JP2018112586A - 電力供給装置及び画像形成装置 - Google Patents

電力供給装置及び画像形成装置 Download PDF

Info

Publication number
JP2018112586A
JP2018112586A JP2017001336A JP2017001336A JP2018112586A JP 2018112586 A JP2018112586 A JP 2018112586A JP 2017001336 A JP2017001336 A JP 2017001336A JP 2017001336 A JP2017001336 A JP 2017001336A JP 2018112586 A JP2018112586 A JP 2018112586A
Authority
JP
Japan
Prior art keywords
voltage
power
power supply
load
image forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017001336A
Other languages
English (en)
Other versions
JP6794270B2 (ja
Inventor
雅俊 伊藤
Masatoshi Ito
雅俊 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2017001336A priority Critical patent/JP6794270B2/ja
Priority to US15/845,255 priority patent/US10069435B2/en
Publication of JP2018112586A publication Critical patent/JP2018112586A/ja
Application granted granted Critical
Publication of JP6794270B2 publication Critical patent/JP6794270B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/80Details relating to power supplies, circuits boards, electrical connections

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Or Security For Electrophotography (AREA)
  • Fixing For Electrophotography (AREA)
  • Control Of Electrical Variables (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Environmental Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)

Abstract

【課題】加熱定着装置に供給される電力を精度よく検知すること。【解決手段】負荷に電力を供給する電力供給装置であって、交流電源201の交流電圧を検知する電圧検知部240と、負荷に流れる電流値を検知する電流検知部250と、電圧検知部240及び非常夜電源装置221への電流経路を接続又は切断するトライアックQ7と、トライアックQ7及び負荷への電力供給を制御する制御部260と、を備え、制御部260は、負荷に供給される電力量を演算する電力演算部IC1−1により演算された電力量(S814)を、電力量を演算したときの交流電源の入力電圧を演算する電圧演算部IC1−2により演算された交流電源の電圧(S814)と、トライアックQ7を制御して交流電源201から電力供給を開始した際に電圧演算部IC1−2により演算された交流電源の初期電圧(S806)と、に基づいて、補正する(S815)。【選択図】図7

Description

本発明は、電子写真方式の複写機、プリンタなどの画像形成装置に搭載される加熱定着装置の制御に好適な電力供給装置、及び画像形成装置に関する。
電子写真方式の複写機、プリンタなどの画像形成装置では、記録材上の未定着トナー像を加熱、加圧し、記録材に定着させる加熱定着装置を備えている。そして、加熱定着装置への電力供給を制御する電力供給装置では、交流電源から供給される交流電圧を、双方向サイリスタ(以下、トライアックという)等を用いて制御する方法が広く用いられている。上述した電力供給装置について、例えば特許文献1では、加熱定着装置に流れる電流実効値を検知することで、加熱定着装置に供給される電力を検知する技術が提案されている。
特開2007−212503号公報
近年、印刷動作の開始を指示してから1枚目の記録材が排出されるまでの時間(ファーストプリントアウトタイム、以下、FPOTという)の短縮化が進んでいる。例えば、加熱定着装置については、ヒータ温度が画像形成に適した温度まで上昇したことを検知してから画像形成動作を開始するのではなく、記録材が加熱定着装置に到達する直前に画像形成に適した温度になるタイミングで、画像形成動作を開始する。これにより、FPOTを短縮することができる。
電力供給装置においても、FPOTを短縮するために加熱定着装置に対する精度の高い電力供給制御が求められる。そのため、電力供給装置には、加熱定着装置に供給される電力を精度よく検知することが求められている。
本発明はこのような状況のもとでなされたもので、加熱定着装置に供給される電力を精度よく検知することを目的とする。
上述した課題を解決するために、本発明では、以下の構成を備える。
(1)負荷に電力を供給する電力供給装置であって、交流電源から交流電圧が入力される第一のラインと第二のラインと、前記第一のラインと前記第二のラインに入力される前記交流電圧を前記交流電圧に比例する電流に変換する変換部材と、一次巻線及び二次巻線を有する第一のトランスを有し、前記変換部材によって変換された前記電流が前記一次巻線に供給されることにより前記第一のトランスの二次巻線から出力される交流電圧波形に基づき、前記交流電圧を検知する電圧検知手段と、一次巻線及び二次巻線を有する第二のトランスを有し、前記負荷に含まれる第一の負荷に供給される電流が前記一次巻線に供給されることにより前記電流に応じて前記第二のトランスの二次側に出力される交流電圧波形に基づき、前記電流の電流値を検知する電流検知手段と、前記電圧検知手段によって検知された前記交流電圧波形に基づき、前記交流電源のゼロクロスタイミングを検知するゼロクロス検知手段と、前記電圧検知手段によって検知された前記交流電圧波形と、前記ゼロクロス検知手段が検知する前記交流電源のゼロクロスタイミングと、に基づいて、前記交流電源の電圧を演算する電圧演算手段と、前記電流検知手段から出力される交流電圧波形に基づいて検知される前記第一の負荷に供給される電流値と、前記電圧演算手段により演算された前記交流電圧の電圧値により、前記交流電源から前記第一の負荷に供給される電力量を演算する電力演算手段と、前記交流電源から、前記負荷に含まれる第二の負荷に所定の直流電圧を出力する電源装置及び前記第一のトランスの前記一次巻線への電流経路を接続又は遮断するスイッチ手段と、前記スイッチ手段の制御と、前記第一の負荷及び前記第二の負荷への電力供給の制御と、を行う制御手段と、を備え、前記制御手段は、前記電力演算手段により演算された電力量を、前記電力量を演算したときに前記電圧演算手段により演算された前記交流電源の第一の電圧と、前記スイッチ手段を制御して前記交流電源から前記電源装置及び前記第一のトランスへ電力供給を開始した際に前記電圧演算手段により演算された前記交流電源の第二の電圧と、に基づいて、補正することを特徴とする電力供給装置。
(2)前記(1)に記載の電力供給装置と、記録材に画像を形成する画像形成部と、前記交流電源より電力を供給される抵抗発熱体を有し、記録材上の未定着トナー像を定着させる定着装置と、を備えることを特徴とする画像形成装置。
(3)負荷に電力を供給する電力供給装置と、記録材に画像を形成する画像形成部と、交流電源より電力を供給される抵抗発熱体を有し、記録材上の未定着トナー像を定着させる定着装置と、を備える画像形成装置であって、前記電力供給装置は、交流電源から交流電圧が入力される第一のラインと第二のラインと、前記第一のラインと前記第二のラインに入力される前記交流電圧を前記交流電圧に比例する電流に変換する変換部材と、一次巻線及び二次巻線を有する第一のトランスを有し、前記変換部材によって変換された前記電流が前記一次巻線に供給されることにより前記第一のトランスの二次巻線から出力される交流電圧波形に基づき、前記交流電圧を検知する電圧検知手段と、一次巻線及び二次巻線を有する第二のトランスを有し、前記負荷に含まれる第一の負荷に供給される電流が前記一次巻線に供給されることにより前記電流に応じて前記第二のトランスの二次側に出力される交流電圧波形に基づき、前記電流の電流値を検知する電流検知手段と、前記電圧検知手段によって検知された前記交流電圧波形に基づき、前記交流電源のゼロクロスタイミングを検知するゼロクロス検知手段と、前記電圧検知手段によって検知された前記交流電圧波形と、前記ゼロクロス検知手段が検知する前記交流電源のゼロクロスタイミングと、に基づいて、前記交流電源の電圧を演算する電圧演算手段と、前記電流検知手段から出力される交流電圧波形に基づいて検知される前記第一の負荷に供給される電流値と、前記電圧演算手段により演算された前記交流電圧の電圧値により、前記交流電源から前記第一の負荷に供給される電力量を演算する電力演算手段と、前記交流電源から、前記負荷に含まれる第二の負荷に所定の直流電圧を出力する電源装置及び前記第一のトランスの前記一次巻線への電流経路を接続又は遮断するスイッチ手段と、前記スイッチ手段の制御と、前記第一の負荷及び前記第二の負荷への電力供給の制御と、を行う制御手段と、を備え、前記制御手段は、前記電力演算手段により演算された電力量を、前記電力量を演算したときに前記電圧演算手段により演算された前記交流電源の第一の電圧と、前記スイッチ手段を制御して前記交流電源から前記電源装置及び前記第一のトランスへ電力供給を開始した際に前記電圧演算手段により演算された前記交流電源の第二の電圧と、に基づいて、補正することを特徴とする画像形成装置。
本発明によれば、加熱定着装置に供給される電力を精度よく検知することができる。
実施例1、2の画像形成装置の構成を示す断面図 実施例1、2の電力供給装置の回路構成を説明する図 実施例1、2の電力供給装置の各部の電圧、電流、電力の波形を示す図 実施例1、2の電力供給装置の制御シーケンスを示すタイムチャート 実施例1の定着装置、各モータの動作状態、入力電圧値、有効電力値の変化を示す図 実施例1の電力演算部における有効電力値の誤差を説明する図 実施例1の電力供給装置の制御シーケンスを示すフローチャート 実施例2の定着装置、各モータの動作状態、入力電圧値、有効電力値の変化を示す図 実施例2の電力供給装置の制御シーケンスを示すフローチャート
以下に、図面を参照して本発明の実施の形態について詳細に説明する。
[画像形成装置の構成]
図1は、電子写真方式の画像形成装置10の一例である、ブラックのトナーを用いて画像形成が行われるモノクロプリンタの概略構成を示す断面図である。図1において、給紙カセット11に積載された記録材である記録紙は、ピックアップローラ12によって1枚だけ給紙カセット11から給送され、給紙ローラ13によってレジストレーションローラ14へと搬送される。そして、レジストレーションローラ14に搬送された記録紙は、所定のタイミングで、更にプロセスカートリッジ15へと搬送される。画像形成部であるプロセスカートリッジ15は、帯電装置16、現像手段としての現像ローラ17、クリーニング手段であるクリーナ18、及び図中、矢印方向(反時計回り方向)に回転する感光体である感光ドラム19により、一体的に構成されている。そして、以下に説明する公知の一連の電子写真プロセス処理によって、未定着トナー像が搬送された記録紙上に転写される。感光ドラム19は、帯電装置16によって、その表面を一様に帯電された後、露光手段であるスキャナユニット21により画像信号に基づいた露光が行われる。スキャナユニット21内のレーザダイオード22から出射されるレーザ光は、回転多面鏡23により偏向され、反射ミラー24を経て、感光ドラム19を走査することにより、感光ドラム19上に静電潜像が形成される。感光ドラム19上に形成された静電潜像は、現像ローラ17によってトナーが付着され、トナー像として可視化される。そして、感光ドラム19上のトナー像は、転写ローラ20によって、レジストレーションローラ14から搬送されてきた記録紙に転写される。トナー像が転写された記録紙は、加熱定着装置100(以下、定着装置100という)に搬送され、記録紙上(記録材上)の未定着トナー像は、定着装置100により加熱、加圧処理が行われ、記録紙に定着される。そして、記録紙は、中間排出ローラ26、排出ローラ27によって、画像形成装置10外に排出され、一連のプリント動作が終了する。
給紙搬送モータ30(図中、Mと表示)は、給紙ローラ13、レジストレーションローラ14等を駆動する。ドラムモータ31(図中、Mと表示)は、感光ドラム19を含むプロセスカートリッジ15内の駆動系を構成する各ローラを駆動する。定着モータ32(図中、Mと表示)は、定着装置100の加圧ローラ等の各ローラを駆動する。電力供給装置200は、画像形成装置10で用いられる電力供給装置であり、不図示の電源ケーブルを介して商用電源である交流電源201(図2参照)と接続されている。なお、電力供給装置200が適用可能な画像形成装置は、図1に例示した画像形成装置に限定されず、例えば複数の画像形成部を備えるカラープリンタのような画像形成装置であってもよい。更に、感光ドラム19上のトナー像を中間転写ベルトに転写する一次転写部と、中間転写ベルト上のトナー像を記録紙に転写する二次転写部を備える画像形成装置であってもよい。
コントローラ40は、操作部(不図示)や外部コンピュータからの画像形成開始指示に応じて、画像形成装置10の画像形成動作の制御を行う。また、電力供給装置200は、位相制御や波数制御等の制御方法を用いて、トライアック等のスイッチ素子のデューティ制御を行い、定着装置100へ供給する電力制御を行っている。本実施例では、スイッチ素子としてトライアックを使用しているが、例えばインバータ等のスイッチング回路を用いて、定着装置100へ供給する電力の制御を行ってもよい。
[電力供給装置の構成]
図2は、本実施例の電力供給装置200の回路構成を説明する図である。交流電源201(図中、ACと表示)は、第一のライン又は第二のラインであるライブ側ライン(図中、LIVEと表示)と、第二のライン又は第一のラインであるニュートラル側ライン(図中、NEUTRALと表示)間に交流電圧を出力している。
(常夜電源装置)
常夜電源装置220は、交流電源201のライブ側ラインとニュートラル側ラインから交流電圧が入力され、一次側である交流電源201と絶縁された二次側の負荷に所定の電圧Vcを出力する。所定の電圧Vcは、後述する制御手段である制御部260等に供給される。なお、常夜電源装置220は、交流電源201から交流電圧が入力されている限り、所定の直流電圧Vcを出力し続ける電源装置である。本実施例においては、常夜電源装置220の出力電圧Vcを制御部260等に供給しているが、このような回路構成に限定されるものではなく、例えば出力電圧Vcを異なる電圧に変換してから、制御部260等に供給するなどしてもよい。また、図2では、常夜電源装置220は、電力供給装置200内に内蔵されている構成となっているが、例えば電力供給装置200から電力供給される外付けの電源装置であってもよい。
(スイッチ部)
続いて、交流電源201からの電流供給経路の接続又は切断を行うことにより、電圧検知手段である電圧検知部240と非常夜電源装置221への電力供給、又は電力供給の遮断を行うスイッチ部について説明する。電圧検知部240及び非常夜電源装置221への電力供給を制御するスイッチ部は、フォトトライアックカプラSSR2、トランジスタQ6、トライアックQ7、抵抗R21、R22、R23から構成されている。抵抗R21、R22はトライアックQ7を駆動するための抵抗で、フォトトライアックカプラSSR2は、一次・二次間の沿面距離を確保するためのデバイスである。そして、フォトトライアックカプラSSR2の二次側発光ダイオードに電流が流れ、導通状態になることにより、フォトトライアックカプラSSR2の一次側のトライアックQ7が導通状態になる。トライアックQ7は、いったん、導通状態となると、交流電源201の交流電圧のゼロクロスポイントで消弧するまで、オン状態を保持する。
画像形成装置10の動作時には、制御部260がDrive2信号(ドライブ2信号)をハイレベルに設定すると、トランジスタQ6はオンし、フォトトライアックカプラSSR2の二次側発光ダイオードは、抵抗R23を介して電流が流れ、導通状態になる。その結果、トライアックQ7がオン状態となり、交流電源201からの電流が電圧検知部240と非常夜電源装置221とに流れ、電流供給が行われる。また、画像形成装置10がスリープモード等の省電力状態で動作している場合には、制御部260は、Drive2信号をローレベルに設定する。これにより、トランジスタQ6はオフし、フォトトライアックカプラSSR2の二次側発光ダイオードには電流が流れなくなり、非導通状態になる。その結果、トライアックQ7はオフ状態となり、交流電源201からの電圧検知部240と非常夜電源装置221への電力供給が遮断される。このように、電圧検知部240と非常夜電源装置221をトライアックQ7の後段に配置することにより、画像形成装置10のスリープモード時や電源オフ時には、電圧検知部240と非常夜電源装置221における消費電力を削減することができる。
(非常夜電源装置)
非常夜電源装置221は、交流電源201のライブ側ラインとニュートラル側ラインから交流電圧が入力され、一次側である交流電源201と絶縁された二次側の負荷(第二の負荷)に所定の直流電圧Vpを出力する電源装置である。所定の電圧Vpは、例えば給紙搬送モータ30やドラムモータ31、定着モータ32等に供給される。また、図2では、非常夜電源装置221は、電力供給装置200内に内蔵されている構成となっているが、例えばトライアックQ7を介して、電力供給装置200から電力供給される外付けの電源装置であってもよい。
(電圧検知部)
抵抗R1、R1’は、交流電源201の入力電圧を検知するために用いられる電圧検知抵抗であり、交流電源201の交流電圧を交流電圧に比例した電流に変換するための変換部材である。即ち、抵抗R1、R1’の抵抗値(所定の固定値)と交流電源201の交流電圧値に比例した電流がカレントトランスであるトランスT1の一次側に流れる。
交流電源201の交流電圧を検知する電圧検知手段である電圧検知部240は、第一のトランスであるトランスT1とダンピング抵抗R3により構成されている。抵抗R1は、一端をライブ側ラインに接続され、他端をトランスT1の一次巻線の一端に接続されている。一方、抵抗R1’は、一端をニュートラル側ラインに接続され、他端を抵抗R1が接続された一次巻線の端部とは反対側の端部(一次巻線の他端)に接続されている。トランスT1の一次巻線側には、所定の抵抗値を有する抵抗R1、R1’により、ライブ側ラインとニュートラル側ラインとの間に印加される交流電源201の入力電圧(交流電圧)に比例した電流が流れる。そして、トランスT1の二次巻線側には、一次側の電流に比例した電流が流れるため、ダンピング抵抗R3に生成される出力電圧Vout1は、交流電源201の入力電圧に比例した電圧となるので、交流電源201の入力電圧を検知することができる。
(位相調整部)
トランスT1の出力電圧Vout1の位相調整を行う位相調整部210は、抵抗R212、コンデンサC211から構成されている。トランスT1の出力電圧の波形では、交流電源201の交流電圧の波形に対して、位相進み量ΔT1(図3参照)が生じる。そのため、位相調整部210は、抵抗R212、コンデンサC211によって、後述するトランスT2の出力電圧Vout3との位相差を縮小するように位相調整を行い、電圧Vout2を出力する。電圧Vout2は、電圧、電力演算を行う演算部IC1に入力される。なお、位相調整部210は必ずしも必須ではない。位相調整部210の無い場合、トランスT1の出力電圧を所定期間(位相進み量ΔT1より長い期間)、演算部IC1に入力されるように設定し、最適な入力電圧を検出すればよい。
(電圧演算部)
演算部IC1は、電圧演算を行う電圧演算部IC1−2(以下、電圧演算部2という)と、後述する電力演算部IC1−1(以下、電力演算部1という)を有している。電圧演算部2には、位相調整部210から出力された電圧Vout2と所定の基準電圧Vrefが入力される。電圧演算部2では、電圧Vout2と基準電圧Vrefの差分値の二乗値を演算することで、交流電源201の電圧実効値の二乗値を算出する。なお、電圧演算部2では、交流電源201の電圧実効値又は電圧平均値等を演算してもよい。また、電圧演算部2は、後述するZerox信号(ゼロクロス信号)に基づいて、交流電源201の半周期及びその整数倍毎の期間で、交流電源201の電圧実効値の二乗値を算出する。なお、電圧演算部2では、後述するZerox信号とは非同期の、所定の期間で交流電源201の電圧実効値の二乗値を算出してもよい。
(電流検知部)
電力供給装置200では、定着装置100(第一の負荷)に供給される電流値を検知するために、トランスT2とダンピング抵抗R13により構成される電流検知手段である電流検知部250を有している。トランスT2の一次巻線の一端はトライアックQ5に接続され、他端はニュートラル側ラインに接続されている。トライアックQ5が導通状態の場合には、一次巻線には、定着装置100の抵抗発熱体RH1(以下、発熱体RH1という)に供給されている電流が流れる。そして、トランスT2の二次側には、定着装置100の発熱体RH1に流れる電流に比例した電流が生じる。この電流によりダンピング抵抗R13に生成される電圧Vout3は、発熱体RH1に流れる電流に比例した電圧となるので、定着装置100に供給される電流値を検知することができる。そして、出力電圧Vout3と、所定の基準電圧Vrefが演算部IC1に入力される。
(電力演算部)
電力演算部1では、電圧Vout3と基準電圧Vrefの差分値と、電圧Vout2と基準電圧Vrefの差分値を乗算し、定着装置100に供給された有効電力値を算出する。電力演算部1は、後述するZerox信号に基づき、交流電源201の半周期及びその整数倍毎の期間で、定着装置100に供給された有効電力値を算出する。なお、電力演算部1では、後述するZerox信号とは非同期の、所定の期間で定着装置100に投入された平均電力値を算出してもよい。また、演算部IC1は、電圧演算部2と電力演算部1で算出された(演算した)実効値電圧と有効電力値の情報を、Power信号を用いて制御部260に通知する。
[発熱抵抗体への電力投入]
次に、図2の定着装置100のヒータ部である発熱体RH1への電力供給の方法について説明する。制御部260は、Drive信号(ドライブ信号)により定着装置100のヒータ部である発熱体RH1への電力供給を制御する。制御部260は、負荷である発熱体RH1へ電力供給を行う場合にはDrive信号をハイレベルに設定し、発熱体RH1への電力供給を止める場合にはDrive信号をローレベルに設定する。トランジスタQ4は、制御部260からのDrive信号がハイレベルの場合にはオン状態となり、Drive信号がローレベルの場合にはオフ状態となる。なお、抵抗R17、R16は、トランジスタQ4を駆動するための抵抗である。
一次・二次間の沿面距離を確保するためのデバイスであるフォトトライアックカプラSSR1(以下、トライアックカプラSSR1という)の二次側発光ダイオードは、トランジスタQ4によりオン/オフされる。即ち、トランジスタQ4がオン状態になると、トライアックカプラSSR1の二次側発光ダイオードが導通状態となって、プルアップ抵抗R8を介して電圧Vcからの電流が流れ、発光する。これにより、トライアックカプラSSR1の一次側トライアックが導通状態になり、トライアックQ5が導通状態となる。その結果、ライブ側ライン、発熱体RH1、トライアックQ5、ニュートラル側ラインを結ぶ電流経路(電力供給路でもある)が形成される。トライアックQ5は、交流電源201の入力電圧のゼロクロスタイミングまでオン状態を保持する。なお、トライアックQ5とトライアックカプラSSR1の一次側トライアックとの間に配置された抵抗R9、R10は、トライアックQ5を駆動するための抵抗である。一方、トランジスタQ4がオフ状態になると、トライアックカプラSSR1の二次側発光ダイオードは非導通状態となり、一次側トライアックも非導通状態になる。これにより、トライアックQ5も非導通状態となり、交流電源201から発熱体RH1への電力供給が遮断される。
定着装置100の発熱体RH1の温度は、温度検知手段であるサーミスタTH1によって検知される。そして、電圧Vcを発熱体RH1の温度により変化するサーミスタTH1の抵抗値と抵抗R11の抵抗値で分圧した電圧が、TH信号として制御部260に入力される。制御部260では、サーミスタTH1により検知された発熱体RH1の温度と、発熱体RH1の設定目標温度に基づいて、例えばPID制御により、発熱体RH1に供給すべき電力デューティ(Duty)を算出する。そして、制御部260は、算出された電力デューティを、対応した位相角(位相制御の場合)、波数(波数制御の場合)等の制御レベルに換算し、換算された制御条件に基づいてDrive信号によりトランジスタQ4のオン・オフ状態を制御する。これにより、トライアックQ5の制御が行われ、発熱体RH1への電力供給が制御される。
(ゼロクロス検知部)
次に、交流電源201のゼロクロス検知方法について説明する。本実施例では、図2において、ゼロクロス検知手段であるゼロクロス検知部230は、コンパレータIC2と抵抗R12から構成されている。コンパレータIC2の非反転端子(+)にはトランスT1の出力電圧Vout2が入力され、反転端子(−)にはトランスT1の基準電圧Vrefが入力される。そして、コンパレータIC2は、2つの端子の入力電圧を比較した比較結果であるZerox信号(ゼロクロス信号)を演算部IC1と制御部260に出力する。これにより、制御部260は交流電源201のゼロクロスタイミングを検知することができる。なお、ゼロクロス検知は、位相調整部210の出力電圧Vout2の交流電圧波形に基づいて行われる。なお、位相調整部210の無い構成でも良い。位相調整部210の無い場合、トランスT1の出力電圧に基づくゼロクロスタイミングを位相進み量ΔT1分補正すればよい。この場合、位相進み量は固定値として予め演算部IC1に記憶しておくことになる。
(制御部)
制御部260は、Drive信号により定着装置100のヒータ部である発熱体RH1への電力供給を制御する。また、制御部260は、Drive2信号により交流電源201から電圧検知部240と非常夜電源装置221への電力供給、又は電力供給の遮断を行う。更に、制御部260では、交流電源201から供給される交流電圧の半周期毎の実効値電圧の二乗値や有効電力値情報を後述するZerox信号と同期させながら、半波毎(半周期毎)に取得する。そして、制御部260は、取得された複数半波の実効値電圧や有効電力値の平均値を求めることにより、交流電源201の電圧実効値、及び定着装置100に供給された有効電力値を算出し、定着装置100の制御に利用する。なお、電圧演算部2と電力演算部1及び制御部260での計算の方法、及びどちらがどの演算を行うかについては、本実施例で説明する方法に限定されるものではない。なお、図2では、制御部260は電力供給装置200の制御手段として示しているが、例えば、前述した画像形成装置10のコントローラ40であってもよい。このとき、コントローラ40は、制御手段として機能する。
以上説明したように、電力供給装置200で電力量の検知を行うことで、定着装置100に供給される電流値及び電圧値から発熱体RH1への供給電力量を直接検知することができる。これにより、制御方式(波数制御、位相制御)による電力デューティの誤差や、定着装置100の発熱体RH1のばらつきの影響を受けずに、より高精度に定着装置100に供給される電力量を検知できる。また、発熱体RH1の抵抗温度係数(発熱体の温度が上昇すると、抵抗値が変動する)が高い場合にも、精度よく定着装置100に供給された電力量を検知できる。電力供給装置200は供給された電力量を直接検知することができる。そのため、電力供給装置200が抵抗以外の負荷、例えばインバータ等のスイッチング回路や容量性の負荷やインダクタ等に電力投入する場合にも、投入している電力を検知する手段として用いることができる。
[電圧波形、電力波形、Zerox信号波形]
図3は、本実施例の交流電源201の交流電圧、トランスT1の出力電圧Vout1、位相調整部210の出力電圧Vout2、トランスT2の出力電圧Vout3の電圧波形を示す図である。更に、図3は、コンパレータIC2の出力であるZerox信号、出力電圧Vout2、Vout3の波形を乗算した波形308の電圧波形も示す図である。本実施例では、波形308を発熱体RH1の電力波形(出力電圧Vout3と基準電圧Vrefの差分値と、出力電圧Vout2と基準電圧Vrefの差分値と、を乗算した値を示す波形)として説明する。
図3(a)は、交流電源201の入力電圧の波形301を示す波形図である。図3(a)において、横軸は時間(単位:ms(ミリ秒))を示し、縦軸は電圧(単位:V(ボルト))を示す。なお、図3(b)〜図3(d)の縦軸、横軸も、図3(a)と同様であり、以下での説明を省略する。波形301は、交流電源201の入力電圧波形(100Vrms、50Hz)を示しており、1周期は20msecである。また、図3(a)において、交流電源201の電圧が0ボルトとなるタイミング、即ち、10msec、20msec、30msec、40msecがゼロクロスタイミングである。図3(b)は、トランスT1の出力電圧Vout1の電圧波形である電圧波形303(実線)、トランスT1の基準電圧Vrefの波形302(二点鎖線)、位相調整部210の出力電圧Vout2の電圧波形304(破線)を示している。図3(c)は、トランスT2の出力電圧Vout3の電圧波形306(実線)、トランスT2の基準電圧Vrefの波形302(二点鎖線)を示している。トランスT2の二次側インダクタンスの影響によって、出力電圧Vout3の電圧波形306では、交流電源201の波形301に対して、位相進み量ΔT2が生じていることがわかる。
図3(e)では、出力電圧Vout2と基準電圧Vrefの差分値と、電圧波形306で示される出力電圧Vout3と基準電圧Vrefの差分値を乗算することで得られた電力演算値を波形308として図示している。図3(e)において、横軸は時間(単位:ms(ミリ秒))を示し、縦軸は電力(単位:W(ワット))を示す。出力電圧Vout2と出力電圧Vout3の位相がズレている場合、電力演算部1の電力演算精度が低下してしまう。図3(b)に示すように、出力電圧Vout1の電圧波形303では、交流電源201の波形301に対して、位相進み量ΔT1が生じており、出力電圧Vout3の電圧波形306の位相進み量ΔT2とは異なる位相のズレ量である(ΔT1>ΔT2)。そのため、電力演算部1の電力演算精度を向上するため、位相調整部210はトランスT1の出力電圧Vout1と、トランスT2の出力電圧Vout3との位相ズレ、即ち(ΔT1−ΔT2)を縮小するよう、位相調整を行っている。
図3(d)は、コンパレータIC2の出力であるZerox信号の電圧波形305を示している。Zerox信号は、位相調整部210の出力電圧Vout2に基づいて生成されている。その結果、交流電源201の交流電圧の波形301に対するZerox信号の位相進み量は、位相調整部210の出力電圧Vout2の電圧波形304の位相進み量ΔT2と一致する。そのため、同様の位相進み量ΔT2が生じるZerox信号の電圧波形305を用いて、電力演算部1の電力演算を行う積分区間∫T1(この場合は、交流電源201の負の半周期を例として示している)を定める。これにより、位相進み量ΔT2に合わせた適切な期間で、電力演算部1は定着装置100に供給される電力量の演算を行うことができる。交流電源201の半周期(∫T1)以外にも、交流電源201の全周期など、交流電源201の半周期の整数倍毎の定着装置100に供給される平均電力を求める場合、Zerox信号を示す電圧波形305を用いて演算の積分区間を設定する方法が有効である。
[定着装置立ち上げ時のタイミングチャート]
続いて、画像形成装置10の印刷プロセスにおける定着装置100の立ち上げ動作に伴う電力供給装置200の制御動作について、図4を用いて説明する。図4は、定着装置100のヒータ温度の変化と、定着装置100への電力供給状態、給紙搬送モータ30、ドラムモータ31、定着モータ32の動作状態を示すタイミングチャートであり、横軸は時間を示す。なお、図中、<A>〜<D>は、時刻(タイミング)を示す。また、定着装置100のヒータ温度は、定着装置100内のサーミスタTH1により検知される温度である。定着装置100への電力供給状態は、定着装置100への定着目標温度に対する交流電源201からの供給電力Pfを示している。
時刻A(図中、<A>で表示。以下、同様)で、制御部260は外部コンピュータ等からのプリント開始指示を受信すると、Drive信号をハイレベルに設定する。そして、制御部260は、予め決められた固定電力デューティ(例えば50%)で、Zerox信号の周期で複数周期の間、定着装置100に電力供給を行う。その際に、制御部260は、固定電力デューティで電力供給したときに電力演算部1で算出した定着装置100に供給した有効電力値を複数の半波分取得し、有効電力値の平均値を算出する。続いて、制御部260は、電力供給を行ったときの電力デューティと実際に検知した有効電力値の平均値との比率に供給電力Pfを乗じて、次回の供給電力Pfを供給するときの電力デューティを算出する。そして、次の制御サイクルでは、算出した電力デューティに基づいて定着装置100に電力供給を行い、次の制御サイクルでも同様に、次回の電力供給時の電力デューティを算出し、随時、電力デューティを更新する。これにより、定着装置100に定着目標温度に対する供給電力Pfを常に供給することができる。
そして、制御部260は、サーミスタTH1により検知されたヒータの温度が、定着モータ32の回転を開始可能な温度Tm(第一の温度)になった時刻Bで、定着モータ32を低速で回転を開始させ、定着装置100の駆動部を駆動させる。時刻Bから所定の時間である時間t10が経過した時刻Cで、制御部260は一連の画像形成動作を開始可能か否かを判断する。本実施例においては、予め決められた必要電力Pf_rdy(図4では、Pf=1300W)以上の電力を定着装置100に供給可能な場合には、一連の画像形成動作を開始する。制御部260は予め決められた必要電力Pf_rdy以下の電力しか供給できない場合、ヒータ温度が予め決められた第二の温度である温度T_rdy(後述する図7、図9のS825の温度T_rdy)まで上がったタイミングで一連の画像形成動作を開始する。温度T_rdyは、定着装置100に現在の電力を供給している状態で画像形成動作を開始すると、所定の時間t11が経過した時点で、記録紙が定着装置100に到達すると共に、定着装置100のヒータ温度が印刷温度T_printに到達する温度である。なお、印刷温度T_printは、記録紙上の未定着のトナー像を記録紙に定着可能な温度である。本実施例では、予め決められた必要電力Pf_rdyを投入可能か否かは、時刻Cにおいて電力演算部1で算出した定着装置100に供給された有効電力値の平均値と、電力デューティと、予め決められた必要電力Pf_rdyとに基づいて判断するものとする。しかしながら、供給可能な電力をインレットに流れる電流値を検知する電流検知手段と定着装置100に投入された電力検知手段の結果等から算出し、一連の画像形成動作を開始するか否かを判断する等、本実施例に限定されるものではない。
時刻Cでは、制御部260は、一連の画像形成動作を開始するために、給紙搬送モータ30、ドラムモータ31を起動し、通常速度で駆動させる。又、制御部260は、定着モータ32も低速回転から通常速度での回転に変更し、駆動させる。そして、その後、サーミスタTH1により検知されたヒータの温度が印刷温度T_printに到達した時刻Dで、定着装置100の起動シーケンスは終了となる。これ以降の供給電力Pfは、サーミスタTH1により検知されたヒータ温度に基づいたPID制御により決定される。なお、所定の時間である時間t11は、時刻Cで画像形成を開始した場合に、画像形成開始から1枚目の記録紙が定着装置100に到達するまでの時間である。
以上説明したように、本実施例の電力供給装置200は、時刻Aから時刻Dにおいて必要な電力を定着装置100に過不足なく供給する。これにより、過昇温や昇温不良による定着不良を回避することができる。また、時刻Cで一連の画像形成動作を開始する判断を適切に行うことにより、昇温不良による定着不良や、必要以上に画像形成動作の開始を遅くすることにより、FPOTを長くすることを回避することができる。このような観点からも、電力演算部1で算出する定着装置100に投入した有効電力値の検知結果の精度は非常に重要である。
[画像形成動作時の入力電圧と有効電力値]
図5は、定着装置100への電力供給状態、給紙搬送モータ30、ドラムモータ31、定着モータ32の動作状態と、電圧演算部2で算出する実効値電圧と電力演算部1で算出する定着装置100に投入した有効電力値を表したタイミングチャートである。図5の横軸は、時間を示す。また、図中、入力電圧値は、電圧演算部2で算出された実効値電圧であり、有効電力値は電力演算部1で算出された有効電力値である。時刻<A>〜<D>、時間t10、t11は図4と同様であり、ここでの説明を省略する。
図5では、定着モータ32を低速回転させた時刻B、及び一連の画像形成動作を開始するために、給紙搬送モータ30、ドラムモータ31、定着モータ32を通常回転させた時刻Cで、電圧演算部2で算出した実効値電圧である入力電圧値が低下している。この実効値電圧の低下は、交流電源201が電力供給装置200に供給している電圧が低下しているのではなく、図2のB−B’間の電圧がA−A’間の電圧よりも低下していることによるものである。そのため、トランスT1の出力電圧Vout1に基づく出力電圧Vout2により実効値電圧を算出する電圧演算部2では、交流電源201の入力電圧を正確に検知できない。
図2のB−B’間の電圧が低下するのは、次のような理由によるものである。時刻Bで定着モータ32を低速回転させるために、非常夜電源装置221から定着モータ32に駆動電流が供給される。その際、交流電源201から図2のB−B’までのインピーダンスに、非常夜電源装置221を動作させた際の電流が流れることにより、A−A’間の電圧よりも電圧降下が生じるためである。この場合の電圧降下を生じさせるインピーダンスは、交流電源201から図2のB−B’までの間に存在するノイズフィルタ(不図示)や回路基板のパターン、スイッチ素子などである。更に、時刻Cでは、定着モータ32や給紙搬送モータ30、ドラムモータ31を通常回転で動作させるため、交流電源201が非常夜電源装置221に供給する電流値が増加し、電圧演算部2で算出する実効値電圧は更に低下してしまう。
また、電力演算部1で算出する有効電力値についても、実効値電圧と同様に、定着モータ32を低速回転させた時刻B、及び給紙搬送モータ30、ドラムモータ31、定着モータを通常回転させた時刻Cで有効電力値が低下している。有効電力値の低下は、実際に定着装置100に供給される有効電力が低下しているわけではなく、図2のB−B’間の電圧がA−A’間の電圧よりも低下していることによるものである。すなわち、有効電力値の低下は、交流電源201の入力電圧をトランスT1の出力電圧Vout1に基づく出力電圧Vout2により有効電力値を算出する電力演算部1で、有効電力を正確に算出できていないことによるものである。電力演算部1では、トランスT1によって検知した交流電源201の入力電圧波形と、トランスT2によって検知した定着装置100に流れる電流波形を掛け合わせることで、有効電力値を算出している。したがって、電力演算部1にトランスT1からの交流電源201の入力電圧よりも低い出力電圧Vout1に基づいた出力電圧Vout2が位相調整部210から入力されてしまうと、電圧降下分だけ、有効電力値も低く算出されてしまうことになる。
[電力演算部の検知誤差]
図6は、電力演算部1における検知した有効電力値の検知誤差の具体例を説明するための表である。図6に示す表は、入力電圧、図2のB−B’間電圧、交流電源201から定着装置100に供給される電流値(図中、定着装置の電流値)、定着装置100の実際の有効電力値の項目を含んでいる。更に、図6に示す表は、電力演算部1により算出された有効電力値(図中、電力演算部による有効電力値と表示)、有効電力値の誤差(図中、検知誤差と表示)の項目を含んでいる。図6では、交流電源201の交流電圧である入力電圧は110Vとしている。また、図2のB−B’間電圧(電圧演算部2により算出された入力電圧値)は105Vとし、B−B’間における電圧降下を5V(=110V−105V)としている。定着装置100に供給される電流値は12A、10A、8A、6Aとしている。定着装置100の実際の有効電力値には、入力電圧×(定着装置100に供給される電流値)により求められる電力値が示されている。電力演算部1により算出された有効電力値には、(B−B’間電圧)×(定着装置100に供給される電流値)により求められる電力値が示されている。そして、有効電力値の検知誤差は、(電力演算部1により算出された有効電力値)−(定着装置100の実際の有効電力値)の算出結果が示されている。
図6より、電力演算部1により算出された有効電力値には、最大60W(定着装置の電流値が12Aの場合)の検知誤差があることが分かる。また、定着装置100に供給される電流値によって、電力演算部1により算出される有効電力値の検知誤差も変化することが分かる。図6では、交流電源201とB−B’間における電圧降下が5Vの場合を例として示した。例えば、非常夜電源装置221が動作した際に、交流電源201から非常夜電源装置221に供給される電流に伴う電圧降下によっても、電力演算部1が算出する有効電力値の検知誤差は変わってしまう。
[有効電力値の検知誤差の補正]
続いて、本実施例の特徴である、上述した電圧降下による電力演算部1の有効電力値の検知誤差を補正する方法について説明する。制御部260は、プリント開始指示を受信すると、Drive2信号をハイレベルに設定することでトライアックQ7をオン状態にし、交流電源201からの電流が電圧検知部240及び非常夜電源装置221に流れるように電流供給(電力供給)を開始する。そして、制御部260は、電流供給を開始した際に電圧演算部2により算出された実効値電圧(入力電圧値)を取得し、取得した実効値電圧を初期電圧V0(第二の電圧)とする。このタイミングでは、画像形成開始に伴う各モータ等の起動が開始されていないため、非常夜電源装置221には交流電源201から殆ど電流が供給されていない。そのため、図2のB−B’間では電圧降下が生じておらず、交流電源201の入力電圧と初期電圧V0の電圧値は一致している。
制御部260は時刻A〜時刻D(図5)の期間では、電力演算部1により算出された有効電力値(有効電力検知値)である動作時の有効電力値P1と電圧演算部2により算出された実効値電圧検知値である動作時の実効値電圧V1(第一の電圧)を常時取得する。そして、制御部260は、取得した動作時の有効電力値P1と動作時の実効値電圧V1から、以下の式(1)を用いて、補正後の有効電力値Pfuを算出する。
Pfu=V0×(P1/V1)・・・(1)
制御部260は、補正後の有効電力値Pfuを、動作時の有効電力値P1と動作時の実効値電圧V1を取得するたびに算出する。このように、制御部260は、取得した動作時の有効電力値P1と動作時の実効値電圧V1から定着装置100に流れる電流値を式(P1/V1)により算出する。そして、制御部260は、算出された電流値に、上述した交流電源201の入力電圧と一致している初期電圧V0を乗じることにより、補正後の有効電力値Pfuを算出する。これにより、非常夜電源装置221を動作させた際に交流電源201から供給される電流によって、図2のB−B’間の電圧がA−A’間よりも電圧降下してしまっても、精度よく有効電力値を算出することが可能になる。本実施例においては、動作時の有効電力値P1と動作時の実効値電圧V1から定着装置100に流れる電流を算出し、算出された電流値に基づいて有効電力値を算出したが、本発明はこの方法に限定されるものではない。例えば、定着装置100に流れる電流を直接検知し、検知された電流値から有効電力値を算出する方法でもよい。
[定着装置立ち上げの制御シーケンス]
続いて、本実施例の電圧降下による有効電力値の検知誤差の補正を含むプリント立ち上げ時の制御シーケンスについて、図7を用いて説明する。図7は、画像形成動作の開始に伴う定着装置100の制御シーケンスを示すフローチャートであり、図7に示す処理は、画像形成指示を受信すると制御部260により実行される。なお、制御部260は、図7に示す処理の実行に先立ち、Drive2信号をハイレベルに設定することでトライアックQ7をオン状態にし、交流電源201からの電流が電圧検知部240及び非常夜電源装置221に流れるように電流供給を行うものとする。
ステップ(以下、Sという)801では、制御部260は、カウンタnの初期設定を行い、カウンタnに0を設定する。S802では、制御部260は、コンパレータIC2より出力されるゼロクロス信号(Zerox信号)のエッジを検知したかどうかを判断する。なお、エッジ検知には、立ち上がりエッジ(ローレベルからハイレベルへの変化)又は立ち下がりエッジ(ハイレベルからローレベルへの変化)の2つがあり、制御部260はどちらのエッジ検知も行う。制御部260はゼロクロス信号のエッジを検知したと判断した場合には処理をS803に進め、エッジを検知していないと判断した場合には処理をS802に戻す。
S803では、制御部260は、演算部IC1の電圧演算部2よりPower信号を用いて、実効値電圧の検知値を取得し、電圧V0nとする。S804では、制御部260は、カウンタnをインクリメント(+1更新)する。S805では、制御部260は、カウンタnの値が4かどうかを判断し、4と判断した場合には処理をS806に進め、4ではないと判断した場合には処理をS802に戻す。
S806では、制御部260は、S803の処理で取得した4半波の実効値電圧の検知値V00、V01、V02、V03の平均値を以下の式(2)により算出し、算出した平均値を初期電圧V0とする。
V0=(V00+V01+V02+V03)/4・・・(2)
S807では、制御部260は、カウンタkの初期設定を行い、カウンタkに0を設定し、更に、定着装置100に供給する電力デューティを示す電力デューティDfkに50%を設定する。
S808では、制御部260は、Drive信号をハイレベルに設定して、電力デューティDfkに応じて、定着装置100のヒータ部である発熱体RH1への電力供給を行う。S809では、制御部260は、カウンタnの初期設定を行い、カウンタnに0を設定する。S810では、制御部260は、S802と同様に、コンパレータIC2より出力されるゼロクロス信号(Zerox信号)のエッジを検知したかどうかを判断する。制御部260はゼロクロス信号のエッジを検知したと判断した場合には処理をS811に進め、エッジを検知していないと判断した場合には処理をS810に戻す。
S811では、制御部260は、演算部IC1の電力演算部1よりPower信号を用いて、有効電力の検知値を取得し、有効電力値P1nとする。また、制御部260は、演算部IC1の電圧演算部2よりPower信号を用いて、実効値電圧の検知値を取得し、電圧V1nとする。S812では、制御部260は、カウンタnをインクリメント(+1更新)する。S813では、制御部260は、カウンタnの値が8かどうかを判断し、8と判断した場合には処理をS814に進め、8ではないと判断した場合には処理をS810に戻す。
S814では、制御部260は、S811の処理で取得した8半波の有効電力の検知値P10〜P17の平均値を以下の式(3)により算出し、算出した平均値を動作時の有効電力値P1とする。また、制御部260は、S811の処理で取得した8半波の実効値電圧の検知値V10〜V17の平均値を以下の式(4)により算出し、算出した平均値を動作時の実効値電圧V1とする。
P1=(P10+P11+P12+P13+P14+P15+P16+P17)/8・・・(3)
V1=(V10+V11+V12+V13+V14+V15+V16+V17)/8・・・(4)
S815では、制御部260は、S813で算出した動作時の有効電力値P1、動作時の実効値電圧V1、及びS806で算出した初期電圧V0を用いて、以下の式(5)により、補正後の有効電力値Pfuを算出する。
Pfu=V0×(P1/V1)・・・(5)
S816では、制御部260は、定着装置100のヒータに供給する電力量が予め決められた定着目標電力Pf(=1300W)に相当する電力量となるように、次回の電力デューティDf(k+1)を以下の式(6)により算出する。
Df(k+1)=(Dfk×Pf)/Pfu・・・(6)
S817では、制御部260は、カウンタKをインクリメントする。
S818では、制御部260は、後述するS826の処理により画像形成動作を開始済みかどうか判断する。制御部260は既に画像形成動作を開始していると判断した場合には処理をS827に進め、まだ画像形成動作を開始していないと判断した場合には処理をS819に進める。S819では、制御部260は、後述するS821の処理により定着モータ32の低速回転を開始済みかどうかを判断し、開始済みと判断した場合には処理をS822に進め、開始していないと判断した場合には処理をS820に進める。S820では、制御部260は、TH信号に基づいて取得した定着装置100のヒータ温度が定着モータ32の回転開始温度Tmより高いかどうかを判断する。制御部260は、ヒータ温度が、回転開始温度Tmよりも高いと判断した場合には処理をS821に進め、回転開始温度Tm以下と判断した場合には処理をS808に戻す。S821では、制御部260は、定着モータ32を低速で回転開始させ、定着装置100の駆動部を駆動させる。また、制御部260は、定着モータ32の回転開始からの経過時間を測定するために、タイマをリセットしスタートさせる。
S822では、制御部260は、タイマを参照して、定着モータ32の回転開始から所定時間である時間t10(図4)が経過したかどうかを判断する。制御部260は、時間t10(図4)が経過したと判断した場合には処理をS823に進め、経過していないと判断した場合には処理をS808に戻す。S823では、制御部260は、定着装置100への供給可能電力値Pflimを、次の式(7)により算出する。
Pflim=100×(Pfu/Dfk)・・・(7)
S824では、制御部260は、S823で算出した供給可能電力値Pflimが画像形成動作を開始可能な予め決められている必要電力Pf_rdy(例えば1300W(図4))より大きいかどうかを判断する。制御部260は、供給可能電力値Pflimが必要電力Pf_rdyより大きい(Pflim>Pf_rdy)と判断した場合には処理をS826に進める。一方、制御部260は供給可能電力値Pflimが必要電力Pf_rdy以下(必要電力量以下)である(Pflim≦Pf_rdy)と判断した場合には処理をS825に進める。S825では、制御部260は、TH信号に基づいて取得した定着装置100のヒータ温度が、画像形成開始が可能なヒータ温度である予め決められた温度T_rdyより高いかどうかを判断する。制御部260は、ヒータ温度が、温度T_rdyよりも高いと判断した場合には処理をS826に進め、温度T_rdy以下と判断した場合には処理をS808に戻す。
S826では、制御部260は、一連の画像形成動作を開始するために、給紙搬送モータ30、ドラムモータ31を通常速度で回転を開始させる。また、制御部260は、定着モータ32の回転速度を低速回転から通常速度に変更し、一連の画像形成動作を開始させ、処理をS827に進める。S827では、制御部260は、TH信号に基づいて取得した定着装置100のヒータ温度が、記録紙上の未定着のトナー像を記録紙に定着可能な温度である温度T_print以上かどうかを判断する。制御部260は、ヒータ温度が温度T_print以上と判断した場合には処理を終了し、温度T_print未満と判断した場合には処理をS808に戻す。
上述した制御シーケンスにより、交流電源201の入力電圧降下による有効電力値の検知誤差の補正を行うことで、電力検知精度が改善され、適切な電力制御及び適切な画像形成開始タイミングの判断が可能になる。その結果、定着不良等の画像不良を発生させることなく、電力供給可能レベルに応じてFPOT(ファーストプリントアウトタイム)の短縮を達成することが可能になる。
以上説明したように、本実施例によれば、加熱定着装置に供給される電力を精度よく検知することができる。
実施例1では、電圧降下による有効電力値の検知誤差の補正方法について説明した。実施例2では、交流電源の入力電圧が変動した場合の有効電力値の検知誤差の補正方法について説明する。以下では、本実施例での画像形成装置10、電力供給装置200の構成については、実施例1と同様であり、同一の構成については同一の符号を用いることで、ここでの説明を省略する。
[定着装置立ち上げ時のタイミングチャート]
図8は、交流電源201の入力電圧が変動したときの定着装置100への電力供給状態、給紙搬送モータ30、ドラムモータ31、定着モータ32の動作状態と、交流電源201の入力電圧値と、定着装置100の有効電力値を表したタイミングチャートである。図8の横軸は、時間を示す。また、図中、入力電圧値は、電圧演算部2で検知した実効値電圧であり、有効電力値は、電力演算部1で検知した有効電力値である。時刻<A>〜<D>、時間t10、t11は図4、図5と同様であり、ここでの説明を省略する。
時刻Eで交流電源201の入力電圧がVhボルト低下する方向に変動した場合、電圧演算部2で検知する実効値電圧も同じくVhボルト低下してしまう(破線)。更に、交流電源の入力電圧がVhボルト低下する方向に変動した場合には、実際の電力や電力演算部1で検知する定着装置100に供給された有効電力値も同様に低下してしまう(破線)。その結果、交流電源の入力電圧の電圧変動による検知電圧の低下も、図2のB−B’間の電圧降下による検知誤差と誤検知されてしまう可能性がある。そこで、本実施例では、電圧演算部2で検知した実効値電圧が初期電圧V0よりも所定電圧以上低下した場合は、実施例1で行った電圧降下による有効電力検知値の検知誤差の補正を行わないようにする。これにより、交流電源の入力電圧変動による検知電圧の低下による誤検知を防ぐことができる。
非常夜電源装置221を動作させることによる図2のB−B’間の電圧降下の最大値は、交流電源201の電圧入力部からトランスT1までの抵抗値と、トライアックQ7のON電圧と、非常夜電源装置221に流れうる最大電流値とから見積もることができる。ここでは、見積もられた電圧降下の最大値を補正閾値電圧Vthとする。本実施例では、前述した初期電圧V0と動作時の実効値電圧V1との電圧の差が補正閾値電圧Vthより大きくなった場合(V0−V1>Vth)には、電圧降下による有効電力検知値の検知誤差の補正は行わないようにする。これにより、交流電源201の入力電圧の変動による検知電圧の低下による誤検知を防ぐことが可能になる。
[定着装置立ち上げの制御シーケンス]
続いて、本実施例の電圧降下による有効電力値の検知誤差の補正を含むプリント立ち上げ時の制御シーケンスについて、図9を用いて説明する。図9は、画像形成動作の開始に伴う定着装置100の制御シーケンスを示すフローチャートであり、図9に示す処理は、画像形成指示を受信すると制御部260により実行される。なお、制御部260は、図7に示す処理の実行に先立ち、Drive2信号をハイレベルに設定することでトライアックQ7をオン状態にし、交流電源201からの電流が電圧検知部240及び非常夜電源装置221に流れるように電流供給を行うものとする。
図9では、実施例1の図7と同じ処理には同じステップ番号を付し、ここでの説明を省略する。制御部260は、S801〜S806の処理により初期電圧V0を取得する。続いて、制御部260は、S808にて定着装置100への電力供給を開始し、S809〜815で動作時の有効電力値P1と動作時の実効値電圧V1を算出し、補正後の有効電力値Pfuを算出する。
S901では、制御部260は、交流電源201の入力電圧変動などによって、動作時の実効値電圧V1が低下し、初期電圧V0との電圧差が補正閾値電圧Vthより大きいかどうか((V0−V1)>Vth)を判断する。制御部260は、電圧差が補正閾値電圧Vthより大きい((V0−V1)>Vth)と判断した場合には、処理をS902に進める。一方、制御部260は、電圧差が補正閾値電圧Vthより大きくない、すなわち電圧差が補正閾値電圧Vth以下である((V0−V1)≦Vth)と判断した場合には、処理をS816に進める。これにより、電圧差が補正閾値電圧Vth以下の場合の処理は、実施例1の図7と同じ処理が行われることになる。
S902では、制御部260は、補正後の有効電力Pfuを動作時の有効電力値P1とする(Pfu=P1)。これにより、交流電源201の入力電圧の電圧降下による有効電力検知値の検知誤差補正を行わないようにする。
S816〜S827の処理は、実施例1の図7のS816〜S827の処理と同様であり、ここでの説明は省略する。本実施例では、電圧降下による有効電力検知値の検知誤差補正を行うかどうかの判断を初期電圧V0と動作時の実効値電圧V1の差分値が所定値である補正閾値電圧Vthより大きいかどうかで判断しているが、判断基準はこの方法に限定されるものではない。例えば、動作時の実効値電圧V1と有効電力値P1から算出した定着装置100に流れる電流値と、発熱体RH1の抵抗値を掛け合わせて算出した交流電源201の電圧予測値Vrと初期電圧V0とを比較する方法でもよい。そして、初期電圧V0と交流電源201の電圧予測値Vrの差分値が補正閾値電圧Vthより大きい((V0−Vr)>Vth)場合には、電圧降下による有効電力検知値の検知誤差の補正を行わないとしてもよい。また、本実施例では、補正閾値電圧Vthを予め決められた所定の電圧としているが、例えば非常夜電源装置221に流れる電流の予測値に応じて補正閾値Vthを決定してもよい。
上述した制御シーケンスにより、交流電源の入力電圧の変動が所定の範囲内であれば電圧降下による有効電力検知値の検知誤差補正を行う。一方、交流電源の入力電圧の変動が所定の範囲よりも大きい場合には、交流電源201の入力電圧の電圧降下による有効電力検知値の検知誤差補正を行わないようにする。このように、交流電源の入力電圧の変動幅に応じて、有効電力値の検知誤差の補正要否を判断することにより、電力検知精度が改善され、適切な電力制御及び適切な画像形成開始タイミングの判断が可能になる。その結果、定着不良等の画像不良を発生させることなく、電力供給可能レベルに応じてFPOT(ファーストプリントアウトタイム)の短縮を達成することが可能になる。
以上説明したように、本実施例によれば、加熱定着装置に供給される電力を精度よく検知することができる。
IC1−1 電力演算部
IC1−2 電圧演算部
Q7 トライアック
221 非常夜電源装置
240 電圧検知部
250 電流検知部
260 制御部

Claims (17)

  1. 負荷に電力を供給する電力供給装置であって、
    交流電源から交流電圧が入力される第一のラインと第二のラインと、
    前記第一のラインと前記第二のラインに入力される前記交流電圧を前記交流電圧に比例する電流に変換する変換部材と、
    一次巻線及び二次巻線を有する第一のトランスを有し、前記変換部材によって変換された前記電流が前記一次巻線に供給されることにより前記第一のトランスの二次巻線から出力される交流電圧波形に基づき、前記交流電圧を検知する電圧検知手段と、
    一次巻線及び二次巻線を有する第二のトランスを有し、前記負荷に含まれる第一の負荷に供給される電流が前記一次巻線に供給されることにより前記電流に応じて前記第二のトランスの二次側に出力される交流電圧波形に基づき、前記電流の電流値を検知する電流検知手段と、
    前記電圧検知手段によって検知された前記交流電圧波形に基づき、前記交流電源のゼロクロスタイミングを検知するゼロクロス検知手段と、
    前記電圧検知手段によって検知された前記交流電圧波形と、前記ゼロクロス検知手段が検知する前記交流電源のゼロクロスタイミングと、に基づいて、前記交流電源の電圧を演算する電圧演算手段と、
    前記電流検知手段から出力される交流電圧波形に基づいて検知される前記第一の負荷に供給される電流値と、前記電圧演算手段により演算された前記交流電圧の電圧値により、前記交流電源から前記第一の負荷に供給される電力量を演算する電力演算手段と、
    前記交流電源から、前記負荷に含まれる第二の負荷に所定の直流電圧を出力する電源装置及び前記第一のトランスの前記一次巻線への電流経路を接続又は遮断するスイッチ手段と、
    前記スイッチ手段の制御と、前記第一の負荷及び前記第二の負荷への電力供給の制御と、を行う制御手段と、
    を備え、
    前記制御手段は、前記電力演算手段により演算された電力量を、前記電力量を演算したときに前記電圧演算手段により演算された前記交流電源の第一の電圧と、前記スイッチ手段を制御して前記交流電源から前記電源装置及び前記第一のトランスへ電力供給を開始した際に前記電圧演算手段により演算された前記交流電源の第二の電圧と、に基づいて、補正することを特徴とする電力供給装置。
  2. 前記電圧検知手段の後段に設けられ、前記交流電源の交流電圧波形との位相差が小さくなるように前記電圧検知手段から出力される前記交流電圧波形の位相を調整する位相調整手段を有し、
    前記ゼロクロス検知手段は、前記位相調整手段で位相が調整された前記交流電圧波形を用いて前記ゼロクロスタイミングを検知し、
    前記電圧演算手段は、前記位相調整手段で位相が調整された前記交流電圧波形を用いて前記交流電源の電圧を演算することを特徴とする請求項1に記載の電力供給装置。
  3. 前記制御手段は、前記第二の電圧から前記第一の電圧を減じた電圧値の差が、所定の電圧値よりも大きい場合には、前記電力量の補正を行わないことを特徴とする請求項1又は2に記載の電力供給装置。
  4. 前記所定の電圧値は、前記交流電源から前記電源装置に供給される電流の最大値に基づいて決定されることを特徴とする請求項3に記載の電力供給装置。
  5. 前記変換部材は、第一の抵抗及び第二の抵抗であり、
    前記第一の抵抗の一端は、前記第一のラインに接続され、前記第一の抵抗の他端は、前記第一のトランスの一次巻線の一端に接続され、前記第二の抵抗の一端は、前記第二のラインに接続され、前記第二の抵抗の他端は、前記第一のトランスの一次巻線の他端に接続されていることを特徴とする請求項1から請求項4のいずれか1項に記載の電力供給装置。
  6. 前記第一の負荷の一端は、前記第一のラインに接続され、前記第一の負荷の他端は、前記第二のトランスの一次巻線の一端に接続され、前記一次巻線の他端は、前記第二のラインに接続されることを特徴とする請求項1から請求項5のいずれか1項に記載の電力供給装置。
  7. 請求項1から請求項6のいずれか1項に記載の電力供給装置と、
    記録材に画像を形成する画像形成部と、
    前記交流電源より電力を供給される抵抗発熱体を有し、記録材上の未定着トナー像を定着させる定着装置と、
    を備えることを特徴とする画像形成装置。
  8. 画像形成を行うために前記画像形成部及び前記定着装置を駆動する駆動部を備え、
    前記第一の負荷は、前記抵抗発熱体であり、
    前記第二の負荷は、前記駆動部であることを特徴とする請求項7に記載の画像形成装置。
  9. 前記画像形成部及び前記定着装置を制御するコントローラを備え、
    前記制御手段は、前記コントローラであることを特徴とする請求項8に記載の画像形成装置。
  10. 前記定着装置は、前記抵抗発熱体の温度を検知する温度検知手段を有し、
    前記コントローラは、前記温度検知手段より検知した前記抵抗発熱体の温度が第一の温度よりも高い場合には、前記定着装置を駆動する前記駆動部の駆動を開始することを特徴とする請求項9に記載の画像形成装置。
  11. 前記コントローラは、前記定着装置の前記駆動部の駆動を開始してから所定の時間が経過したときの前記抵抗発熱体へ供給可能な電力量が所定の電力量よりも大きい場合には、前記画像形成部による画像形成を開始することを特徴とする請求項10に記載の画像形成装置。
  12. 前記所定の電力量は、画像形成を開始した前記画像形成部により画像形成された記録材が前記定着装置に到達したときに、前記定着装置の前記抵抗発熱体の温度が定着に適した温度に到達するための電力量であることを特徴とする請求項11に記載の画像形成装置。
  13. 前記コントローラは、前記抵抗発熱体へ供給可能な電力量を、前記補正された電力量と、前記抵抗発熱体に電力供給するときの電力デューティと、に基づいて算出することを特徴とする請求項11又は請求項12に記載の画像形成装置。
  14. 前記コントローラは、前記抵抗発熱体へ供給可能な電力量が前記所定の電力量以下で、前記温度検知手段より検知した前記抵抗発熱体の温度が第二の温度よりも高い場合には、前記画像形成部による画像形成を開始することを特徴とする請求項11に記載の画像形成装置。
  15. 前記第二の温度は、前記所定の時間が経過したときの前記抵抗発熱体へ供給可能な電力量が前記所定の電力量よりも大きい場合の前記抵抗発熱体の温度よりも高い温度であることを特徴とする請求項14に記載の画像形成装置。
  16. 前記コントローラは、前記画像形成装置が省電力状態の場合には、前記スイッチ手段を制御して、前記電源装置及び前記第一のトランスへの電力供給を遮断することを特徴とする請求項9から請求項15のいずれか1項に記載の画像形成装置。
  17. 負荷に電力を供給する電力供給装置と、
    記録材に画像を形成する画像形成部と、
    交流電源より電力を供給される抵抗発熱体を有し、記録材上の未定着トナー像を定着させる定着装置と、
    を備える画像形成装置であって、
    前記電力供給装置は、
    交流電源から交流電圧が入力される第一のラインと第二のラインと、
    前記第一のラインと前記第二のラインに入力される前記交流電圧を前記交流電圧に比例する電流に変換する変換部材と、
    一次巻線及び二次巻線を有する第一のトランスを有し、前記変換部材によって変換された前記電流が前記一次巻線に供給されることにより前記第一のトランスの二次巻線から出力される交流電圧波形に基づき、前記交流電圧を検知する電圧検知手段と、
    一次巻線及び二次巻線を有する第二のトランスを有し、前記負荷に含まれる第一の負荷に供給される電流が前記一次巻線に供給されることにより前記電流に応じて前記第二のトランスの二次側に出力される交流電圧波形に基づき、前記電流の電流値を検知する電流検知手段と、
    前記電圧検知手段によって検知された前記交流電圧波形に基づき、前記交流電源のゼロクロスタイミングを検知するゼロクロス検知手段と、
    前記電圧検知手段によって検知された前記交流電圧波形と、前記ゼロクロス検知手段が検知する前記交流電源のゼロクロスタイミングと、に基づいて、前記交流電源の電圧を演算する電圧演算手段と、
    前記電流検知手段から出力される交流電圧波形に基づいて検知される前記第一の負荷に供給される電流値と、前記電圧演算手段により演算された前記交流電圧の電圧値により、前記交流電源から前記第一の負荷に供給される電力量を演算する電力演算手段と、
    前記交流電源から、前記負荷に含まれる第二の負荷に所定の直流電圧を出力する電源装置及び前記第一のトランスの前記一次巻線への電流経路を接続又は遮断するスイッチ手段と、
    前記スイッチ手段の制御と、前記第一の負荷及び前記第二の負荷への電力供給の制御と、を行う制御手段と、
    を備え、
    前記制御手段は、前記電力演算手段により演算された電力量を、前記電力量を演算したときに前記電圧演算手段により演算された前記交流電源の第一の電圧と、前記スイッチ手段を制御して前記交流電源から前記電源装置及び前記第一のトランスへ電力供給を開始した際に前記電圧演算手段により演算された前記交流電源の第二の電圧と、に基づいて、補正することを特徴とする画像形成装置。
JP2017001336A 2017-01-06 2017-01-06 電力供給装置及び画像形成装置 Active JP6794270B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017001336A JP6794270B2 (ja) 2017-01-06 2017-01-06 電力供給装置及び画像形成装置
US15/845,255 US10069435B2 (en) 2017-01-06 2017-12-18 Power supply apparatus and image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017001336A JP6794270B2 (ja) 2017-01-06 2017-01-06 電力供給装置及び画像形成装置

Publications (2)

Publication Number Publication Date
JP2018112586A true JP2018112586A (ja) 2018-07-19
JP6794270B2 JP6794270B2 (ja) 2020-12-02

Family

ID=62783111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017001336A Active JP6794270B2 (ja) 2017-01-06 2017-01-06 電力供給装置及び画像形成装置

Country Status (2)

Country Link
US (1) US10069435B2 (ja)
JP (1) JP6794270B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7500352B2 (ja) 2020-08-27 2024-06-17 キヤノン株式会社 画像形成装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7080623B2 (ja) * 2017-11-29 2022-06-06 キヤノン株式会社 電源装置及び画像形成装置
JP7423318B2 (ja) * 2020-01-16 2024-01-29 キヤノン株式会社 画像形成装置
US11567441B2 (en) 2020-11-30 2023-01-31 Canon Kabushiki Kaisha Image forming apparatus displaying abnormal state of rotary members driven by a motor based on a detected current value

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4920985B2 (ja) 2006-02-07 2012-04-18 キヤノン株式会社 画像形成装置
US8086126B2 (en) * 2007-12-13 2011-12-27 Canon Kabushiki Kaisha Image forming apparatus with high-voltage power supply
JP5932321B2 (ja) * 2011-12-12 2016-06-08 キヤノン株式会社 ゼロクロス検知回路を有する電源、及び、画像形成装置
JP6700704B2 (ja) 2015-09-30 2020-05-27 キヤノン株式会社 電力供給装置及び画像形成装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7500352B2 (ja) 2020-08-27 2024-06-17 キヤノン株式会社 画像形成装置

Also Published As

Publication number Publication date
JP6794270B2 (ja) 2020-12-02
US20180196380A1 (en) 2018-07-12
US10069435B2 (en) 2018-09-04

Similar Documents

Publication Publication Date Title
US9823617B2 (en) Power supply apparatus and image forming apparatus
JP6611530B2 (ja) 電力供給装置及び画像形成装置
JP6794270B2 (ja) 電力供給装置及び画像形成装置
US9291960B2 (en) Image forming apparatus supplying or shutting off AC voltage to heat generating member
US8768187B2 (en) Image forming apparatus and power supply device
US9098026B2 (en) Image forming apparatus including induction heating fixing unit
JP4614382B2 (ja) 電力供給装置及び加熱装置及び画像形成装置
CN107132741B (zh) 图像形成装置
US11137708B2 (en) Energization control device and image forming apparatus
JP2009181059A (ja) 加熱制御方法と加熱装置、及び該加熱装置を具備する画像形成装置
JP6191280B2 (ja) 発熱装置、画像形成装置
JP4900669B2 (ja) 誘導加熱装置および電子機器
JP2016025827A (ja) 電流制御装置及び画像形成装置
JP2007206511A (ja) 画像形成装置
JP2021144148A (ja) 温度検知装置、定着装置及び画像形成装置
JP5264533B2 (ja) 画像形成装置
JP7146517B2 (ja) 電源装置及び画像形成装置
JP2014126684A (ja) 画像形成装置
JP2019159138A (ja) 画像形成装置及び画像形成装置の制御方法
JP2001052841A (ja) 電力供給装置および方法
JP2019053164A (ja) 画像形成装置、画像形成装置の制御方法、およびプログラム
JP2013064939A (ja) 加熱装置及び画像形成装置

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20171201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201014

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201111

R151 Written notification of patent or utility model registration

Ref document number: 6794270

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151