JP2018136860A - 光学的情報読取装置 - Google Patents

光学的情報読取装置 Download PDF

Info

Publication number
JP2018136860A
JP2018136860A JP2017032332A JP2017032332A JP2018136860A JP 2018136860 A JP2018136860 A JP 2018136860A JP 2017032332 A JP2017032332 A JP 2017032332A JP 2017032332 A JP2017032332 A JP 2017032332A JP 2018136860 A JP2018136860 A JP 2018136860A
Authority
JP
Japan
Prior art keywords
unit
code
imaging
optical information
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017032332A
Other languages
English (en)
Other versions
JP6928458B2 (ja
Inventor
英純 永田
Hidesumi Nagata
英純 永田
大河 能見
Taiga Nomi
大河 能見
太一 田近
Taichi Tachika
太一 田近
宏海 大堀
Hiromi Ohori
宏海 大堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keyence Corp
Original Assignee
Keyence Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keyence Corp filed Critical Keyence Corp
Priority to JP2017032332A priority Critical patent/JP6928458B2/ja
Priority to US15/849,742 priority patent/US10262177B2/en
Publication of JP2018136860A publication Critical patent/JP2018136860A/ja
Priority to US16/282,341 priority patent/US10515249B2/en
Priority to JP2021090462A priority patent/JP7108747B2/ja
Application granted granted Critical
Publication of JP6928458B2 publication Critical patent/JP6928458B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/14Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation using light without selection of wavelength, e.g. sensing reflected white light
    • G06K7/1404Methods for optical code recognition
    • G06K7/1408Methods for optical code recognition the method being specifically adapted for the type of code
    • G06K7/14172D bar codes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10544Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum
    • G06K7/10712Fixed beam scanning
    • G06K7/10722Photodetector array or CCD scanning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10544Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum
    • G06K7/10712Fixed beam scanning
    • G06K7/10722Photodetector array or CCD scanning
    • G06K7/10752Exposure time control

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Artificial Intelligence (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Studio Devices (AREA)
  • Automatic Focus Adjustment (AREA)
  • Exposure Control For Cameras (AREA)
  • Focusing (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

【課題】露光時間を自動的に設定する場合にコードのセルの大きさも考慮できるようにして設定の際の精度を高める。【解決手段】入力部により入力されたワークの移動速度と、セルサイズ算出部により算出されたセルのサイズとに基づいて、ワークに付されたコードを読み取るための制約条件として撮像部の露光時間の上限値を求める。撮像部に露光時間を変化させて複数回撮像させて取得されたコードを含む複数の画像を解析することにより、制約条件の範囲内で撮像部の露光時間を設定する。【選択図】図14

Description

本発明は、情報を光学的に読み取る光学的情報読取装置に関する。
近年、たとえば物品の流通経路を製造段階から消費段階あるいは廃棄段階まで追跡可能にする、いわゆるトレーサビリティが重要視されてきており、このトレーサビリティを目的としたコードリーダが普及してきている。また、トレーサビリティ以外にもコードリーダは様々な分野で利用されている。
一般的に、コードリーダは、ワークに付されたバーコードや二次元コード等のコードをカメラによって撮像し、得られた画像に含まれるコードを画像処理によって切り出して二値化し、デコード処理して情報を読み取ることができるように構成されており、情報を光学的に読み取る装置であることから光学的情報読取装置とも呼ばれている(たとえば特許文献1、2参照)。
特許文献1では、カメラの露光時間やゲイン等の撮像パラメータを自動的に最適な値となるように設定するチューニング工程を光学的情報読取装置の運用前、即ち設定時に行うことができるように構成されている。
また、特許文献2では、ワークの搬送速度と適切な露光時間との対応テーブルを事前に用意しておき、この対応テーブルを用いてワークの搬送速度に応じた露光時間を設定することができるように構成されている。
特開2016−33787号公報 特開平9−6891号公報
ところで、特に搬送中のワークに付されたコードを撮像する場合にはブレが発生し易くなる。ブレはワークの搬送速度に大きく依存するが、それだけではなく、コードを構成するセルの大きさにも依存する。たとえばコードを構成するセルが小さければ小さいほどブレに弱くなる一方、セルが大きければ大きいほどブレに強くなる。
ブレを抑制する観点から、特許文献2ではワークの搬送速度と露光時間との対応テーブルを用いて適切な露光時間の設定を試みているが、この露光時間を設定するにあたり、セルの大きさは考慮されていない。従って、設定された露光時間がワークの搬送速度及びセルの大きさに対して最適な時間であるか否かは不明であり、改善の余地があると考えられる。具体的には、ワークの搬送速度だけで露光時間を決めてしまうと、セルの大きさからみたときには短すぎる露光時間となっている場合が考えられ、この場合には、ワークの搬送速度をもっと高速化できるのに遅く設定してしまっていることになるので、光学的情報読取装置の高速読取性能を十分に発揮できていない状態になってしまう。
本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、露光時間を自動的に設定する場合にコードのセルの大きさも考慮できるようにして設定の際の精度を高めることができるようにすることにある。
上記目的を達成するために、本発明では、移動するワークに付されたコードを撮像する撮像素子を有する撮像部と、上記ワークの移動速度を入力する入力部と、上記撮像部により得られた画像上のコードを構成しているセルのサイズを設定するセルサイズ設定部と、上記入力部により入力されたワークの移動速度と、上記セルサイズ設定部により設定されたセルのサイズとに基づいて、上記ワークに付されたコードを読み取るための制約条件として上記撮像部の露光時間の上限値を求めるとともに、上記撮像部に露光時間又はゲインを変化させて複数回撮像させて取得されたコードを含む複数の画像を解析することにより、上記制約条件の範囲内で上記撮像部の露光時間を設定する撮像条件設定部と、上記撮像条件設定部により設定された露光時間を用いて、上記撮像部により新たに取得された画像に含まれるコードをデコードするデコード部とを備えている。
この構成によれば、ワークの移動速度と、コードを構成しているセルのサイズとに基づいて、露光時間の上限値を求めることができる。そして、露光時間又はゲイン(又は少なくとも露光時間)を変化させて複数回撮像して得られた複数の画像を解析することにより、露光時間の上限値以下の範囲で読取に適した条件(露光時間など)を設定することができる。従って、ワークの移動速度だけでなく、セルのサイズを反映した適切な露光時間を設定することができる。そして、この露光時間を用いて撮像部により新たに取得された画像に含まれるコードをデコードすることができ、読み取り精度を高めることができる。
また、上記撮像部から上記コードまでの距離を得る距離設定部と、上記撮像部から上記コードまでの距離に応じた上記撮像部の視野範囲を定める第1の特性情報を記憶する特性情報記憶部とを備え、上記セルサイズ設定部は、上記撮像部により撮像された画像に含まれるコードと、上記距離設定部で得られた距離と、上記特性情報記憶部に記憶された第1の特性情報とに基づいてセルのサイズを算出するように構成されていてもよい。
また、上記撮像条件設定部は、上記撮像部にゲインを変化させて複数回撮像させて取得された複数の画像を解析してゲインを設定するように構成され、上記デコード部は、上記撮像条件設定部により設定されたゲインを用いて上記撮像部により新たに取得された画像に含まれるコードをデコードするように構成されていてもよい。
また、上記撮像条件設定部は、制約条件内で露光時間を変化させて上記撮像部にコードを複数回撮像させるように構成されていてもよい。
また、上記特性情報記憶部は、上記撮像部からの離間距離に応じた合焦範囲を定める第2の特性情報を記憶しており、上記入力部は、上記撮像部から上記コードまでの距離の変動幅に関する変動情報を入力するように構成され、上記特性情報記憶部に記憶された第2の特性情報と、上記セルサイズ設定部により設定されたセルのサイズと、上記入力部により入力された変動情報とに基づいて、上記光学的情報読取装置とコードとの推奨離間距離を求める推奨離間距離決定部と、上記推奨離間距離決定部により求めた推奨離間距離を表示する表示部とを備えていてもよい。
また、上記撮像部には、合焦用レンズを有する光学系と、上記合焦用レンズによる合焦位置を調整するためのオートフォーカス機構とが設けられており、上記オートフォーカス機構による上記合焦用レンズの調整量と、上記撮像部から上記コードまでの距離との対応関係を記憶する対応関係記憶部を備え、上記距離設定部は、上記合焦用レンズによる合焦が完了したときの上記調整量と、上記対応関係とに基づいて、上記撮像部から上記コードまでの距離を得るように構成されていてもよい。
本発明によれば、ワークの搬送速度及びセルのサイズを反映した適切な露光時間を設定することができ、読み取り精度を高めることができる。
光学的情報読取装置の運用時を説明する図である。 光学的情報読取装置の斜視図である。 光学的情報読取装置を照明部側から見た図である。 光学的情報読取装置の側面図である。 光学的情報読取装置を表示部側から見た図である。 偏光フィルタアタッチメントを本体から取り外した状態を示す斜視図である。 リフレクタの斜視図である。 リフレクタの正面図である。 透光パネルの斜視図である。 透光パネルの正面図である。 光学的情報読取装置のブロック図である。 コンピュータのブロック図である。 パラメータセット記憶部の記憶内容を表示するためのユーザーインターフェースである。 設定条件の抽出工程を示すフローチャートである。 起動用インターフェースである。 コード情報取得用インターフェースである。 寸法情報の算出工程を示すフローチャートである。 コード移動条件入力用インターフェースである。 平行移動速度入力用インターフェースである。 奥行き方向移動速度入力用インターフェースである。 回転移動速度入力用インターフェースである。 位置条件入力用インターフェースである。 詳細設置条件入力用インターフェースである。 回転移動速度入力用インターフェースの別の例を示す図である。 設置可能距離を決定する要領について説明する図である。 パラメータ設定条件の算出工程のフローチャートである。 推奨離間距離が近方限界距離と遠方限界距離との範囲外である場合の図23相当図である。 最適位置提示インターフェースである。 チューニング工程のフローチャートである。 ナビゲート機能の制御内容を示すフローチャートである。 搬送方向と視野範囲との関係を示す図である。 検証時におけるコードの移動速度を検出する方法を模式的に示す図である。 検証時における読み取り成功回数及びコードの移動速度の表示例を示すインターフェースである。
以下、本発明の実施形態を図面に基づいて詳細に説明する。尚、以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。
図1は、本発明の実施形態に係る光学的情報読取装置1の運用時を模式的に示す図である。この例では、複数のワークWが搬送用ベルトコンベアBの上面に載置された状態で図1における矢印Yの方向へ搬送されており、そのワークWから上方へ離れた所に、実施形態に係る光学的情報読取装置1が設置されている。光学的情報読取装置1は、ワークWに付されているコードを撮像し、撮像された画像に含まれるコードをデコード処理して情報を読み取ることができるように構成されたコードリーダである。光学的情報読取装置1は、その運用時に動かないようにブラケット等(図示せず)に固定して使用してもよいし、ロボット(図示せず)や使用者等が把持して動かしながら運用してもよい。また、静止状態にあるワークWのコードを光学的情報読取装置1によって読み取るようにしてもよい。運用時とは、搬送用ベルトコンベアBによって搬送されるワークWのコードを順に読み取る動作を行っている時である。
また、各ワークWの上面にはコードが付されている。コードには、バーコード及び二次元コードの両方が含まれる。二次元コードとしては、たとえば、QRコード(登録商標)、マイクロQRコード、データマトリクス(Data matrix;Data code)、ベリコード(Veri code)、アズテックコード(Aztec code)、PDF417、マキシコード(Maxi code)などがある。二次元コードにはスタック型とマトリクス型があるが、本発明はいずれの二次元コードに対しても適用できる。コードは、ワークWに直接印刷あるいは刻印することによって付してもよいし、ラベルに印刷した後にワークWに貼付することによって付してもよく、その手段、方法は問わない。
光学的情報読取装置1は、コンピュータ100及びプログラマブル・ロジック・コントローラ(PLC)101にそれぞれ信号線100a、101aによって有線接続されているが、これに限らず、光学的情報読取装置1、コンピュータ100及びPLC101に通信モジュールを内蔵し、光学的情報読取装置1と、コンピュータ100及びPLC101とを無線接続するようにしてもよい。PLC101は、搬送用ベルトコンベアB及び光学的情報読取装置1をシーケンス制御するための制御装置であり、汎用のPLCを利用することができる。コンピュータ100は、汎用あるいは専用の電子計算機や携帯型端末等を利用することができる。
また、光学的情報読取装置1は、その運用時において、PLC101から信号線101aを介して、コード読取の開始タイミングを規定する読取開始トリガ信号を受信する。そして、光学的情報読取装置1は、この読取開始トリガ信号に基づいてコードの撮像やデコードを行う。その後、デコードした結果は、信号線101aを介してPLC101へ送信される。このように、光学的情報読取装置1の運用時には、光学的情報読取装置1とPLC101等の外部制御装置との間で、信号線101aを介して読取開始トリガ信号の入力とデコード結果の出力が繰り返し行われる。なお、読取開始トリガ信号の入力やデコード結果の出力は、上述したように、光学的情報読取装置1とPLC101との間の信号線101aを介して行ってもよいし、それ以外の図示しない信号線を介して行ってもよい。例えば、ワークの到着を検知するためのセンサと光学的情報読取装置1とを直接的に接続し、そのセンサから光学的情報読取装置1へ読取開始トリガ信号を入力するようにしてもよい。
[光学的情報読取装置1の全体構成]
図2〜図6に示すように、光学的情報読取装置1は、装置本体2と、偏光フィルタアタッチメント3とを備えている。偏光フィルタアタッチメント3は省略してもよい。装置本体2には、照明部4と、撮像部5と、表示部6と、電源コネクタ7と、信号線コネクタ8とが設けられている。さらに、装置本体2には、図5に示すインジケータ9と、図3に示すエイマー10と、図5に示すセレクトボタン11と、エンターボタン12とが設けられている。
この実施形態の説明では、図2〜図6に示すように光学的情報読取装置1の前面、後面、上面、下面、左面、右面を定義するが、これは説明の便宜を図るためだけであり、光学的情報読取装置1の使用時における向きを限定するものではない。すなわち、図1に示すように、光学的情報読取装置1の前面が下に向くように設置して使用することや、光学的情報読取装置1の前面が上に向くように設置して使用すること、あるいは光学的情報読取装置1の前面が傾斜した状態となるように設置して使用すること等が可能である。また、光学的情報読取装置1の左右方向は幅方向と呼ぶこともできる。
装置本体2は、上下方向に長い略矩形箱状をなすケーシング2aを備えている。ケーシング2aの内部には、図11に示す制御ユニット29やデコード部31等が設けられている。図2及び図6に示すように、ケーシング2aの前面に偏光フィルタアタッチメント3が着脱可能に取り付けられている。また、ケーシング2aの前面には、光学的情報読取装置1の前方へ向けて光を照射することによってワークWの少なくともコードを照明する照明部4と、光学的情報読取装置1の前方にあるワークWの少なくともコードを撮像する撮像部5とが設けられている。さらに、ケーシング2aの前面には、発光ダイオード(LED)等の発光体で構成されたエイマー10が設けられている。このエイマー10は、光学的情報読取装置1の前方へ向けて光を照射することによって撮像部5による撮像範囲や照明部4の光軸の目安を示すためのものである。使用者は、エイマー10から照射される光を参照して光学的情報読取装置1を設置することもできる。
ケーシング2aの上面には表示部6が設けられている。また、ケーシング2aの上面には、光学的情報読取装置1の設定時や各種情報の入力時等に使用するセレクトボタン11及びエンターボタン12とが設けられている。セレクトボタン11及びエンターボタン12は制御ユニット29に接続されていて、制御ユニット29はセレクトボタン11及びエンターボタン12の操作状態を検出可能になっている。セレクトボタン11は、表示部6に表示された複数の選択肢の中から1つを選択する際に操作するボタンである。エンターボタン12は、セレクトボタン11で選択した結果を確定する際に操作するボタンである。セレクトボタン11及びエンターボタン12は入力部である。
さらに、ケーシング2aの上面の左右両側には、それぞれインジケータ9が設けられている。インジケータ9は、制御ユニット29に接続されていて、たとえば発光ダイオード等の発光体で構成することができる。光学的情報読取装置1の作動状態をインジケータ9の点灯状態によって外部に報知することができる。
ケーシング2aの下面には、光学的情報読取装置1に電力を供給するための電力配線が接続される電源コネクタ7と、コンピュータ100及びPLC101に接続される信号線100a、101a用のEthernetコネクタ8とが設けられている。尚、Ethernet規格は一例であり、Ethernet規格以外の規格の信号線を利用することもできる。
[照明部4の構成]
照明部4は、図7及び図8に示すリフレクタ15と、図3等に示す複数の第1発光ダイオード16及び複数の第2発光ダイオード17とを備えている。第1発光ダイオード16と第2発光ダイオード17とは、制御ユニット29に電気的に接続されていて制御ユニット29により個別に制御され、別々に点灯及び消灯させることができるようになっている。
図7及び図8に示すように、リフレクタ15は、光学的情報読取装置1の前面の上部から下部に亘って延びる板状をなしている。第1発光ダイオード16及び第2発光ダイオード17はそれぞれ7つ設けられているが、第1発光ダイオード16及び第2発光ダイオード17の数はこれに限られるものではない。第1発光ダイオード16及び第2発光ダイオード17はリフレクタ15の後側に配置されて前方へ光を照射するように光軸が設定されている。リフレクタ15の上下方向中間部には、撮像部5を外部に臨ませるための撮像用開口部15aが形成されている。リフレクタ15における撮像用開口部15aの左右両側には、それぞれエイマー10の光を通すためのエイマー用開口部15bが形成されている。
リフレクタ15における撮像用開口部15aよりも下側部分には、第1発光ダイオード16の光を通すとともに前方へ集光して照射するための第1孔15cが第1発光ダイオード16の数と同じだけ、即ち7つ形成されている。これら第1孔15cは同じ形状とされており、前側へ向かって次第に拡径するコーン形状をなしている。第1孔15cの内面は、光の反射率を高めるために金メッキ等のメッキ処理が施されている。
7つの第1孔15cのうち、4つの第1孔15cは、光学的情報読取装置1の左右方向(幅方向)に並ぶように配置されている。残りの3つの第1孔15cは、その中心が上記4つの第1孔15cの中心よりも下に位置するように、かつ、上記4つの第1孔15cのうち、隣合う第1孔15c、15cの中心間にそれぞれ位置するように配置されている。これにより、7つの第1孔15cを密に配置することができる。第1発光ダイオード16は、各第1孔15cの中心に配置される。
リフレクタ15における撮像用開口部15aよりも上側部分には、第2発光ダイオード17の光を通すとともに前方へ集光して照射するための第2孔15dが第2発光ダイオード17の数と同じだけ、即ち7つ形成されている。これら第2孔15dは第1孔15cと同じ形状とされており、第2孔15dの内面には第1孔15cと同様なメッキ処理が施されている。
7つの第2孔15dのうち、4つの第2孔15dは、光学的情報読取装置1の左右方向(幅方向)に並ぶように配置されている。残りの3つの第2孔15dは、その中心が上記4つの第2孔15dの中心よりも上に位置するように、かつ、上記4つの第2孔15dのうち、隣合う第2孔15d、15dの中心間にそれぞれ位置するように配置されている。これにより、7つの第2孔15dを密に配置することができる。第2発光ダイオード17は、各第2孔15dの中心に配置される。
照明部4は撮像部5と別体に構成されていてもよい。この場合、照明部4と撮像部5とを有線または無線接続することができる。また、後述する制御ユニット29は、照明部4に内蔵されていてもよいし、撮像部5に内蔵されていてもよい。
[偏光フィルタアタッチメント3の構成]
図6に示すように、偏光フィルタアタッチメント3は、枠部材20と、透光パネル21とを備えている。枠部材20は、光学的情報読取装置1の前面の外形状に略一致する外形状を有している。この枠部材20の内部に、透光パネル21が設けられている。透光パネル21は、照明部4の第1発光ダイオード16及び第2発光ダイオード17を前方から覆うとともに、撮像部5も前方から覆うように形成されている。図9及び図10に示すように、透光パネル21における第1発光ダイオード16を覆う部分、即ち下側部分21aは第1発光ダイオード16の光を出射する部分であり、この下側部分21aは、無色透明で偏光フィルタを有していない部分である。一方、透光パネル21における第2発光ダイオード17を覆う部分、即ち上側部分21bは第2発光ダイオード17の光を出射する部分であり、この上側部分21bは、偏光フィルタが設けられた部分である。さらに、透光パネル21における下側部分21aと上側部分21bとの間の中間部分21cは撮像部5を覆う部分であり、撮像部5に入射する光が透過する部分である。中間部分21cも偏光フィルタが設けられた部分である。上側部分21bの偏光フィルタの偏光方向と、中間部分21cの偏光フィルタの偏光方向とは、たとえば90度異なっている。図9及び図10では、偏光フィルタが設けられている部分を薄く着色して示している。図2、図3及び図6では偏光フィルタが設けられている部分を無着色としているが、実際には図9や図10と同様に薄く着色される。
つまり、第1発光ダイオード16から照射された光は偏光フィルタを通過せずにワークWに達する一方、第2発光ダイオード17から照射された光は偏光フィルタを通過してワークWに達する。そして、ワークWからの反射光は偏光フィルタを通過して撮像部5に入射することになる。
従って、使用者が偏光フィルタアタッチメント3を取り外さなくても、光学的情報読取装置1が第1発光ダイオード16と第2発光ダイオード17のどちらを点灯させるかを電気的に切り替えることで、様々なワークWに容易に対応することができる。具体的には、偏光フィルタが無い方がより有利なワークW(たとえば鋳物等)については第1発光ダイオード16を点灯させて第2発光ダイオード17を消灯させる。一方、偏光フィルタが有る方がより有利なワークW(たとえばプリント基板やフライス加工面、黒色樹脂等に二次元コードが付されている場合)については第1発光ダイオード16を消灯させて第2発光ダイオード17を点灯させる。
[撮像部5の構成]
図11は光学的情報読取装置1の構成を示すブロック図である。図11に示すように、撮像部5は、ワークWに付されていて上記照明部4によって照明されているコードを撮像する撮像素子5aと、レンズ等を有する光学系5bと、オートフォーカス機構(AF機構)5cとを備えている。光学系5bには、ワークWのコードが付された部分から反射した光が入射するようになっている。撮像素子5aは、光学系5bを通して得られたコードの画像を電気信号に変換するCCD(charge-coupled device)やCMOS(complementary metal oxide semiconductor)等の受光素子からなるイメージセンサである。撮像素子5aは制御ユニット29に接続されていて、撮像素子5aによって変換された電気信号は、制御ユニット29に入力される。また、AF機構5cは、光学系5bを構成するレンズのうち、合焦用レンズの位置や屈折率を調整することによってピント合わせを行う機構であり、合焦用レンズによる合焦位置(ピントが合う位置)を調整することができるように構成されている。AF機構5cも制御ユニット29に接続され、制御ユニット29のAF制御部29aにより制御される。
[表示部6の構成]
表示部6は、たとえば有機ELディスプレイや液晶ディスプレイ等からなるものである。表示部6は、制御ユニット29に接続され、たとえば撮像部5で撮像された画像、撮像部5で撮像されたコード、コードのデコード結果である文字列、読み取り成功率、マッチングレベル、推奨離間距離等を表示させることができる。読み取り成功率とは、複数回読み取り処理を実行したときの平均読み取り成功率であり、デコード部31によるコードのデコード処理のし易さを示すスコアである。また、マッチングレベルとは、デコードが成功したコードの読み取りのしやすさを示す読取余裕度であり、これもデコード部31によるコードのデコード処理のし易さを示すスコアである。マッチングレベルは、デコード時に発生した誤り訂正の数等から求めることができ、たとえば数値で表すことができる。誤り訂正が少なければ少ないほどマッチングレベル(読取余裕度)が高くなり、一方、誤り訂正が多ければ多いほどマッチングレベル(読取余裕度)が低くなる。
推奨離間距離(推奨設置距離ともいう)とは、光学的情報読取装置1とコードとの推奨離間距離であり、具体的には、光学的情報読取装置1の光学系5bのレンズ面と、撮像対象物としてのコードとの距離とすることができる。推奨離間距離は、光学的情報読取装置1の撮像素子5aの撮像面と、コードとの距離であってもよいし、光学的情報読取装置1の前面の特定部分と、コードとの距離であってもよい。
[セルサイズ設定部30の構成]
光学的情報読取装置1は、撮像部5により得られた画像上のコードを構成しているセルのサイズを設定するセルサイズ設定部30を有している。セルサイズ設定部30は、撮像部5により撮像された画像に含まれるコードと、撮像部5からコードまで距離と、撮像部5からコードまでの距離に応じた撮像部5の視野範囲を定める第1の特性情報(たとえば光学系5bの画角)とに基づいて実際の(現実の)セルのサイズを算出し、設定するように構成されている。撮像部5からコードまで距離は、距離設定部29dにより得ることができるようになっている。セルのサイズの具体的な算出手順(設定手順)については後述するフローチャートに基づいて詳細に説明する。
[デコード部31の構成]
光学的情報読取装置1は、撮像素子5aにより撮像された画像に含まれるコード位置を検出するとともに、検出されたコードにデコード処理を行うデコード部31を有している。具体的に、デコード部31は、白黒の二値化されたデータをデコードするように構成されており、デコードの際には、符号化されたデータの対照関係を示すテーブルを使用することができる。さらに、デコード部31は、デコードした結果が正しいか否かを所定のチェック方式に従ってチェックする。データに誤りが発見された場合にはエラー訂正機能を使用して正しいデータを演算する。エラー訂正機能はコードの種類によって異なる。
デコード部31は、コードをデコードして得られたデコード結果を記憶装置35に書き込むように構成されている。また、デコード部31では、デコード前の画像に対して各種画像処理フィルタ等の画像処理を行うこともできる。
デコード部31が、撮像素子5aにより撮像された画像に含まれるコード位置を検出する際には、撮像素子5aにより撮像された画像内においてコードを探索し、コードが探索されたら、探索されたコードのたとえば中心部を推定し、その中心部のX座標とY座標を求める。コードの位置を検出する方法は、これに限られるものではなく、たとえばコードの端部のX座標とY座標を求めるようにしてもよい。
[通信部32の構成]
光学的情報読取装置1は通信部32を有している。通信部32は、コンピュータ100及びPLC101と通信を行う部分である。通信部32は、コンピュータ100及びPLC101と接続されるI/O部、RS232C等のシリアル通信部、無線LANや有線LAN等のネットワーク通信部を有していてもよい。
[制御ユニット29の構成]
図11に示す制御ユニット29は、光学的情報読取装置1の各部を制御するためのユニットであり、CPUやMPU、システムLSI、DSPや専用ハードウエア等で構成することができる。制御ユニット29は、後述するように様々な機能を搭載しているが、これらは論理回路によって実現されていてもよいし、ソフトウエアを実行することによって実現されていてもよい。
制御ユニット29は、AF制御部29aと、撮像制御部29bと、チューニング部(撮像条件設定部)29cと、距離設定部29dと、推奨離間距離決定部29eと、UI管理部29eとを有している。AF制御部29aは、AF機構5cを制御するユニットであり、従来から周知のコントラストAFや位相差AFによって光学系5bのピント合わせを行うことができるように構成されている。AF制御部29aは、光学系5bを構成している合焦用レンズの光軸方向の位置を得ることができるように構成されている。具体的には、AF用モータのステップ数や回転量に基づいて、AF機構5cによる合焦用レンズの調整量を得ることが可能になる。また、屈折率を変化させることによって合焦する液体レンズの場合には、液体レンズへ印加する電圧等によって合焦用レンズの調整量を得ることが可能になる。
撮像制御部29bは、撮像素子5aが撮像した画像に適用されるゲインが所定値になるように制御したり、照明部4の光量が所定の光量となるように制御したり、撮像素子5aの露光時間(シャッタースピード)が所定時間となるように制御するためのユニットである。ここで、ゲインとは、撮像素子5aに適用する増幅率(アナログゲイン)と、撮像素子5aから出力された画像の明るさをデジタル画像処理によって増幅する際の増幅率(デジタルゲイン)とを含んでおり、両方を調整することができるように構成されているが、どちらか一方のみ調整可能にしてもよい。照明部4の光量については、第1発光ダイオード16と第2発光ダイオード17を別々に制御して変更することができる。ゲイン、照明部4の光量及び露光時間は、撮像部5の撮像条件である。
チューニング部29cは、ゲイン、照明部4の光量及び露光時間等の撮像条件や、画像処理条件を変更して最適化するためのユニットである。画像処理条件とは、画像処理フィルタの係数(画像処理フィルタの強弱)や、複数の画像処理フィルタがある場合に画像処理フィルタの選択、種類の異なる画像処理フィルタの組み合わせ等である。搬送時のワークWに対する外光の影響や、コードが付されている面の色及び材質等によって適切な撮像条件及び画像処理条件は異なる。よって、チューニング部29cは、より適切な撮像条件及び画像処理条件を探索して、AF制御部29a、撮像制御部29b、デコード部31による処理を設定する。画像処理フィルタは、たとえば、膨脹フィルタ、収縮フィルタ及び平滑化フィルタ以外にも、従来から周知の各種画像処理フィルタを使用することができる。
チューニング部29cは、ワークWの移動速度(搬送速度ともいう)と、セルサイズ設定部30によって設定されたコードのセルのサイズとに基づいて、ワークWに付されたコードを読み取るための制約条件として撮像部5の露光時間の上限値を求めるとともに、撮像部5に露光時間を変化させて複数回撮像させて取得されたコードを含む複数の画像を解析することにより、制約条件の範囲内で撮像部5の露光時間を設定することができるように構成されており、本発明の撮像条件設定部としても機能する。チューニング部29cは、制約条件内(露光時間の上限値以下)で露光時間を変化させて撮像部5にコードを複数回撮像させるように構成されているのが好ましい。これにより、無駄な試行を減らすことができる。
上記ワークWの移動速度は、使用者が入力した値を用いることができる。ワークWの移動速度は、セレクトボタン11及びエンターボタン12の操作によって入力することや、図12に示すコンピュータ100の入力部43(たとえばテンキーやマウス等)の操作によって入力することができる。コンピュータ100の入力部43の操作によって入力する場合、コンピュータ100の入力部43は光学的情報読取装置1の構成要素の一部とすることができる。
また、チューニング部29cは、撮像部5にゲインを変化させて複数回撮像させて取得された複数の画像を解析してゲインを設定するように構成されていてもよい。さらに、チューニング部29cは、撮像部5に、露光時間とゲインの両方を変化させて複数回撮像させて取得された複数の画像を解析して露光時間とゲインを設定するように構成されていてもよい。
距離設定部29dは、撮像部5からコードまでの距離を得る部分である。撮像部5からコードまでの距離は、撮像部5を構成する光学系5bのレンズ面と、コードとの距離とすることができる。また、撮像部5からコードまでの距離は、撮像素子5aの撮像面と、コードとの距離であってもよい。
撮像部5からコードまでの距離を得る具体的な方法としては次のような方法がある。たとえば、合焦用レンズによる合焦が完了したときにおけるAF機構5cによる合焦用レンズの調整量を距離設定部29dが得て、その調整量と、撮像部5からコードまでの距離との対応関係とに基づいて、撮像部5からコードまでの距離を得る方法がある。つまり、撮像部5からコードまでの距離が変化すれば、ピント合わせを行うために合焦用レンズの位置や屈折率が調整されるので、AF機構5cによる合焦用レンズの調整量と、撮像部5からコードまでの距離とは対応関係にあると言えるので、AF機構5cによる合焦用レンズの調整量と、撮像部5からコードまでの距離との対応関係を対応関係記憶部35eに予め記憶させておくことで、合焦用レンズによる合焦が完了したときの上記調整量と、上記対応関係とに基づいて、撮像部5からコードまでの距離を簡単にかつ正確に得ることができる。
また、撮像部5からコードまでの距離を得る別の方法としては、たとえば使用者がセレクトボタン11及びエンターボタン12や、図12に示すコンピュータ100の入力部43を操作することによって手動で入力した値を読み込む方法もある。この場合、使用者が撮像部5からコードまでの距離を事前に測定しておけばよい。
推奨離間距離決定部29eは、撮像部5からの離間距離に応じた合焦範囲を定める第2の特性情報と、セルサイズ設定部30により設定されたセルのサイズと、撮像部5からコードまでの距離の変動幅に関する変動情報とに基づいて、光学的情報読取装置1とコードとの推奨離間距離を求めるように構成されている。光学的情報読取装置1とコードとの推奨離間距離は、言い換えると光学的情報読取装置1の推奨設置距離であり、光学的情報読取装置1とコードとをどの程度まで離してもコードを所定の読み取り成功率で読み取ることができるか、あるいは光学的情報読取装置1とコードとをどの程度まで近づけてもコードを所定の読み取り成功率で読み取ることができるかを具体的に示す指標である。
推奨離間距離を求める具体的な方法については後述するフローチャートに基づいて説明する。尚、推奨離間距離決定部29eにより求めた推奨離間距離は表示部6や、コンピュータ100の表示部42に表示することができる。コンピュータ100の表示部42に表示する場合、当該表示部42は光学的情報読取装置1の構成要素の一部とすることができる。
撮像部5の光学系5cの合焦用レンズを所定位置で固定した状態でピントが合う範囲、即ち合焦範囲(被写界深度または単に深度ともいう)は決まっており、この深度は撮像部5とコードとの離間距離によって変化する。第2の特性情報は、撮像部5からの離間距離に応じて定まる深度に関する情報であり、光学系5cに固有のものである。この第2の特性情報は事前に試験等を行うことにより得ておくことができる。第2の特性情報を利用することで、撮像部5からの離間距離が分かると、当該離間距離における深度を求めることが可能になる。また、深度は、所定の計算式によって求めるようにしてもよい。
また、撮像部5からコードまでの距離の変動幅は、たとえば形状が異なる複数種のワークWが搬送用ベルトコンベアBによって搬送されている場合に大きくなる。ワークWの形状が異なると、撮像部5からコードまでの距離がワークの形状毎に異なることになり、これにより、撮像部5からコードまでの距離の変動することになる。この変動幅に関する情報は、使用者がワークWの外寸を測定する、各ワークWと撮像部5までの距離を実際に測定する等の方法によって事前に得ることができる。また、同一形状のワークWが同じ姿勢で搬送されている場合には、撮像部5からコードまでの距離の変動は殆どないので、変動幅はほぼ0になる。変動幅に関する情報は、たとえば使用者がセレクトボタン11及びエンターボタン12や、図12に示すコンピュータ100の入力部43を操作することによって手動で入力することもできる。
図11に示すUI管理部29eは、表示部6に、各種ユーザーインターフェース、撮像部5で撮像されたコード、コードのデコード結果である文字列、読み取り成功率、マッチングレベル等を表示させたり、セレクトボタン11及びエンターボタン12からの入力を受け付けたり、インジケータ9の点灯を制御するユニットである。
[記憶装置35の構成]
記憶装置35は、メモリやハードディスク等で構成されている。記憶装置35には、デコード結果記憶部35aと、画像データ記憶部35bと、パラメータセット記憶部35cと、特性情報記憶部35dと、対応関係記憶部35eとが設けられている。
デコード結果記憶部35aは、デコード部31によりデコードされた結果であるデコード結果を記憶する部分である。画像データ記憶部35bは、撮像素子5aによって撮像された画像を記憶する部分である。
図11に示すパラメータセット記憶部35cは、コンピュータ100等の設定装置によって設定された設定情報やセレクトボタン11及びエンターボタン12によって設定された設定情報等を記憶する部分である。パラメータセット記憶部35cには、撮像部5の撮像条件(ゲイン、照明部4の光量及び露光時間等)と、画像処理条件(画像処理フィルタの種類等)との少なくとも一方を構成する複数のパラメータを含むパラメータセットを記憶することができる。この実施形態では、図13に示すパラメータセット表示フォーマット46の中に、バンク1〜5として表示するように、撮像部5の撮像条件を構成するパラメータ及び画像処理条件を構成するパラメータがセットになったパラメータセットを複数通り記憶することができるように構成されている。バンク1〜5には異なるパラメータセットを記憶させることができ、たとえばワークWが異なる場合等に対応することができる。バンクの数は任意に設定することができる。
この光学的情報読取装置1では、パラメータセット記憶部35cに記憶されている複数のパラメータセットのうち、一のパラメータセットから他のパラメータセットに切り替えることができるように構成されている。パラメータセットの切替は、使用者が行うこともできるし、PLC101で行うように構成することもできる。パラメータセットの切替を使用者が行う場合には、図13に示すユーザーインターフェースに組み込まれているパラメータセット切替部46bを操作すればよい。パラメータセット切替部46bを「有効」にすることで、そのバンクのパラメータセットが光学的情報読取装置1の運用時に使用され、また、パラメータセット切替部46bを「無効」にすることで、そのバンクのパラメータセットが光学的情報読取装置1の運用時に使用されないようになる。つまり、パラメータセット切替部46bは、一のパラメータセットから他のパラメータセットに切り替えるためのものである。尚、パラメータセット切替部46bの形態は図示した形態に限られるものではなく、たとえばボタン等、各種の形態を使用することができる。
ここで、図13に示すパラメータセット46について、補足説明する。図13では、「共通」パラメータとして、「オルタネート」(複数登録したパラメータセットを自動的に切り換えながら撮像・デコードを試行する機能)や「バンク内リトライ回数」(オルタネートするまでに行う撮像・デコードの回数)などが含まれている。「コード」パラメータとしては、「コード詳細設定」(読取を行うコード種別)や「桁限定出力機能」(読取データの出力桁を限定する機能)などが含まれている。「照明」パラメータとしては、「内部照明の使用」(光学的情報読取装置1に内蔵されている照明の使用有無)、「外部照明の使用」(光学的情報読取装置1に外付けされている照明の使用有無)及び「偏光フィルタ」(後述する偏光モードを有効にするか否か)が含まれている。「撮像」パラメータとしては、「露光時間」(撮像時の露光時間μs)、「ゲイン」(撮像時のゲイン)及び「コントラスト調整方式」(上述した「HDR」、「超HDR」、「標準特性」及び「コントラスト強調特性」のいずれか)が含まれている。さらに、「画像処理フィルタ」パラメータとして、「1番目画像処理フィルタ」(1番目に実行する画像フィルタの種別)や「1番目画像処理フィルタ回数」(1番目の画像フィルタを実行する回数)などが含まれている。
図13では、バンク1〜5において、上述した「コントラスト調整方式」は、それぞれ「HDR」「コントラスト強調」「標準」「超HDR」「HDR」に設定されている。また、上述した「オルタネート」は、バンク1およびバンク2のみが「有効」となっている。したがって、光学的情報読取装置1は、まず、バンク1の設定内容であるコントラスト調整方式「HDR」を用いて、デコードを試みる。デコードに失敗した場合には、バンク1の設定内容からバンク2の設定内容に切り換えて、バンク2の設定内容であるコントラスト調整方式「コントラスト強調」を用いて、デコードを試みる。要するに、複数登録したパラメータセットを自動的に切り換えながらデコードを試みることで、自動的にコントラスト調整方式を切り替えながらデコードを試みることができ、ひいては読取精度を高めることができる。
なお、上述した「オルタネート」の順序は、種々の方法が考えられる。例えば、上述したように、1番から順番にバンクを切り換えてデコードを試行してもよい。その他にも、例えば、読み取り成功したバンクを優先するようにしてもよい。具体的には、読取に成功したバンクについては、次の読取時に優先的に設定されるようにしてもよい。これにより、例えばロット単位で印字状態が変わる場合に、読取タクトを短縮することができる。
図11に示す特性情報記憶部35dは、撮像部5からコードまでの距離に応じた撮像部5の視野範囲(視野サイズともいう)を定める第1の特性情報と、上述した撮像部5からの離間距離に応じた合焦範囲を定める第2の特性情報とを記憶している。第1の特性情報は、撮像部5からコードまでの距離に応じた撮像部5の視野範囲を定めることができる情報であればよく、たとえば光学系5bの画角(rad)とすることができる。第2の特性情報は、光学系5cに固有のものであることから事前に得ておき、撮像部5からの離間距離と深度との関係を対応テーブルのような形態として特性情報記憶部41cに記憶させておけばよい。
対応関係記憶部35eは、上述したAF機構5cによる合焦用レンズの調整量と、撮像部5からコードまでの距離との対応関係を記憶する部分である。AF機構5cによる合焦用レンズの調整量と、撮像部5からコードまでの距離との対応関係は、光学系5cに固有のものであることから事前に得ておき、合焦用レンズの調整量と撮像部5からコードまでの距離との関係を対応テーブルのような形態として対応関係記憶部35eに記憶させておけばよい。
[コンピュータ100の構成]
コンピュータ100は、図12にブロック図で示すように、CPU40と、記憶装置41と、表示部42と、入力部43と、通信部44とを備えている。光学的情報読取装置1を小型化することで、光学的情報読取装置1の表示部6やボタン11、12等だけでは、光学的情報読取装置1の全ての設定を行うことが困難になるので、光学的情報読取装置1とは別にコンピュータ100を用意し、コンピュータ100で光学的情報読取装置1の各種設定を行って設定情報を光学的情報読取装置1に転送するようにしてもよい。
また、コンピュータ100と光学的情報読取装置1とを双方向通信可能に接続して、上述した光学的情報読取装置1の処理の一部をコンピュータ100で行うようにしてもよい。逆も可能である。この場合、コンピュータ100の一部が光学的情報読取装置1の構成要素の一部になる。
CPU40は、記憶装置41に記憶されているプログラムに基づいてコンピュータ100が備えている各部を制御するユニットである。記憶装置41は、メモリやハードディスク等で構成されている。表示部42は、たとえば液晶ディスプレイ等で構成されている。入力部43は、キーボードやマウス、表示部42に設けられたタッチスクリーンやタッチセンサ等で構成されている。通信部44は、光学的情報読取装置1と通信を行う部分である。通信部44は、光学的情報読取装置1と接続されるI/O部、RS232C等のシリアル通信部、無線LANや有線LAN等のネットワーク通信部を有していてもよい。
CPU40は、様々な演算を行う演算部40aを備えている。演算部40aには、UI制御部40bと設定部40cとが設けられている。UI制御部40bは、光学的情報読取装置1の撮像部5の撮像条件や画像処理条件等を設定するためのユーザーインターフェースや、光学的情報読取装置1から出力されたデコード結果、画像データ等を表示するためのユーザーインターフェースを生成し、表示部42に表示させる。設定部40cは、撮像部5の撮像条件及び画像処理条件を設定する。
コンピュータ100の記憶装置41は、デコード結果記憶部41aと、画像データ記憶部41bと、パラメータセット記憶部41cと、特性情報記憶部41dと、対応関係記憶部41eとが設けられている。これら記憶部41a〜41eは、光学的情報読取装置1のデコード結果記憶部35aと、画像データ記憶部35bと、パラメータセット記憶部35cと、特性情報記憶部35dと、対応関係記憶部35eと同様な情報を記憶する部分であり、光学的情報読取装置1の構成要素の一部とすることができる。
[設定時に実行される工程]
次に、上記のように構成された光学的情報読取装置1が設定時に実行する工程について図14に示すフローチャートに基づいて説明する。以下に述べる工程は、光学的情報読取装置1の制御ユニット29が実行してもよいし、コンピュータ100のCPU40が光学的情報読取装置1の各部を制御しながら実行してもよい。この実施形態では、光学的情報読取装置1の制御ユニット29にチューニング部29cが設けられているので、制御ユニット29がチューニング工程を実行する。
図14に示すフローチャートのステップSA1では、撮像部5に固有のパラメータ(カメラパラメータ)を読み込む。カメラパラメータは、撮像部5により得られた画像上のコードに基づいて当該コードの実際の大きさ(当該コードを構成するセルの大きさ)を特定するために必要なパラメータとすることができ、この実施形態では、撮像部5からコードまでの距離に応じた撮像部5の視野範囲を定める第1の特性情報と、撮像部5からの離間距離に応じた合焦範囲を定める第2の特性情報を含んでいる。尚、撮像部5が固定焦点タイプである場合、カメラパラメータは分解能(mm/ピクセル)とすることもできる。
ステップSA2では設定条件の抽出を開始する。設定条件の抽出にあたっては、まず、コンピュータ100のUI制御部40bが、図15に示すような起動用ユーザーインターフェース47をコンピュータ100の表示部42に表示させる。起動用ユーザーインターフェース47には、モニタボタン47a、オートフォーカスボタン47b、チューニング開始ボタン47c、画像表示領域47d及び設定開始ボタン47eが組み込まれている。
使用者がコンピュータ100の入力部43を操作してモニタボタン47aをクリックすると、光学的情報読取装置1の撮像部5によって現在撮像されている画像が画像表示領域47dに表示される。使用者は、起動用インターフェース47の画像を見ながら、ワークWのコードCが画像表示領域47dに表示されるようにワークWを移動させる。実際のワークWの代わりに、コードが付された紙等のような部材を撮像させてチューニングを行うこともできる。
尚、モニタボタン47aをクリックすることで当該ボタン47aを操作(押下)することができるが、たとえばタッチパネルの場合には画面上のモニタボタン47aに触れることで当該ボタン47aを操作することができる。以下、「クリック」とは、操作の具体的な方法の一例を挙げているだけであって操作の方法がクリックに限定されるものではない。
その後、使用者が起動用インターフェース47のオートフォーカスボタン47bをクリックすると、撮像部5のAF機構5cをAF制御部29aによって制御してコードCにピントを合わせる。これにより、コードCが画像表示領域47d内にあることを確認でき、使用者は、起動用インターフェース47の画像を見ながらワークWを移動させて位置を微調整したり、ピントを合わせ直すことができる。また、使用者が起動用インターフェース47のチューニング開始ボタン47cをクリックすると、チューニング工程が実行される。
使用者が起動用インターフェース47のチューニング開始ボタン47cをクリックする前に、設定開始ボタン47eをクリックすると設定ウィザードが開始されて図16に示すコード情報取得用インターフェース48がコンピュータ100の表示部42に表示される。コード情報取得用インターフェース48には、コードをどのようにして置けばよいかを示す説明図が組み込まれている。
設定ウィザードが開始されると同時に、チューニング部29cは撮像部5にモニタ動作を開始させる。モニタ動作とは、光学的情報読取装置1の撮像部5によって連続撮影した画像を画像表示領域47dに順次表示する動作であり、照明部4も撮像部5に同期して作動する。モニタ動作を停止させる場合には、コード情報取得用インターフェース48の停止ボタン48cをクリックすればよい。
そして、図14に示すフローチャートのステップSA4に進んで、チューニング部29cが撮像部5の視野範囲内でデコード処理の対象となるコードを探索する。このとき、露光時間やゲイン等を様々に変えながら撮像部5による撮像を試行し、試行によって何らかのコードが見つかった段階でそのコード種類を判別する。
コード種類の判別とは、たとえば、バーコード、QRコード、マイクロQRコード、データマトリクス、ベリコード、アズテックコード、PDF417、マキシコード等のいずれのコードであるか判別することであるが、単に、バーコードと二次元コードのいずれであるかを判別するようにしてもよい。コード種類の判別結果は、図16に示すコード情報取得用インターフェース48に組み込まれているコード種別表示領域48aに表示される。ステップSA7では、コードを構成する1つのセルが撮像部5によって取得された画像データにおいていくつの画素に相当するかを示す値、即ちPPC(ピクセル/セル)を算出する。PPCは、撮像部5によって取得された画像データを用いて周知の手法に基づいて演算することができるので、詳細な説明は省略する。
また、ステップSA5に進んで寸法情報を算出する。寸法情報の算出工程のフローチャートは図17に示す。ステップSB1では、フォーカス条件を読み込む。フォーカス条件は、AF機構5cによる合焦用レンズの調整量である。ステップSB2では、図14に示すフローチャートのステップSA1と同様にカメラパラメータを読み込む。ステップSB3では、探索によって見つかったコードを読み込む。
ステップSB4では、距離設定部29dが、合焦用レンズによる合焦が完了したときにおけるAF機構5cによる合焦用レンズの調整量と、撮像部5からコードまでの距離との対応関係とに基づいて、撮像部5からコードまでの距離(mm)を得る。これが現時点での設置距離になる。尚、撮像部5からコードまでの距離を使用者がスケール等を用いて測定し、その実測値を設置距離として入力するようにしてもよい。
ステップSB5では予め記憶されている光学系5bの画角(rad)を読み込む。ステップSB6では撮像素子5aの画素数(ピクセル)を、たとえば縦1280×横768画素の形式で読み込む。撮像素子5aの画素数は既知であり、予め記憶装置35に記憶させておけばよい。ステップSB7では光学系5bの絞りと焦点距離に関する情報を読み込む。光学系5bの現在の絞り及び焦点距離が制御ユニット29に出力されるようにしておけばよい。
ステップSB8ではPPC(ピクセル/セル)を算出する。ステップSB9ではコードの座標を読み込む。コードの座標は、たとえばコードの中心部を推定し、その中心部のX座標とY座標を求めることで得られるが、コードの端部の座標であってもよい。
ステップSB10では撮像部5の視野範囲を算出する。視野範囲hは式(1)から算出可能である。
h=2d・tan(θ/2)・・・・・(1)
ここで、dは現時点での設置距離であり、θは光学系5bの画角である。
ステップSB11では分解能r、即ち画像データを構成している1ピクセルが表す実寸長さを算出する。分解能rは式(2)から算出可能である。
分解能(r)=h/n・・・・・・・・・・・・・・(2)
ここで、nは撮像素子5aの横方向の画素数である。
ステップSB12ではコードの大きさ(コードサイズ)を算出する。コードサイズCS(mm)は式(2)から算出された分解能rを、コードの横方向のピクセル数に乗じることで得ることができる。コードの横方向のピクセル数は画像データから得ることができる。
ステップSB13ではセルの大きさ(セルサイズ)を算出する。セルは、コードを構成する最小単位のことである。セルサイズpは式(2)から算出された分解能rを、セルの横方向のピクセル数に乗じることで得ることができる。セルの横方向のピクセル数は画像データから得ることができる。セルサイズpはセルサイズ設定部30により算出する。
ステップSB14では許容錯乱円径(mm)を設定する。許容錯乱円径は、許容できるボケ量の限界値である。すなわち、ワークを高速で移動させながらコードを撮像するとブレが発生し、多少のブレが発生しても誤り訂正機能によって正しくデコードすることはできるが、ここでは、所定以上の読み取り成功率を得ることができるブレ量を最大許容ブレ量とし、この最大許容ブレ量は、許容錯乱円径によって表すことができる。許容錯乱円径は、コードを構成しているセルの個数で表現することもできる。また、最大許容ブレ量は、予め求められており、光学的情報読取装置1の記憶装置35に記憶しておくことができる。
ステップSB15では前方被写界深度(mm)を式(3)から算出し、後方被写界深度(mm)を式(4)から算出する。
前方被写界深度Df=(δFd)/(f+δFd)・・・・・(3)
後方被写界深度Db=(δFd)/(f−δFd)・・・・・(4)
ここで、Fは光学系5bの絞り、fは光学系5bの焦点距離である。また、δは許容錯乱円径である。
以上のようにして図14に示すフローチャートのステップSA5が完了し、以降の計算に必要なコードの寸法、視野範囲、深度等を得ることができる。図14に示すフローチャートのステップSA6では、ステップSA5で算出したセルサイズpを読み込む。セルサイズpは、図16に示すコード情報取得用インターフェース48に組み込まれているセルサイズ表示領域48bに「最小セルサイズ(mm)」として表示することができる。ここで表示されたセルサイズを確認して誤りがあれば、使用者が修正することや手動で入力して設定することができる。
一方、図14に示すフローチャートのステップSA3では、使用者によって搬送条件を入力する。図16に示すコード情報取得用インターフェース48の「次へ」ボタン48dをクリックすると、図18に示すコード移動条件入力用インターフェース49がコンピュータ100の表示部42に表示される。コード移動条件入力用インターフェース49には、プルダウンメニューボタン49aが組み込まれている。プルダウンメニューボタン49aをクリックすると、選択可能な項目の例として、「移動なし」、「平行移動」、「奥行き移動」及び「回転移動」が表示され、所望の項目を選択可能になっている。
「移動なし」とは、光学的情報読取装置1の運用中(撮像中)にワークWが移動しない場合に選択する項目である。「平行移動」とは、撮像中にワークWが撮像素子5aの縦方向、または横方向に移動する場合に選択する項目である。「奥行き移動」とは、撮像中にワークWが奥行き方向、即ち撮像素子5aに対して接近する方向、または遠ざかる方向に移動する場合に選択する項目である。「回転移動」とは、撮像中にワークWが回転する場合に選択する項目である。
コード移動条件入力用インターフェース49には、「戻る」ボタン49bと、「次へ」ボタン49cとが組み込まれており、「戻る」ボタン49bをクリックすると図16に示すコード情報取得用インターフェース48がコンピュータ100の表示部42に表示され、一方、たとえば「平行移動」を選択して「次へ」ボタン49cをクリックすると図19に示す平行移動速度入力用インターフェース50がコンピュータ100の表示部42に表示される。平行移動速度入力用インターフェース50にも、コード移動条件入力用インターフェース49のプルダウンメニューボタン49aと同様なプルダウンメニューボタン50aが組み込まれている。
平行移動速度入力用インターフェース50には、ワークWの搬送速度(m/分)を入力するための搬送速度入力欄50bと、読み取り頻度(回/分)を入力するための頻度入力欄50cとが組み込まれている。ワークWの搬送速度は、たとえば搬送用ベルトコンベアBによる搬送速度とすることができる。読み取り頻度(回/分)は、コードを1分間で読み取る回数とすることができる。平行移動速度入力用インターフェース50には、ワークの移動方向を示す図が表示される。
平行移動速度入力用インターフェース50には、「戻る」ボタン50dと、「次へ」ボタン50eとが組み込まれており、「戻る」ボタン50dをクリックすると図18に示すコード移動条件入力用インターフェースがコンピュータ100の表示部42に表示され、一方、「次へ」ボタン50eをクリックすると図22に示す位置条件入力用インターフェース53がコンピュータ100の表示部42に表示される。
図18に示すコード移動条件入力用インターフェース49において「奥行き移動」を選択した場合には、図20に示す奥行き方向移動速度入力用インターフェース51がコンピュータ100の表示部42に表示される。奥行き方向移動速度入力用インターフェース51にも、コード移動条件入力用インターフェース49のプルダウンメニューボタン49aと同様なプルダウンメニューボタン51aが組み込まれている。奥行き移動速度入力用インターフェース51には、ワークWの搬送速度(m/分)を入力するための搬送速度入力欄51bと、読み取り頻度(回/分)を入力するための頻度入力欄51cとが組み込まれている。奥行き方向移動速度入力用インターフェース51にも、ワークWの移動方向を示す図が表示される。
奥行き方向移動速度入力用インターフェース51には、「戻る」ボタン51dと、「次へ」ボタン51eとが組み込まれており、「戻る」ボタン51dをクリックすると図18に示すコード移動条件入力用インターフェースがコンピュータ100の表示部42に表示され、一方、「次へ」ボタン51eをクリックすると図22に示す位置条件入力用インターフェース53がコンピュータ100の表示部42に表示される。
図18に示すコード移動条件入力用インターフェース49において「回転移動」を選択した場合には、図21に示す回転移動速度入力用インターフェース52がコンピュータ100の表示部42に表示される。回転移動速度入力用インターフェース52にも、コード移動条件入力用インターフェース49のプルダウンメニューボタン49aと同様なプルダウンメニューボタン52aが組み込まれている。回転移動速度入力用インターフェース52には、ワークWの目標回転速度(rpm)を入力するための回転速度入力欄52bと、タクト時間(ms)を入力するためのタクト時間入力欄52cと、ワークWの直径(mm)を入力するための直径入力欄52dとが組み込まれている。回転移動速度入力用インターフェース52にも、ワークの移動方向を示す図が表示される。
回転移動速度入力用インターフェース52には、「戻る」ボタン52eと、「次へ」ボタン52fとが組み込まれており、「戻る」ボタン52eをクリックすると図18に示すコード移動条件入力用インターフェースがコンピュータ100の表示部42に表示され、一方、「次へ」ボタン52fをクリックすると図22に示す位置条件入力用インターフェース53がコンピュータ100の表示部42に表示される。
図22に示す位置条件入力用インターフェース53には、光学的情報読取装置1の設置方向を選択する選択欄53aと、光学的情報読取装置1の高さばらつき(mm)を入力する高さばらつき入力欄53bと、ワークWの縦幅(mm)を入力する縦幅入力欄53cと、ワークの横幅(mm)を入力する横幅入力欄53dとが組み込まれている。光学的情報読取装置1の設置方向の「水平」とは、ワークWが撮像素子5aに対して横方向に移動する設置状態のことである。光学的情報読取装置1の高さばらつきとは、光学的情報読取装置1とコードとの離間距離のばらつき範囲(変動情報)のことである。ワークWの縦幅とは、ワークWの移動方向と直交する方向の寸法である。ワークWの横幅とは、ワークWの移動方向の寸法である。
位置条件入力用インターフェース53には、「戻る」ボタン53eと、「次へ」ボタン53fとが組み込まれており、「戻る」ボタン53eをクリックすると直前に表示されていたインターフェース画面に戻り、一方、「次へ」ボタン53fをクリックするとチューニング実行画面に移る。
また、図23に示すように、詳細設置条件入力用インターフェース54を表示させることもできる。この詳細設置条件入力用インターフェース54には、光学的情報読取装置1の光学系5bの光軸とワークWのコードが付された面とが直交しないように、光学的情報読取装置1を傾けて設置する場合にその設置角度を入力する角度入力欄54aが設けられている。すなわち、光沢のある面にコードが付されている場合には、白とびを防ぐために上述したような角度を付けて光学的情報読取装置1を設置することが一般的に行われており、この設置時の角度を入力することで、角度を加味した計算を行うことができ、より厳密に視野範囲や深度を計算することができる。
また、詳細設置条件入力用インターフェース54には、ワークWと光学的情報読取装置1とが接近した場合の近方限界距離(mm)を入力するための限界設置距離(近)入力欄54bと、ワークWと光学的情報読取装置1とが大きく離れた場合の遠方限界距離(mm)を入力するための限界設置距離(遠)入力欄54cとが組み込まれている。
また、図24に示すように、使用者が入力した光学的情報読取装置1の設置状態に対応するインターフェースをコンピュータ100の表示部42に表示させるようにしてもよい。
以上のようにして図14に示すフローチャートのステップSA3で使用者が搬送条件を入力する。その後のステップSA8では、使用者が入力した搬送条件のうち、たとえば搬送速度等を読み込む。ステップSA9では、推奨設置条件を算出する。このステップSA9では、搬送条件と、実際に読み取ったコードの読み取りに要した時間、PPC等に基づいて、光学的情報読取装置1とコードとの推奨離間距離を設置可能距離として求める。たとえば、ある搬送条件に対して以下の各要素が設置可能距離を制約することになる。具体的には、図25に示すように、a)分解能限界から制約される設置可能距離と、b)光量限界から制約される設置可能距離と、c)コードサイズ限界から制約される設置可能距離と、d)滞在時間限界から制約される設置可能距離と、e)深度限界から制約される設置可能距離とが少なくともある。
a)分解能限界から制約される設置可能距離は、撮像されるコードが読み取り可能なPPCを下回るとコードの読み取りが不可能になることから定まる。b)光量限界から制約される設置可能距離は、照明部4の光量によって定まる。コードが遠方へ離れると撮像した画像におけるコードのコントラストが十分に確保できなくなるからである。a、bは、ともに遠方限界の制約になる。
c)コードサイズ限界から制約される設置可能距離は、撮像視野にコードの全体が入りきらなくなるとコードの読み取りが不可能になることから定まる。コードが撮像部5に近づきすぎると起こることから、近方限界の制約になる。
d)滞在時間限界から制約される設置可能距離は、コードが視野範囲を通過する時間(コードの滞在時間)により定まる。コードの滞在時間が短すぎるとデコード処理に必要な回数読み取るための時間が確保できないからである。コードの滞在時間は、撮像部5がコードから遠ざかるほど長くなるので、近方限界の制約になる。
e)深度限界から制約される設置可能距離は、撮像部5の前方被写界深度Dfと後方被写界深度Dbとから求まる被写界深度により定まる。この例では、近方限界の制約になっている。
a〜eの制約の中で遠方限界となっているa、bのうちの最小値dnと、近方限界となっているc〜eのうちの最大値dfとの間が、設置可能距離になる。たとえば、設置可能距離を(dn+df)/2とすることで、a〜eのいずれの観点でも限界に対して余裕のある距離にすることができる。a〜eの制約条件のうち、任意の1つまたは2つ以上を省略してもよい。
図14に示すフローチャートのステップSA10では設置距離を読み込む。そしてステップSA11に進んでパラメータ設定条件を算出する。パラメータ設定条件の算出工程のフローチャートは図26に示す。ステップSC1では図14に示すフローチャートのステップSA3で入力された搬送条件を読み込む。図26に示すフローチャートのステップSC2では図14に示すフローチャートのステップSA5で算出された各種寸法情報を読み込む。ステップSC3ではワークWの搬送速度を読み込む。ステップSC4ではコードの読み取り回数を読み込む。読み取り回数RCは、1つのコードを視野範囲内で何回読み取るかを表しており、予め所定の回数に設定しておいてもよいし、使用者が手動で入力可能にしておいてもよい。ステップSC5では要求深度(mm)を読み込む。要求深度は、高さばらつき入力欄53bに入力された高さばらつきとすることができる。ステップSC6では視野範囲を読み込む。ステップSC7ではコードサイズを読み込む。ステップSC8ではセルサイズを読み込む。
ステップSC9では最小視野範囲(mm)を算出する。たとえば、光学的情報読取装置1からコードまでの距離がdmin〜dmaxの間で変動する場合、最近傍における視野範囲hminは、視野範囲が、光学的情報読取装置1からコードまでの距離dに比例することから式(5)から算出可能である。
hmin=h×(dmin/d)・・・・・・・・(5)
ステップSC10では撮像視野内にコードが滞在する時間(ms)を算出する。撮像視野内にコードが滞在する時間STは、視野範囲、コードサイズ、ワークWの搬送速度vが分かっているので、式(6)から算出可能である。
ST=(hmin−CS)/v・・・・・・・・(6)
ステップSC11ではコードの読み取り時間(ms)の上限を算出する。1つのコードに対してRC回の読み取りを行おうとすると、1回の読み取りにかかる時間RTは式(7)から算出可能である。
RT<=ST/RC・・・・・・・・・・・・・(7)
これにより許容できる1回の読み取り時間の上限値が得られる。ここでは単純にコードの滞在時間を読み取り回数で割ることによってRTを算出しているが、これに限らず、一定の安全率で更に割ることによってより厳しい上限値を設定することもできる。
ステップSC12では最大露光時間(ms)を算出する。搬送中のワークWに付されているコードを読み取る場合、露光時間が長すぎるとブレが発生し易くなって読み取りが困難になってしまう。許容されるブレ量は、セルサイズpの倍数で指定することができる。倍数をNとすると最大露光時間tmaxは式(8)から算出可能である。
tmax=(N・p)/v・・・・・・・・・・(8)
以上のようにして図14に示すフローチャートのステップSA11のパラメータ設定条件が算出される。ステップSA12では露光時間の上限を読み込む。ステップSA13ではパラメータ設定条件を抽出して終了する。
上述したように、図14に示すフローチャートのステップSA9では、光学的情報読取装置1とコードとの推奨離間距離を求めることができる。この推奨離間距離が、図23に示す設置条件詳細入力用インターフェース54で入力された近方限界距離と遠方限界距離との範囲外であれば、図27に示すように、設置条件詳細入力用インターフェース54のコメント表示領域54dに「入力された条件を満たす設置条件が見つかりませんでした。」と表示して、推奨離間距離が近方限界距離と遠方限界距離との範囲外であることを使用者に報知する。この場合、次のステップには進めないようにしておくのが好ましい。
使用者側の要求を満たすことができる推奨離間距離の場合には、撮像部5のAF機構5cを作動させて推奨離間距離に対応した所に合焦させる。そして、図28に示す最適位置提示インターフェース55をコンピュータ100の表示部42に表示させる。この最適位置提示インターフェース55には、推奨離間距離を表示する推奨離間距離表示領域55aと、現在の光学的情報読取装置1とコードとの離間距離(現在距離)を表示する現在距離表示領域55bとが組み込まれている。現在距離は、セルサイズと、撮像画像上の見かけの大きさ(PPC)とに基づいて推定した距離である。使用者は現在距離表示領域55bに表示されている現在距離を参考にしてコードの位置を調整して光学的情報読取装置1とコードとの離間距離が推奨離間距離となるようにすることができる。
最適位置提示インターフェース55には、チューニング開始ボタン55cが組み込まれている。光学的情報読取装置1とコードとの離間距離が推奨離間距離になった後に、チューニング開始ボタン55cをクリックすると、ここまでで入力された各種条件を考慮した最適な設定条件の探索を開始する。
[チューニング工程に組み込む場合]
図29に示すフローチャートは、上述した処理をチューニング工程の中に組み込んだ場合の一例を示している。ステップSD1では図17に示すフローチャートのステップSB2と同様にカメラパラメータを読み込む。ステップSD2では図17に示すフローチャートのステップSB1と同様にフォーカス条件を読み込む。また、ステップSD4では、図14に示すフローチャートのステップSA3と同様に搬送条件を入力する。
ステップSD5は図17に示すフローチャートのステップSB5〜7と同様である。ステプSD6は図17に示すフローチャートのステップSB4と同様である。ステップSD9では使用者が入力した条件から求められる各条件を読み込む。
ステップSD3はチューニング工程の開始ステップであり、ステップSD7では図14に示すフローチャートのステップSA4と同様にコードを探索し、ステップSD8ではPPCとコード座標を読み込む。
ステップSD10では図14に示すフローチャートのステップSA5と同様に寸法情報を算出する。ステップSD11では各寸法情報を読み込む。ステップSD12では図14に示すフローチャートのステップSA11と同様にパラメータ設定条件を算出する。ステップSD13では各パラメータ設定条件を読み込む。
ステップSD14では最適な設定条件を算出する。このステップSD14では、従来から行われているチューニング工程と同様に、露光時間、ゲイン、明るさ、画像処理フィルタの適否、画像処理フィルタの強さ等をそれぞれ様々に変化させながら、撮像からデコード処理までを複数回試行する。ステップSD14は、チューニング部29cで行われる。
そして、試行により取得された複数の画像に含まれるコードのデコード結果を解析する。解析の方法としては特に限定されるものではないが、たとえば、各画像に含まれているコードのデコード処理のし易さについて判定する方法がある。デコード処理のし易さについては、たとえば、平均読み取り成功率が高い場合や、読み取りの誤りが少ない場合は、デコード処理がし易い場合とすることができ、反対に、読み取り成功率が低い場合や、読み取りの誤りが多い場合には、デコード処理がし難い場合とすることができる。上述した平均読み取り成功率を、コードのデコード処理のし易さを示す指標として用いることができる。マッチングレベルを、コードのデコード処理のし易さを示す指標として用いることができる。マッチングレベルは、たとえば0〜100の値で示すことができ、数値が大きくなるほどマッチングレベルが高くなる。
また、コードのデコード処理のし易さを示す指標としては、たとえばコードの読み取りに要する時間に基づいて算出することもできる。コードの読み取りに要する時間が長いということはコードのデコード処理がしにくい場合であり、一方、コードの読み取りに要する時間が短くて済むということはコードのデコード処理がし易い場合である。この場合のスコアは、コードの読み取りに要する時間をそのまま指標として用いてもよいし、最も時間がかかった場合を「0」とし、最も短かった場合を「100」として0〜100の値を指標として用いてもよい。
マッチングレベル、読み取り成功率、コードの読み取りに要する時間を総合的に考慮し、最もデコード処理し易い露光時間、ゲイン、明るさを決定する。また、同様に、最もデコード処理し易い画像処理フィルタの種類とその画像処理フィルタの強さも決定する。
つまり、チューニング部29cは、まず、ワークWに付されたコードを読み取るための制約条件として撮像部5の露光時間の上限値をステップSD12で求める。その後、ステップSD14では、撮像部5に露光時間を変化させて複数回撮像させて取得されたコードを含む複数の画像を解析する。その解析結果に基づいて、ステップSD4で設定されている制約条件の範囲内で撮像部5の露光時間を設定する。チューニング部29cは、ステップSD15において露光時間やゲイン等を読み込む。
その後、ステップSD16では推奨条件を算出する。推奨条件には、推奨離間距離及び推奨撮像範囲が含まれている。推奨撮像範囲は、コードを良好に読み取ることができる視野範囲のことである。推奨条件の算出結果をステップSD17において読み込む。ステップSD18ではチューニング結果を出力する。チューニング結果を構成する各パラメータは、図13に示すパラメータセット表示フォーマット46の中のバンクにパラメータセットとして表示されるとともに記憶装置35に記憶される。このとき、パラメータセットをどのバンクに記憶させるのかを選択することもでき、たとえば、図28に示すインターフェースに組み込まれているバンク選択用プルダウンメニュー55dを使用して使用者が選択できる。
また、現在の光学的情報読取装置1とコードとの離間距離を変更することなく、コードの読み取り可能な範囲(視野範囲)を限定する、或いは撮像部5による撮像をバーストモードと呼ばれるタイミング制御に変更することで読み取り速度を改善することができる場合もある。バーストモードは、複数の画像を極めて短い間隔で撮像した後にデコード処理を実行する制御であり、ワークWが高速で移動する場合に対応することが可能なモードである。
コードの読み取り可能な範囲の変更やタイミング制御の変更は影響を及ぼす範囲が広いため、チューニングで自動的に最適化する対象項目とはせずに、設定変更が効果的か否かを検証し、効果ありと判断される場合には、推奨読み取り可能範囲や推奨タイミング方式として出力することもできる。
効果があるか否かの検証としては、実際に設定を仮変更した状態で読み取り時間(デコード処理に要する時間)を測定する方法であってもよいし、変更の効果を、読み取り時間が視野範囲の大きさに比例する等の仮定を置いて推定する方法であってもよい。読み取り可能な範囲を限定する場合、搬送条件で入力された搬送方向(視野に対して縦方向、横方向)を読み込んで、搬送方向については限定せずに、搬送方向と直交する方向に限定するのが好ましい。たとえば図31の上側に示すように搬送方向が横方向である場合には縦方向を狭め、一方、下側に示すように搬送方向が縦方向である場合には横方向を狭めるようにすればよい。
また、読み取り可能な範囲を更に狭めることもできる。たとえばコードがバーコードであり、かつ、コードが回転しないことが搬送条件から分かっている場合には、読み取り可能な範囲を縦方向に1ピクセルとして極端に小さな値とし、一次元波形としてコードを読み取ることも可能である。これによってレーザータイプの光学的情報読取装置に近い読み取り速度を実現することが可能になる。
また、各推奨値の検証を行った後、パラメータセットの反映を行うとともに、推奨値の提示を行うこともできる。場合によっては、パラメータセットの反映後に、再度チューニングを行うようなインターフェースを提供することもできる。また、反映されたパラメータセットで運用可能な否かを試すためのテスト機能を設けておき、テスト工程へ誘導してもよい。ここでのテストは、従来から知られている読み取り率やタクトのテストだけではなく、入力された搬送条件に実際に対応できるか否かを確認することができる内容としてもよい。
たとえば、搬送条件として入力された搬送速度に対応しているか否かを簡易的に確認するために、以下の手順によって対応可能速度を計算して使用者に提示することができる。
1.チューニングで決定されたパラメータセットを反映させてコードの連続読み取りを行う。
2.読み取りを開始したら、使用者はコードが付された紙等を手で持って撮像部5の前で任意に動かす。
3.連続して2回読み取りに成功したら、1回目の撮像時刻t1とコードの中心座標c1とを得るとともに、2回目の撮像時刻t2とコードの中心座標c2とを得る。
4.3で得たt1、t2、c1、c2と、分解能rを用いて式(9)から、読み取り成功時におけるコードの搬送速度vを算出することができる。
v=r(c2−c1)/(t2−t1)・・・・・・・・・(9)
コードの搬送速度vの算出要領を図32に模式的に示す。
5.4を繰り返し行い、読み取ることができた最大の速度を対応可能速度とする。尚、連続撮像回数は2回でなくてもよい。
このような手順を経ることで、設定の変更のたびに実際のラインで検証を行わなくても済み、最適設定の抽出から検証までを机上で完結させることができ、運用準備に要する手間を大幅に減らすことができる。
また、図33に示すように、チューニング用インターフェース47に、検証時における読み取り成功回数を表示する成功回数表示領域47eと、コードの搬送速度を表示する移動速度表示領域47fとを組み込むこともできる。これにより、使用者はチューニング用インターフェース47を見るだけで検証時における読み取り成功回数及びコードの移動速度を把握することができる。各表示形態は一例であり、これに限られるものではない。
[ナビゲート機能]
図30に示すフローチャートは、上述した処理の結果を使用者に提示してコードの読み取り精度をより高める方向に案内するナビゲート機能について示すものである。
ステップSE1では、コード情報(コード種別等)を得る。コード情報は使用者が入力する場合と、モニタ機能によって自動的に取得する場合とがある。自動取得する場合には、図14に示すフローチャートのステップSA4と同様な処理を行えばよい。
ステップSE2では図14に示すフローチャートのステップSA3と同様に使用者が搬送条件を入力する。ステップSE3では図29に示すフローチャートのステップSD1、SD2と同様にカメラパラメータを読み込む。ステップSE4ではコード種別、PPC及びコード座標を読み込む。ステップSE5では図29に示すフローチャートのステップSD9と同様に要求条件を読み込む。
ステップSE6では図29に示すフローチャートのステップSD10と同様に寸法情報を算出する。ステップSE7では図29に示すフローチャートのステップSD11と同様に各寸法情報を読み込む。ステップSE8では図29に示すフローチャートのステップSD16と同様に推奨条件を算出する。ステップSE9では推奨条件の算出結果を読み込む。ステップSE10では撮像部5のAF機構5cを作動させて推奨離間距離に対応した所に合焦させる。
一方、ステップSE11ではステップSE1と同様にコード情報を自動取得する。ステップSE12ではPPCを読み込む。ステップSE13では、セルサイズと、撮像画像上の見かけの大きさ(PPC)とに基づいて、現在の光学的情報読取装置1とコードとの離間距離(現在距離)を推定する。ステップSE14ではステップSE13で推定した推定距離を読み込む。ステップSE15では、たとえば図28に示す最適位置提示インターフェース55をコンピュータ100の表示部42に表示させ、推奨離間距離表示領域55aに推奨離間距離を表示させるとともに、現在距離表示領域55bに現在距離を表示させて、現在距離が推奨離間距離となるようにナビゲートする。
その後、ステップSE16に進み、図29に示すフローチャートのステップSD14と同様に最適条件を設定する。ステップSE17では推奨離間距離を表示させる。
[運用時に実行される工程]
以上のようにして光学的情報読取装置1のチューニングが完了して光学的情報読取装置1の運用準備が終わると、光学的情報読取装置1を運用することができる。光学的情報読取装置1の運用時には読取制御が実行される。読取制御では、まず、記憶装置35から撮像条件を構成するパラメータセットを読み出す。この撮像条件は上記チューニング工程で決定された条件等である。
そして、パラメータセットを有効にした状態、即ち、チューニング部29cにより設定された露光時間及びゲインを用いて撮像部5により新たに取得された画像に含まれるコードをデコードする。その後、デコード結果を出力する。出力されたデコード結果はデコード記憶部35aに記憶されるとともに、コンピュータ100に出力されて利用される。
[偏光フィルタアタッチメントの有無検知方法]
偏光フィルタアタッチメント3のような着脱可能な部材が本体に取り付けられているか否かを自動で検知する方法として、一般的には、たとえば機械的なスイッチや電気的接点を使用する方法が知られているが、これらの場合は構造が複雑になるというデメリットがある。
この実施形態では機械的なスイッチや電気的接点を使用することなく、偏光フィルタアタッチメント3の有無を自動で検知することができるように構成されている。具体的には、光が偏光フィルタを透過することで照射する光量が半減し、また、光を受光する際も偏光フィルタを透過することで光量が半減する性質を利用し、次のようにソフトウエアによって偏光フィルタアタッチメント3の有無を自動で検知する。
すなわち、まず、第1発光ダイオード16を点灯させて第2発光ダイオード17を消灯させた状態で撮像部5に撮像させる。その後、第1発光ダイオード16を消灯させて第2発光ダイオード17を点灯させた状態で撮像部5に撮像させる。この順番はどちらが先でもよい。その後、2つの画像の明るさを比較して略同等であれば偏光フィルタアタッチメント3が装着されていないと判断する。一方、一方の画像の明るさが他方の画像の明るさの倍程度(または半分程度)であれば、偏光フィルタアタッチメント3が装着されていると判断する。
つまり、偏光フィルタアタッチメント3の偏光フィルタを透過するように配置されている発光体を発光させ、かつ、偏光フィルタを透過しないように配置されている発光体を光らせない状態にして撮像した画像と、偏光フィルタアタッチメント3の偏光フィルタを透過するように配置されている発光体を光らせず、かつ、偏光フィルタを透過しないように配置されている発光体を発光させて撮像した画像との明るさを比較する比較部を設けておく。そして、この比較部による2つの画像の比較結果に基づいて偏光フィルタアタッチメント3の有無を自動で検知することができる。
[実施形態の作用効果]
以上説明したように、この実施形態に係る光学的情報読取装置1によれば、ワークWの搬送速度と、コードを構成しているセルのサイズとに基づいて、露光時間の上限値を求めることができる(ステップSA12)。そして、チューニング工程では、露光時間を変化させて複数回撮像して得られた複数の画像を解析することにより、露光時間の上限値以下の露光時間を設定することができる(ステップSD14)。従って、ワークWの搬送速度だけでなく、セルのサイズを反映した適切な露光時間を設定することができ、この露光時間を用いて撮像部5により新たに取得された画像に含まれるコードをデコードすることができ、読み取り精度を高めることができる。
上述の実施形態はあらゆる点で単なる例示に過ぎず、限定的に解釈してはならない。さらに、特許請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。
以上説明したように、本発明に係る光学的情報読取装置は、たとえば、バーコードや二次元コード等のコードを読み取る場合に使用することができる。
1 光学的情報読取装置
5 撮像部
5a 撮像素子
6 表示部
11 セレクトボタン(入力部)
12 エンターボタン(入力部)
29 制御ユニット
29c チューニング部(撮像条件設定部)
29e 推奨離間距離決定部
30 セルサイズ設定部
31 デコード部
35d 特性情報記憶部
35e 対応関係記憶部
42 表示部
43 入力部

Claims (6)

  1. 移動するワークに付されたコードを撮像する撮像素子を有する撮像部と、
    上記ワークの移動速度を入力する入力部と、
    上記撮像部により得られた画像上のコードを構成しているセルのサイズを設定するセルサイズ設定部と、
    上記入力部により入力されたワークの移動速度と、上記セルサイズ設定部により設定されたセルのサイズとに基づいて、上記ワークに付されたコードを読み取るための制約条件として上記撮像部の露光時間の上限値を求めるとともに、上記撮像部に露光時間又はゲインを変化させて複数回撮像させて取得されたコードを含む複数の画像を解析することにより、上記制約条件の範囲内で上記撮像部の露光時間を設定する撮像条件設定部と、
    上記撮像条件設定部により設定された露光時間を用いて、上記撮像部により新たに取得された画像に含まれるコードをデコードするデコード部とを備えていることを特徴とする光学的情報読取装置。
  2. 請求項1に記載の光学的情報読取装置において、
    上記撮像部から上記コードまでの距離を得る距離設定部と、
    上記撮像部から上記コードまでの距離に応じた上記撮像部の視野範囲を定める第1の特性情報を記憶する特性情報記憶部とを備え、
    上記セルサイズ設定部は、上記撮像部により撮像された画像に含まれるコードと、上記距離設定部で得られた距離と、上記特性情報記憶部に記憶された第1の特性情報とに基づいてセルのサイズを算出することを特徴とする光学的情報読取装置。
  3. 請求項1または2に記載の光学的情報読取装置において、
    上記撮像条件設定部は、上記撮像部にゲインを変化させて複数回撮像させて取得された複数の画像を解析してゲインを設定するように構成され、
    上記デコード部は、上記撮像条件設定部により設定されたゲインを用いて上記撮像部により新たに取得された画像に含まれるコードをデコードするように構成されていることを特徴とする光学的情報読取装置。
  4. 請求項1から3のいずれか1つに記載の光学的情報読取装置において、
    上記撮像条件設定部は、制約条件内で露光時間を変化させて上記撮像部にコードを複数回撮像させるように構成されていることを特徴とする光学的情報読取装置。
  5. 請求項2に記載の光学的情報読取装置において、
    上記特性情報記憶部は、上記撮像部からの離間距離に応じた合焦範囲を定める第2の特性情報を記憶しており、
    上記入力部は、上記撮像部から上記コードまでの距離の変動幅に関する変動情報を入力するように構成され、
    上記特性情報記憶部に記憶された第2の特性情報と、上記セルサイズ設定部により設定されたセルのサイズと、上記入力部により入力された変動情報とに基づいて、上記光学的情報読取装置とコードとの推奨離間距離を求める推奨離間距離決定部と、
    上記推奨離間距離決定部により求めた推奨離間距離を表示する表示部とを備えていることを特徴とする光学的情報読取装置。
  6. 請求項2に記載の光学的情報読取装置において、
    上記撮像部には、合焦用レンズを有する光学系と、上記合焦用レンズによる合焦位置を調整するためのオートフォーカス機構とが設けられており、
    上記オートフォーカス機構による上記合焦用レンズの調整量と、上記撮像部から上記コードまでの距離との対応関係を記憶する対応関係記憶部を備え、
    上記距離設定部は、上記合焦用レンズによる合焦が完了したときの上記調整量と、上記対応関係とに基づいて、上記撮像部から上記コードまでの距離を得るように構成されていることを特徴とする光学的情報読取装置。
JP2017032332A 2017-02-23 2017-02-23 光学的情報読取装置 Active JP6928458B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017032332A JP6928458B2 (ja) 2017-02-23 2017-02-23 光学的情報読取装置
US15/849,742 US10262177B2 (en) 2017-02-23 2017-12-21 Optical information reading device
US16/282,341 US10515249B2 (en) 2017-02-23 2019-02-22 Optical information reading device
JP2021090462A JP7108747B2 (ja) 2017-02-23 2021-05-28 光学的情報読取装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017032332A JP6928458B2 (ja) 2017-02-23 2017-02-23 光学的情報読取装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021090462A Division JP7108747B2 (ja) 2017-02-23 2021-05-28 光学的情報読取装置

Publications (2)

Publication Number Publication Date
JP2018136860A true JP2018136860A (ja) 2018-08-30
JP6928458B2 JP6928458B2 (ja) 2021-09-01

Family

ID=63167283

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017032332A Active JP6928458B2 (ja) 2017-02-23 2017-02-23 光学的情報読取装置
JP2021090462A Active JP7108747B2 (ja) 2017-02-23 2021-05-28 光学的情報読取装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021090462A Active JP7108747B2 (ja) 2017-02-23 2021-05-28 光学的情報読取装置

Country Status (2)

Country Link
US (2) US10262177B2 (ja)
JP (2) JP6928458B2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020155084A (ja) * 2019-03-14 2020-09-24 オムロン株式会社 コード読取装置、コード読取方法、および、ワーク
JP2021077360A (ja) * 2019-10-22 2021-05-20 ジック アーゲー コードリーダ及び光学コードの読み取り方法
DE102021106336A1 (de) 2020-03-19 2021-09-23 Keyence Corporation Optische Lesevorrichtung
US11301659B2 (en) 2020-03-19 2022-04-12 Keyence Corporation Installation support device and installation support method for stationary code reader
US11308301B2 (en) 2020-03-19 2022-04-19 Keyence Corporation Optical reading device
JP2022187471A (ja) * 2021-06-07 2022-12-19 ジック アーゲー 検出領域を通って移動する物体を検出するためのカメラ及び方法
US11880739B2 (en) 2021-11-29 2024-01-23 Keyence Corporation Setting device for optical information reading device, optical information reading system, and optical information reading method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6928458B2 (ja) 2017-02-23 2021-09-01 株式会社キーエンス 光学的情報読取装置
US10832023B2 (en) 2017-12-15 2020-11-10 Cognex Corporation Dual-imaging vision system camera and method for using the same
US11301655B2 (en) 2017-12-15 2022-04-12 Cognex Corporation Vision imaging system having a camera and dual aimer assemblies
USD891431S1 (en) * 2018-03-02 2020-07-28 Datalogic Ip Tech S.R.L. Optical scanner
JP1623360S (ja) * 2018-04-26 2019-02-04
JP1620344S (ja) * 2018-04-26 2018-12-17
JP7358970B2 (ja) * 2018-12-26 2023-10-11 株式会社デンソーウェーブ 光学的情報読取装置
US11809949B2 (en) * 2021-04-30 2023-11-07 Zebra Technologies Corporation Systems and methods to optimize imaging settings and image capture for a machine vision job

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006260211A (ja) * 2005-03-17 2006-09-28 Denso Wave Inc 情報読取装置
JP2016033785A (ja) * 2014-07-31 2016-03-10 株式会社キーエンス 光学的情報読取装置、光学的情報読取方法およびプログラム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4958291A (en) * 1985-12-26 1990-09-18 Mamone John R System for accounting for postage expended by a postage meter having security during editing of accounts
US5177346A (en) * 1989-12-13 1993-01-05 Computer Identics Bar code reader system for reading bar code labels with a highly specular and low contrast surface
US5541419A (en) * 1994-03-21 1996-07-30 Intermec Corporation Symbology reader wth reduced specular reflection
JPH096891A (ja) 1995-06-21 1997-01-10 Asahi Optical Co Ltd データシンボル読み取り装置およびデータシンボル読み取りシステム
US6105869A (en) * 1997-10-31 2000-08-22 Microscan Systems, Incorporated Symbol reading device including optics for uniformly illuminating symbology
JP4322169B2 (ja) * 2003-07-16 2009-08-26 株式会社リコー 文書処理システム、文書処理方法、文書処理プログラム
JP2007299123A (ja) * 2006-04-28 2007-11-15 Tohken Co Ltd 二次元コード読取装置の設定装置及び設定方法
JP4473337B1 (ja) * 2009-07-31 2010-06-02 株式会社オプトエレクトロニクス 光学的情報読取装置及び光学的情報読取方法
JP6363903B2 (ja) * 2014-07-31 2018-07-25 株式会社キーエンス 光学的情報読取装置
JP6355470B2 (ja) 2014-07-31 2018-07-11 株式会社キーエンス 光学的情報読取装置
JP6928458B2 (ja) 2017-02-23 2021-09-01 株式会社キーエンス 光学的情報読取装置
JP6893092B2 (ja) 2017-02-23 2021-06-23 株式会社キーエンス 光学的情報読取装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006260211A (ja) * 2005-03-17 2006-09-28 Denso Wave Inc 情報読取装置
JP2016033785A (ja) * 2014-07-31 2016-03-10 株式会社キーエンス 光学的情報読取装置、光学的情報読取方法およびプログラム

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7363121B2 (ja) 2019-03-14 2023-10-18 オムロン株式会社 コード読取装置、コード読取方法、および、ワーク
JP2020155084A (ja) * 2019-03-14 2020-09-24 オムロン株式会社 コード読取装置、コード読取方法、および、ワーク
JP7157118B2 (ja) 2019-10-22 2022-10-19 ジック アーゲー コードリーダ及び光学コードの読み取り方法
JP2021077360A (ja) * 2019-10-22 2021-05-20 ジック アーゲー コードリーダ及び光学コードの読み取り方法
US11295100B2 (en) 2020-03-19 2022-04-05 Keyence Corporation Optical reading device
US11308301B2 (en) 2020-03-19 2022-04-19 Keyence Corporation Optical reading device
US11301659B2 (en) 2020-03-19 2022-04-12 Keyence Corporation Installation support device and installation support method for stationary code reader
US11640508B2 (en) 2020-03-19 2023-05-02 Keyence Corporation Installation support device and installation support method for stationary code reader
DE102021106336A1 (de) 2020-03-19 2021-09-23 Keyence Corporation Optische Lesevorrichtung
US11823005B2 (en) 2020-03-19 2023-11-21 Keyence Corporation Optical reading device
US11907803B2 (en) 2020-03-19 2024-02-20 Keyence Corporation Installation support device and installation support method for stationary code reader
JP7441085B2 (ja) 2020-03-19 2024-02-29 株式会社キーエンス 定置式コードリーダの設置支援装置、設置支援方法及びコンピュータプログラム
JP2022187471A (ja) * 2021-06-07 2022-12-19 ジック アーゲー 検出領域を通って移動する物体を検出するためのカメラ及び方法
US11743602B2 (en) 2021-06-07 2023-08-29 Sick Ag Camera and method for detecting objects moved through a detection zone
US11880739B2 (en) 2021-11-29 2024-01-23 Keyence Corporation Setting device for optical information reading device, optical information reading system, and optical information reading method

Also Published As

Publication number Publication date
US20180239938A1 (en) 2018-08-23
JP6928458B2 (ja) 2021-09-01
US10262177B2 (en) 2019-04-16
JP7108747B2 (ja) 2022-07-28
US20190188437A1 (en) 2019-06-20
JP2021144733A (ja) 2021-09-24
US10515249B2 (en) 2019-12-24

Similar Documents

Publication Publication Date Title
JP7108747B2 (ja) 光学的情報読取装置
JP6893092B2 (ja) 光学的情報読取装置
JP7176965B2 (ja) 画像検査装置
JP6363903B2 (ja) 光学的情報読取装置
JP7287791B2 (ja) 画像検査装置
US20090166424A1 (en) Method And Apparatus Using Aiming Pattern For Machine Vision Training
JP2017059208A (ja) チェックアウト装置
JP2024054253A (ja) 光学読取装置
JP2024045570A (ja) 定置式コードリーダの設置支援システム、設置支援方法及びコンピュータプログラム
JP2019071018A (ja) 光学的情報読取装置及び光学的情報読取方法
JP2018136854A (ja) 光学的情報読取装置
JP2018136855A (ja) 光学的情報読取装置及び光学的情報読取方法
US20210063850A1 (en) Imaging device, method for controlling imaging device, and system including imaging device
JP7402088B2 (ja) 光学読取装置
JP2023079341A (ja) 光学情報読取装置の設定装置、光学情報読取システム及び光学情報読取方法
US11308295B2 (en) Handheld optical information reading device
JP2023079343A (ja) 光学情報読取装置
JP6586201B2 (ja) 光学的情報読取装置
JP2023167395A (ja) 画像測定装置
JP2016218587A (ja) 固定式の光学的情報読取装置およびそれを用いた光学的情報読取方法
JP2017059265A (ja) 光学的情報読取装置
JP2017059266A (ja) 光学的情報読取装置
JP2023167391A (ja) 画像測定装置
JP2022134482A (ja) 光学的情報読取装置
JP2018133790A (ja) 画像処理装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210528

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210528

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210608

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210727

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210806

R150 Certificate of patent or registration of utility model

Ref document number: 6928458

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150