JP2018113428A - 半導体装置および半導体装置の製造方法 - Google Patents

半導体装置および半導体装置の製造方法 Download PDF

Info

Publication number
JP2018113428A
JP2018113428A JP2017176094A JP2017176094A JP2018113428A JP 2018113428 A JP2018113428 A JP 2018113428A JP 2017176094 A JP2017176094 A JP 2017176094A JP 2017176094 A JP2017176094 A JP 2017176094A JP 2018113428 A JP2018113428 A JP 2018113428A
Authority
JP
Japan
Prior art keywords
protective film
film
semiconductor device
electrode
protective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017176094A
Other languages
English (en)
Other versions
JP6922579B2 (ja
Inventor
伸一 河野
Shinichi Kono
伸一 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to US15/854,509 priority Critical patent/US10366880B2/en
Publication of JP2018113428A publication Critical patent/JP2018113428A/ja
Application granted granted Critical
Publication of JP6922579B2 publication Critical patent/JP6922579B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】信頼性を向上させることができる半導体装置および半導体装置の製造方法を提供すること。【解決手段】インクジェット方式により、第1保護膜1とめっき膜11との境界13に沿って、かつ当該境界13を挟んで平行に延在する2本のパターン2a,2bに高粘度樹脂を塗布して第2保護膜2を形成する。その後、インクジェット方式により、第2保護膜2の第1,2パターン2a,2b間に低粘度樹脂を塗布して第3保護膜3を形成する。この低粘度樹脂は、第2保護膜2を形成するための高粘度樹脂よりも粘度が低く、流動性が高いため、第1保護膜1とめっき膜11との空隙12に濡れ広がる。このため、第3保護膜3は、第2保護膜2の第1,2パターン2a,2bに密着し、第1保護膜1とめっき膜11との境界13にまたがって形成される。かつ、第3保護膜3は、第1保護膜1とめっき膜11との空隙12に埋め込まれ、当該空隙12を塞いだ状態となる。【選択図】図2

Description

この発明は、半導体装置および半導体装置の製造方法に関する。
従来、半導体チップのおもて面には、半導体チップを保護するための保護膜としてパッシベーション膜が設けられている。このパッシベーション膜の形成方法として、材料としてポリイミドを用いること、および、ポリイミドの塗布をスピンコート方式やインクジェット方式で行うこと、が公知である。スピンコート方式では、パッシベーション膜は、半導体ウエハのおもて面の全面に形成された後、所定パターンにパターニングされる。インクジェット方式では、半導体ウエハのおもて面の所定箇所に所定量のポリイミドを吐出可能であるため、パターニングを行うことなく所定パターンのパッシベーション膜が形成される。
ポリイミドを塗布する方法として、半導体ウエハの一方の主面の外縁部に沿って高粘度のポリイミドの土手を形成した後、土手で囲まれた領域(土手の内側)に低粘度のポリイミドを流し込んで、半導体ウエハの一方の主面を覆うポリイミド膜を形成する方法が提案されている(例えば、下記特許文献1(第0024〜0029段落、図1)参照。)。下記特許文献1では、半導体ウエハ上の土手が壁としての役割を果たし、低粘度ポリイミドが土手で囲まれた領域に溜まるため、低粘度材を一定の厚さとなるように流し込むことで、半導体ウエハ上に厚く均一な塗布膜が形成される。
また、ポリイミドを塗布する別の方法として、半導体チップの周囲に沿って軌跡を描くように高粘度のポリイミドで封止樹脂の流れ止め防止用のダムを形成した後、ダムの内側に封止樹脂として低粘度のポリイミドを形成する方法が提案されている(例えば、下記特許文献2(第0015〜0019段落、図1)参照。)。下記特許文献2では、高粘度のポリイミドの粘度を1500ポイズ〜3000ポイズ(≒150Pa・s〜300Pa・s)とし、低粘度のポリイミドの粘度を100ポイズ〜500ポイズ(≒10Pa・s〜50Pa・s)としている。
ポリイミドを塗布する別の方法として、ディスペンサやマイクロシリンジから粘度100cp(≒0.1Pa・s)の低粘度のポリイミドを1滴ずつ滴下して、ゲートパッド電極上とソース電極上にまたがる貫通孔をポリイミド樹脂で塞ぐ方法が提案されている(例えば、下記特許文献3(第0012段落)参照。)。塗布液を塗布する方法として、インクジェット方式により半導体ウエハの主面の外縁部に沿って高粘度のフォトレジストを吐出して土手を形成した後、インクジェット方式により土手の内側に低粘度のフォトレジストを吐出する方法が提案されている(例えば、下記特許文献4(第0006,0027,0031段落、図4)参照。)。
次に、従来の半導体装置の製造方法について説明する。図9は、従来の半導体装置の製造方法の一部の概要を示すフローチャートである。図10は、従来の半導体装置の要部の構造を示す断面図である。まず、半導体ウエハに半導体素子の所定の素子構造の各半導体領域を形成した後、半導体ウエハのおもて面におもて面電極を形成する。図10では、半導体ウエハおよびおもて面電極をまとめて1つの層110として示す。次に、スピンコート方式により半導体ウエハのおもて面にポリイミドを塗布し、半導体ウエハのおもて面の全面に、おもて面電極を覆うように、パッシベーション膜としてポリイミド膜(以下、第1保護膜とする)101を形成する(ステップS101)。
次に、フォトリソグラフィおよびエッチングにより、第1保護膜101の表面に、金属配線とのコンタクト(電気的接触部)の形成領域に対応する部分が開口したフォトレジスト膜(不図示)を形成する。次に、このフォトレジスト膜をマスクとしてエッチングを行って第1保護膜101にコンタクトホール101aを形成し、当該コンタクトホール101aにおもて面電極の一部を露出させる(ステップS102)。そして、エッチングマスクとして用いたフォトレジスト膜を除去する。次に、熱処理により第1保護膜101を完全にイミド化(固化)させる(ステップS103)。次に、コンタクトホール101aに露出するおもて面電極上にめっき膜111を形成する(ステップS104)。
次に、窒素(N2)雰囲気でアニールし、半導体ウエハの表面の表面吸着物を除去する(ステップS105)。次に、インクジェット方式によりポリイミドを塗布し、パッシベーション膜として、第1保護膜101とめっき膜111との境界を覆うポリイミド膜(以下、第2保護膜とする)102を形成する(ステップS106)。第2保護膜102の幅w102は、200μm〜300μm程度である。次に、熱処理により第2保護膜102をイミド化する(ステップS107)。次に、半導体ウエハをダイシングして個々のチップ状に個片化する(ステップS108)。その後、めっき膜111に金属配線をはんだ付けした後、電気的特性試験や信頼性試験により良品チップを選別し(ステップS109)、半導体素子チップが完成する。
特開2009−049339号公報 特開平09−069591号公報 特開平06−151861号公報 特開2003−126760号公報
しかしながら、上述した従来の半導体装置の製造方法で作製(製造)された半導体装置では、めっき膜111の形成後に行う熱処理(ステップS105)や、半導体装置の試験時(ステップS108)および実動作時に、第1保護膜101とめっき膜111との間に空隙112が生じることがある。この空隙112は、第1保護膜101とめっき膜111との熱膨張率の違いにより生じ、その幅w101は最大で5μm程度となる。
その後、ステップS106において、インクジェット方式により、第1保護膜101とめっき膜111との空隙112にまたがるようにポリイミドを塗布するが、ステップS106で用いるポリイミドは高粘度であり、流動性が低い。このため、第1保護膜101とめっき膜111とに生じた空隙112の開口部を覆うように第2保護膜102が形成されるだけであり、当該空隙112はステップS106の後もそのまま残る(図8参照)。図8は、第1保護膜とめっき膜との空隙を顕微鏡で観察した結果を模式的に示す断面図である。図8は、図10の矩形枠113の部分の拡大図に相当する。
また、ステップS109の各試験での熱履歴や半導体素子の試験動作時の発熱で、第1保護膜101とめっき膜111との間に生じた空隙112の幅w101がさらに広くなる虞がある。第1保護膜101とめっき膜111との間に空隙112が生じていると、めっき膜111と第2保護膜102との空隙112に大気が侵入し、大気中に含まれる水によりめっき膜111が錆びて劣化することで、半導体装置の信頼性が低下するという問題がある。
この発明は、上述した従来技術による問題点を解消するため、信頼性を向上させることができる半導体装置および半導体装置の製造方法を提供することを目的とする。
上述した課題を解決し、本発明の目的を達成するため、この発明にかかる半導体装置の製造方法は、次の特徴を有する。まず、半導体ウエハに半導体素子を形成する第1工程を行う。次に、前記半導体ウエハの第1主面上に、前記半導体素子に電気的に接続された電極層を形成する第2工程を行う。次に、前記半導体ウエハの第1主面に、前記電極層の一部を露出する開口部を有する、第1樹脂からなる第1保護膜を形成する第3工程を行う。次に、前記開口部に露出する前記電極層の表面に電極膜を形成する第4工程を行う。次に、インクジェット方式により前記第1保護膜および前記電極膜の表面に第2樹脂を選択的に塗布し、前記第1保護膜と前記電極膜との境界に沿って、かつ当該境界を挟んで平行に延在する2本の第2保護膜を形成する第5工程を行う。次に、インクジェット方式により2本の前記第2保護膜の間に前記第2樹脂よりも粘度の低い第3樹脂を塗布し、前記第2保護膜に接する第3保護膜を形成する第6工程を行う。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記第6工程では、当該第6工程の前までに行う熱処理で前記第1保護膜と前記電極膜との間に生じた空隙に前記第3樹脂を埋め込んで、前記第3樹脂で当該空隙を塞ぐことを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記第6工程では、2本の前記第2保護膜の間に前記第3樹脂を塗布する工程を2回以上行って前記空隙を塞ぐことを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記第5工程では、2本の前記第2保護膜のうちの一方の前記第2保護膜を前記電極膜上に前記電極膜の輪郭に沿って形成し、他方の前記第2保護膜を前記第1保護膜上に前記電極膜の輪郭に沿って形成することを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記第5工程では、前記電極膜上に形成する前記第2保護膜の厚さを、前記第1保護膜上に形成する前記第2保護膜の厚さよりも厚くすることを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記第2樹脂の粘度は、25ミリパスカル秒以上であることを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記第3樹脂の粘度は、25ミリパスカル秒未満であることを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記第2樹脂は、ポリイミドまたはポリベンゾオキサゾールであることを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記第3樹脂は、ポリイミドまたはポリベンゾオキサゾールであることを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記第4工程の後、前記第5工程の前に、前記第1保護膜および前記電極膜の表面の上の有機物を除去する除去工程をさらに含むことを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記除去工程では、前記有機物の結合を分解して前記有機物を揮発性物質に変換することで除去することを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記除去工程では、前記有機物を官能基に置換することで除去することを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記除去工程では、前記有機物に酸素雰囲気下で紫外線光を照射することで当該有機物を除去することを特徴とする。
上述した課題を解決し、本発明の目的を達成するため、この発明にかかる半導体装置は、次の特徴を有する。半導体基板に、半導体素子が配置されている。前記半導体基板の第1主面上に、電極層が設けられている。前記電極層は、前記半導体素子に電気的に接続されている。前記半導体基板の第1主面に、第1保護膜が設けられている。前記第1保護膜は、前記電極層の一部を露出する開口部を有する。前記開口部に露出する前記電極層の表面に、電極膜が設けられている。前記第1保護膜および前記電極膜の表面に、所定のパターンで2本の第2保護膜が選択的に設けられている。2本の前記第2保護膜は、前記第1保護膜と前記電極膜との境界に沿って、かつ当該境界を挟んで平行に延在する。2本の前記第2保護膜の間に、当該2本の第2保護膜に接して第3保護膜が設けられている。
また、この発明にかかる半導体装置は、上述した発明において、前記第3保護膜は、前記第1保護膜と前記電極膜との空隙に埋め込まれて当該空隙を塞いでいることを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、2本の前記第2保護膜のうちの一方の前記第2保護膜は前記電極膜上に前記電極膜の輪郭に沿って設けられ、他方の前記第2保護膜は前記第1保護膜上に前記電極膜の輪郭に沿って設けられていることを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、前記電極膜上の前記第2保護膜の厚さは、前記第1保護膜上の前記第2保護膜の厚さよりも厚いことを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、前記第3保護膜の、前記第1保護膜および前記電極膜の表面からの厚さは、前記第2保護膜の厚さ以下であることを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、前記第2保護膜は、ポリイミドまたはポリベンゾオキサゾールからなることを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、前記第3保護膜は、ポリイミドまたはポリベンゾオキサゾールからなることを特徴とする。
上述した発明によれば、第3保護膜の形成に流動性の高い第3樹脂を用いることで、2本の第2保護膜の間に塗布した第3樹脂で、第1保護膜と電極膜との空隙を確実に埋めて塞ぐことができる。また、2本の第2保護膜の間に塗布した第3樹脂は、2本の第2保護膜で塞き止めることができるため、当該2本の第2保護膜の外側には流れ出ない。したがって、設計通りのパターンで第2,3保護膜を形成することができる。また、第1保護膜と電極膜との空隙を第3保護膜で確実に埋めることができるため、その後、熱履歴がかかっても、第1保護膜と電極膜との間に空隙は生じない、または空隙が生じたとしても微小である。したがって、電極膜が大気に触れにくく、劣化しにくい。
本発明にかかる半導体装置および半導体装置の製造方法によれば、信頼性を向上させることができるという効果を奏する。
実施の形態1にかかる半導体装置の製造方法の概要を示すフローチャートである。 実施の形態1にかかる半導体装置の要部の構造を示す断面図である。 実施の形態1にかかる半導体装置の平面レイアウトを示す平面図である。 図1のステップS6,S7で用いるインクジェットのノズルの状態を模式的に示す断面図である。 実施の形態2にかかる半導体装置の要部の構造を示す断面図である。 実施の形態3にかかる半導体装置の要部の構造を示す断面図である。 実施の形態4にかかる半導体装置の構造の一例を示す断面図である。 第1保護膜とめっき膜との空隙を顕微鏡で観察した結果を模式的に示す断面図である。 従来の半導体装置の製造方法の一部の概要を示すフローチャートである。 従来の半導体装置の要部の構造を示す断面図である。 実施の形態5にかかる半導体装置の製造方法の概要を示すフローチャートである。 実施例にかかる半導体装置の製造途中の状態の平面レイアウトを模式的に示す平面図である。 比較例である半導体装置の製造途中の状態の平面レイアウトを模式的に示す平面図である。
以下に添付図面を参照して、この発明にかかる半導体装置および半導体装置の製造方法の好適な実施の形態を詳細に説明する。本明細書および添付図面においては、nまたはpを冠記した層や領域では、それぞれ電子または正孔が多数キャリアであることを意味する。また、nやpに付す+および−は、それぞれそれが付されていない層や領域よりも高不純物濃度および低不純物濃度であることを意味する。なお、以下の実施の形態の説明および添付図面において、同様の構成には同一の符号を付し、重複する説明を省略する。
(実施の形態1)
実施の形態1にかかる半導体装置の製造方法について説明する。図1は、実施の形態1にかかる半導体装置の製造方法の概要を示すフローチャートである。図2は、実施の形態1にかかる半導体装置の要部の構造を示す断面図である。図2には、図3の切断線A−A’における断面構造を示す。図3は、実施の形態1にかかる半導体装置の平面レイアウトを示す平面図である。図3は、炭化珪素(SiC)からなる半導体基板(以下、炭化珪素基板(半導体チップ)とする)20を用いた場合の電極パッドの平面レイアウトの一例である。平面レイアウトとは、半導体チップのおもて面側から見た各部の平面形状および配置構成である。図4は、図1のステップS6,S7で用いるインクジェットのノズルの状態を模式的に示す断面図である。
まず、半導体ウエハに半導体素子の所定の素子構造の各半導体領域を形成した後、半導体ウエハのおもて面におもて面電極(電極層)を形成する。図2では、半導体ウエハおよびおもて面電極をまとめて1つの基板部10として示す。次に、コーター(塗布機:不図示)の回転支持台に裏面を下側(回転支持台側)にして半導体ウエハを固定した後、コーターのノズル(不図示)から半導体ウエハのおもて面にポリイミドを塗布(滴下)する。そして、半導体ウエハを回転させて遠心力によりポリイミドを広げることで(スピンコート)、半導体ウエハのおもて面の全面に、おもて面電極を覆うように、パッシベーション膜としてポリイミド膜(以下、第1保護膜とする)1を形成する(ステップS1)。
第1保護膜1は、半導体チップの保護や、外部からの不純物の侵入を抑制可能な程度に厚く、その厚さt1は例えば10μm以上12μm程度である。通常、第1保護膜1の厚さt1は、半導体ウエハの回転数の増加に伴って指数関数的に減少する。このため、ステップS1で用いるポリイミドの粘度は、当該ポリイミド中の溶媒の種類および半導体ウエハの回転数[rpm:revolution per minute]に応じて、第1保護膜1の所定厚さt1を確保可能程度の粘度に設定される。ステップS1を2回以上繰り返して、第1保護膜1の所定厚さt1を確保してもよい。
次に、フォトリソグラフィおよびエッチングにより、第1保護膜1の表面に、金属配線とのコンタクト(電気的接触部)の形成領域に対応する部分が開口したフォトレジスト膜(不図示)を形成する。次に、このフォトレジスト膜をマスクとしてエッチングを行って第1保護膜1にコンタクトホール(開口部)1aを形成し、当該コンタクトホール1aにおもて面電極の一部を露出させる(ステップS2)。そして、エッチングマスクとして用いたフォトレジスト膜を除去する。次に、例えば300℃以上350℃以下程度の温度の熱処理により第1保護膜1を完全にイミド化(固化)させる(ステップS3)。
次に、コンタクトホール1aに露出するおもて面電極上に、めっき膜11を形成する(ステップS4)。めっき膜11は、例えばコンタクトホール1aを埋め込むように形成される。めっき膜11の厚さt2は、第1保護膜1の所定厚さt1と同程度か、第1保護膜1の所定厚さt1未満である。めっき膜11は、例えば、ニッケル−リン(Ni−P)めっき膜であってもよい。次に、窒素(N2)雰囲気でアニール(熱処理)し、半導体ウエハの表面(すなわち第1保護膜1およびめっき膜11の表面)の付着物(表面吸着物)を除去する(ステップS5)。このステップS5のアニールにおいて、第1保護膜1とめっき膜11との境界13に最大0.5μm程度の幅w1の空隙12が生じることがある。
次に、インクジェット方式により、第1保護膜1とめっき膜11との境界13に沿って、かつ当該境界13を挟んで(第1保護膜1とめっき膜11との間に空隙12が生じている場合には当該空隙12を挟んで)平行に延在する2本のパターン2a,2bに高粘度樹脂を塗布し、パッシベーション膜として高粘度樹脂膜(以下、第2保護膜とする)2を形成する(ステップS6)。このとき、半導体ウエハ上に高粘度樹脂を塗布しながら、当該塗布された高粘度樹脂を例えば40℃程度の温度に加熱して当該高粘度樹脂中の溶媒や水を蒸発させる。これにより、半導体ウエハ上に塗布した高粘度樹脂の濡れ広がりが抑制され、第2保護膜2のパターン2a,2bの幅w12を調整することができる。
第2保護膜2は、めっき膜11上に配置される第1パターン2aと、第1保護膜1上に配置される第2パターン2bと、を有する。第2保護膜2の第1,2パターン2a,2bとの間に挟まれるように、当該第1,2パターン2a,2bで第1保護膜1とめっき膜11との境界13が囲まれている。図3には、第2保護膜2の第1,2パターン2a,2bを太線で示す(図6においても同様)。また、MOSFET(Metal Oxide Semiconductor Field Effect Transistor:絶縁ゲート型電界効果トランジスタ)のソース電極パッドSを覆うめっき膜11を形成した場合を示す。ソース電極パッドSは例えば略矩形状の平面形状を有する。この場合、第2保護膜2は、めっき膜11(ソース電極パッドS)の外周に沿った略矩形状の平面レイアウトでめっき膜11上に配置される第1パターン2aと、第1保護膜1の内周に沿った略矩形状の平面レイアウトで第1保護膜1上に配置される第2パターン2bと、を有する。
第2保護膜2の第1,2パターン2a,2bは、互いに離して配置される。また、第2保護膜2の第1,2パターン2a,2bは、第1保護膜1とめっき膜11との間の空隙12の開口側で当該空隙12の幅w1を狭めないように配置される。例えば、第2保護膜2の第1パターン2aは第1保護膜1とめっき膜11との空隙12から離して配置されてよいが、当該第1パターン2aがめっき膜11の内側に配置されるほど、めっき膜11の表面積が小さくなってしまう。このため、第2保護膜2の第1パターン2aは、第1保護膜1とめっき膜11との空隙12に可能な限り近づけて配置されることが好ましい。第2保護膜2の第2パターン2bは、チップサイズの許容する範囲で、第1保護膜1とめっき膜11との空隙12から離して配置されてもよい。
具体的には、第2保護膜2の第1,2パターン2a,2bは、例えば、半導体ウエハから離れる方向(上方)に突出す円弧状、または、半導体ウエハから離れる方向に長軸を高さ(厚さt11)として突出する楕円弧状の断面形状を有する。第2保護膜2の第1,2パターン2a,2bの頂点間の幅w11は、200μm以上300μm以下程度であってもよい。第2保護膜2の第1,2パターン2a,2bの頂点間の幅w11を広くするほど、後述する第3保護膜3が第2保護膜2の第1,2パターン2a,2b間から外側へ濡れ広がりにくくなる。第2保護膜2の第1,2パターン2a,2bの幅w12は、20μm以上50μm以下程度であってもよい。第2保護膜2の第1,2パターン2a,2bの厚さt11は、例えば10μm程度である。
ステップS6で用いる高粘度樹脂は、ポリイミド(イミド結合を含む高分子化合物)またはポリベンゾオキサゾール(感光性レジスト)であり、インクジェット40(図4参照)で塗布可能な程度の粘度を有する。具体的には、ステップS6で用いる高粘度樹脂の粘度は、例えば25mPa・s(ミリパスカル秒)以上である。インクジェット40のノズル41には、樹脂43が吐出される穴(ノズル穴)42が例えば櫛歯状に500個程度配置されている。図4には、ノズル穴42を縦線で示し、その個数を少なく図示する。ノズル穴42の直径、配置および配置間隔w21を適宜設定することで、第2保護膜2の第1,2パターン2a,2bを同時に形成可能である。ノズル穴42の直径および配置間隔w21ともに、例えば10μm程度である。直径が10μmのノズル穴42から吐出された樹脂の着弾時の幅(第2保護膜2の第1,2パターン2a,2bの幅w12)は、例えば20μm〜50μm程度である。
次に、インクジェット方式により、第2保護膜2の第1,2パターン2a,2b間に低粘度樹脂を塗布し、パッシベーション膜として低粘度樹脂膜(以下、第3保護膜とする)3を形成する(ステップS7)。この低粘度樹脂はポリイミドまたはポリベンゾオキサゾールであり、その粘度はステップS6で用いる高粘度樹脂の粘度よりも低く、例えば25mPa・s未満である。好ましくは、ステップS7で用いる低粘度樹脂は、ステップS6で用いる高粘度樹脂と同じ主成分の樹脂であることがよい。その理由は、第2,3保護膜2,3の密着性を向上させることができるからである。
ステップS7で用いる低粘度樹脂は、流動性が高い。このため、ステップS7において第2保護膜2の第1,2パターン2a,2b間に塗布した低粘度樹脂は、第1保護膜1とめっき膜11との空隙12に濡れ広がる。したがって、第2保護膜2の第1,2パターン2a,2b間に、例えば第2保護膜2の第1,2パターン2a,2bの厚さt11と同程度の厚さt12になるまで低粘度樹脂を充填することで、第1保護膜1とめっき膜11との空隙12を低粘度樹脂で確実に埋めることができる。
すなわち、第3保護膜3は、第2保護膜2の第1,2パターン2a,2bに密着し、第1保護膜1とめっき膜11との境界13にまたがって形成される。かつ、第3保護膜3は、第1保護膜1とめっき膜11との空隙12に埋め込まれ、当該空隙12を塞いだ状態となる。このような状態で第3保護膜3が形成されればよく、第3保護膜3の、第1保護膜1およびめっき膜11の表面からの厚さt12は、第2保護膜2の第1,2パターン2a,2bの厚さt11以下である。
ステップS7において、第2保護膜2の第1,2パターン2a,2bは、第2保護膜2の第1,2パターン2a,2b間から外側への低粘度樹脂の濡れ広がりを塞き止める堤として機能する。また、半導体ウエハ上に低粘度樹脂を塗布しながら、当該塗布された低粘度樹脂を例えば40℃程度の温度に加熱して当該低粘度樹脂中の溶媒や水を蒸発させることで、第2保護膜2の第1,2パターン2a,2b間から外側へ低粘度樹脂が濡れ広がることを抑制することができる。
また、ステップS7の処理を2回以上繰り返し行ってもよく、ステップS7の処理ごとに低粘度樹脂の粘度を変えてもよい。例えば、ステップS7を3回以上繰り返す場合、ステップS7の最初の塗布では低粘度樹脂を使用し、3回目以降の塗布では最初の塗布より粘度が高い低粘度樹脂を使用する。また、ステップS7を2回繰り返し行う場合は、ステップS7の最初の塗布では低粘度樹脂を使用し、ステップS7の2回目の塗布では最初の塗布より粘度が高い低粘度樹脂を使用する。これにより、塗布膜の断面形状を制御し、塗布膜の厚さを制御することができる。なお、ステップS7の処理で用いる低粘度樹脂のうち、最初の塗布よりも粘度の高い低粘度樹脂は、ステップS6で用いる高粘度樹脂と同じ粘度としてもよい。
次に、熱処理により、第2,3保護膜2,3を固化させる(ステップS8)。具体的には、ステップS8においては、第2,3保護膜2,3ともにポリイミド膜であった場合、例えば200℃以上400℃以下程度の温度で30分間程度の熱処理により、ポリイミド膜のイミド化を進行させる。第2,3保護膜2,3ともにポリベンゾオキサゾール膜であった場合、例えば200℃以上400℃以下程度の温度で30分間程度の熱処理により、ポリベンゾオキサゾール膜の固化を進行させればよい。また、第2,3保護膜2,3の一方がポリイミド膜であり、他方がポリベンゾオキサゾール膜である場合、第2,3保護膜2,3をそれぞれ形成するごとに固化のための熱処理を行えばよい。
次に、半導体ウエハを切断(ダイシング)して個々のチップ状に個片化する(ステップS9)。その後、めっき膜11に金属配線をはんだ付けした後、電気的特性試験や信頼性試験により良品チップを選別し(ステップS10)、半導体素子チップが完成する。ステップS10においては、信頼性試験として、例えば、急激な温度変化に対する耐性を評価する熱衝撃試験を行ってもよい。
ステップS10の各試験での熱履歴や半導体素子の試験動作時の発熱で、第1保護膜1とめっき膜11との間に再度空隙は生じない。その理由は、上述したようにステップS5のアニールにおいて第1保護膜1とめっき膜11との間に生じた空隙12を、ステップS7において第3保護膜3で埋めて塞いだからである。仮に、ステップS10において第3保護膜3がめっき膜11から剥離して、めっき膜11と第3保護膜3との間に再度空隙が生じたとしても、この空隙は第3保護膜3の、めっき膜11上の部分で塞がれている。このため、めっき膜11と第3保護膜3との空隙からも大気は侵入しない。
上述した実施の形態1にかかる半導体装置の製造方法では、ゲート電極パッドG(図3参照)上にめっき膜11を形成した場合には、ソース電極パッドSと同様に、ゲート電極パッドGの外周に沿って第2,3保護膜2,3を形成してもよい。
以上、説明したように、実施の形態1によれば、インクジェット方式による高粘度樹脂の塗布により第1保護膜とめっき膜との境界を囲む第1,2パターンで第2保護膜を形成し、この第2保護膜の第1,2パターン間にインクジェット方式により低粘度樹脂を1回以上塗布して第3保護膜を形成する。このとき、第3保護膜の形成に流動性の高い低粘度樹脂を用いることで、第2保護膜の第1,2パターン間に塗布した低粘度樹脂で、第1保護膜とめっき膜との空隙を確実に埋めて塞ぐことができる。また、第2保護膜の第1,2パターン間に塗布した低粘度樹脂は、第2保護膜の第1,2パターンで塞き止めることができるため、第2保護膜の第1,2パターン間の外側(設計上意図しない領域)には流れ出ない。したがって、設計通りのパターンで第2,3保護膜を形成することができる。また、第1保護膜とめっき膜との空隙を第3保護膜で確実に埋めることができるため、その後、熱履歴がかかっても、第1保護膜とめっき膜との間に空隙は生じない、または空隙が生じたとしても微小である。したがって、めっき膜が大気に触れにくく、劣化しにくい構造とすることができるため、半導体装置の信頼性が向上する。
また、1枚の半導体ウエハ上に粘度の異なる樹脂を塗布するにあたって一般的なスピンコート法を用いる場合、樹脂の塗布と、フォトリソグラフィおよびエッチングによる樹脂膜のパターン形成と、を1組とする工程を繰り返し行う。このため、工程数が増加し、スループット低下やコスト上昇という問題が生じる。一方、実施の形態1によれば、粘度の異なる樹脂をインクジェット方式により塗布するため、樹脂膜のパターン形成を行う必要がなく、粘度の異なる樹脂を連続して塗布することができる。このため、工程数が増加することが抑制され、スループット低下やコスト上昇を抑制することができる。
(実施の形態2)
次に、実施の形態2にかかる半導体装置の構造について説明する。図5は、実施の形態2にかかる半導体装置の要部の構造を示す断面図である。実施の形態2にかかる半導体装置が実施の形態1にかかる半導体装置と異なる点は、第2保護膜2の、めっき膜11上に配置される第1パターン2aの厚さt11’を、第1保護膜1上に配置される第2パターン2bの厚さt11よりも厚くした点である(t11<t11’)。略矩形状の平面レイアウトに配置された第2保護膜2の、矩形の各頂点に相当する角部14(図3参照)でのみ、めっき膜11上に配置される第1パターン2aの厚さt11’を厚くしてもよい。
実施の形態2にかかる半導体装置の製造方法は、実施の形態1にかかる半導体装置の製造方法のステップS6(図1参照)において、第2保護膜2の第1,2パターン2a,2bをそれぞれ異なる厚さt11’,t11で別々に形成すればよい。
以上、説明したように、実施の形態2によれば、実施の形態1と同様の効果を得ることができる。また、実施の形態2によれば、第3保護膜を形成するための低粘度樹脂の塗布(すなわち図1のステップS7の処理)時に、低粘度樹脂がめっき膜上に濡れ広がることをさらに抑制することができる。
(実施の形態3)
次に、実施の形態3にかかる半導体装置の構造について説明する。図6は、実施の形態3にかかる半導体装置の要部の構造を示す断面図である。図6は、シリコン(Si)からなる半導体基板(以下、シリコン基板(半導体チップ)とする)20’を用いた場合の電極パッドの平面レイアウトの一例である。実施の形態3にかかる半導体装置は、ソース電極パッドSおよびゲート電極パッドGのレイアウトが実施の形態1にかかる半導体装置と異なる。
具体的には、シリコンからなる半導体装置においては、ソース電極パッドSは、シリコン基板20’のおもて面に、ゲート電極パッドGの周囲を囲む略矩形状の平面形状に配置される。ソース電極パッドSの外周には、実施の形態1と同様に第2,3保護膜2,3が配置されている。ソース電極パッドSの内周にも、ソース電極パッドSの外周の第2,3保護膜2,3と同様の構成で、第1保護膜1とめっき膜11との境界13’を囲む第1,2パターン2a’,2b’で第2保護膜2’が形成され、当該第1,2パターン2a’,2b’間に第3保護膜3’が形成される。
実施の形態3にかかる半導体装置の製造方法は、実施の形態1にかかる半導体装置の製造方法のステップS6(図1参照)において、第2保護膜2の第1,2パターン2a,2bの平面形状を適宜設定すればよい。
実施の形態3を実施の形態2に適用してもよい。
以上、説明したように、実施の形態3によれば、電極パッドの平面形状に依らず、実施の形態1,2と同様の効果を得ることができる。
(実施の形態4)
次に、実施の形態4において、実施の形態1にかかる半導体装置の製造方法を適用可能な半導体装置の一例について説明する。図7は、実施の形態4にかかる半導体装置の構造の一例を示す断面図である。実施の形態4にかかる半導体装置は、炭化珪素基板(半導体チップ)20のおもて面(p型炭化珪素層24側の面)側に、一般的なMOSゲートを備えたMOSFETである。炭化珪素基板20は、炭化珪素からなるn+型支持基板21のおもて面上に、n-型炭化珪素層22と、p型炭化珪素層24と、を順にエピタキシャル成長させたエピタキシャル基板である。
-型炭化珪素層22の、p型炭化珪素層24側の表面層には、p型ベース領域23が選択的に設けられている。n-型炭化珪素層22の、p型ベース領域23以外の部分がn-型ドリフト領域である。p型炭化珪素層24の内部には、深さ方向にp型ベース領域23に対向する部分に、n+型ソース領域25およびp+型コンタクト領域26がそれぞれ選択的に設けられている。深さ方向とは、炭化珪素基板20のおもて面から裏面に向かう方向である。n+型ソース領域25およびp+型コンタクト領域26は、p型ベース領域23に接していてもよい。
また、p型炭化珪素層24には、p型炭化珪素層24を深さ方向に貫通してn-型ドリフト領域(n-型炭化珪素層22)に達するn型JFET(Junction FET)領域27が設けられている。n型JFET領域27は、n+型ソース領域25に対してp+型コンタクト領域26の反対側に、n+型ソース領域25と離して配置されている。n型JFET領域27は、JFET抵抗を低減させる機能を有する。p型炭化珪素層24の、n+型ソース領域25、p+型コンタクト領域26およびn型JFET領域27以外の部分がp型ベース領域24aである。
p型ベース領域24aの、n+型ソース領域25とn型JFET領域27とに挟まれた部分の表面上にゲート絶縁膜28を介してゲート電極29が設けられている。炭化珪素基板20のおもて面には、おもて面電極としてソース電極32が設けられている。ソース電極32は、コンタクトホール内でn+型ソース領域25およびp+型コンタクト領域26に接し、p型ベース領域23,24a、n+型ソース領域25およびp+型コンタクト領域26に電気的に接続されている。また、ソース電極32は、層間絶縁膜31によりゲート電極29と電気的に絶縁されている。
ソース電極32は、例えばニッケル(Ni)を主成分として含む金属電極層である。ソース電極32と層間絶縁膜31との間にバリアメタル(不図示)が設けられていてもよい。バリアメタルは、ソース電極32から炭化珪素基板20および層間絶縁膜31側への金属原子の拡散を防止したり、バリアメタルを挟んで対向する領域間での相互反応を防止する機能を有する。炭化珪素基板20のおもて面のソース電極32から、炭化珪素基板20の裏面の後述するドレイン電極35までの部分が実施の形態1の基板部10(図2参照)に相当する。ソース電極32の上には、パッシベーション膜として第1保護膜1が設けられている。
ソース電極32の一部は、第1保護膜1のコンタクトホール1aに露出されている。第1保護膜1のコンタクトホール1aにおいて、ソース電極32の上に、めっき膜11が設けられている。ソース電極32の、めっき膜11で覆われた部分は、ソース電極パッドを構成する。めっき膜11には、はんだ層33を介して、金属配線として例えば端子ピン34が接合されている。端子ピン34は、基板おもて面(炭化珪素基板20のおもて面)に対して略垂直に立てた状態でめっき膜11に接合されている。図7には、端子ピン34を簡略して図示するが、実際には、はんだ層33上に棒状の端子ピン34が縦長に直立して接合される。
端子ピン34は、所定直径を有する丸棒状(円柱状)の配線部材であり、ソース電極32の電位を外部に取り出す外部接続用端子(例えばインプラントピン)となる。端子ピン34に代えて、ボンディングワイヤやリードピンがめっき膜11にはんだ付けされていてもよい。ソース電極32上のめっき膜11以外の部分は、第1保護膜1で覆われている。第2,3保護膜2,3は、実施の形態1と同様に設けられている。ドレイン電極35は、炭化珪素基板20の裏面(n+型ドレイン領域であるn+型支持基板21の裏面)に接する。ドレイン電極35は、例えばアルミニウム(Al)を主成分として含む金属電極層である。
以上、説明したように、実施の形態4によれば、実施の形態1〜3に適用可能である。
(実施の形態5)
次に、実施の形態5にかかる半導体装置の製造方法について、図2,3,11を参照して説明する。図11は、実施の形態5にかかる半導体装置の製造方法の概要を示すフローチャートである。実施の形態5にかかる半導体装置の製造方法が実施の形態1にかかる半導体装置の製造方法と異なる点は、ステップS5の処理(窒素雰囲気でのアニール)の後、ステップS6の処理(高粘度樹脂の塗布)の前に、酸素(O2)雰囲気下でのUV(UltraViolet:紫外線)洗浄により、高粘度樹脂を塗布する面(第1保護膜1およびめっき膜11の表面)の表面改質を行う点である。
具体的には、まず、実施の形態1と同様に、半導体ウエハに半導体素子の所定の素子構造の各半導体領域を形成し、半導体ウエハのおもて面におもて面電極(電極層)を形成した後、ステップS1の処理(ポリイミド塗布による第1保護膜1の形成)からステップS5の処理(窒素雰囲気でのアニール)までを順に行う。次に、例えば80℃程度で5分間程度のベーク(熱処理)により、半導体ウエハのおもて面上の各部(おもて面電極、第1保護膜1およびめっき膜11など)に含まれる主に水分(H2O)を蒸発させる(ステップS11)。ステップS11の処理は省略してもよい。
次に、酸素雰囲気下でUV光を照射することにより第1保護膜1およびめっき膜11の表面洗浄および表面改質を行うことで、第1保護膜1およびめっき膜11の表面上の有機物を除去する(ステップS12)。具体的には、ステップS12において、UV光により第1保護膜1およびめっき膜11の表面上の有機物の結合を分解し、当該分解された有機物を、UV光により酸素雰囲気中に生成されたオゾン(O3)から分離された活性酸素と結合させて二酸化炭素(CO2)等の揮発性物質に変換し排気することで除去する。
かつ、ステップS12においては、UV光により生成された活性酸素の衝突により第1保護膜1およびめっき膜11の表面上の有機物の分子鎖の結合を切断し、当該切断された有機物の分子を、活性酸素と反応させることにより官能基(水酸基(−OH)、アルデヒド基(−CHO)、カルボキシル基(−COOH)等)を新たに生成して当該有機物を除去する。このように第1保護膜1およびめっき膜11の表面上に存在する疎水性である有機物を分解して親水性である官能基に置換することで、第1保護膜1およびめっき膜11の表面を親水性に改質する。
すなわち、ステップS12においては、第1保護膜1およびめっき膜11の表面上において、有機物を揮発性物質に変換して除去する表面洗浄と、有機物を官能基に置換する表面改質と、が同時に行われる。ステップS12におけるUV光の照射条件は、例えば、UV光の光量を6.0mw/cm2程度とし、炉内の温度を30℃程度とし、炉内に流入する窒素ガスおよび酸素ガスの流量比を、窒素ガス:酸素ガス=1:0.2程度から窒素ガス:酸素ガス=1:1程度の範囲内とし、UV照射時間を400秒以上800秒程度としてもよい。
次に、実施の形態1と同様に、インクジェット方式により高粘度樹脂を塗布して、第1保護膜1およびめっき膜11の各表面にそれぞれ第1,2パターン2a,2bを有する第2保護膜2を形成する(ステップS6)。このインクジェット方式による高粘度樹脂の塗布においては、第2保護膜2の第1,2パターン2a,2bを精度よく塗布することが重要である。例えば、高粘度樹脂を塗布する表面に過剰に疎水性の有機物が存在する場合、疎水性の有機物により塗布した高粘度樹脂がはじかれてしまうため、所望の第1,2パターン2a,2bで第2保護膜2を形成することができない。
そこで、ステップS5の処理の後、ステップS6の処理の前に、ステップS12のUV照射により、第1保護膜1およびめっき膜11の表面に存在する疎水性の有機物を親水性である官能基に置換する。これにより、第1保護膜1およびめっき膜11の表面における高粘度樹脂の濡れ性を向上させることができる。このため、第1保護膜1およびめっき膜11の表面で高粘度樹脂がはじかれることで生じる第2保護膜2の第1,2パターン2a,2bの変形や剥離を抑制することができる。これによって、第2保護膜2の第1,2パターン2a,2bを精度よく塗布することができる。
その後、実施の形態1と同様に、ステップS7の処理(低粘度樹脂の塗布による第3保護膜3の形成)からステップS10の処理(電気的特性試験や信頼性試験)までを順に行うことで、半導体素子チップが完成する。ステップS9の処理(半導体ウエハのダイシング)を、ステップS5の処理の後、ステップS11の処理の前に行ってもよい。ステップS9の処理を、ステップS5の処理の後、ステップS11の処理の前に行う場合、ステップS9の処理の後、半導体チップの状態でステップS11,S12,S6,S7,S8,S10の処理が順に行われる。
実施の形態5を実施の形態2,3に適用してもよい。また、実施の形態5に、実施の形態4を適用可能である。
以上、説明したように、実施の形態5によれば、実施の形態1と同様の効果を得ることができる。また、実施の形態5によれば、インクジェット方式による高粘度樹脂の塗布により第2保護膜の第1,2パターンを形成する前に、UV光の照射により第1保護膜およびめっき膜の表面洗浄および表面改質を行う処理を追加する。これにより、プラズマ処理等の真空雰囲気下で処理を行うための設備を導入する場合と比較して簡易な設備および処理で、第1保護膜およびめっき膜の表面の、高粘度樹脂に対する濡れ性を向上させることができる。そして、第1保護膜およびめっき膜の表面の、高粘度樹脂に対する濡れ性が向上することで、第2保護膜の第1,2パターンを寸法精度よく形成することができる。
(実施例)
次に、実施の形態5にかかる半導体装置の製造方法のステップS12の処理(UV洗浄・表面改質)について検証した。実施の形態5にかかる半導体装置の製造方法(図2,3,11参照)にしたがい、ステップS1からステップS5,S11,S12を経てステップS6の処理まで行った(すなわち第2保護膜2の第1,2パターン2a,2bまで形成した)試料(以下、実施例とする)を半導体基板(半導体チップ)のおもて面側から見た状態を図12に示す。図12は、実施例にかかる半導体装置の製造途中の状態の平面レイアウトを模式的に示す平面図である。
実施例においては、炭化珪素からなる半導体基板を用い、図3に示す平面レイアウトでソース電極パッドSおよびゲート電極パッドGを配置した。ステップS4の処理において、めっき膜11としてニッケル(Ni)−リン(P)めっき膜を形成した。ステップS11の処理において、半導体基板を80℃の温度で5分間ベークした。ステップS12の処理において、UV光の光量を6.0mw/cm2とし、炉内の温度を30℃とし、UV照射時間を800秒とし、炉内に流入する窒素ガスおよび酸素ガスの各流量をそれぞれ3L(リットル)/分(すなわち窒素ガス:酸素ガス=1:1)とした。
また、比較として、実施の形態5にかかる半導体装置の製造方法において、ステップS12の処理を省略してステップS6の処理まで行った試料(以下、比較例とする)を半導体基板(半導体チップ)のおもて面側から見た状態を図13に示す。図13は、比較例である半導体装置の製造途中の状態の平面レイアウトを模式的に示す平面図である。比較例は、ステップS12の処理(UV洗浄・表面改質)を行っていない点を除いて、実施例の製造方法と同様の製造方法および同条件で作製(製造)している。
図13に示す結果より、比較例では、第2保護膜2’の第1,2パターン2a’,2b’が変形してしまい、所定のパターンで形成することができないことが確認された。その理由は、ステップS5の処理(窒素雰囲気でのアニール)やステップS11の処理(高粘度樹脂の塗布の比較的直前に行うベーク)では、第1保護膜1およびめっき膜11の表面上の有機物を除去しきれないため、第1保護膜1およびめっき膜11の表面上に残る有機物で高粘度樹脂がはじかれてしまうからである。図13には、比較例の1つの試料のみを模式的に示すが、比較例では、第1,2パターン2a’,2b’同士が部分的に(特に矩形の各頂点に相当する角部14’で)連結されてしまう試料が多数発生した。
一方、図12に示す結果より、実施例においては、第2保護膜2の第1,2パターン2a,2bを所定のパターンで寸法精度よく形成することができた。その理由は、ステップS12の処理により、第1保護膜1およびめっき膜11の表面上の有機物がほぼ除去され、かつ第1保護膜1およびめっき膜11の表面における高粘度樹脂の濡れ性が向上したからである。図12には、実施例の1つの試料のみを模式的に示すが、実施例においては、第2保護膜2の第1,2パターン2a,2bの各幅w12が部分的に(特に矩形の各頂点に相当する角部14で)広くなった試料も存在したが、実施例のいずれの試料においても、第2保護膜2の第1,2パターン2a,2b同士の連結は生じなかった。
以上において本発明は、上述した各実施の形態に限らず、本発明の趣旨を逸脱しない範囲で種々変更可能である。例えば、上述した実施の形態1〜3において、半導体ウエハのダイシング(ステップS9の処理)を、窒素雰囲気でのアニール(ステップS5の処理)の後、高粘度樹脂の塗布(ステップS6の処理)の前に行ってもよい。上述した各実施の形態では、ソース電極パッドを略矩形状の平面形状とした場合を例に説明しているが、ソース電極パッドの平面形状は種々変更可能であり、円形状や楕円状、矩形の角部を丸めた形状であってもよい。ソース電極パッドを矩形の角部を丸めた平面形状とする場合、実施の形態2においては、第2保護膜の、矩形の曲率部でのみ、めっき膜上に配置される第1パターンの厚さを厚くしてもよい。
また、第1保護膜のコンタクトホールにめっき膜以外の電極膜(第1保護膜と熱膨張率の異なる導電膜)が形成される場合においても本発明を適用可能であり、同様の効果を奏する。また、IGBT(Insulated Gate Bipolar Transistor:絶縁ゲート型バイポーラトランジスタ)やダイオードなど他の素子にも本発明を適用可能である。また、炭化珪素以外の例えば窒化ガリウム(GaN)等の、シリコンよりもバンドギャップが広い半導体にも適用可能である。また、本発明は、導電型(n型、p型)を反転させても同様に成り立つ。
以上のように、本発明にかかる半導体装置および半導体装置の製造方法は、パッシベーション膜のコンタクトホールを埋め込むように電極膜が設けられた半導体装置に有用である。
1 第1保護膜
1a 第1保護膜のコンタクトホール
2,2’ 第2保護膜
2a 第2保護膜のめっき膜上のパターン(第1パターン)
2b 第2保護膜の第1保護膜上のパターン(第2パターン)
3,3’ 第3保護膜
10 基板部(おもて面電極から裏面電極までの部分)
11 めっき膜
12 第1保護膜とめっき膜との空隙
13,13’ 第1保護膜とめっき膜との境界
14,14’ 略矩形状の平面レイアウトの第2保護膜の、矩形の各頂点に相当する角部
20 炭化珪素基板
20’ シリコン基板
21 n+型支持基板
22 n-型炭化珪素層
23,24a p型ベース領域
24 p型炭化珪素層
25 n+型ソース領域
26 p+型コンタクト領域
27 n型JFET領域
28 ゲート絶縁膜
29 ゲート電極
31 層間絶縁膜
32 ソース電極
33 はんだ層
34 端子ピン
35 ドレイン電極
40 インクジェット
41 ノズル
42 ノズル穴
43 樹脂
G ゲート電極パッド
S ソース電極パッド
t1 第1保護膜の厚さ
t2 めっき膜の厚さ
t11 第2保護膜の第1,2パターンの厚さ
t11’ 第2保護膜の第1パターンの厚さ
t12 第3保護膜の、第1保護膜およびめっき膜の表面からの厚さ
w1 第1保護膜とめっき膜との空隙の幅
w11 第2保護膜の第1,2パターンの頂点間の幅
w12 第2保護膜の第1,2パターンの幅
w21 ノズル穴の配置間隔

Claims (20)

  1. 半導体ウエハに半導体素子を形成する第1工程と、
    前記半導体ウエハの第1主面上に、前記半導体素子に電気的に接続された電極層を形成する第2工程と、
    前記半導体ウエハの第1主面に、前記電極層の一部を露出する開口部を有する、第1樹脂からなる第1保護膜を形成する第3工程と、
    前記開口部に露出する前記電極層の表面に電極膜を形成する第4工程と、
    インクジェット方式により前記第1保護膜および前記電極膜の表面に第2樹脂を選択的に塗布し、前記第1保護膜と前記電極膜との境界に沿って、かつ当該境界を挟んで平行に延在する2本の第2保護膜を形成する第5工程と、
    インクジェット方式により2本の前記第2保護膜の間に前記第2樹脂よりも粘度の低い第3樹脂を塗布し、前記第2保護膜に接する第3保護膜を形成する第6工程と、
    を含むことを特徴とする半導体装置の製造方法。
  2. 前記第6工程では、当該第6工程の前までに行う熱処理で前記第1保護膜と前記電極膜との間に生じた空隙に前記第3樹脂を埋め込んで、前記第3樹脂で当該空隙を塞ぐことを特徴とする請求項1に記載の半導体装置の製造方法。
  3. 前記第6工程では、2本の前記第2保護膜の間に前記第3樹脂を塗布する工程を2回以上行って前記空隙を塞ぐことを特徴とする請求項2に記載の半導体装置の製造方法。
  4. 前記第5工程では、2本の前記第2保護膜のうちの一方の前記第2保護膜を前記電極膜上に前記電極膜の輪郭に沿って形成し、他方の前記第2保護膜を前記第1保護膜上に前記電極膜の輪郭に沿って形成することを特徴とする請求項1〜3のいずれか一つに記載の半導体装置の製造方法。
  5. 前記第5工程では、前記電極膜上に形成する前記第2保護膜の厚さを、前記第1保護膜上に形成する前記第2保護膜の厚さよりも厚くすることを特徴とする請求項4に記載の半導体装置の製造方法。
  6. 前記第2樹脂の粘度は、25ミリパスカル秒以上であることを特徴とする請求項1〜5のいずれか一つに記載の半導体装置の製造方法。
  7. 前記第3樹脂の粘度は、25ミリパスカル秒未満であることを特徴とする請求項1〜6のいずれか一つに記載の半導体装置の製造方法。
  8. 前記第2樹脂は、ポリイミドまたはポリベンゾオキサゾールであることを特徴とする請求項1〜7のいずれか一つに記載の半導体装置の製造方法。
  9. 前記第3樹脂は、ポリイミドまたはポリベンゾオキサゾールであることを特徴とする請求項1〜8のいずれか一つに記載の半導体装置の製造方法。
  10. 半導体基板に配置された半導体素子と、
    前記半導体基板の第1主面上に設けられ、前記半導体素子に電気的に接続された電極層と、
    前記半導体基板の第1主面に設けられ、前記電極層の一部を露出する開口部を有する第1保護膜と、
    前記開口部に露出する前記電極層の表面に設けられた電極膜と、
    前記第1保護膜および前記電極膜の表面に所定のパターンで選択的に設けられ、前記第1保護膜と前記電極膜との境界に沿って、かつ当該境界を挟んで平行に延在する2本の第2保護膜と、
    2本の前記第2保護膜の間に、当該2本の第2保護膜に接して設けられた第3保護膜と、
    を備えることを特徴とする半導体装置。
  11. 前記第3保護膜は、前記第1保護膜と前記電極膜との空隙に埋め込まれて当該空隙を塞いでいることを特徴とする請求項10に記載の半導体装置。
  12. 2本の前記第2保護膜のうちの一方の前記第2保護膜は前記電極膜上に前記電極膜の輪郭に沿って設けられ、他方の前記第2保護膜は前記第1保護膜上に前記電極膜の輪郭に沿って設けられていることを特徴とする請求項10または11に記載の半導体装置。
  13. 前記電極膜上の前記第2保護膜の厚さは、前記第1保護膜上の前記第2保護膜の厚さよりも厚いことを特徴とする請求項10〜12のいずれか一つに記載の半導体装置。
  14. 前記第3保護膜の、前記第1保護膜および前記電極膜の表面からの厚さは、前記第2保護膜の厚さ以下であることを特徴とする請求項10〜13のいずれか一つに記載の半導体装置。
  15. 前記第2保護膜は、ポリイミドまたはポリベンゾオキサゾールからなることを特徴とする請求項10〜14のいずれか一つに記載の半導体装置。
  16. 前記第3保護膜は、ポリイミドまたはポリベンゾオキサゾールからなることを特徴とする請求項10〜15のいずれか一つに記載の半導体装置。
  17. 前記第4工程の後、前記第5工程の前に、前記第1保護膜および前記電極膜の表面の上の有機物を除去する除去工程をさらに含むことを特徴とする請求項1〜9のいずれか一つに記載の半導体装置の製造方法。
  18. 前記除去工程では、前記有機物の結合を分解して前記有機物を揮発性物質に変換することで除去することを特徴とする請求項17に記載の半導体装置の製造方法。
  19. 前記除去工程では、前記有機物を官能基に置換することで除去することを特徴とする請求項17に記載の半導体装置の製造方法。
  20. 前記除去工程では、前記有機物に酸素雰囲気下で紫外線光を照射することで当該有機物を除去することを特徴とする請求項17〜19のいずれか一つに記載の半導体装置の製造方法。
JP2017176094A 2017-01-06 2017-09-13 半導体装置および半導体装置の製造方法 Active JP6922579B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/854,509 US10366880B2 (en) 2017-01-06 2017-12-26 Semiconductor device and method of manufacturing semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017001388 2017-01-06
JP2017001388 2017-01-06

Publications (2)

Publication Number Publication Date
JP2018113428A true JP2018113428A (ja) 2018-07-19
JP6922579B2 JP6922579B2 (ja) 2021-08-18

Family

ID=62912405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017176094A Active JP6922579B2 (ja) 2017-01-06 2017-09-13 半導体装置および半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP6922579B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7452040B2 (ja) 2020-01-30 2024-03-19 富士電機株式会社 半導体装置および半導体装置の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007294645A (ja) * 2006-04-25 2007-11-08 Matsushita Electric Ind Co Ltd 金属多層配線体の形成方法
JP2008034832A (ja) * 2006-07-04 2008-02-14 Semiconductor Energy Lab Co Ltd 表示装置の作製方法
JP2013016538A (ja) * 2011-06-30 2013-01-24 Toyota Motor Corp 半導体装置及びその製造方法
JP2016111290A (ja) * 2014-12-10 2016-06-20 三菱電機株式会社 半導体素子、半導体装置および半導体素子の製造方法
JP2018067592A (ja) * 2016-10-18 2018-04-26 富士電機株式会社 半導体装置およびモジュール型半導体装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007294645A (ja) * 2006-04-25 2007-11-08 Matsushita Electric Ind Co Ltd 金属多層配線体の形成方法
JP2008034832A (ja) * 2006-07-04 2008-02-14 Semiconductor Energy Lab Co Ltd 表示装置の作製方法
JP2013016538A (ja) * 2011-06-30 2013-01-24 Toyota Motor Corp 半導体装置及びその製造方法
JP2016111290A (ja) * 2014-12-10 2016-06-20 三菱電機株式会社 半導体素子、半導体装置および半導体素子の製造方法
JP2018067592A (ja) * 2016-10-18 2018-04-26 富士電機株式会社 半導体装置およびモジュール型半導体装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7452040B2 (ja) 2020-01-30 2024-03-19 富士電機株式会社 半導体装置および半導体装置の製造方法

Also Published As

Publication number Publication date
JP6922579B2 (ja) 2021-08-18

Similar Documents

Publication Publication Date Title
US10224293B2 (en) Package structure and method for forming the same
KR101125994B1 (ko) 관통 기판 인터커넥트들을 형성하는 방법들
JP3759909B2 (ja) 半導体装置及びその製造方法
JP2008021950A (ja) 半導体装置及びその製造方法
CN106057775A (zh) 半导体器件及其制造方法
CN109309013B (zh) Lthc在形成封装件中作为电荷阻挡层、封装件及其形成方法
US11069625B2 (en) Method for forming package structure
JP4058619B2 (ja) 半導体ウエハ
US20130224910A1 (en) Method for chip package
US9892962B2 (en) Wafer level chip scale package interconnects and methods of manufacture thereof
US10008413B2 (en) Wafer level dicing method
JP6110029B2 (ja) 半導体装置及びその製造方法
US20110053374A1 (en) Method for manufacturing semiconductor device
US20240162163A1 (en) Industrial chip scale package for microelectronic device
JP6822056B2 (ja) 半導体装置およびモジュール型半導体装置
US10366880B2 (en) Semiconductor device and method of manufacturing semiconductor device
TWI267929B (en) Method for producing an integrated circuit with a rewiring device and corresponding integrated circuit
CN109727942B (zh) 半导体装置以及半导体装置的制造方法
US20120299187A1 (en) Aluminum Bond Pad With Trench Thinning for Fine Pitch Ultra-Thick Aluminum Products
JP4645863B2 (ja) 半導体装置の製造方法
JP6922579B2 (ja) 半導体装置および半導体装置の製造方法
KR20060124555A (ko) 반도체 웨이퍼 및 이것에 의해 형성한 반도체 장치
CN106328603A (zh) 封装件结构及其形成方法
TWI822967B (zh) 製造半導體裝置之方法及半導體裝置
JP3819395B2 (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200813

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210712

R150 Certificate of patent or registration of utility model

Ref document number: 6922579

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150