JP2018117001A - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
JP2018117001A
JP2018117001A JP2017005736A JP2017005736A JP2018117001A JP 2018117001 A JP2018117001 A JP 2018117001A JP 2017005736 A JP2017005736 A JP 2017005736A JP 2017005736 A JP2017005736 A JP 2017005736A JP 2018117001 A JP2018117001 A JP 2018117001A
Authority
JP
Japan
Prior art keywords
trench
insulating film
cavity
film
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017005736A
Other languages
Japanese (ja)
Inventor
典生 古川
Norio Furukawa
典生 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP2017005736A priority Critical patent/JP2018117001A/en
Publication of JP2018117001A publication Critical patent/JP2018117001A/en
Priority to CN201822128961.7U priority patent/CN209570528U/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a semiconductor device in which an upper end part of a cavity in a trench is not opened.SOLUTION: When filling an insulation film into a trench, a cavity 10 remains in the trench and a first insulation film 11 is filled, and after that, the cavity is opened, and sequentially, a second insulation film 12 is filled. According to such a structure, a position of the upper end part of the cavity formed by filling the second insulation film can be moved to a position deeper than a position of an upper end part of the cavity formed by filling the first insulation film.SELECTED DRAWING: Figure 1

Description

本発明は、半導体装置の製造方法に関し、特に絶縁分離のためのトレンチを備えた半導体装置の製造方法に関する。   The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a semiconductor device having a trench for isolation.

従来から、半導体基板に形成した複数の半導体素子をそれぞれ電気的に分離するために絶縁分離トレンチが用いられている。絶縁分離用トレンチは、半導体基板にトレンチを形成し、このトレンチ内に絶縁膜が埋め込まれている。このような絶縁分離トレンチを備えた半導体装置では、絶縁膜と半導体基板との熱膨張係数の差によって生じる応力の影響で、結晶欠陥が発生し、半導体装置の特性が低下してしまう。そのため、トレンチ内に空洞を残し、応力ストレスを緩和する方法が提案されている(例えば、引用文献1)。   Conventionally, an insulating isolation trench is used to electrically isolate a plurality of semiconductor elements formed on a semiconductor substrate. Insulating isolation trenches are formed in a semiconductor substrate, and an insulating film is embedded in the trench. In a semiconductor device provided with such an isolation trench, crystal defects are generated due to the stress caused by the difference in thermal expansion coefficient between the insulating film and the semiconductor substrate, and the characteristics of the semiconductor device are degraded. For this reason, a method has been proposed in which a cavity is left in the trench to relieve stress stress (for example, cited document 1).

空洞を有する絶縁分離トレンチを備えた半導体装置は、一般的に図3に示す製造工程により形成することができる。まず、半導体基板1の主表面上に、熱酸化法により厚さ0.01μm程度のシリコン酸化膜2を形成し、このシリコン酸化膜2上にCVD法により厚さ0.1μm程度のシリコン窒化膜3を形成する。 さらに、このシリコン窒化膜3上にCVD法により厚さ0.8μm程度のシリコン酸化膜4を形成する。次にシリコン酸化膜2、シリコン窒化膜3およびシリコン酸化膜4をパターニングし、トレンチ形成予定領域を開口する(図3a)。   A semiconductor device including an insulating isolation trench having a cavity can be generally formed by a manufacturing process shown in FIG. First, a silicon oxide film 2 having a thickness of about 0.01 μm is formed on the main surface of the semiconductor substrate 1 by a thermal oxidation method, and a silicon nitride film having a thickness of about 0.1 μm is formed on the silicon oxide film 2 by a CVD method. 3 is formed. Further, a silicon oxide film 4 having a thickness of about 0.8 μm is formed on the silicon nitride film 3 by the CVD method. Next, the silicon oxide film 2, the silicon nitride film 3, and the silicon oxide film 4 are patterned to open a region where a trench is to be formed (FIG. 3a).

その後、露出する半導体基板1をエッチング除去することにより、幅1μm程度、深さ12μm程度のトレンチ5を形成する(図3b)。   Thereafter, the exposed semiconductor substrate 1 is removed by etching, thereby forming a trench 5 having a width of about 1 μm and a depth of about 12 μm (FIG. 3b).

トレンチ5の内壁面には、熱酸化法により厚さ0.05μm程度のシリコン酸化膜6を形成し、イオン注入により、トレンチ5の底部にパンチスルーストップ領域7を形成する(図3c)。   A silicon oxide film 6 having a thickness of about 0.05 μm is formed on the inner wall surface of the trench 5 by thermal oxidation, and a punch-through stop region 7 is formed at the bottom of the trench 5 by ion implantation (FIG. 3c).

シリコン窒化膜3上のシリコン酸化膜4およびトレンチ5内のシリコン酸化膜6を一旦除去し、熱酸化法によりトレンチ5の内壁面に再び厚さ0.05μm程度のシリコン酸化膜8を形成する(図3d)。   The silicon oxide film 4 on the silicon nitride film 3 and the silicon oxide film 6 in the trench 5 are temporarily removed, and a silicon oxide film 8 having a thickness of about 0.05 μm is formed again on the inner wall surface of the trench 5 by thermal oxidation ( FIG. 3d).

その後、半導体基板1表面全面にCVD法によりTEOS膜からなる絶縁膜9を形成し、トレンチ5内に充填する。このとき絶縁膜9は、シリコン窒化膜3上およびトレンチ5内に順次堆積してトレンチ5内を充填していくが、トレンチ5の開口部に堆積する絶縁膜9はトレンチ5の中心方向に徐々にせり出し、開口部が狭窄していく。その結果、図3(e)に示すように、トレンチ5内に絶縁膜9で囲まれた空洞10が形成される。このとき空洞10の上端部は、図3(e)に示すように半導体基板1表面の近傍に位置することになる。   Thereafter, an insulating film 9 made of a TEOS film is formed on the entire surface of the semiconductor substrate 1 by a CVD method and filled in the trench 5. At this time, the insulating film 9 is sequentially deposited on the silicon nitride film 3 and in the trench 5 to fill the trench 5, but the insulating film 9 deposited in the opening of the trench 5 gradually moves toward the center of the trench 5. It begins to protrude and the opening narrows. As a result, as shown in FIG. 3 (e), a cavity 10 surrounded by an insulating film 9 is formed in the trench 5. At this time, the upper end portion of the cavity 10 is positioned in the vicinity of the surface of the semiconductor substrate 1 as shown in FIG.

その後、平坦化のためエッチバックすると、空洞10上に残る絶縁膜9もエッチングされ、図3(f)に示すようにわずかに絶縁膜9が残る構造となる。ここで、エッチバックの工程は、オーバーエッチング条件で行われるため、図4に示すように空洞10が開口してしまう場合がある。また、平坦化の工程では図3(f)に示すように空洞10上に絶縁膜9が残っていても、その後に行われるエッチング工程等で、空洞10が開口してしまう場合もある。   Thereafter, when etching back is performed for planarization, the insulating film 9 remaining on the cavity 10 is also etched, resulting in a structure in which the insulating film 9 remains slightly as shown in FIG. Here, since the etch-back process is performed under over-etching conditions, the cavity 10 may open as shown in FIG. Further, in the planarization process, even if the insulating film 9 remains on the cavity 10 as shown in FIG. 3F, the cavity 10 may be opened by an etching process or the like performed thereafter.

特開平3−229443号公報JP-A-3-229443

このように従来の半導体装置の製造方法では、空洞10の上端部が半導体基板の表面近傍に位置するため、平坦化やその後のエッチング工程で、空洞10の上端部に残る絶縁膜9がなくなり空洞10が開口してしまうという問題があった。開口が形成されると、その後の製造工程で不具合が発生してしまう。   As described above, in the conventional method for manufacturing a semiconductor device, the upper end portion of the cavity 10 is located in the vicinity of the surface of the semiconductor substrate, so that the insulating film 9 remaining on the upper end portion of the cavity 10 is eliminated in the planarization and the subsequent etching process. There was a problem that 10 opened. If the opening is formed, a problem occurs in the subsequent manufacturing process.

例えば、半導体基板1表面にレジストを塗布する工程では、レジストが空洞10の奥深くまで入り込んでしまい、通常のレジスト除去工程では除去できなくなってしまう。空洞10内に残されたレジストは、その後の熱処理により炭化し、製品の歩留まり低下や半導体装置の特性劣化を引き起こしてしまう。本発明は、このような問題点を解消し、トレンチ内の空洞の上端部が開口することがない半導体装置の製造方法を提供することを目的とする。   For example, in the step of applying a resist to the surface of the semiconductor substrate 1, the resist penetrates deep into the cavity 10 and cannot be removed in a normal resist removal step. The resist left in the cavity 10 is carbonized by a subsequent heat treatment, which causes a decrease in product yield and deterioration in characteristics of the semiconductor device. An object of the present invention is to provide a method for manufacturing a semiconductor device that eliminates such problems and does not open the upper end of a cavity in a trench.

上記目的を達成するため、本願請求項1に係る半導体装置の製造方法は、半導体基板にトレンチを形成し、該トレンチ内を絶縁膜で充填する工程を含む半導体装置の製造方法において、前記トレンチを形成する工程と、該トレンチ内に、第1の絶縁膜で囲まれ、前記半導体基板表面から第1の深さに上端部を有する第1の空洞を残して、第1の絶縁膜を充填する工程と、前記トレンチ内の前記第1の絶縁膜の一部を除去し、前記第1の空洞を開口する工程と、前記トレンチ内に第2の絶縁膜を充填し、該第2の絶縁膜および前記第1の絶縁膜で囲まれ、前記第1の深さより深い第2の深さに上端部を有する第2の空洞を形成する工程と、を含むことを特徴とする。   In order to achieve the above object, a manufacturing method of a semiconductor device according to claim 1 of the present application is a method of manufacturing a semiconductor device including a step of forming a trench in a semiconductor substrate and filling the trench with an insulating film. Forming the first insulating film in the trench, leaving a first cavity surrounded by a first insulating film and having an upper end at a first depth from the surface of the semiconductor substrate. A step of removing a part of the first insulating film in the trench to open the first cavity, and a second insulating film is filled in the trench, and the second insulating film And forming a second cavity surrounded by the first insulating film and having an upper end at a second depth deeper than the first depth.

本願請求項2に係る発明は、請求項1記載の半導体装置の製造方法において、前記トレンチ内の前記第2の絶縁膜を前記第2の深さより浅い第3の深さまで除去する工程を含むことを特徴とする。   The invention according to claim 2 of the present application includes the step of removing the second insulating film in the trench to a third depth shallower than the second depth in the method of manufacturing a semiconductor device according to claim 1. It is characterized by.

本発明によれば、空洞の上端部を半導体基板表面よりも確実に深い位置に形成することができるため、平坦化やエッチング等の工程でトレンチ5内の絶縁膜がエッチングされたとしても空洞10が開口することはなく、製品の歩留まりの悪化や、半導体装置の特性の低下を抑制することができる。   According to the present invention, since the upper end of the cavity can be surely formed at a deeper position than the surface of the semiconductor substrate, the cavity 10 can be formed even if the insulating film in the trench 5 is etched by a process such as planarization or etching. Does not open, and deterioration of product yield and deterioration of the characteristics of the semiconductor device can be suppressed.

また、トレンチ5内には空洞10を残した構造としているため、トレンチ5内に充填する絶縁膜と半導体基板1との熱膨張係数の差によって生じるストレスを緩和することができる。   Further, since the cavity 10 is left in the trench 5, stress caused by a difference in thermal expansion coefficient between the insulating film filling the trench 5 and the semiconductor substrate 1 can be reduced.

さらに、空洞10上に残る絶縁膜の厚さを薄くすることで、さらにトレンチ5内に充填する絶縁膜と半導体基板1との熱膨張係数の差によって生じるストレスを緩和することができる。   Furthermore, by reducing the thickness of the insulating film remaining on the cavity 10, it is possible to relieve stress caused by the difference in thermal expansion coefficient between the insulating film filling the trench 5 and the semiconductor substrate 1.

トレンチ5に埋め込まれた絶縁膜表面が半導体基板1より下がった形状とすると、半導体基板1表面とトレンチ5側面の双方向から生じるエッジ部へのストレス集中が緩和されるという利点がある。   When the surface of the insulating film embedded in the trench 5 has a shape lower than the semiconductor substrate 1, there is an advantage that stress concentration on the edge portion generated from both sides of the surface of the semiconductor substrate 1 and the side surface of the trench 5 is reduced.

本発明の製造方法は、通常の半導体装置の製造工程のみで構成するため、歩留まり良く半導体装置を形成できるという利点もある。   Since the manufacturing method of the present invention is constituted only by a normal manufacturing process of a semiconductor device, there is an advantage that a semiconductor device can be formed with a high yield.

本発明の実施例を説明する図である。It is a figure explaining the Example of this invention. 本発明の実施例を説明する図である。It is a figure explaining the Example of this invention. 従来の実施例を説明する図である。It is a figure explaining the conventional Example. 従来の実施例を説明する図である。It is a figure explaining the conventional Example.

本発明は、トレンチ内に絶縁膜を充填する際、トレンチ内に空洞を残して第1の絶縁膜を充填した後、その空洞を開口させ、その後改めて第2の絶縁膜を充填する。このように構成すると、第1の絶縁膜を充填して形成される空洞の上端部の位置より、第2の絶縁膜を充填して形成される空洞の上端部の位置を深い位置に移動することが可能となる。以下、実施例について詳細に説明する。   In the present invention, when an insulating film is filled in a trench, the first insulating film is filled leaving a cavity in the trench, the cavity is opened, and then the second insulating film is filled again. With this configuration, the position of the upper end of the cavity formed by filling the second insulating film is moved deeper than the position of the upper end of the cavity formed by filling the first insulating film. It becomes possible. Hereinafter, examples will be described in detail.

本発明の第1の実施例について説明する。まず、先に説明した従来例同様、半導体基板1の主表面上に、熱酸化法により厚さ0.01μm程度のシリコン酸化膜2を形成し、このシリコン酸化膜2上にCVD法により厚さ0.1μm程度のシリコン窒化膜3を形成する。 さらに、このシリコン窒化膜3上にCVD法により厚さ0.8μm程度のシリコン酸化膜4を形成する。次にシリコン酸化膜2、シリコン窒化膜3およびシリコン酸化膜4をパターニングし、トレンチ形成予定領域を開口する(図3a)。   A first embodiment of the present invention will be described. First, as in the conventional example described above, a silicon oxide film 2 having a thickness of about 0.01 μm is formed on the main surface of the semiconductor substrate 1 by a thermal oxidation method, and the thickness is formed on the silicon oxide film 2 by a CVD method. A silicon nitride film 3 of about 0.1 μm is formed. Further, a silicon oxide film 4 having a thickness of about 0.8 μm is formed on the silicon nitride film 3 by the CVD method. Next, the silicon oxide film 2, the silicon nitride film 3, and the silicon oxide film 4 are patterned to open a region where a trench is to be formed (FIG. 3a).

その後、露出する半導体基板1をエッチング除去することにより、幅1μm程度、深さ12μm程度のトレンチ5を形成する(図3b)。   Thereafter, the exposed semiconductor substrate 1 is removed by etching, thereby forming a trench 5 having a width of about 1 μm and a depth of about 12 μm (FIG. 3b).

トレンチ5の内壁面には、熱酸化法により厚さ0.05μm程度のシリコン酸化膜6を形成し、イオン注入により、トレンチ5の底部にパンチスルーストップ領域7を形成する(図3c)。   A silicon oxide film 6 having a thickness of about 0.05 μm is formed on the inner wall surface of the trench 5 by thermal oxidation, and a punch-through stop region 7 is formed at the bottom of the trench 5 by ion implantation (FIG. 3c).

シリコン窒化膜3上のシリコン酸化膜4およびトレンチ5内のシリコン酸化膜6を一旦除去し、熱酸化法によりトレンチ5の内壁面に再び厚さ0.05μm程度のシリコン酸化膜8を形成する(図3d)。   The silicon oxide film 4 on the silicon nitride film 3 and the silicon oxide film 6 in the trench 5 are temporarily removed, and a silicon oxide film 8 having a thickness of about 0.05 μm is formed again on the inner wall surface of the trench 5 by thermal oxidation ( FIG. 3d).

その後、図1(a)に示すように、半導体基板1表面全面にCVD法によりTEOS膜からなる第1の絶縁膜11を形成し、トレンチ5内に充填する。このとき第1の絶縁膜11は、シリコン窒化膜3上およびトレンチ5内に順次堆積してトレンチ5内に充填されていくが、トレンチ5の開口部に堆積する第1の絶縁膜11はトレンチ5の中心方向に徐々にせり出し、開口部が狭窄していく。その結果、トレンチ5内に空洞10が形成された状態となる。ここで、空洞10の上端部には第1の絶縁膜11がわずかに残る形状となる。すなわち、空洞10の上端部の位置Aが半導体基板1表面の近傍に配置することになる。以上の工程は、先に説明した従来例と同様であり、絶縁膜9が第1の絶縁膜11に相当する。   Thereafter, as shown in FIG. 1A, a first insulating film 11 made of a TEOS film is formed on the entire surface of the semiconductor substrate 1 by a CVD method and filled in the trench 5. At this time, the first insulating film 11 is sequentially deposited on the silicon nitride film 3 and in the trench 5 and is filled in the trench 5, but the first insulating film 11 deposited in the opening of the trench 5 is the trench. 5 gradually protrudes toward the center of the opening 5, and the opening narrows. As a result, the cavity 10 is formed in the trench 5. Here, the first insulating film 11 is slightly left at the upper end of the cavity 10. That is, the position A of the upper end portion of the cavity 10 is arranged in the vicinity of the surface of the semiconductor substrate 1. The above steps are the same as those of the conventional example described above, and the insulating film 9 corresponds to the first insulating film 11.

次に本発明では、平坦化のためエッチバックする際、空洞10が開口するまで空洞10上の第1の絶縁膜11をエッチングする。図1(a)に示すように、空洞10は、中央部分が広く、上端部ほど幅が狭くなる。そこでこの第1の絶縁膜10のエッチングは、空洞10の幅の狭い上端部を開口するにとどまらず、空洞10の中央部分の幅の広い領域が露出するまでエッチングするのが好ましい(図1b)。   Next, in the present invention, when etching back for planarization, the first insulating film 11 on the cavity 10 is etched until the cavity 10 is opened. As shown in FIG. 1 (a), the cavity 10 has a wide central portion and a narrower width at the upper end portion. Therefore, the etching of the first insulating film 10 is preferably performed not only at the opening of the narrow upper end portion of the cavity 10 but also until the wide region of the central portion of the cavity 10 is exposed (FIG. 1b). .

その後、CVD法によりTEOS膜からなる第2の絶縁膜12を形成し、トレンチ5内に充填する。このとき第2の絶縁膜12は、開口部内に入り込んで堆積し、空洞10の狭い開口部を狭窄し、トレンチ5内に充填される(図1c)。   Thereafter, a second insulating film 12 made of a TEOS film is formed by a CVD method and filled in the trench 5. At this time, the second insulating film 12 enters and accumulates in the opening, narrows the narrow opening of the cavity 10, and fills the trench 5 (FIG. 1c).

その結果、空洞10の上端部の位置Bは、先に第1の絶縁膜11の堆積で形成された空洞10の上端部の位置Aより深い位置に配置することになる。   As a result, the position B of the upper end portion of the cavity 10 is arranged at a position deeper than the position A of the upper end portion of the cavity 10 formed by the deposition of the first insulating film 11 previously.

その後、平坦化のためにエッチバックしても、空洞10上には第2の絶縁膜12が厚く堆積しており、空洞10が開口することはない(図1d)。またその後のエッチング工程でも、空洞10が開口することはない。   After that, even if etch back is performed for planarization, the second insulating film 12 is thickly deposited on the cavity 10, and the cavity 10 does not open (FIG. 1d). In the subsequent etching process, the cavity 10 does not open.

なお、開口10の上端部の位置は、第1の絶縁膜11をエッチングして開口を形成する場合(図1b)の第1の絶縁膜11のエッチング量を増やすことで、深い位置に移動させることが可能となる。その場合、第2の絶縁膜12をトレンチ内に充填する場合に、第2の絶縁膜12により囲まれた新たな開口が形成しない深さに設定すればよい。   Note that the position of the upper end portion of the opening 10 is moved to a deeper position by increasing the etching amount of the first insulating film 11 when the opening is formed by etching the first insulating film 11 (FIG. 1b). It becomes possible. In that case, when the second insulating film 12 is filled in the trench, the depth may be set so that a new opening surrounded by the second insulating film 12 is not formed.

次に、本発明の第2の実施例について説明する。上記第1の実施例では、トレンチ5内に第1の絶縁膜11と第2の絶縁膜12を充填して平坦する際、エッチングのばらつき等を考慮し、オーバーエッチングする。その際、トレンチ5内の第1の絶縁膜11あるいは第2の絶縁膜12は、わずかにエッチングされることになる。この場合、図1(d)に示すように、空洞10の上端部上に残る第1の絶縁膜11と第2の絶縁膜12は厚く残ることになる。   Next, a second embodiment of the present invention will be described. In the first embodiment, when the first insulating film 11 and the second insulating film 12 are filled in the trench 5 and flattened, overetching is performed in consideration of etching variation and the like. At that time, the first insulating film 11 or the second insulating film 12 in the trench 5 is slightly etched. In this case, as shown in FIG. 1D, the first insulating film 11 and the second insulating film 12 remaining on the upper end portion of the cavity 10 remain thick.

厚い第1の絶縁膜11と第2の絶縁膜12を残すことは、これらと半導体基板1との熱膨張係数の差による応力が発生してしまう場合がある。特に、本発明では、応力を緩和する開口10の体積を従来例より小さくするため、空洞10による応力緩和の効果が小さくなる。そこで、図2に示すように空洞10上の第1の絶縁膜11および第2の絶縁膜12を薄くすることで、応力緩和を図ることが可能となる。   Leaving the thick first insulating film 11 and the second insulating film 12 may cause stress due to a difference in thermal expansion coefficient between them and the semiconductor substrate 1. In particular, in the present invention, since the volume of the opening 10 for relaxing stress is made smaller than that of the conventional example, the effect of stress relaxation by the cavity 10 is reduced. Therefore, as shown in FIG. 2, stress relaxation can be achieved by thinning the first insulating film 11 and the second insulating film 12 on the cavity 10.

この第1の絶縁膜11と第2の絶縁膜12を薄くする工程は、残りの膜厚がある程度のばらついても許容されるため、空洞10の上端部上に十分な厚さの第2の絶縁膜12が残る条件に設定すれば、空洞10が開口するような不具合を招くこともない。   Since the process of thinning the first insulating film 11 and the second insulating film 12 is allowed even if the remaining film thickness varies to some extent, the second film having a sufficient thickness on the upper end portion of the cavity 10 is allowed. If the conditions are set so that the insulating film 12 remains, there is no inconvenience that the cavity 10 opens.

1:半導体基板、2:シリコン酸化膜、3:シリコン窒化膜、4:シリコン酸化膜、5:トレンチ、6:シリコン酸化膜、7:パンチスルーストップ領域、8:シリコン酸化膜、9:絶縁膜、10:空洞、11:第1の絶縁膜、12:第2の絶縁膜 1: semiconductor substrate, 2: silicon oxide film, 3: silicon nitride film, 4: silicon oxide film, 5: trench, 6: silicon oxide film, 7: punch-through stop region, 8: silicon oxide film, 9: insulating film 10: cavity, 11: first insulating film, 12: second insulating film

Claims (2)

半導体基板にトレンチを形成し、該トレンチ内を絶縁膜で充填する工程を含む半導体装置の製造方法において、
前記トレンチを形成する工程と、
該トレンチ内に、第1の絶縁膜で囲まれ、前記半導体基板表面から第1の深さに上端部を有する第1の空洞を残して、第1の絶縁膜を充填する工程と、
前記トレンチ内の前記第1の絶縁膜の一部を除去し、前記第1の空洞を開口する工程と、
前記トレンチ内に第2の絶縁膜を充填し、該第2の絶縁膜および前記第1の絶縁膜で囲まれ、前記第1の深さより深い第2の深さに上端部を有する第2の空洞を形成する工程と、を含むことを特徴とする半導体装置の製造方法。
In a manufacturing method of a semiconductor device including a step of forming a trench in a semiconductor substrate and filling the trench with an insulating film,
Forming the trench;
Filling the first insulating film in the trench, leaving a first cavity surrounded by a first insulating film and having an upper end at a first depth from the semiconductor substrate surface;
Removing a portion of the first insulating film in the trench and opening the first cavity;
A second insulating film is filled in the trench, and is surrounded by the second insulating film and the first insulating film, and has an upper end at a second depth deeper than the first depth. Forming a cavity, and a method for manufacturing a semiconductor device.
請求項1記載の半導体装置の製造方法において、
前記トレンチ内の前記第2の絶縁膜を前記第2の深さより浅い第3の深さまで除去する工程を含むことを特徴とする半導体装置の製造方法。
In the manufacturing method of the semiconductor device according to claim 1,
A method of manufacturing a semiconductor device, comprising: removing the second insulating film in the trench to a third depth shallower than the second depth.
JP2017005736A 2017-01-17 2017-01-17 Manufacturing method of semiconductor device Pending JP2018117001A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017005736A JP2018117001A (en) 2017-01-17 2017-01-17 Manufacturing method of semiconductor device
CN201822128961.7U CN209570528U (en) 2017-01-17 2018-12-18 Fixture for fluorescent x-ray analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017005736A JP2018117001A (en) 2017-01-17 2017-01-17 Manufacturing method of semiconductor device

Publications (1)

Publication Number Publication Date
JP2018117001A true JP2018117001A (en) 2018-07-26

Family

ID=62984093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017005736A Pending JP2018117001A (en) 2017-01-17 2017-01-17 Manufacturing method of semiconductor device

Country Status (2)

Country Link
JP (1) JP2018117001A (en)
CN (1) CN209570528U (en)

Also Published As

Publication number Publication date
CN209570528U (en) 2019-11-01

Similar Documents

Publication Publication Date Title
JP2010263129A (en) Semiconductor device and method of manufacturing the same
JP2008227360A (en) Method for manufacturing semiconductor device
JP2001332615A (en) Manufacturing method for semiconductor element
JP2011216651A (en) Method of manufacturing semiconductor device
JP2018117001A (en) Manufacturing method of semiconductor device
KR100979711B1 (en) Method for gapfill in semiconductor device
JP4756926B2 (en) Method for manufacturing element isolation structure
KR100728649B1 (en) Method for forming the isolation layer of semiconductor device
KR20080003503A (en) Method for forming transistor of semiconductor device
US11127622B2 (en) Deep trench isolation and substrate connection on SOI
KR100873358B1 (en) Method for forming the Isolation Layer of Semiconductor Device
KR20080089998A (en) Method for manufacturing semiconductor device
KR20090074341A (en) Method for manufcturing semiconductor device
KR100519517B1 (en) Method for forming isolation in semiconductor device
US6828196B2 (en) Trench filling process for preventing formation of voids in trench
KR20060079323A (en) Method for forming isolation film of semiconductor device
KR20090069364A (en) Method for forming trench of semiconductor device
KR20060075402A (en) Method of forming a isolation layer in semiconductor device
KR100668743B1 (en) Forming process for isolation layer of semiconductor device
KR101145386B1 (en) Method for fabricating buried gate in semiconductor device
JP3844239B2 (en) Manufacturing method of semiconductor device
KR100984858B1 (en) Method for forming isolation layer of semiconductor device
JP2014027110A (en) Semiconductor device manufacturing method
JP2003324146A (en) Semiconductor device and manufacturing method of the same
KR20020050911A (en) Method for forming isolation layer of semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210119