JP2018141381A - 舶用発電システム及び舶用発電システムの発電方法 - Google Patents

舶用発電システム及び舶用発電システムの発電方法 Download PDF

Info

Publication number
JP2018141381A
JP2018141381A JP2017034936A JP2017034936A JP2018141381A JP 2018141381 A JP2018141381 A JP 2018141381A JP 2017034936 A JP2017034936 A JP 2017034936A JP 2017034936 A JP2017034936 A JP 2017034936A JP 2018141381 A JP2018141381 A JP 2018141381A
Authority
JP
Japan
Prior art keywords
steam
boiler
exhaust gas
turbine
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017034936A
Other languages
English (en)
Other versions
JP6736501B2 (ja
JP2018141381A5 (ja
Inventor
正広 天野
Masahiro Amano
正広 天野
浩市 松下
Koichi Matsushita
浩市 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2017034936A priority Critical patent/JP6736501B2/ja
Priority to PCT/JP2018/000213 priority patent/WO2018154980A1/ja
Priority to SG11201907907QA priority patent/SG11201907907QA/en
Publication of JP2018141381A publication Critical patent/JP2018141381A/ja
Publication of JP2018141381A5 publication Critical patent/JP2018141381A5/ja
Application granted granted Critical
Publication of JP6736501B2 publication Critical patent/JP6736501B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/02Use of propulsion power plant or units on vessels the vessels being steam-driven
    • B63H21/06Use of propulsion power plant or units on vessels the vessels being steam-driven relating to steam turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/02Use of propulsion power plant or units on vessels the vessels being steam-driven
    • B63H21/08Use of propulsion power plant or units on vessels the vessels being steam-driven relating to steam boilers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/12Use of propulsion power plant or units on vessels the vessels being motor-driven
    • B63H21/16Use of propulsion power plant or units on vessels the vessels being motor-driven relating to gas turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J3/00Driving of auxiliaries
    • B63J3/02Driving of auxiliaries from propulsion power plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K15/00Adaptations of plants for special use
    • F01K15/02Adaptations of plants for special use for driving vehicles, e.g. locomotives
    • F01K15/04Adaptations of plants for special use for driving vehicles, e.g. locomotives the vehicles being waterborne vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Ocean & Marine Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

【課題】船舶に発電システムを導入する際に、省スペース化を実現することができる舶用発電システム及び舶用発電システムの発電方法を提供することを目的とする。【解決手段】発電プラント1は、燃焼ガスによって駆動されるガスタービン2と、ガスタービン2によって駆動されて発電する第1発電機14とガスタービン2から排出された排ガスから熱回収することによって蒸気を生成する排ガスエコノマイザ3と、火炉16及び蒸気ドラム17を有するボイラ4と、排ガスエコノマイザ3の汽水分離器として蒸気ドラム18を用いるように接続された循環流路29と、蒸気ドラム18からの蒸気によって駆動される蒸気タービン5と、蒸気タービン5によって駆動されて発電する第2発電機37と、を備えている。【選択図】図1

Description

本発明は、舶用発電システム及び舶用発電システムの発電方法に関するものである。
従来から、推進用エンジンを用いた船舶では、推進用エンジンから排出された排ガスの排熱を回収して蒸気を生成し、その蒸気を蒸気タービンなどに導入するシステムを適用することが知られている。このような船舶には、例えば特許文献1のようなものがある。
特許文献1には、船舶用原動機の排ガス熱回収装置において、補助ボイラドラムを高圧汽水分離器として兼用し、高圧汽水分離器の蒸気は蒸気タービンに送られる構成が開示されている。
特開昭57−49704号公報
ところで、近年、高い発電効率を発揮する発電システムであるガスタービンコンバインドサイクル(GTCC)を船舶にも採用することが検討されている。しかしながら、ガスタービンコンバインドサイクルには、蒸気タービンや排ガスエコノマイザや汽水分離器といった様々な装置を設置する必要があるので、限られた空間である船舶に設けるにあたり設置スペースの確保が問題となっていた。
また、ガスタービンコンバインドサイクルは、ガスタービンの燃焼ガスによる発電のほかに、ガスタービンの排ガスから排熱を回収して蒸気を生成し、この蒸気を蒸気タービンに導入することによっても発電する。しかしながら、ガスタービンがメンテナンス等で停止しているときには、ガスタービンから排ガスが発生しないので、排熱が回収できず、蒸気を生成できない。よって、ガスタービンが停止すると、ガスタービンによる発電だけでなく、蒸気タービンによる発電も行えなくなってしまうという問題があった。また、ガスタービンのトラブル等で、ガスタービンの負荷が低下した場合、ガスタービンから発生する排ガスの排熱も減少する。それにより、排ガスから回収できる排熱が減少し、生成する蒸気の蒸気量や蒸気温度が不足する。よって、ガスタービンの負荷が低下すると、ガスタービンの負荷の低下に伴い、付随的に蒸気タービンによる発電量も低下し、発電システム全体の発電量が大幅に低下するという問題があった。
本発明は、このような事情に鑑みてなされたものであって、船舶に発電システムを導入する際に、省スペース化を実現することができる舶用発電システム及び舶用発電システムの発電方法を提供することを目的とする。
また、本発明の第2の目的は、ガスタービンの稼働状態によらず、好適に蒸気タービンを駆動させ、発電システム全体の稼働率を向上させ、船舶の必要とする電力量を賄うことができる舶用発電システム及び舶用発電システムの発電方法を提供することを目的とする。
上記課題を解決するために、本発明の舶用発電システム及び舶用発電システムの発電方法は以下の手段を採用する。
本発明の一態様に係る舶用発電システムは、燃焼ガスによって駆動されるガスタービンと、前記ガスタービンによって駆動されて発電する第1発電機と前記ガスタービンから排出された排ガスから熱回収することによって蒸気を生成する排ガスエコノマイザと、火炉及び蒸気ドラムを有するボイラと、前記排ガスエコノマイザの汽水分離器として前記蒸気ドラムを用いるように接続された循環流路と、前記蒸気ドラムからの蒸気によって駆動される蒸気タービンと、前記蒸気タービンによって駆動されて発電する第2発電機と、
を備える。
上記構成では、ガスタービンが回転力を出力し、第1発電機を駆動させて発電する。ガスタービンから排出された排ガスの排熱が排ガスエコノマイザにおいて熱回収される。排ガスエコノマイザで生成された蒸気は、循環流路を介してボイラの蒸気ドラムへと導かれる。蒸気ドラムは、汽水分離器として用いられ、蒸気と水とが分離される。蒸気ドラムにて分離された水は、循環流路を介して排ガスエコノマイザへと戻される。一方、蒸気ドラムにて分離された蒸気は、蒸気タービンに導かれ蒸気タービンを駆動する。蒸気タービンが駆動すると第2発電機によって発電が行われる。上記構成の舶用発電システムではこのように発電を行う。
ところで、船舶には、航行中や停泊中に船内で必要とされる船内雑用蒸気等を生成するために用いられるボイラが複数設置される。本発明の発明者等は、鋭意検討した結果、このボイラに注目した。排ガスエコノマイザの汽水分離器としてこのようなボイラの蒸気ドラムを用いると、汽水分離機を用いることなく、水蒸気と水とを分離することができる。したがって、排ガスエコノマイザの汽水分離器としてこのようなボイラを用いた場合には、排ガスエコノマイザのための汽水分離器を別途設置する必要がなく、別途汽水分離器を設置する為のコストを削減でき、省スペース化を実現することができる。ここでいう汽水分離器として用いるボイラとは、新たに設けるボイラであってもよく、既設のボイラであってもよい。
また、ボイラから発生する排ガスをイナートガスとして使用することで、イナートガスを発生させる機器を別途設置する必要がなく、別途イナートガスを発生させる機器を設置するためのコストを削減でき、省スペース化を実現することができる。
また、例えば、VOCや自燃できない低発熱量のガス等が発生した場合、ボイラで油との混焼を行うことで、これらのガスも適切に燃焼することができる。自燃できない低発熱量ガスを適切に燃焼させることで、舶用発電システム全体のエネルギー効率を向上させることができる。また、環境に影響を与える可能性がある排出ガスを、ボイラで燃焼することで無害化することができる。
なお、第1発電機と第2発電機とをまとめて1つの発電機としてもよい。
また、蒸気ドラムと蒸気タービンとの間に排ガスエコノマイザを備えて、蒸気ドラムから蒸気タービンに供給される蒸気を排ガスエコノマイザで過熱してもよい。蒸気ドラムと蒸気タービンとの間に設けられる排ガスエコノマイザは、蒸気を生成する排ガスエコノマイザと兼用してもよく、別途新たに設けてもよい。
本発明の一態様に係る舶用発電システムは、前記火炉に設けられたバーナを制御する制御部を備え、前記制御部は、前記ボイラの運転モードとして、前記ガスタービンの負荷に応じて前記バーナを着火するボイラ運転モードを有していてもよい。
上記構成では、制御部は、ガスタービンの負荷に応じて火炉に設けられたバーナを起動するボイラ運転モードを有している。このボイラ運転モードで運転することによって、例えば、ガスタービンの負荷が所定の値よりも低く、排ガスエコノマイザで十分な蒸気を生成できない場合に、火炉に設けられたバーナを着火し、ボイラでも蒸気の生成や加熱を行うことで、蒸気タービンに十分な蒸気を供給することができる。これにより、ガスタービンの負荷が下がることで低下した発電量を蒸気タービンで補うことができる。したがって、舶用発電システム全体として安定した発電が可能となり、船舶の必要電力を好適に賄うことができる。
また、例えば、ガスタービンのメンテナンス等により、ガスタービンが停止している場合であっても、ボイラで生成した蒸気によって発電を行うことができる。したがって、舶用発電システムの不稼働時間を低減することができる。
本発明の一態様に係る舶用発電システムは、前記火炉に設けられたバーナを制御する制御部を備え、前記制御部は、前記ボイラの運転モードとして、前記ガスタービンが定格運転時に前記バーナを着火するボイラ運転モードを有していてもよい。
上記構成では、制御部はガスタービンが定格運転時に火炉に設けられたバーナを着火する運転モードを有している。したがって、ガスタービンが定格運転の状態で、さらに必要電力が増加した場合であっても、ボイラを起動して、排ガスエコノマイザで生成された蒸気をボイラでさらに加熱してから、蒸気タービンに供給することがで、蒸気タービンによる発電量が増加させることができるので、増加した必要電力を賄うことができる。
本発明の一態様に係る舶用発電システムは、運転モードとして、前記ガスタービンを停止させて前記火炉に設けられたバーナを着火し、前記蒸気ドラムから前記蒸気タービンに蒸気を導入することで、前記第2発電機のみで発電を行う第1運転モードと、前記ガスタービンを駆動させて、前記排ガスエコノマイザで生成された蒸気を前記蒸気ドラムから前記蒸気タービンに導入することで、前記第1発電機及び前記第2発電機で発電する第2運転モードとを有する制御部を備え、前記制御部は、船舶の必要電力に応じて前記運転モードを選択してもよい。
上記構成では、船舶の必要電力量に応じて、運転モードを選択している。これにより、船舶の必要電力量に応じた電力量を発電することができる。
例えば、船舶の必要電力が比較的少ない場合に、第1運転モードで舶用発電システムを運転することが考えられる。船舶の必要電力量が比較的少ない場合には、発電する電力量の大きいガスタービンでは対応が難しく、過剰に発電を行ってしまう可能性や、非常に発電効率の悪い運転状態で発電を行ってしまう可能性があるが、第1運転モードで運転を行えば、ボイラで生成した蒸気のみで発電を行うことで、ガスタービンの最小発電量よりも小さい発電量が可能となり、少ない必要電力量にも対応することができので、必要電力量に応じた電力量を発電することができる。このように、必要電力量に対応できる範囲を広くすることができるので、舶用発電システム全体としての発電効率を向上することができる。
また、例えば、船舶の必要電力量が比較的多い場合に、第2運転モードで舶用発電システムを運転することが考えられる。船舶の必要電力量が比較的多い場合には、ガスタービンの駆動力によって第1発電機で発電を行うとともに、排ガスエコノマイザで生成された蒸気によって第2発電機で発電を行いことで、必要電力量に応じた電力量を発電することができる。
このように、必要発電量に基づいて、当該必要発電量を発電するのに効率の良い運転モードを第1運転モード及び第2運転モードから選択することができるので、舶用発電システム全体としての発電効率を向上することができる。
本発明の一態様に係る舶用発電システムは、前記制御部は、前記運転モードとして、前記火炉に設けられた前記バーナを着火して、前記蒸気ドラムから前記蒸気タービンに蒸気を導入することで、前記第1発電機及び前記第2発電機で発電する第3運転モードを有していてもよい。
上記構成では、制御部が、運転モードとして、蒸気ドラムから排ガスエコノマイザ及びボイラの火炉を介して前記蒸気タービンに蒸気を導入する第3運転モードを有している。これにより、例えば、船舶の必要電力量が、ガスタービンの定格運転時に発電できる電力量を越えた場合であっても、ボイラを起動することで蒸気タービンによって発電される電力量を増加させることができ、必要電力量に応じた電力量を発電することができる。このように、ガスタービンの定格運転時に発電できる電力量よりも多くの電力量を発電できるので、舶用発電システムとして想定される最大発電量に応じたガスタービンよりも小さなサイズのガスタービンを設けることができ、ガスタービンの設置コストを低減することができる。
本発明の一態様に係る舶用発電システムは、前記ボイラからの排ガスを前記排ガスエコノマイザに導くボイラ排ガス管を備えていてもよい。
上記構成では、ボイラからの排ガスも排ガスエコノマイザに導入しているので、ボイラの排ガスからも熱回収することができる。また、ボイラの排ガスから熱回収を行うのに、ガスタービン用の排ガスエコノマイザを利用し、ボイラ用の排ガスエコノマイザを別途設置していないので、別途ボイラ用の排ガスエコノマイザを設置する為のコストを削減でき、省スペース化を実現することができる。
本発明の一態様に係る舶用発電システムは、前記ボイラから排出された排ガスから熱回収することによって蒸気を加熱するボイラ用排ガスエコノマイザと、前記ボイラから排出された排ガスを前記ボイラ用排ガスエコノマイザに導くボイラ排ガス管とを備えていてもよい。
上記構成では、ボイラからの排ガスもボイラ用排ガスエコノマイザに導入しているので、ボイラの排ガスからも熱回収することができる。また、ガスタービン用の排ガスエコノマイザと、ボイラ用の排ガスエコノマイザとを別に設けているので、例えば、ボイラとガスタービンとを同時に運転している場合であっても、ガスタービンから排出される排ガスと、ボイラから排出される排ガスとを混合させることなく熱回収することができる。
本発明の一態様に係る舶用発電システムの発電方法は、燃焼ガスによってガスタービンが駆動されるガスタービン駆動工程と、前記ガスタービンによって第1発電機が駆動されることで発電する第1発電工程と、前記ガスタービンから排出された排ガスから熱回収する熱回収工程と、火炉及び蒸気ドラムを有するボイラの該蒸気ドラムにより、前記熱回収工程にて得られた蒸気を汽水分離する汽水分離工程と、前記汽水分離工程にて得られた蒸気によって蒸気タービンを駆動させる蒸気タービン駆動工程と、前記蒸気タービンによって第2発電機を駆動させて電力を発電する第2発電工程とを備える。
本発明によれば、船舶に発電システムを導入する際に、省スペース化を実現することができる。
また、本発明によれば、舶用発電システム全体の稼働率を向上させ、船舶の必要電力を好適に賄うことができる。
本発明の第1実施形態にかかる舶用発電システムを示す概略構成図である。 図1に示す舶用発電システムの負荷分担の一例を示すグラフである。 図1に示す舶用発電システムの負荷分担の一例を示すグラフである。 本発明の第2実施形態にかかる舶用発電システムを示す概略構成図である。 図4に示す舶用発電システムの運転モードごとのバルブの開閉状態を示す図表である。 図4に示す舶用発電システムの効率とプラント負荷との関係を示すグラフである。 本発明の第3実施形態にかかる舶用発電システムを示す概略構成図である。 図7に示す舶用発電システムの変形例を示す概略構成図である。
以下に、本発明に係る舶用発電システムの一実施形態について、図面を参照して説明する。
〔第1実施形態〕
以下、本発明の第1実施形態について、図1を用いて説明する。
図1に示すように、例えばLNG船等の船舶に設置された発電プラント(舶用発電システム)1は、いわゆる、ガスタービンコンバインドサイクル(GTCC)とされ、ガスタービン2と、ガスタービン2から排出された排ガスから熱回収する排ガスエコノマイザ3と、ボイラ4と、ボイラ4からの蒸気によって駆動される蒸気タービン5と、ボイラ4等を制御する制御部6とを備えている。
ガスタービン2は、燃焼器(図示せず)にて燃料を燃焼させ、燃焼ガスをタービンに供給することによって回転動力を生成し、高温の排ガスを排気する。ガスタービン2から排気された排ガスは、排ガス管11を流通して、図1の矢印に示すように、排ガスエコノマイザ3へと導かれる。ガスタービン2の回転軸には、第1発電機14の回転軸が接続され、第1発電機14は、ガスタービン2の回転力によって発電する。第1発電機14で発電された電力は、船内系統へ供給され、船舶の主機の動力や船内電力として使用される。
排ガスエコノマイザ3は、排ガス流れの上流側から下流側に向って過熱器12及び蒸気発生器13が配置されている。過熱器12及び蒸気発生器13は、煙道内を下から上に向かって順番に据え付けられた伝熱管群とされている。煙道内には、ガスタービン2側から導かれた高温の排ガスが流れるようになっており、煙道内を流れた後、排ガスは、下流側に接続された煙突(図示せず)を経て大気に放出される。
ボイラ4は、火炉16と、上方に配置された蒸気ドラム17と、下方に配置された水ドラム18とを備えている。蒸気ドラム17と水ドラム18との間には、火炉16内に配置された伝熱管(図示せず)が設けられている。火炉16は、バーナ19を備えており、火炉16内で燃焼を行う。ボイラ4内にはボイラ過熱器23が設けられている。バーナ19には、燃料供給部20から燃料供給管21を介して燃料が供給される。燃料供給管21には、燃料供給バルブ22が設けられ、燃料供給バルブ22の開閉によって燃料の供給及び燃料の供給の停止が行われる。燃料供給バルブ22の弁開度は、制御部6によって制御される。
火炉16にてバーナ19が着火され、ボイラ4内で給水が加熱されると、水が下方の水ドラム18から上方の蒸気ドラム17へと上昇し、気液が蒸気ドラム17にて分離される。このように、ボイラ4は、本来は、自然循環型のボイラとされている。ただし、排ガスエコノマイザ3の汽水分離器として使用される場合には、自然循環型のボイラとしての使用が行われないようになっている。蒸気ドラム17には、蒸気発生器13の上流端部へと給水する循環水配管26が接続されている。循環水配管26には、循環水ポンプ27が設けられている。循環水ポンプ27は、制御部6の指令によって発停が行われる。蒸気発生器13の下流端部と蒸気ドラム17との間には、汽水混合配管28が設けられている。上述の循環水配管26及び汽水混合配管28によって、蒸気ドラム17と蒸気発生器13との間で水及び蒸気が循環する循環流路29が形成されている。
蒸気ドラム17にて汽水分離された後の蒸気は、蒸気出力配管31を通り、排ガスエコノマイザ3内に設けられた過熱器12へと供給される。過熱器12に供給された蒸気は、過熱され、蒸気タービン入力管30を介して蒸気タービン5に導入される。
蒸気出力配管31には、蒸気出力配管バルブ32が設けられている。蒸気出力配管31の蒸気出力配管バルブ32よりも上流側の途中位置から、第1ボイラ過熱配管33が分岐している。第1ボイラ過熱配管33の下流端は、火炉16内に設けられたボイラ過熱器23の上流端に接続されている。ボイラ過熱器23の下流端には、第2ボイラ過熱配管34の上流端が接続される。第2ボイラ過熱配管34の下流端は、蒸気出力配管31の蒸気出力配管バルブ32よりも下流側の途中位置に接続している。また、第2ボイラ過熱配管34には、ボイラ過熱バルブ35が設けられている。
蒸気タービン5は、ボイラ4から供給される蒸気によって駆動される。蒸気タービン5の回転軸には、第2発電機37の回転軸が接続され、第2発電機37は、蒸気タービン5の回転力によって発電する。第2発電機37で発電された電力は、船内系統へ供給され、船舶の主機の動力や船内電力として使用される。ボイラ4から蒸気タービン5に供給される蒸気には、ボイラ4内で水等を加熱して生成した蒸気である場合と、排ガスエコノマイザ3で生成された蒸気をボイラ4で汽水分離した蒸気である場合とがある。
蒸気タービン5の下部には、復水器38が設けられる。復水器38では、蒸気タービン5を通過した蒸気が凝縮し、水が生成され、生成された水は復水として回収される。
制御部6は、ガスタービン2の運転状況に応じて、ボイラ4を本来の自然循環型のボイラとして使用するか、又は、ボイラ4の自然循環型のボイラとしての運転を停止して、蒸気ドラム17を蒸気発生器13の汽水分離器として使用するかを切り替える。制御部6は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、及びコンピュータ読み取り可能な記憶媒体等から構成されている。そして、各種機能を実現するための一連の処理は、一例として、プログラムの形式で記憶媒体等に記憶されており、このプログラムをCPUがRAM等に読み出して、情報の加工・演算処理を実行することにより、各種機能が実現される。なお、プログラムは、ROMやその他の記憶媒体に予めインストールしておく形態や、コンピュータ読み取り可能な記憶媒体に記憶された状態で提供される形態、有線又は無線による通信手段を介して配信される形態等が適用されてもよい。コンピュータ読み取り可能な記憶媒体とは、磁気ディスク、光磁気ディスク、CD−ROM、DVD−ROM、半導体メモリ等である。
次に、上記構成の発電プラント1の動作について説明する。
[通常運転時]
ガスタービン2の通常運転時、すなわち、定格運転時には、図2のグラフに示すように、ガスタービン2による発電と、排ガスエコノマイザ3によって生成された蒸気によって駆動される蒸気タービン5による発電とのみで発電プラント1の必要電力量が賄われているので、ボイラ4にて蒸気を生成する必要がない。したがって、制御部6の指令により、ボイラ4のバーナ19の着火が停止される。
上記したように、ガスタービン2の通常運転時には、排ガスエコノマイザ3での蒸気生成が可能となる。この場合には、制御部6の指令により、ボイラ4の蒸気ドラム17を蒸気発生器13の汽水分離器として用いるように切り替える。具体的には、給水配管(図示せず)から蒸気ドラム17へと給水を行うとともに、循環水ポンプ27を起動する。これにより、蒸気発生器13にて蒸気が生成され、蒸気ドラム17にて汽水が分離され、蒸気が過熱器12へと送られる。なお、本実施形態では、図2に示すように、通常運転時のガスタービン2による発電量と排ガスエコノマイザ3によって生成された蒸気によって駆動される蒸気タービン5による発電量との割合を、70%と30%としているが、この数値は例示であって、ガスタービン2による発電量と排ガスエコノマイザ3によって生成された蒸気によって駆動される蒸気タービン5による発電量とは、別の割合であってもよい。
[ガスタービン負荷制限時]
ガスタービン2のトラブル等でガスタービン2の負荷が定格運転時よりも制限されている場合には、ガスタービン2から排出される排ガスの熱量も制限され、排ガスエコノマイザ3での蒸気を生成する機能も低下する。具体的には、図2に示すように、ガスタービン2の負荷が通常運転時よりも低下した場合には、発電量も減少する。これに伴って、排ガスエコノマイザ3によって生成された蒸気によって駆動される蒸気タービン5による発電量も減少する。このときに、減少した発電量を賄うように、制御部6の指令により、ボイラ4は、自然循環型のボイラとして動作するように制御される。具体的には、ボイラ4のバーナ19に着火し、火炉16で給水を加熱して蒸気の生成をする。また、トラブル等でガスタービン2の負荷が定格運転時よりも制限されている場合には、排ガスエコノマイザ3での過熱も好適に行われない。そこで、蒸気を好適に過熱し発電効率を高めたい場合には、蒸気出力配管バルブ32を閉状態とし、ボイラ過熱バルブ35を開状態としてもよい。このように制御部6が制御を行うことで、蒸気ドラム17からの蒸気が火炉16内のボイラ過熱器23で過熱され発電効率を高めることができる。本実施形態では、図2に示すように、ガスタービン2の負荷制限時には、ガスタービン2による発電量と、排ガスエコノマイザ3によって生成された蒸気によって駆動される蒸気タービン5による発電量と、ボイラ4によって生成された蒸気によって駆動される蒸気タービン5による発電量との割合が、それぞれ60%、20%、20%としているが、この数値は例示であって、各発電量の割合は別の割合であってもよい。
[ガスタービン停止時]
ガスタービン2のメンテナンス等でガスタービン2が停止している場合には、排ガスエコノマイザ3での蒸気生成は行われない。しかし、ガスタービン2のメンテナンス中であっても船舶からの電力需要がある場合がある。そこで、制御部6の指令により、ボイラ4は、自然循環型のボイラとして動作するように制御される。具体的には、ボイラ4のバーナ19に着火し、火炉16で給水を加熱して蒸気を生成する。また、ガスタービン2のメンテナンス等でガスタービン2が停止している場合には、排ガスエコノマイザ3での過熱も行われない。そこで、蒸気を過熱し発電効率を高めたい場合には、蒸気出力配管バルブ32を閉状態とし、ボイラ過熱バルブ35を開状態としてもよい。このように制御部6が制御を行うことで、蒸気ドラム17からの蒸気が火炉16内のボイラ過熱器23で過熱され発電効率を高めることができる。
[発電プラント負荷増加時]
ガスタービン2が定格運転時の状態から、船舶からの需要等によって、さらに発電プラント1として必要とする電力量が増加した場合(図3参照)には、増加した必要電力量を賄うように、制御部6の指令により、ボイラ4は、自然循環型のボイラとして動作するように制御される。具体的には、ボイラ4のバーナ19に着火し、火炉16で給水を加熱して蒸気の生成をする。本実施形態では、図3に示すように、発電プラント負荷増加時には、ガスタービン2による発電量と、排ガスエコノマイザ3によって生成された蒸気によって駆動される蒸気タービン5による発電量と、ボイラ4によって生成された蒸気によって駆動される蒸気タービン5による発電量との割合が、それぞれ70%、30%、20%としているが、この数値は例示であって、各発電量の割合は別の割合であってもよい。
本実施形態によれば、以下の作用効果を奏する。
本実施形態では、制御部6は、ガスタービン2の負荷に応じて、火炉16に設けられたバーナ19を起動及び停止を制御している。これにより、ガスタービン2の負荷が制限されている場合であっても、火炉16に設けられたバーナ19を着火し、ボイラ4でも蒸気の生成や加熱を行うことで、蒸気タービン5に十分な蒸気を供給することができる。したがって、ガスタービン2の負荷が下がることで低下した発電量を蒸気タービン5で補うことができる。よって、発電プラント1全体として安定した発電が可能となり、船舶の必要電力を好適に賄うことができる。
また、例えば、ガスタービン2のメンテナンス等により、ガスタービン2が停止している場合であっても、ボイラ4によって発電を行うことができる。したがって、発電プラント1の不稼働時間を低減することができる。
また、ガスタービン2が定格運転の状態で、さらに必要電力が増加した場合であっても、ボイラ4を起動して、排ガスエコノマイザ3で生成された蒸気をボイラ4でさらに加熱してから、蒸気タービン5に供給することができる。また、排ガスエコノマイザ3で生成される蒸気が増加するので、蒸気タービン5に供給する蒸気量が増加する。よって、蒸気タービン5による発電量が増加し、発生した必要電力を賄うことができる。
また、ボイラ4から発生する排ガスをイナートガスとして使用することで、イナートガスを発生させる機器を別途設置する必要がなく、別途イナートガスを発生させる機器を設置するためのコストを削減でき、省スペース化を実現することができる。
また、VOC等の自燃できない低発熱量のガスが発生した場合、ボイラ4で油との混焼を行うことで、自燃できない低発熱量のガスも適切に燃焼することができる。自燃できない低発熱量ガスを適切に燃焼させることで、発電プラント1全体のエネルギー効率を向上させることができる。また、環境に影響を与える可能性がある排出ガスを、ボイラ4で燃焼することで無害化することができる。
また、ボイラ4として、船舶に既設の補助ボイラを用いた場合には、排ガスエコノマイザ3のための汽水分離器を別途設置する必要がなく、別途汽水分離器を設置する為のコストを削減でき、省スペース化を実現することができる。なお、補助ボイラを用いた場合には、補助ボイラからの蒸気の一部は、船内の需要先(例えばオイルヒーティング装置等)へ送られる。
〔第2実施形態〕
以下、本発明の第2実施形態について、図4を用いて説明する。
本実施形態は、基本的に第1実施形態と同様の構造を有し、蒸気ドラム17と蒸気タービン5とを接続する配管の構造が相違している。したがって、第1実施形態と同一の構成については同一符号を付しその説明を省略する。
図4に示すように、蒸気ドラム17と過熱器12とを接続する蒸気出力配管51には、第2バルブB2(なお、第2バルブB2は第1実施形態の蒸気出力配管バルブ32と同位置に配置されているが、用途が異なるため別の名称とし、別の符号を付している)が設けられ、過熱器12と蒸気タービン5とを接続する蒸気タービン入力管52には第3バルブB3が設けられている。また、蒸気出力配管51の第2バルブB2の上流側からは、バイパス配管53が分岐している。バイパス配管53は、第1バルブB1が設けられ、蒸気タービン入力管52の途中位置であって第3バルブB3よりも上流側に位置する接続点P1に接続している。蒸気タービン入力管52の接続点P1と第3バルブとの間には分岐点P2が設けられ、分岐点P2からは、ボイラ過熱管54が分岐している。ボイラ過熱管54は、上記流れの上流側から順番に、火炉16内に配置されるボイラ過熱器23及び第4バルブB4が設けられ、下流端が蒸気タービン入力管52の第3バルブB3と蒸気タービン5との間の途中位置に接続されている。
次に、上記構成の発電プラント1の動作について説明する。
[発電プラント低負荷時の運転モード(第1運転モード)]
発電プラント1の低負荷時、すなわち、船舶が必要とする電力量が少ない場合には、制御部6は、ガスタービン2を停止するとともに、図5に示すように、第1バルブB1及び第4バルブB4を開状態とし、第2バルブB2及び第3バルブB3を閉状態とする。さらに、制御部6の指令により、ボイラ4は、自然循環型のボイラとして動作するように制御される。具体的には、ボイラ4のバーナ19に着火し、火炉16で給水を加熱して蒸気の生成をする。このように制御することで、ボイラ4で生成した蒸気がボイラ4内のボイラ過熱器23を通って過熱され、過熱された蒸気が蒸気タービン5を駆動する。このように、ボイラ4の単独運転によって発電することができる。
[発電プラント中負荷時の運転モード(第2運転モード)]
発電プラント1の負荷が低負荷時よりも増大した場合、すなわち発電プラント中負荷時には、制御部6は、ガスタービン2を起動するとともに、図5に示すように、第2バルブB2及び第3バルブB3を開状態とするとともに、第1バルブB1及び第4バルブB4を閉状態とする。さらに、制御部6の指令により、ボイラ4を停止させ、ボイラ4の蒸気ドラム17を蒸気発生器13の汽水分離器として用いるように切り替える。具体的には、ボイラ4のバーナ19の着火が停止され、給水配管から蒸気ドラム17へと給水を行うとともに、循環水ポンプ27を起動する。
[発電プラント高負荷時の運転モード(第3運転モード)]
発電プラント1が高負荷時、すなわち、ガスタービン2の定格運転にて発電できる発電量とガスタービンの排熱で生成した蒸気によって発電できる発電量とを合計した発電量を越えた発電量を船舶が必要とした場合には、制御部6は、図5に示すように、第2バルブB2及び第4バルブB4を開状態として、第1バルブB1及び第3バルブB3を閉状態とする。さらに、再度ボイラ4を起動して、ボイラ4を自然循環型のボイラとして動作するように制御される。具体的には、ボイラ4のバーナ19に着火し、火炉16で給水を加熱して蒸気の生成をするとともに、蒸気タービン5に導入される蒸気を過熱する。
次に、本実施形態における上記各運転モードの切り替えについて説明する。
図6に示すように、発電プラント低負荷時の運転モードM1から発電プラント中負荷時の運転モードM2への切り替えは、中負荷時の運転モードの発電効率が低負荷時の運転モードの発電効率よりも高くなった切り替え点A1で切り替える。本実施形態では、図6に示すように、発電プラント負荷が25%の際に切り替えられる。なお、発電プラント低負荷時の運転モードから発電プラント中負荷時の運転モードへの切り替え点は、ガスタービン2の規模や、蒸気タービン5の規模や、ボイラ4の規模や、蒸気条件(蒸気圧力や蒸気温度)等によって変化し、切り替え点は25%以外となってもよい。
本実施形態によれば以下の作用効果を奏する。
本実施形態では、発電プラント負荷(船舶の必要電力量)に応じて、運転モードを選択している。これにより、船舶の必要電力量に応じた電力量を発電することができる。
具体的には、船舶の必要電力量が比較的少ない場合には、発電する電力量の大きいガスタービン2では対応が難しく、過剰に発電を行ってしまう可能性がある。また、必要電力量まで発電量を低減させた場合には、効率の悪い運転になる可能性がある。しかしながら、発電プラント低負荷時の運転モードで運転を行えば、ガスタービン2よりも発電する電力量の小さいボイラ4で生成した蒸気のみで発電を行うことができるので、必要電力量に応じた電力量を発電することができる。また、船舶の必要電力量が、ガスタービン2の定格運転時に発電できる電力量を越えた場合であっても、発電プラント高負荷時の運転モードで運転を行えば、ボイラ4を起動することで蒸気タービン5によって発電される電力量を増加させることができ、必要電力量に応じた電力量を発電することができる。
このように、船舶の必要電力量に対応できる範囲を広くすることができるので、発電プラント1全体としての発電効率を向上することができる。
〔第3実施形態〕
以下、本発明の第3実施形態について、図7を用いて説明する。
本実施形態は、基本的に第2実施形態と同様の構造を有し、いくつかの構成が追加されている点で相違する。したがって、第2実施形態と同一の構成については同一符号を付しその説明を省略する。
図7に示すように、本実施形態の発電プラント1は、ボイラ4からの排ガスを排ガスエコノマイザ3に導くボイラ排ガス管61を備えている。このような構成とすることで、ボイラ4の排ガスからも熱回収することができる。また、ボイラ4の排ガスから熱回収を行うのに、ガスタービン2用の排ガスエコノマイザ3を利用し、ボイラ4用の排ガスエコノマイザを別途設置していないので、別途ボイラ4用の排ガスエコノマイザを設置する為のコストを削減でき、省スペース化を実現することができる。また、ガスタービン2からの排ガスとボイラ4からの排ガスの温度は同程度であるので、排ガスエコノマイザ3に耐熱材等を設けることなく、ガスタービン2とボイラ4とで排ガスエコノマイザを共有化することができる。また、排ガスエコノマイザ3には、低負荷時にはボイラ4からの排ガスのみが流通し、中負荷時にはガスタービン2からの排ガスのみが流通する。したがって、排ガスエコノマイザを共有化した構成としても、低負荷時及び中負荷時には、ガスタービン2からの排ガスとボイラ4からの排ガスとが混合しない。
なお、図8に示すように、蒸気出力配管51の途中位置にボイラ用排ガスエコノマイザ71を設け、ボイラ4からの排ガスをボイラ用排ガスエコノマイザ71に導くようにボイラ排ガス管72を設けてもよい。このような構成とすることで、ボイラ4とガスタービン2とを同時に運転している場合であっても、ガスタービン2から排出される排ガスと、ボイラ4から排出される排ガスとを混合させることなく熱回収することができる。
なお、本発明は、上記各実施形態にかかる発明に限定されるものではなく、その要旨を逸脱しない範囲において、適宜変形が可能である。例えば、上記各実施形態では、ガスタービン2に回転力により駆動する発電機と、蒸気タービン5の回転力により駆動する発電機とを、第1発電機14及び第2発電機37として別々に設けたが、ガスタービン2及び蒸気タービン5の回転軸を一軸とし、又は、各回転軸をギヤにより接続して、第1発電機14と第2発電機37とをまとめて1つの発電機としてもよい。
また、上述した各実施形態を適宜組み合わせて用いることも可能である。具体的には、図1に示した実施形態に対して、図7に示したボイラ排ガス管61や図8に示したボイラ排ガス管72及びボイラ用排ガスエコノマイザ71を設けてもよい。
1 発電プラント(舶用発電システム)
2 ガスタービン
3 排ガスエコノマイザ
4 ボイラ
5 蒸気タービン
6 制御部
14 第1発電機
16 火炉
17 蒸気ドラム
19 バーナ
29 循環流路
37 第2発電機
61 ボイラ排ガス管
71 ボイラ用排ガスエコノマイザ
72 ボイラ用排ガス管
B1 第1バルブ
B2 第2バルブ
B3 第3バルブ
B4 第4バルブ

Claims (8)

  1. 燃焼ガスによって駆動されるガスタービンと、
    前記ガスタービンによって駆動されて発電する第1発電機と
    前記ガスタービンから排出された排ガスから熱回収することによって蒸気を生成する排ガスエコノマイザと、
    火炉及び蒸気ドラムを有するボイラと、
    前記排ガスエコノマイザの汽水分離器として前記蒸気ドラムを用いるように接続された循環流路と、
    前記蒸気ドラムからの蒸気によって駆動される蒸気タービンと、
    前記蒸気タービンによって駆動されて発電する第2発電機と、
    を備えた舶用発電システム。
  2. 前記火炉に設けられたバーナを制御する制御部を備え、
    前記制御部は、前記ボイラの運転モードとして、前記ガスタービンの負荷に応じて前記バーナを着火するボイラ運転モードを有する請求項1に記載の舶用発電システム。
  3. 前記火炉に設けられたバーナを制御する制御部を備え、
    前記制御部は、前記ボイラの運転モードとして、前記ガスタービンが定格運転時に前記バーナを着火するボイラ運転モードを有する請求項1または請求項2に記載の舶用発電システム。
  4. 運転モードとして、前記ガスタービンを停止させて前記火炉に設けられたバーナを着火し、前記蒸気ドラムから前記蒸気タービンに蒸気を導入することで、前記第2発電機のみで発電を行う第1運転モードと、前記バーナを着火せずに、前記ガスタービンを駆動させて、前記排ガスエコノマイザで生成された蒸気を前記蒸気ドラムから前記蒸気タービンに導入することで、前記第1発電機及び前記第2発電機で発電する第2運転モードとを有する制御部を備え、
    前記制御部は、船舶の必要電力に応じて前記運転モードを選択する請求項1に記載の舶用発電システム。
  5. 前記制御部は、前記運転モードとして、前記火炉に設けられた前記バーナを着火して、前記蒸気ドラムから前記蒸気タービンに蒸気を導入することで、前記第1発電機及び前記第2発電機で発電する第3運転モードを有している請求項4に記載の舶用発電システム。
  6. 前記ボイラからの排ガスを前記排ガスエコノマイザに導くボイラ排ガス管を備えた請求項4または請求項5に記載の舶用発電システム。
  7. 前記ボイラから排出された排ガスから熱回収することによって蒸気を加熱するボイラ用排ガスエコノマイザと、
    前記ボイラから排出された排ガスを前記ボイラ用排ガスエコノマイザに導くボイラ排ガス管とを備える請求項4または請求項5に記載の舶用発電システム。
  8. 燃焼ガスによってガスタービンが駆動されるガスタービン駆動工程と、
    前記ガスタービンによって第1発電機が駆動されることで発電する第1発電工程と、
    前記ガスタービンから排出された排ガスから熱回収する熱回収工程と、
    火炉及び蒸気ドラムを有するボイラの該蒸気ドラムにより、前記熱回収工程にて得られた蒸気を汽水分離する汽水分離工程と、
    前記汽水分離工程にて得られた蒸気によって蒸気タービンを駆動させる蒸気タービン駆動工程と、
    前記蒸気タービンによって第2発電機を駆動させて電力を発電する第2発電工程とを備えた舶用発電システムの発電方法。
JP2017034936A 2017-02-27 2017-02-27 舶用発電システム、舶用発電システムの発電方法及び発電プラント Active JP6736501B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017034936A JP6736501B2 (ja) 2017-02-27 2017-02-27 舶用発電システム、舶用発電システムの発電方法及び発電プラント
PCT/JP2018/000213 WO2018154980A1 (ja) 2017-02-27 2018-01-09 舶用発電システム及び舶用発電システムの発電方法
SG11201907907QA SG11201907907QA (en) 2017-02-27 2018-01-09 Power generation system for ship and power generation method for power generation system for ship

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017034936A JP6736501B2 (ja) 2017-02-27 2017-02-27 舶用発電システム、舶用発電システムの発電方法及び発電プラント

Publications (3)

Publication Number Publication Date
JP2018141381A true JP2018141381A (ja) 2018-09-13
JP2018141381A5 JP2018141381A5 (ja) 2019-11-07
JP6736501B2 JP6736501B2 (ja) 2020-08-05

Family

ID=63253738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017034936A Active JP6736501B2 (ja) 2017-02-27 2017-02-27 舶用発電システム、舶用発電システムの発電方法及び発電プラント

Country Status (3)

Country Link
JP (1) JP6736501B2 (ja)
SG (1) SG11201907907QA (ja)
WO (1) WO2018154980A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020202590A1 (ja) * 2019-03-29 2020-10-08

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61166156U (ja) * 1985-04-02 1986-10-15
JPH0329523Y2 (ja) * 1985-12-11 1991-06-24
JP6450957B2 (ja) * 2012-11-28 2019-01-16 住友重機械工業株式会社 循環流動層ボイラ、及び循環流動層ボイラの起動方法
JP5916598B2 (ja) * 2012-12-20 2016-05-11 三菱重工業株式会社 動力システム
JP5976951B2 (ja) * 2014-04-07 2016-08-24 三菱重工コンプレッサ株式会社 浮体式液化ガス製造設備

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020202590A1 (ja) * 2019-03-29 2020-10-08
WO2020202590A1 (ja) * 2019-03-29 2020-10-08 大阪瓦斯株式会社 移動体
CN113614347A (zh) * 2019-03-29 2021-11-05 大阪瓦斯株式会社 移动体
KR20210143209A (ko) 2019-03-29 2021-11-26 오사까 가스 가부시키가이샤 이동체
JP7146070B2 (ja) 2019-03-29 2022-10-03 大阪瓦斯株式会社 移動体

Also Published As

Publication number Publication date
SG11201907907QA (en) 2019-09-27
WO2018154980A1 (ja) 2018-08-30
JP6736501B2 (ja) 2020-08-05

Similar Documents

Publication Publication Date Title
US6604354B2 (en) Combined cycle power plant
KR101009852B1 (ko) 폐열 증기 발생기
JP6749780B2 (ja) 追い焚きガスタービンコンバインドサイクルプラントの改良された温度が比較的低い状態の蒸気タービンを起動する方法
JP6224858B1 (ja) 発電プラント及びその運転方法
EP3354869B1 (en) Waste heat recovery equipment, internal combustion engine system, ship, and waste heat recovery method
JP6498433B2 (ja) 排熱回収システム及びこれを備えた船舶ならびに排熱回収方法
EP0902168B1 (en) Method and arrangement for a combi power plant
CN108843414B (zh) 核能与常规能源耦合和解耦带再热发电系统的工作方法
WO2018198836A1 (ja) 発電プラント及びその運転方法
JP6736501B2 (ja) 舶用発電システム、舶用発電システムの発電方法及び発電プラント
JP4898651B2 (ja) コンバインドサイクル複合発電設備とその運転方法
JP6549342B1 (ja) 発電プラント及びその運転方法
JP7374159B2 (ja) 火力発電プラントおよび火力発電プラントの制御方法
JP4718333B2 (ja) 貫流式排熱回収ボイラ
JP6513602B2 (ja) 排熱回収システム及びこれを備えた船舶ならびに排熱回収方法
JP5832080B2 (ja) 発電システムの制御装置、発電システム、及び発電システムの制御方法
KR20230124936A (ko) 화석 연료 발전 시스템에서 시동 시간을 개선하기 위한 시스템 및 방법
JP5151407B2 (ja) 蒸気システム
JP6891090B2 (ja) 発電プラント及びその運転方法
JP4842071B2 (ja) 貫流式排熱回収ボイラの運転方法、ならびに発電設備の運転方法
JP2021046989A (ja) 給水加熱システム及びこれを備えた発電プラント並びに給水加熱システムの運転方法
JP2019173696A (ja) コンバインドサイクル発電プラント、およびその運転方法
JP2006266086A (ja) 再生サイクル式ガスタービン発電システム
JP7246357B2 (ja) 燃料電池システム及びこれを用いた発電システム
WO2022176846A1 (ja) 火力発電プラントおよび火力発電プラントの制御方法

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190924

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190924

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20191227

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200715

R150 Certificate of patent or registration of utility model

Ref document number: 6736501

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150