エポキシ樹脂(A)を溶解する有機溶剤と同じ有機溶剤に溶解しなくてはならないが、本発明で用いるポリアリレート樹脂(B)は特に、溶解可能な溶媒の種類が多く、溶媒の選択肢が広いため、目的に応じ、種々の有機溶剤を選択し、各種被膜の形成が可能となる。 In a preferred embodiment, the epoxy resin (A) and polyarylate resin (B) used in the present invention can be dissolved in a common organic solvent and mixed in a resin solution to obtain a resin varnish. When preparing the resin varnish, it is preferable that a highly compatible resin varnish can be obtained without the components of the epoxy resin (A) and the polyarylate resin (B) being separated from each other. When a film is formed using such a resin varnish, the epoxy resin (A) and the polyarylate resin (B) are not separated inside the resin composition, resulting in a uniform resin composition. Can be made. In other words, the polyarylate resin (B) must be dissolved in the same organic solvent as the organic solvent that dissolves the epoxy resin (A), but the polyarylate resin (B) used in the present invention is particularly soluble. Since there are many kinds of solvents and there are a wide range of solvent options, various organic solvents can be selected according to the purpose, and various coatings can be formed.
 用いる有機溶剤としては、ポリアリレート樹脂(B)単独を、固形分濃度20質量%以上で溶解できるものが好ましく、30質量%以上で溶解できるものがより好ましい。 As the organic solvent to be used, those capable of dissolving the polyarylate resin (B) alone at a solid concentration of 20% by mass or more are preferable, and those capable of dissolving at 30% by mass or more are more preferable.
 前記有機溶剤としては、併用するエポキシ樹脂(A)と必要に応じて用いる他の樹脂の種類によって適当なものを選択する必要があるが、1,4-ジオキサン、ジメチルアセトアミド、ジメチルホルムアミド、N-メチルピロリドン、ジメチルスルホキシド、メチルエチルケトン、シクロヘキサノン、トルエン、キシレン等を挙げることができ、これらを単独で用いてもよいし、2種以上を混合して用いてもよい。これらの中でも、1,4-ジオキサン、ジメチルホルムアミド、N-メチルピロリドン、トルエンやそれらの1種以上とメチルエチルケトンと混合したものが好ましい。 As the organic solvent, it is necessary to select an appropriate one depending on the type of the epoxy resin (A) to be used in combination and the other resin to be used, if necessary, but 1,4-dioxane, dimethylacetamide, dimethylformamide, N— Examples thereof include methyl pyrrolidone, dimethyl sulfoxide, methyl ethyl ketone, cyclohexanone, toluene, xylene and the like. These may be used alone or in combination of two or more. Among these, 1,4-dioxane, dimethylformamide, N-methylpyrrolidone, toluene and one or a mixture thereof and methyl ethyl ketone are preferable.
 硬化剤(C)も溶剤に溶解した方が硬化後の樹脂組成物が機械特性、耐熱性が優れたものとなりやすいが、エポキシ樹脂(A)およびポリアリレート樹脂(B)とともに硬化剤(C)を可溶な有機溶剤は限られる場合が多い。そのような場合には硬化剤(C)を可能な限り細かく粉砕し、エポキシ樹脂(A)およびポリアリレート樹脂(B)を溶解した溶液中に均一に分散させることが好ましい。 When the curing agent (C) is also dissolved in the solvent, the cured resin composition tends to have excellent mechanical properties and heat resistance, but the curing agent (C) together with the epoxy resin (A) and the polyarylate resin (B). Soluble organic solvents are often limited. In such a case, it is preferable to pulverize the curing agent (C) as finely as possible and uniformly disperse it in a solution in which the epoxy resin (A) and the polyarylate resin (B) are dissolved.
 前記有機溶剤に溶解し樹脂組成物を含有する樹脂ワニスを得る際、固形分濃度は10~70質量%とすることが好ましく、15~60質量%とすることがより好ましく、20~50質量%とすることがさらに好ましい。固形分濃度が10質量%未満であると被膜を形成する際に必要な厚みとすることが難しくなり、固形分濃度が70質量%を超えると被膜の形成が難しくなるばかりでなく、得られる被膜の厚み精度が低下するため好ましくない。 When obtaining a resin varnish dissolved in the organic solvent and containing a resin composition, the solid content concentration is preferably 10 to 70% by mass, more preferably 15 to 60% by mass, and 20 to 50% by mass. More preferably. When the solid content concentration is less than 10% by mass, it is difficult to obtain a thickness necessary for forming a film, and when the solid content concentration exceeds 70% by mass, not only the formation of the film becomes difficult, but also the obtained film. This is not preferable because the thickness accuracy is reduced.
 前記樹脂ワニスを用い被膜を形成する方法としては、例えば、マイヤーバーコート、グラビアコート、キスコート、スピンコート等公知の塗布方式を用いて、各種基材に塗布、乾燥することで被膜の形成ができる。具体的には、離型処理を施したポリエチレンテレフタレート(PET)樹脂などからなるフィルム基材上に塗布後、乾燥させることで、樹脂組成物からなる被膜を形成することができる。 As a method of forming a film using the resin varnish, for example, a film can be formed by applying and drying on various substrates using a known coating method such as Meyer bar coating, gravure coating, kiss coating, spin coating, and the like. . Specifically, a coating film made of a resin composition can be formed by coating on a film substrate made of polyethylene terephthalate (PET) resin or the like that has been subjected to a mold release treatment and then drying.
 被膜はフィルム基材から引き剥がし樹脂組成物被膜単体として用いることもできるし、基材上に被膜が形成された積層体として用いることもできる。 The coating can be peeled off from the film substrate and used as a resin composition coating alone or as a laminate in which a coating is formed on the substrate.
 樹脂組成物からなる被膜の形成時の乾燥温度は、本発明において被膜あるいは積層体として接着等の用途で用いる場合の接着特性に対し大きく影響を及ぼすため、その選択は非常に重要である。 Since the drying temperature at the time of forming the coating film made of the resin composition has a great influence on the adhesive properties when used in applications such as adhesion as a coating film or a laminate in the present invention, its selection is very important.
 本発明において乾燥時の加熱温度は、樹脂ワニスからの有機溶剤の蒸発を促す温度であるとともに、樹脂組成物中のエポキシ樹脂(A)と硬化剤(C)とが反応する温度でもある。この反応温度はエポキシ樹脂(A)と硬化剤(C)との組み合わせで異なり、一概に決めることはできないが、80~160℃の範囲で行うことが好ましい。したがって、用いる有機溶剤は、前記溶解性の観点以外に、この温度範囲で乾燥可能なものを選択することが好ましい。また、加熱時間は有機溶剤を除去するだけでなく、樹脂組成物を所望の反応率に到達させるように設定すべきであるが、反応速度が加熱温度に依存するため一概には決められない。一例としては加熱温度が80~160℃の場合、加熱時間は5~50分間とする。加熱後の樹脂組成物の反応率はエポキシ樹脂が半硬化状態のBステージに到達するように設定することが好ましい。このようにして樹脂組成物からなる被膜を形成することができる。乾燥は、反応温度(乾燥温度)が異なる多段階で行うことが好ましい。この場合、温度が上記範囲内で段階的に上昇するように多段階で乾燥を行い、合計時間が上記範囲内になるように各段階の乾燥時間を設定すればよい。 In the present invention, the heating temperature at the time of drying is a temperature that promotes evaporation of the organic solvent from the resin varnish, and also a temperature at which the epoxy resin (A) and the curing agent (C) in the resin composition react. This reaction temperature differs depending on the combination of the epoxy resin (A) and the curing agent (C), and cannot be generally determined, but it is preferably performed in the range of 80 to 160 ° C. Therefore, it is preferable to select an organic solvent that can be dried in this temperature range, in addition to the solubility. The heating time should be set not only to remove the organic solvent but also to allow the resin composition to reach a desired reaction rate. However, since the reaction rate depends on the heating temperature, it cannot be determined unconditionally. As an example, when the heating temperature is 80 to 160 ° C., the heating time is 5 to 50 minutes. The reaction rate of the resin composition after heating is preferably set so that the epoxy resin reaches the semi-cured B stage. In this way, a film made of the resin composition can be formed. Drying is preferably performed in multiple stages with different reaction temperatures (drying temperatures). In this case, drying may be performed in multiple stages so that the temperature increases stepwise within the above range, and the drying time for each stage may be set so that the total time is within the above range.
 本発明の樹脂組成物を混合するために有機溶剤に溶解する際に、本発明の目的を損なわない範囲で消泡剤、レベリング剤、イオン補修剤等を添加してもよい。 When dissolving the resin composition of the present invention in an organic solvent, an antifoaming agent, a leveling agent, an ion repairing agent, or the like may be added as long as the object of the present invention is not impaired.
 本発明の被膜あるいは基材上に被膜が形成された積層体は、各種用途で使用が可能となる。特に電気、電子部品用途では、好適に使用が可能である。具体的な使用例としてボンディングシートを例にして説明をする。ボンディングシートは、基板上に、回路、部品あるいは他の基板等を相互に接着するための、いわゆる接着剤層であり、通常、フィルム基材上に接着剤層が形成されてなっているが、その使い道は用途において様々である。多層プリント配線板を作製する場合を例にとると、まず、ボンディングシートとしてパターン加工された回路基板上にラミネートしたのち、接着剤層からフィルム基材を剥離して、有機絶縁層、導体、または別途作製している回路基板を積層する。その後、最終硬化させて多層プリント配線板が完成する。ここで、最終硬化時には、配線等の酸化を防止、配線と基材の密着性低下を抑制するため、低温で加熱して硬化が促進されることが好ましい。したがって、本発明において、加熱硬化温度は100℃以上250℃以下であることが好ましく、120℃以上200℃以下であることがより好ましく、130℃以上190℃以下であることがさらに好ましい。最終加熱温度が250℃を超えると配線の酸化劣化が進むことがある。加熱硬化時間は十分な硬化が達成される限り特に限定されず、例えば、上記加熱硬化温度の場合、30~120分間、特に60~100分間とする。 The laminate of the present invention or a laminate having a coating formed on a substrate can be used for various purposes. In particular, it can be suitably used for electrical and electronic component applications. A specific example of use will be described using a bonding sheet as an example. The bonding sheet is a so-called adhesive layer for bonding circuits, components or other substrates to each other on a substrate, and usually an adhesive layer is formed on a film base material. Its usage varies in application. Taking the case of producing a multilayer printed wiring board as an example, first, after laminating on a circuit board patterned as a bonding sheet, the film substrate is peeled off from the adhesive layer, and an organic insulating layer, conductor, or A separately manufactured circuit board is stacked. Thereafter, it is finally cured to complete a multilayer printed wiring board. Here, at the time of final curing, in order to prevent oxidation of the wiring and the like and to suppress a decrease in the adhesion between the wiring and the substrate, it is preferable to accelerate the curing by heating at a low temperature. Therefore, in the present invention, the heat curing temperature is preferably 100 ° C. or higher and 250 ° C. or lower, more preferably 120 ° C. or higher and 200 ° C. or lower, further preferably 130 ° C. or higher and 190 ° C. or lower. When the final heating temperature exceeds 250 ° C., the wiring may be deteriorated by oxidation. The heat curing time is not particularly limited as long as sufficient curing is achieved. For example, in the case of the above heat curing temperature, the heat curing time is 30 to 120 minutes, particularly 60 to 100 minutes.
 本発明の樹脂組成物から形成した被膜あるいは積層体は、耐熱性、耐薬品性、柔軟性、平滑性に優れており、ビルドアップ方式の多層プリント配線、特に多層フレキシブルプリント配線板の積層用接着シートに適している。本発明の被膜あるいは積層体を用いることにより、フレキシブルプリント配線板はハンダを溶融するために加熱されても、接着絶縁層の膨れや剥離の発生を抑制することができる。 The film or laminate formed from the resin composition of the present invention is excellent in heat resistance, chemical resistance, flexibility and smoothness, and is used for laminating a multilayer printed wiring of a build-up system, particularly a multilayer flexible printed wiring board. Suitable for sheets. By using the coating or laminate of the present invention, even if the flexible printed wiring board is heated to melt the solder, the occurrence of swelling and peeling of the adhesive insulating layer can be suppressed.
 配線板を具体的に説明すると、多層フレキシブルプリント配線板の一例の製造においては、まず、ポリイミド樹脂からなるフレキシブル基板材料の両面に貼り付けた銅箔の各々にパターンエッチングして内層回路を形成し、場合によって、例えばポリイミド樹脂からなるカバーレイを両側の内装回路形成面の全体を覆うように圧着して、フレキシブルプリント配線板を得る。さらにその両面に、例えばポリイミド樹脂からなる別の基材のフレキシブルプリント配線板の反対面にのみ銅張りした外層フレキシブル基板が接着剤によって接合され、加圧加工によって圧着して、電子部品を搭載するための多層構造を有する多層フレキシブルプリント配線板が得られる。また、フレックスリジッドプリント配線板は、上記と同様のフレキシブルプリント配線板に、基材に樹脂を含浸させて得たプリプレグを積層したリジッド基板材料を接着剤によって積層した多層配線板である。このような多層フレキシブルプリント配線板およびフレックスリジッドプリント配線板における接着剤として本発明の樹脂組成物から形成された接着シートが使用される。 The wiring board will be described in detail. In the manufacture of an example of the multilayer flexible printed wiring board, first, the inner layer circuit is formed by pattern etching on each of the copper foils attached to both surfaces of the flexible substrate material made of polyimide resin. In some cases, for example, a cover lay made of a polyimide resin is pressure-bonded so as to cover the entire inner circuit forming surfaces on both sides to obtain a flexible printed wiring board. Furthermore, an outer layer flexible board that is copper-plated only on the opposite surface of the flexible printed wiring board of another base material made of polyimide resin, for example, is bonded to the both surfaces by an adhesive, and is pressure-bonded by pressure processing to mount an electronic component. Therefore, a multilayer flexible printed wiring board having a multilayer structure is obtained. The flex-rigid printed wiring board is a multilayer wiring board in which a rigid board material obtained by laminating a prepreg obtained by impregnating a base material with a resin is laminated on a flexible printed wiring board similar to the above with an adhesive. An adhesive sheet formed from the resin composition of the present invention is used as an adhesive in such a multilayer flexible printed wiring board and a flex-rigid printed wiring board.
 次に実施例に基づき本発明を具体的に説明するが、本発明はこれらの実施例のみに限定されるものではない。 Next, the present invention will be specifically described based on examples, but the present invention is not limited to these examples.
1.評価方法
(1)ポリアリレート樹脂のインヘレント粘度
 ポリアリレート樹脂を1,1,2,2-テトラクロロエタンに溶解し、濃度1g/dLの試料溶液を作製した。続いて、ウベローデ型粘度計を用い、25℃の温度にて試料溶液の流下時間Tおよび溶媒の落下時間Tを測定し、以下の式を用いてインヘレント粘度ηを求めた。
  インヘレント粘度η=Ln(ηrel)/c
 ただし、ηrelは相対粘度であり、次式で計算される。またc=1g/dLである。
  ηrel=T/T
1. Evaluation Method (1) Inherent Viscosity of Polyarylate Resin Polyarylate resin was dissolved in 1,1,2,2-tetrachloroethane to prepare a sample solution having a concentration of 1 g / dL. Subsequently, the flow time T of the sample solution and the drop time T 0 of the solvent were measured at a temperature of 25 ° C. using an Ubbelohde viscometer, and the inherent viscosity η was determined using the following equation.
Inherent viscosity η = Ln (η rel ) / c
However, η rel is a relative viscosity and is calculated by the following equation. C = 1 g / dL.
η rel = T / T 0
(2)ガラス転移温度
 示差走査熱量測定装置(パーキンエルマー社製DSC7)を用いて、昇温速度20℃/分で40℃から340℃まで昇温し、得られた昇温曲線中のガラス転移温度に由来する不連続変化の開始温度をガラス転移温度とした。
(2) Glass transition temperature Using a differential scanning calorimeter (DSC7, manufactured by PerkinElmer Co., Ltd.), the glass transition temperature was raised from 40 ° C. to 340 ° C. at a rate of temperature rise of 20 ° C./min. The onset temperature of the discontinuous change derived from the temperature was defined as the glass transition temperature.
(3)銅箔との接着性
 後述する実施例または比較例で得られた樹脂ワニスを、PETフィルム基材(パナック製PET37SG-1)上に、アプリケータを用い、最終乾燥厚みが15μmになるよう流涎・塗布した。
 80℃で30分乾燥後、120℃もしくは150℃で10分間加熱することで、形成された樹脂組成物の被膜を半硬化のBステージ状態にした(以下、積層体[A]という)。なおBステージ状態にするための加熱温度は、硬化剤(c1)を使用する場合は150℃、硬化剤(c2)を使用する場合は120℃である。前記積層体の被膜形成面を、銅張積層板(以下、片面CCLという、住友金属鉱山社製、銅箔/ポリイミドフィルム=8/25μm)の銅箔側に重ね合わせ、真空ラミネーターを用いてラミネートしたのち、積層体よりPETフィルム基材を離形し、銅張積層板の銅箔面に被膜が積層された積層体[B]を得た。さらに積層体[B]の被膜形成面を、別の片面CCLの銅箔側に、上記と同様にラミネートすることで、2枚の片面CCLの銅箔で被膜を挟み込んだ構成の積層体[C]を得た。この積層体[C]を加熱温度190℃、プレス圧力3MPaで90分間熱プレスして被膜を完全硬化し、接着性評価のための試料とした。前記試料を10mm幅の短冊型にカットし、引張速度100mm/minの試験条件で角度90°の引き剥がし強さを測定した。引き剥がし強さは、2.0N/cmを超える場合が「◎」、1.5N/cmを超える場合が「○」、1.0N/cmを超える場合が「△」(実用上問題なし)、1.0N/cm以下の場合が「×」と判定した。
 本発明においては、評価結果が「○」以上、特に「◎」、であることが実用上好ましい。
(3) Adhesiveness with copper foil The resin varnish obtained in Examples or Comparative Examples described later is applied to a PET film substrate (Panac PET37SG-1) using an applicator, and the final dry thickness is 15 μm. It was fluent and applied.
After drying at 80 ° C. for 30 minutes, the film of the formed resin composition was brought into a semi-cured B-stage state by heating at 120 ° C. or 150 ° C. for 10 minutes (hereinafter referred to as laminate [A]). The heating temperature for setting the B stage is 150 ° C. when the curing agent (c1) is used, and 120 ° C. when the curing agent (c2) is used. The film-formed surface of the laminate is overlaid on the copper foil side of a copper clad laminate (hereinafter referred to as single-sided CCL, manufactured by Sumitomo Metal Mining Co., Ltd., copper foil / polyimide film = 8/25 μm) and laminated using a vacuum laminator. After that, the PET film substrate was released from the laminate to obtain a laminate [B] in which a film was laminated on the copper foil surface of the copper-clad laminate. Further, the laminated body [B] is laminated on the copper foil side of another single-sided CCL in the same manner as described above, so that the laminated body [C] is sandwiched between two single-sided CCL copper foils [C] ] Was obtained. This laminate [C] was hot-pressed at a heating temperature of 190 ° C. and a press pressure of 3 MPa for 90 minutes to completely cure the coating film, and used as a sample for evaluating adhesiveness. The sample was cut into a strip shape having a width of 10 mm, and the peel strength at an angle of 90 ° was measured under the test conditions of a tensile speed of 100 mm / min. The peel strength is “◎” when it exceeds 2.0 N / cm, “◯” when it exceeds 1.5 N / cm, “△” when it exceeds 1.0 N / cm (no problem in practical use) The case of 1.0 N / cm or less was determined as “x”.
In the present invention, it is practically preferable that the evaluation result is “◯” or more, particularly “◎”.
(4)ポリイミドフィルムとの接着性
 片面CCLに代えて厚さ25μmであるポリイミドフィルム(東レ・デュポン社製カプトン)を用いた以外は、上記(3)における積層体[C]の製造方法と同じ方法により、2枚のポリイミドフィルムで被膜を挟み込んだ構成の積層体[D]を得た。前記積層体[D]を加熱温度190℃、プレス圧力3MPaで90分間熱プレスし被膜を完全硬化し、接着性評価のための試料とした。前記試料を10mm幅の短冊型にカットし、引張速度100mm/minの試験条件で角度90°の引き剥がし試験を実施し、破壊モードを評価した。破壊モードは優れたものから、ポリイミドフィルムが破壊する「材料破壊」、接着層が破壊する「凝集破壊」(実用上問題なし)、ポリイミドフィルムから接着層が剥離する「界面剥離」の順である。
 本発明においては、評価結果が「材料破壊」であることが実用上好ましい。
(4) Adhesiveness with polyimide film Except for using a polyimide film having a thickness of 25 μm (Kapton manufactured by Toray DuPont Co., Ltd.) instead of single-sided CCL, the same method for producing the laminate [C] in (3) above By the method, a laminate [D] having a configuration in which a film was sandwiched between two polyimide films was obtained. The laminate [D] was hot-pressed at a heating temperature of 190 ° C. and a pressing pressure of 3 MPa for 90 minutes to completely cure the coating film, and used as a sample for evaluating adhesiveness. The sample was cut into a strip shape having a width of 10 mm, and a peeling test at an angle of 90 ° was performed under the test condition of a tensile speed of 100 mm / min to evaluate the fracture mode. The failure mode is from excellent to "material destruction" where the polyimide film breaks, "cohesive failure" where the adhesive layer breaks (no problem in practical use), and "interface peeling" where the adhesive layer peels from the polyimide film. .
In the present invention, it is practically preferable that the evaluation result is “material destruction”.
(5)ハンダ浴試験
 (3)で作製した積層体[C]を、加熱温度190℃、プレス圧力3MPaで90分間熱プレスした後、50mm×50mmのサイズに切り出し試料とした。前記試料を、乾燥剤入りデシケータ中で24時間保管したもの(以下、絶乾試料という)と、40℃90%RHの恒温恒湿槽内で16時間保管したもの(以下、吸湿試料という)との2種類を準備した。吸湿試料の水分率は0.3%であった。これら絶乾試料、吸湿試料のそれぞれについて260℃のハンダ浴に1分間浮かべ、その前後の外観変化を評価した。ハンダ浴後、外観変化が見られなかった場合が「○」、小さな膨れが見られた場合が「△」(実用上問題なし)、激しい膨れや剥離が見られた場合が「×」と判定した。
 本発明においては、「○」であることが実用上好ましい。
 絶乾試料による評価結果により、耐熱性を評価できる。
 吸湿試料による評価結果により、吸湿後のハンダ耐性を評価できる。
(5) Solder bath test The laminate [C] produced in (3) was hot-pressed at a heating temperature of 190 ° C. and a press pressure of 3 MPa for 90 minutes, and then cut into a size of 50 mm × 50 mm to obtain a sample. A sample stored for 24 hours in a desiccator containing a desiccant (hereinafter referred to as an absolutely dry sample), and a sample stored for 16 hours in a constant temperature and humidity chamber at 40 ° C. and 90% RH (hereinafter referred to as a moisture absorption sample). Two types of were prepared. The moisture content of the moisture absorption sample was 0.3%. Each of the absolutely dry sample and the moisture absorption sample was floated in a solder bath at 260 ° C. for 1 minute, and the appearance change before and after the evaluation was evaluated. After solder bath, no change in appearance was seen as “◯”, small swelling was seen as “△” (no problem in practical use), and severe swelling or peeling was judged as “X”. .
In the present invention, “◯” is practically preferable.
The heat resistance can be evaluated based on the evaluation result of the absolutely dry sample.
The solder resistance after moisture absorption can be evaluated based on the evaluation result of the moisture absorption sample.
(6)誘電特性
 基材としてガラス基材を用いたこと以外、「(3)銅箔との接着性」の積層体[C]と同様の方法により、積層体を製造した。この積層体を、加熱温度190℃、プレス圧力3MPaで90分間熱プレスした後、被膜をガラス基材から剥離した。50mm×50mmのサイズに切り出し試料とした。得られた被膜単体を、下記測定用治具にセットし、下記装置により室温で、比誘電率および誘電正接を測定した。
<装置>アジレント・テクノロジー社製(現 キーサイト・テクノロジー社) インピーダンス/マテリアル・アナライザ E4991A
<測定用治具> 同社製 16453A
(6) Dielectric properties A laminate was produced in the same manner as the laminate [C] in “(3) Adhesiveness with copper foil” except that a glass substrate was used as the substrate. The laminate was hot-pressed at a heating temperature of 190 ° C. and a press pressure of 3 MPa for 90 minutes, and then the film was peeled from the glass substrate. A sample was cut into a size of 50 mm × 50 mm. The obtained coating film alone was set in the following measurement jig, and the relative dielectric constant and dielectric loss tangent were measured at room temperature using the following apparatus.
<Device> Impedance / Material Analyzer E4991A manufactured by Agilent Technologies (currently Keysight Technology)
<Jig for measurement> 16453A
2.原料
(1)エポキシ樹脂
(a1)ビスフェノールA型エポキシ樹脂(三菱化学社製jER828)、エポキシ当量184~194g/eq、粘度120~150P(=12~15Pa・s)(25℃)、一分子中に存在するエポキシ基の数=2個
(a2)フェノールノボラック型エポキシ樹脂(三菱化学社製jER152)、エポキシ当量176~178g/eq、粘度14~18P(=1.4~1.8Pa・s)(52℃)、一分子中に存在するエポキシ基の数=3個以上
2. Raw material (1) Epoxy resin (a1) Bisphenol A type epoxy resin (Mitsubishi Chemical Corporation jER828), epoxy equivalent of 184 to 194 g / eq, viscosity of 120 to 150 P (= 12 to 15 Pa · s) (25 ° C.), in one molecule Number of epoxy groups present in 2 = 2 (a2) phenol novolac type epoxy resin (jER152 manufactured by Mitsubishi Chemical Corporation), epoxy equivalent of 176 to 178 g / eq, viscosity of 14 to 18 P (= 1.4 to 1.8 Pa · s) (52 ° C), the number of epoxy groups present in one molecule = 3 or more
(2)ポリアリレート樹脂
 後述する製造例に記載する方法で下記特性を有するポリアリレート樹脂(b1)~(b9)を得た。
(2) Polyarylate resin Polyarylate resins (b1) to (b9) having the following characteristics were obtained by the method described in the production examples described later.
(3)硬化剤
(c1)ジシアンジアミド(日本カーバイド工業社製DD)
(c2)ジアミノジフェニルスルホン(関東化学社製特級試薬)
(3) Curing agent (c1) Dicyandiamide (DD manufactured by Nippon Carbide Industries Co., Ltd.)
(C2) Diaminodiphenyl sulfone (special grade reagent manufactured by Kanto Chemical Co., Inc.)
製造例1
 攪拌装置を備えた反応容器中に水1.2Lを入れ、水酸化ナトリウム0.79mol、二価フェノールである9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン(BCF)0.194mol、分子量調整剤としてp-tert-ブチルフェノール(PTBP)0.0116molを溶解させ、0.0013molの重合触媒(トリブチルベンジルアンモニウムクロライド)を添加し、激しく撹拌した(アルカリ水溶液)。別の容器にテレフタル酸クロライド(TPC)0.100molとイソフタル酸クロライド(IPC)0.100molを秤り取り、0.7Lの塩化メチレンに溶解させた。
 この塩化メチレン溶液を、先に調製したアルカリ水溶液を撹拌したところへ混合し、重合を開始させた。重合反応温度は20℃前後になるように調製した。重合は攪拌下で2時間行い、その後、攪拌を停止して反応液を静置して水相と有機相を分離し、水相のみを反応容器から抜き取って、残った有機相に酢酸2gを添加した。そして、水1.5Lを加えて30分間攪拌し、再度静置分離して水相を抜き出した。この水洗操作を、水洗後の水相のpHが7前後になるまで繰り返した。得られた有機相を、ホモミキサーを装着した50℃の温水槽中に徐々に投入しながら塩化メチレンを蒸発させることで、粉末状のポリマーを析出させ、これを取り出して脱水・乾燥を行い、ポリアリレート樹脂(b1)を得た。このポリアリレート樹脂(b1)のインヘレント粘度は0.49dL/gであり、DSC測定を行ったところ、結晶融解ピークは見られず、ガラス転移温度は285℃であった。その結果を表1に示す。
Production Example 1
A reaction vessel equipped with a stirrer was charged with 1.2 L of water, 0.79 mol of sodium hydroxide, and 0.194 mol of divalent phenol 9,9-bis (4-hydroxy-3-methylphenyl) fluorene (BCF). Then, 0.0116 mol of p-tert-butylphenol (PTBP) was dissolved as a molecular weight modifier, 0.0013 mol of a polymerization catalyst (tributylbenzylammonium chloride) was added, and the mixture was vigorously stirred (alkaline aqueous solution). In another container, 0.100 mol of terephthalic acid chloride (TPC) and 0.100 mol of isophthalic acid chloride (IPC) were weighed and dissolved in 0.7 L of methylene chloride.
This methylene chloride solution was mixed with the previously prepared aqueous alkaline solution to be stirred to initiate polymerization. The polymerization reaction temperature was adjusted to about 20 ° C. The polymerization is carried out for 2 hours under stirring, and then the stirring is stopped and the reaction solution is allowed to stand to separate the aqueous phase and the organic phase. Added. Then, 1.5 L of water was added, and the mixture was stirred for 30 minutes. This washing operation was repeated until the pH of the water phase after washing was around 7. The methylene chloride is evaporated while gradually adding the obtained organic phase into a 50 ° C. hot water tank equipped with a homomixer to precipitate a powdered polymer, which is taken out and dehydrated and dried. A polyarylate resin (b1) was obtained. The inherent viscosity of this polyarylate resin (b1) was 0.49 dL / g. When DSC measurement was performed, no crystal melting peak was observed, and the glass transition temperature was 285 ° C. The results are shown in Table 1.
製造例2
 二価フェノールをN-フェニル-3,3-ビス(4-ヒドロキシフェニル)フタルイミジン(PPPBP)とした以外は製造例1と同様にしてポリアリレート樹脂(b2)を得た。このポリアリレート樹脂(b2)のインヘレント粘度は0.49dL/gであり、DSC測定を行ったところ、結晶融解ピークは見られず、ガラス転移温度は300℃であった。その結果を表1に示す。
Production Example 2
A polyarylate resin (b2) was obtained in the same manner as in Production Example 1 except that N-phenyl-3,3-bis (4-hydroxyphenyl) phthalimidine (PPPBP) was used as the dihydric phenol. The inherent viscosity of this polyarylate resin (b2) was 0.49 dL / g. When DSC measurement was performed, no crystal melting peak was observed, and the glass transition temperature was 300 ° C. The results are shown in Table 1.
製造例3
 二価フェノールを1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン(BPTMC)とした以外は製造例1と同様にしてポリアリレート樹脂(b3)を得た。このポリアリレート樹脂(b3)のインヘレント粘度は0.49dL/gであり、DSC測定を行ったところ、結晶融解ピークは見られず、ガラス転移温度は255℃であった。その結果を表1に示す。
Production Example 3
A polyarylate resin (b3) was obtained in the same manner as in Production Example 1, except that 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane (BPTMC) was used as the dihydric phenol. The inherent viscosity of the polyarylate resin (b3) was 0.49 dL / g. When DSC measurement was performed, no crystal melting peak was observed, and the glass transition temperature was 255 ° C. The results are shown in Table 1.
製造例4
 二価フェノールを1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン(BPAP)とした以外は製造例1と同様にしてポリアリレート樹脂(b4)を得た。このポリアリレート樹脂(b4)のインヘレント粘度は0.49dL/gであり、DSC測定を行ったところ、結晶融解ピークは見られず、ガラス転移温度は240℃であった。その結果を表1に示す。
Production Example 4
A polyarylate resin (b4) was obtained in the same manner as in Production Example 1, except that 1,1-bis (4-hydroxyphenyl) -1-phenylethane (BPAP) was used as the dihydric phenol. The inherent viscosity of the polyarylate resin (b4) was 0.49 dL / g. When DSC measurement was performed, no crystal melting peak was observed, and the glass transition temperature was 240 ° C. The results are shown in Table 1.
製造例5
 二価フェノールを1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン(BPAP)とし、TPCとIPCの配合量をそれぞれ0.14molおよび0.06molとした以外は製造例1と同様にしてポリアリレート樹脂(b5)を得た。このポリアリレート樹脂(b5)のインヘレント粘度は0.48dL/gであり、DSC測定を行ったところ、結晶融解ピークは見られず、ガラス転移温度は265℃であった。その結果を表1に示す。
Production Example 5
The same procedure as in Production Example 1 except that 1,1-bis (4-hydroxyphenyl) -1-phenylethane (BPAP) was used as the dihydric phenol, and the amounts of TPC and IPC were 0.14 mol and 0.06 mol, respectively. Thus, a polyarylate resin (b5) was obtained. The inherent viscosity of the polyarylate resin (b5) was 0.48 dL / g. When DSC measurement was performed, no crystal melting peak was observed, and the glass transition temperature was 265 ° C. The results are shown in Table 1.
製造例6
 TPCとIPCの配合量をそれぞれ0.06molおよび0.14molとした以外は製造例5と同様にしてポリアリレート樹脂(b6)を得た。このポリアリレート樹脂(b6)のインヘレント粘度は0.49dL/gであり、DSC測定を行ったところ、結晶融解ピークは見られず、ガラス転移温度は220℃であった。その結果を表1に示す。
Production Example 6
A polyarylate resin (b6) was obtained in the same manner as in Production Example 5 except that the blending amounts of TPC and IPC were 0.06 mol and 0.14 mol, respectively. The inherent viscosity of the polyarylate resin (b6) was 0.49 dL / g. When DSC measurement was performed, no crystal melting peak was observed, and the glass transition temperature was 220 ° C. The results are shown in Table 1.
製造例7
 二価フェノールを1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン(BPTMC)0.136molおよび2,2-ビス(4-ヒドロキシフェニル)プロパン(BPA)0.058molとした以外は製造例1と同様にしてポリアリレート樹脂(b7)を得た。このポリアリレート樹脂(b7)のインヘレント粘度は0.49dL/gであり、DSC測定を行ったところ、結晶融解ピークは見られず、ガラス転移温度は240℃であった。その結果を表1に示す。
Production Example 7
Dihydric phenol was mixed with 0.136 mol of 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane (BPTMC) and 0.058 mol of 2,2-bis (4-hydroxyphenyl) propane (BPA). Except that, polyarylate resin (b7) was obtained in the same manner as in Production Example 1. The inherent viscosity of the polyarylate resin (b7) was 0.49 dL / g. When DSC measurement was performed, no crystal melting peak was observed, and the glass transition temperature was 240 ° C. The results are shown in Table 1.
製造例8
 二価フェノールを1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン(BPTMC)0.058molおよび2,2-ビス(4-ヒドロキシフェニル)プロパン(BPA)0.136molとした以外は製造例7と同様にしてポリアリレート樹脂(b8)を得た。このポリアリレート樹脂(b8)のインヘレント粘度は0.48dL/gであり、DSC測定を行ったところ、結晶融解ピークは見られず、ガラス転移温度は215℃であった。その結果を表1に示す。
Production Example 8
Dihydric phenol was mixed with 0.058 mol of 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane (BPTMC) and 0.136 mol of 2,2-bis (4-hydroxyphenyl) propane (BPA). Except that, polyarylate resin (b8) was obtained in the same manner as in Production Example 7. The inherent viscosity of this polyarylate resin (b8) was 0.48 dL / g. When DSC measurement was performed, no crystal melting peak was observed, and the glass transition temperature was 215 ° C. The results are shown in Table 1.
製造例9
 二価フェノールを2,2-ビス(4-ヒドロキシフェニル)プロパン(BPA)0.194molとした以外は製造例7と同様にしてポリアリレート樹脂(b9)を得た。このポリアリレート樹脂(b9)のインヘレント粘度は0.48dL/gであり、DSC測定を行ったところ、結晶融解ピークは見られず、ガラス転移温度は190℃であった。その結果を表1に示す。
Production Example 9
A polyarylate resin (b9) was obtained in the same manner as in Production Example 7, except that the dihydric phenol was changed to 0.194 mol of 2,2-bis (4-hydroxyphenyl) propane (BPA). The inherent viscosity of the polyarylate resin (b9) was 0.48 dL / g. When DSC measurement was performed, no crystal melting peak was observed, and the glass transition temperature was 190 ° C. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
実施例1
 攪拌機、冷却管を備えたセパラブルフラスコを使用し、有機溶剤としてN,N-ジメチルホルムアミド250質量部を用いた。当該有機溶剤に対して、始めにエポキシ樹脂(a1)50質量部を60℃で加熱溶解し、次いでポリアリレート樹脂(b1)50質量部を溶解してから、エポキシ樹脂硬化剤(c1)2.8質量部および硬化促進剤として2-エチル-4-メチルイミダゾール0.35質量部を溶解した。その後、攪拌を停止し脱気することで樹脂組成物からなる樹脂ワニスを調製した。
Example 1
A separable flask equipped with a stirrer and a condenser was used, and 250 parts by mass of N, N-dimethylformamide was used as the organic solvent. First, 50 parts by mass of the epoxy resin (a1) is heated and dissolved at 60 ° C. in the organic solvent, and then 50 parts by mass of the polyarylate resin (b1) is dissolved. Then, the epoxy resin curing agent (c1) 2. 8 parts by mass and 0.35 parts by mass of 2-ethyl-4-methylimidazole as a curing accelerator were dissolved. Then, the resin varnish which consists of a resin composition was prepared by stopping stirring and deaeration.
 得られた樹脂ワニスを用い、被膜および積層体を形成し各種評価を行った。その結果を表2に示す。 Using the obtained resin varnish, a film and a laminate were formed and subjected to various evaluations. The results are shown in Table 2.
実施例2~11および比較例1~4
 エポキシ樹脂、ポリアリレート樹脂および硬化剤の種類および配合量を表2記載のように変更した以外は、実施例1と同様の方法で、被膜および積層体を形成し各種評価を行った。その結果を表2および表3に示す。
Examples 2 to 11 and Comparative Examples 1 to 4
A coating and a laminate were formed in the same manner as in Example 1 except that the types and blending amounts of the epoxy resin, polyarylate resin, and curing agent were changed as shown in Table 2, and various evaluations were performed. The results are shown in Tables 2 and 3.
実施例12
 攪拌機、冷却管を備えたセパラブルフラスコを使用し、有機溶剤としてトルエン200質量部を用いた。当該有機溶剤に対して、始めにエポキシ樹脂(a1)50質量部を60℃で加熱溶解し、次いでポリアリレート樹脂(b4)50質量部を溶解した。この溶液へ、別の容器で有機溶剤としてのメチルエチルケトン50質量部に対して、エポキシ樹脂硬化剤(c2)16.3質量部を溶解してなる溶液を全量投入して均一混合した。その後、攪拌を停止し脱気することで樹脂ワニスを得た。実施例1と同様の方法で、被膜および積層体を形成し各種評価を行った。その結果を表2に示す。
Example 12
A separable flask equipped with a stirrer and a cooling tube was used, and 200 parts by mass of toluene was used as an organic solvent. First, 50 parts by mass of the epoxy resin (a1) was heated and dissolved at 60 ° C. in the organic solvent, and then 50 parts by mass of the polyarylate resin (b4) was dissolved. Into this solution, an entire amount of a solution obtained by dissolving 16.3 parts by mass of the epoxy resin curing agent (c2) was added to 50 parts by mass of methyl ethyl ketone as an organic solvent in another container and uniformly mixed. Then, the resin varnish was obtained by stopping stirring and deaeration. In the same manner as in Example 1, a film and a laminate were formed and various evaluations were performed. The results are shown in Table 2.
比較例5
 攪拌機、冷却管を備えたセパラブルフラスコを使用し、有機溶剤としてN,N-ジメチルホルムアミド300質量部を用いた。当該有機溶剤に対して、ポリアリレート樹脂(b4)100質量部を60℃で加熱溶解した。その後、攪拌を停止し脱気することで樹脂ワニスを得た。実施例1と同様の方法で、被膜および積層体を形成し各種評価を行った。その結果を表3に示す。
Comparative Example 5
A separable flask equipped with a stirrer and a condenser was used, and 300 parts by mass of N, N-dimethylformamide was used as the organic solvent. In the organic solvent, 100 parts by mass of polyarylate resin (b4) was dissolved by heating at 60 ° C. Then, the resin varnish was obtained by stopping stirring and deaeration. In the same manner as in Example 1, a film and a laminate were formed and various evaluations were performed. The results are shown in Table 3.
比較例6
 ポリアリレート樹脂に代えてポリカーボネート樹脂(三菱エンジニアリングプラスチックス社製ユーピロンS-3000:インヘレント粘度は0.48dL/g、ガラス転移温度145℃)50質量部を用いる以外は、実施例1と同様にして樹脂ワニスの作製を試みた。
 しかし、60℃で加熱溶解しようとしたが、ほとんど溶解することなく不溶分が発生したため、試験を中止した。
Comparative Example 6
Except for using 50 parts by mass of a polycarbonate resin (Iupilon S-3000 manufactured by Mitsubishi Engineering Plastics, Inc., inherent viscosity is 0.48 dL / g, glass transition temperature 145 ° C.) instead of the polyarylate resin, the same procedure as in Example 1 was performed. An attempt was made to produce a resin varnish.
However, although an attempt was made to dissolve by heating at 60 ° C., the test was stopped because insoluble matter was generated with almost no dissolution.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 以下の実施例/比較例における誘電特性の評価結果は以下の通りであった。
実施例3:比誘電率3.1、誘電正接0.010;
実施例8:比誘電率3.2、誘電正接0.011;
比較例4:比誘電率3.3、誘電正接0.012。
※試験周波数=1GHz
The evaluation results of dielectric characteristics in the following examples / comparative examples were as follows.
Example 3: relative dielectric constant 3.1, dielectric loss tangent 0.010;
Example 8: dielectric constant 3.2, dielectric loss tangent 0.011;
Comparative Example 4: Specific dielectric constant 3.3, dielectric loss tangent 0.012.
* Test frequency = 1 GHz
 実施例1~12で得られた樹脂組成物は、所定の配合としたため、銅箔またはポリイミドフィルムとの接着性が良好で、耐熱性が向上した。さらに優れた吸湿後のハンダ耐性も有した。 Since the resin compositions obtained in Examples 1 to 12 had a predetermined composition, they had good adhesion to copper foil or polyimide film and improved heat resistance. Furthermore, it had excellent solder resistance after moisture absorption.
 比較例1では、ポリアリレート樹脂を含有しなかったため、被膜の耐熱性が不足し、吸湿後のハンダ耐性が低下し、膨れが生じた。 In Comparative Example 1, since the polyarylate resin was not contained, the heat resistance of the coating was insufficient, the solder resistance after moisture absorption was reduced, and swelling occurred.
 比較例2では、ポリアリレート樹脂の含有量が下限値未満であったため、被膜の耐熱性が不足し、吸湿後のハンダ耐性が低下し、膨れが生じた。 In Comparative Example 2, since the content of the polyarylate resin was less than the lower limit, the heat resistance of the coating was insufficient, the solder resistance after moisture absorption was reduced, and swelling occurred.
 比較例3では、エポキシ樹脂の含有量が下限値未満であったため、銅箔およびポリイミドフィルム双方に対しての接着性が劣った。 In Comparative Example 3, since the content of the epoxy resin was less than the lower limit, the adhesion to both the copper foil and the polyimide film was inferior.
 比較例4では、ポリアリレート樹脂のガラス転移温度が低いため、吸湿後のハンダ耐性が低下した。 In Comparative Example 4, since the glass transition temperature of the polyarylate resin was low, the solder resistance after moisture absorption was reduced.
 比較例5では、エポキシ樹脂を含有しなかったため、銅箔またはポリイミドフィルムとの接着性評価において、いずれも容易に剥離し、銅箔およびポリイミドフィルム双方に対する接着性は全く有さなかった。さらに、ハンダ浴試験においては、絶乾試料、吸湿試料ともに被膜はCCLから剥離しハンダ耐性を全く有さなかった。 In Comparative Example 5, since no epoxy resin was contained, in the adhesion evaluation with the copper foil or the polyimide film, both were easily peeled off and had no adhesion to both the copper foil and the polyimide film. Further, in the solder bath test, both the absolutely dry sample and the moisture absorption sample were peeled from the CCL and had no solder resistance.
 比較例6では、ポリアリレート樹脂に替えてポリカーボネート樹脂を使用したが、溶剤に溶解しないため、エポキシ樹脂との樹脂組成物を得られなかった。 In Comparative Example 6, a polycarbonate resin was used instead of the polyarylate resin, but the resin composition with an epoxy resin could not be obtained because it was not dissolved in a solvent.
 本発明の樹脂組成物は、接着性と耐熱性が同時に求められる用途に有用であり、例えば、配線板、特に多層フレキシブルプリント配線板およびフレックスリジッドプリント配線板、における接着層の形成に有用である。 The resin composition of the present invention is useful for applications in which adhesiveness and heat resistance are required at the same time. For example, it is useful for forming an adhesive layer in a wiring board, in particular, a multilayer flexible printed wiring board and a flex-rigid printed wiring board. .

Claims (9)

  1.  一分子中に2個以上のエポキシ基を有するエポキシ樹脂(A)、ポリアリレート樹脂(B)および硬化剤(C)を含有する樹脂組成物であって、
     前記ポリアリレート樹脂(B)のガラス転移温度が200℃以上であり、
     前記エポキシ樹脂(A)の前記ポリアリレート樹脂(B)に対する含有比率(A)/(B)が30/70~90/10(質量比)である、樹脂組成物。
    A resin composition containing an epoxy resin (A) having two or more epoxy groups in one molecule, a polyarylate resin (B), and a curing agent (C),
    The glass transition temperature of the polyarylate resin (B) is 200 ° C. or higher,
    A resin composition having a content ratio (A) / (B) of the epoxy resin (A) to the polyarylate resin (B) of 30/70 to 90/10 (mass ratio).
  2.  前記エポキシ樹脂(A)のエポキシ当量が90~500g/eqである、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the epoxy equivalent of the epoxy resin (A) is 90 to 500 g / eq.
  3.  前記ポリアリレート樹脂(B)が芳香族ジカルボン酸残基および下記一般式(i)~(iv)で表される二価フェノール残基からなる群から選択される1種以上の二価フェノール残基を含む、請求項1または2に記載の樹脂組成物:
    Figure JPOXMLDOC01-appb-C000001
    [一般式(i)中、R、R、RおよびRは各々独立に水素原子、ハロゲン原子、炭素数1~20の脂肪族炭化水素基、炭素数3~20の脂環族炭化水素基、炭素数6~20の芳香族炭化水素基からなる群から選ばれる];
    Figure JPOXMLDOC01-appb-C000002
    [一般式(ii)中、R11、R12、R13およびR14は各々独立に水素原子、ハロゲン原子、炭素数1~20の脂肪族炭化水素基、炭素数3~20の脂環族炭化水素基、炭素数6~20の芳香族炭化水素基からなる群から選ばれ、R15は水素原子、炭素数1~10のアルキル基、炭素数2~10のアルケニル基、あるいは炭素数6~20のアリール基からなる群から選ばれる];
    Figure JPOXMLDOC01-appb-C000003
    [一般式(iii)中、R21、R22、R23およびR24は各々独立に水素原子、ハロゲン原子、炭素数1~20の脂肪族炭化水素基、炭素数3~20の脂環族炭化水素基、炭素数6~20の芳香族炭化水素基からなる群から選ばれ、R25は各々独立に、炭素数1~20の脂肪族炭化水素基、炭素数3~20の脂環族炭化水素基、炭素数6~20の芳香族炭化水素基、炭素数1~20のハロゲン化アルキル基からなる群より選ばれ、kは2~12の整数であり、mは0以上であって、2k以下の整数である];および
    Figure JPOXMLDOC01-appb-C000004
    [一般式(iv)中、R31、R32、R33およびR34は各々独立に水素原子、ハロゲン原子、炭素数1~20の脂肪族炭化水素基、炭素数3~20の脂環族炭化水素基、炭素数6~20の芳香族炭化水素基からなる群から選ばれ、R35は水素原子、ハロゲン原子、炭素数1~20の脂肪族炭化水素基、炭素数3~20の脂環族炭化水素基、炭素数6~20の芳香族炭化水素基からなる群から選ばれ、R36は炭素数6~20の芳香族炭化水素基からなる群より選ばれる]。
    The polyarylate resin (B) is one or more dihydric phenol residues selected from the group consisting of aromatic dicarboxylic acid residues and dihydric phenol residues represented by the following general formulas (i) to (iv): The resin composition according to claim 1 or 2, comprising:
    Figure JPOXMLDOC01-appb-C000001
    [In general formula (i), R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom, a halogen atom, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, or an alicyclic group having 3 to 20 carbon atoms. Selected from the group consisting of hydrocarbon groups and aromatic hydrocarbon groups having 6 to 20 carbon atoms];
    Figure JPOXMLDOC01-appb-C000002
    [In the general formula (ii), R 11 , R 12 , R 13 and R 14 are each independently a hydrogen atom, a halogen atom, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, or an alicyclic group having 3 to 20 carbon atoms. R 15 is selected from the group consisting of a hydrocarbon group and an aromatic hydrocarbon group having 6 to 20 carbon atoms, and R 15 is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or 6 carbon atoms. Selected from the group consisting of ˜20 aryl groups];
    Figure JPOXMLDOC01-appb-C000003
    [In general formula (iii), R 21 , R 22 , R 23 and R 24 are each independently a hydrogen atom, a halogen atom, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, or an alicyclic group having 3 to 20 carbon atoms. Selected from the group consisting of a hydrocarbon group and an aromatic hydrocarbon group having 6 to 20 carbon atoms, and each R 25 independently represents an aliphatic hydrocarbon group having 1 to 20 carbon atoms and an alicyclic group having 3 to 20 carbon atoms. Selected from the group consisting of a hydrocarbon group, an aromatic hydrocarbon group having 6 to 20 carbon atoms, and a halogenated alkyl group having 1 to 20 carbon atoms, k is an integer of 2 to 12, and m is 0 or more. 2 or less integer]; and
    Figure JPOXMLDOC01-appb-C000004
    [In the general formula (iv), R 31 , R 32 , R 33 and R 34 are each independently a hydrogen atom, a halogen atom, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, or an alicyclic group having 3 to 20 carbon atoms. R 35 is selected from the group consisting of a hydrocarbon group and an aromatic hydrocarbon group having 6 to 20 carbon atoms, and R 35 is a hydrogen atom, a halogen atom, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, an oil having 3 to 20 carbon atoms The cyclic hydrocarbon group is selected from the group consisting of an aromatic hydrocarbon group having 6 to 20 carbon atoms, and R 36 is selected from the group consisting of an aromatic hydrocarbon group having 6 to 20 carbon atoms].
  4.  前記ポリアリレート樹脂(B)がさらに下記一般式(v)で表される二価フェノール残基を含んでいる、請求項1~3のいずれかに記載の樹脂組成物:
    Figure JPOXMLDOC01-appb-C000005
    [一般式(v)中、R5、R6、RおよびRは各々独立に水素原子、ハロゲン原子、炭素数1~20の脂肪族炭化水素基、炭素数3~20の脂環族炭化水素基、炭素数6~20の芳香族炭化水素基からなる群から選ばれる]。
    The resin composition according to any one of claims 1 to 3, wherein the polyarylate resin (B) further contains a dihydric phenol residue represented by the following general formula (v):
    Figure JPOXMLDOC01-appb-C000005
    [In the general formula (v), R 5 , R 6 , R 7 and R 8 are each independently a hydrogen atom, a halogen atom, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, or an alicyclic group having 3 to 20 carbon atoms. Selected from the group consisting of hydrocarbon groups and aromatic hydrocarbon groups having 6 to 20 carbon atoms].
  5.  前記樹脂組成物が接着シート用樹脂組成物である、請求項1~4のいずれかに記載の樹脂組成物。 The resin composition according to any one of claims 1 to 4, wherein the resin composition is a resin composition for an adhesive sheet.
  6.  請求項1~5のいずれかに記載の樹脂組成物を有機溶剤に溶解して得られる樹脂ワニス。 A resin varnish obtained by dissolving the resin composition according to any one of claims 1 to 5 in an organic solvent.
  7.  請求項5に記載の樹脂ワニスを乾燥してなる被膜。 A film formed by drying the resin varnish according to claim 5.
  8.  基材上に、請求項7に記載の被膜を形成してなる積層体。 A laminate obtained by forming the coating according to claim 7 on a substrate.
  9.  請求項8に記載の積層体を用いた配線板。 A wiring board using the laminate according to claim 8.
PCT/JP2015/072648 2014-08-15 2015-08-10 Resin composition and the laminate using same WO2016024569A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016542578A JP6676529B2 (en) 2014-08-15 2015-08-10 Resin composition and laminate using the same
KR1020177000936A KR102376600B1 (en) 2014-08-15 2015-08-10 Resin composition and the laminate using same
CN201580043146.7A CN106661197B (en) 2014-08-15 2015-08-10 Resin composition and laminate using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-165370 2014-08-15
JP2014165370 2014-08-15

Publications (1)

Publication Number Publication Date
WO2016024569A1 true WO2016024569A1 (en) 2016-02-18

Family

ID=55304196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/072648 WO2016024569A1 (en) 2014-08-15 2015-08-10 Resin composition and the laminate using same

Country Status (5)

Country Link
JP (1) JP6676529B2 (en)
KR (1) KR102376600B1 (en)
CN (1) CN106661197B (en)
TW (1) TWI664228B (en)
WO (1) WO2016024569A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017142004A1 (en) * 2016-02-19 2017-08-24 ユニチカ株式会社 Polyarylate resin and film comprising same
WO2017175716A1 (en) * 2016-04-05 2017-10-12 ユニチカ株式会社 Polyarylate resin and resin composition of same
WO2018186030A1 (en) * 2017-04-07 2018-10-11 パナソニックIpマネジメント株式会社 Resin composition, prepreg, metal-clad laminate, printed wiring board, and flex-rigid printed wiring board
CN108794978A (en) * 2017-04-27 2018-11-13 台燿科技股份有限公司 Resin composition, and prepreg, metal foil laminate and printed wiring board produced using the same
JP2019137622A (en) * 2018-02-07 2019-08-22 Dic株式会社 Polyester resin
CN112745737A (en) * 2020-12-27 2021-05-04 贵州龙科生产力促进中心 Efficient heat dissipation coating for electronic product shell
JP2021155680A (en) * 2020-03-30 2021-10-07 リンテック株式会社 Film adhesive
JP2021191866A (en) * 2016-07-28 2021-12-16 Jsr株式会社 Composition, cured product, and laminate
CN114616096A (en) * 2019-10-29 2022-06-10 帝人株式会社 Conductive film for antenna and antenna
WO2024090396A1 (en) * 2022-10-24 2024-05-02 太陽ホールディングス株式会社 Curable resin composition, multilayer structure, cured product and electronic component

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110527470A (en) * 2019-08-29 2019-12-03 苏州瀚海新材料有限公司 A kind of Adhesive composition for FFC
JP2021155679A (en) * 2020-03-30 2021-10-07 リンテック株式会社 Film adhesive

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03139583A (en) * 1989-10-25 1991-06-13 Nippon Steel Corp Heat-resistant adhesive composition
JPH04233936A (en) * 1990-08-01 1992-08-21 Bayer Ag High-molecular polyester and blend
JPH04325590A (en) * 1991-04-25 1992-11-13 Nitto Denko Corp Epoxy resin adhesive composition
JPH05247322A (en) * 1992-03-05 1993-09-24 Nitto Denko Corp Epoxy resin composition and its cured product and method for curing the same
JP2002356544A (en) * 2001-03-30 2002-12-13 Dainippon Ink & Chem Inc Low-dielectric electronic material and resin composition for the same
JP2004224890A (en) * 2003-01-22 2004-08-12 Dainippon Ink & Chem Inc Method for manufacturing cured epoxy resin composition
JP2011144209A (en) * 2010-01-12 2011-07-28 Unitika Ltd Resin composition and foam thereof
JP2014189605A (en) * 2013-03-26 2014-10-06 Unitika Ltd Polyarylate resin film and capacitor employing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05263058A (en) 1992-03-18 1993-10-12 Hitachi Chem Co Ltd Adhesive for flexible printed circuit board
JPH05271637A (en) 1992-03-26 1993-10-19 Hitachi Chem Co Ltd Adhesive for flexible printed wiring board
JP4423513B2 (en) 1997-10-20 2010-03-03 東洋紡績株式会社 Adhesive resin composition and adhesive film
JP2007051212A (en) 2005-08-17 2007-03-01 Shin Etsu Chem Co Ltd Adhesive composition and coverlay film and adhesive sheet using the same
US20070155946A1 (en) * 2006-01-04 2007-07-05 Corrado Berti Polyester oligomers, methods of making, and thermosetting compositions formed therefrom
JP2013189544A (en) 2012-03-14 2013-09-26 Unitika Ltd Resin composition and thermoset elastomer obtained by heat curing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03139583A (en) * 1989-10-25 1991-06-13 Nippon Steel Corp Heat-resistant adhesive composition
JPH04233936A (en) * 1990-08-01 1992-08-21 Bayer Ag High-molecular polyester and blend
JPH04325590A (en) * 1991-04-25 1992-11-13 Nitto Denko Corp Epoxy resin adhesive composition
JPH05247322A (en) * 1992-03-05 1993-09-24 Nitto Denko Corp Epoxy resin composition and its cured product and method for curing the same
JP2002356544A (en) * 2001-03-30 2002-12-13 Dainippon Ink & Chem Inc Low-dielectric electronic material and resin composition for the same
JP2004224890A (en) * 2003-01-22 2004-08-12 Dainippon Ink & Chem Inc Method for manufacturing cured epoxy resin composition
JP2011144209A (en) * 2010-01-12 2011-07-28 Unitika Ltd Resin composition and foam thereof
JP2014189605A (en) * 2013-03-26 2014-10-06 Unitika Ltd Polyarylate resin film and capacitor employing the same

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017142004A1 (en) * 2016-02-19 2017-08-24 ユニチカ株式会社 Polyarylate resin and film comprising same
CN108699227B (en) * 2016-04-05 2021-05-14 尤尼吉可株式会社 Polyarylate resin and resin composition thereof
WO2017175716A1 (en) * 2016-04-05 2017-10-12 ユニチカ株式会社 Polyarylate resin and resin composition of same
CN108699227A (en) * 2016-04-05 2018-10-23 尤尼吉可株式会社 Polyarylate resin and its resin combination
KR20180133390A (en) * 2016-04-05 2018-12-14 유니티카 가부시끼가이샤 Polyarylate resin and resin composition thereof
JPWO2017175716A1 (en) * 2016-04-05 2019-02-14 ユニチカ株式会社 Polyarylate resin and resin composition thereof
TWI746536B (en) * 2016-04-05 2021-11-21 日商尤尼吉可股份有限公司 Polyarylate resin and resin composition thereof
KR102313046B1 (en) * 2016-04-05 2021-10-14 유니티카 가부시끼가이샤 Polyarylate resin and its resin composition
JP7147940B2 (en) 2016-07-28 2022-10-05 Jsr株式会社 Composition, cured product and laminate
JP2021191866A (en) * 2016-07-28 2021-12-16 Jsr株式会社 Composition, cured product, and laminate
JP2018177906A (en) * 2017-04-07 2018-11-15 パナソニックIpマネジメント株式会社 Resin composition, prepreg, metal-clad laminate, printed wiring board, and flex-rigid printed wiring board
WO2018186030A1 (en) * 2017-04-07 2018-10-11 パナソニックIpマネジメント株式会社 Resin composition, prepreg, metal-clad laminate, printed wiring board, and flex-rigid printed wiring board
CN108794978A (en) * 2017-04-27 2018-11-13 台燿科技股份有限公司 Resin composition, and prepreg, metal foil laminate and printed wiring board produced using the same
JP2019137622A (en) * 2018-02-07 2019-08-22 Dic株式会社 Polyester resin
JP7056196B2 (en) 2018-02-07 2022-04-19 Dic株式会社 Polyester resin
CN114616096A (en) * 2019-10-29 2022-06-10 帝人株式会社 Conductive film for antenna and antenna
CN114616096B (en) * 2019-10-29 2023-11-10 帝人株式会社 Conductive film for antenna and antenna
JP2021155680A (en) * 2020-03-30 2021-10-07 リンテック株式会社 Film adhesive
JP7446887B2 (en) 2020-03-30 2024-03-11 リンテック株式会社 film adhesive
CN112745737A (en) * 2020-12-27 2021-05-04 贵州龙科生产力促进中心 Efficient heat dissipation coating for electronic product shell
WO2024090396A1 (en) * 2022-10-24 2024-05-02 太陽ホールディングス株式会社 Curable resin composition, multilayer structure, cured product and electronic component

Also Published As

Publication number Publication date
TW201613999A (en) 2016-04-16
KR102376600B1 (en) 2022-03-18
KR20170042278A (en) 2017-04-18
CN106661197A (en) 2017-05-10
JPWO2016024569A1 (en) 2017-06-01
CN106661197B (en) 2020-05-12
JP6676529B2 (en) 2020-04-08
TWI664228B (en) 2019-07-01

Similar Documents

Publication Publication Date Title
JP6676529B2 (en) Resin composition and laminate using the same
US8114508B2 (en) Composition of modified maleic anhydride and epdxy resin
TWI795394B (en) Polyimide, adhesive, film-like adhesive material, adhesive layer, adhesive sheet, copper foil with resin, copper-clad laminate, printed circuit board, multilayer circuit board, and manufacturing method thereof
JP5387872B2 (en) Epoxy resin composition and cured product thereof
TW201619292A (en) Polyimide resin composition, adhesion composition, primer composition, lamination body and resin-adhered copper foil
TWI720045B (en) Polyarylate resin, production method thereof and polyarylate resin composition
JP2016194055A (en) Adhesive composition, film-like adhesive material, adhesive layer, adhesive sheet, copper foil with resin, copper-clad laminate, flexible copper-clad laminate, printed circuit board, flexible printed circuit board, multilayer wiring board, printed circuit board, and flexible printed circuit board
JP2014109029A (en) Resin composition for printed circuit board, insulating film, prepreg, and printed board
JP2011074120A (en) Curable resin composition, cured product thereof, and circuit board
JP2009001787A (en) Polyphenylene ether resin composition and electronic member
TW202219107A (en) Curable resin, curable resin composition, and cured product
JP2009161629A (en) Novel phosphorus-containing flame retardant resin, epoxy resin composition containing the same and cured product thereof
JP2006335843A (en) Thermosetting resin composition and application thereof
TWI730075B (en) Resin composition and method for producing same, prepreg, resin sheet, laminate, metal foil-clad laminate and printed wiring board
JP2020029494A (en) Resin composition for insulation layer, sheet-like laminated material, multilayer printed wiring board and semiconductor device
JPWO2010058734A1 (en) Phenolic hydroxyl group-containing aromatic polyamide resin and use thereof
JP6984579B2 (en) Epoxy resin compositions, and adhesive films, prepregs, multilayer printed wiring boards, and semiconductor devices manufactured using the resin compositions.
JP2015032795A (en) Manufacturing method of component mounting substrate
JP2009073889A (en) Epoxy resin composition, cured product thereof, and resin composition for build-up film
WO2018199127A1 (en) Modified polyarylate resin
JP5466070B2 (en) Bonding sheet for multilayer printed wiring boards
KR20220122502A (en) Adhesive composition, cured product, adhesive sheet, copper foil with resin, copper clad laminate and printed wiring board
TW202231703A (en) Epoxy resin composition, adhesive film, printed wiring board, semiconductor chip package, semiconductor device, and method for using adhesive film
JP2009051938A (en) Epoxy resin composition, cured product thereof, resin composition for build-up film, new epoxy resin, and preparation method thereof
JP2006348086A (en) Thermosetting resin composition and its utilization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15831282

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016542578

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177000936

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15831282

Country of ref document: EP

Kind code of ref document: A1