JP2018112535A - 電流計測システム、及び分電盤 - Google Patents

電流計測システム、及び分電盤 Download PDF

Info

Publication number
JP2018112535A
JP2018112535A JP2017004709A JP2017004709A JP2018112535A JP 2018112535 A JP2018112535 A JP 2018112535A JP 2017004709 A JP2017004709 A JP 2017004709A JP 2017004709 A JP2017004709 A JP 2017004709A JP 2018112535 A JP2018112535 A JP 2018112535A
Authority
JP
Japan
Prior art keywords
current
core
measurement
value
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017004709A
Other languages
English (en)
Inventor
岡田 健治
Kenji Okada
健治 岡田
卓也 香川
Takuya Kagawa
卓也 香川
佐藤 昌弘
Masahiro Sato
昌弘 佐藤
幸太郎 百枝
Kotaro Momoe
幸太郎 百枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2017004709A priority Critical patent/JP2018112535A/ja
Publication of JP2018112535A publication Critical patent/JP2018112535A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Current Or Voltage (AREA)
  • Distribution Board (AREA)

Abstract

【課題】周囲環境が変化しても電流の検出精度の低下を抑制することが可能な電流計測システム、及び分電盤を提供する。【解決手段】電流計測システム2は、コア50と、コイル60と、一次電流測定部40と、測定電流補正部90と、を備える。コア50は、交流の一次電流が流れる導電部材(導電バー84)を通すための貫通孔500を有する。コイル60は、コア50に巻回される。一次電流測定部40は、コイル60の両端間に接続される負担抵抗101の両端電圧から、一次電流の測定値を求める。測定電流補正部90は、一次電流測定部40による一次電流の測定値を測定値の変化に応じて補正して、補正後測定値を求める。分電盤1は、この電流計測システム2を備える。【選択図】図1

Description

本発明は、電流計測システム、及び分電盤に関し、特に、電流が流れる導電部材を通すための貫通孔を有するコアを備えた電流計測システム、及びこの電流計測システムを備えた分電盤に関する。
従来、主幹ブレーカと、分岐ブレーカと、端子台と、をキャビネット(筐体)に収納した分電盤が提案されている(例えば特許文献1参照)。
特許文献1に記載された分電盤では、端子台は、1次端子と、2次端子と、1次端子と2次端子とを電気的に接続する導電ブロックと、導電ブロックに流れる電流を測定するカレントトランスとから構成される。この端子台は、1次端子が分岐ブレーカの負荷側端子に接続される、又は2次端子が主幹ブレーカの電源端子に接続される。これにより、導電ブロックに流れる電流をカレントトランスで測定することで、分岐ブレーカ又は主幹ブレーカを流れる電流が測定可能である。
特開2011−36034号公報
カレントトランスでは、温度や磁界等の周囲環境の影響によって、例えば残留磁束密度等の磁心(コア)の状態が、変化する可能性がある。カレントトランスでは、コアの状態が変化すると、導電ブロック(導電部材)を流れる電流の検出精度が低下する可能性がある。
本発明は上記課題に鑑みてなされ、周囲環境が変化しても電流の検出精度の低下を抑制することが可能な電流計測システム、及びこれを備えた分電盤を提供することを目的とする。
本発明の一態様に係る電流計測システムは、コアと、コイルと、一次電流測定部と、測定電流補正部と、を備える。前記コアは、交流の一次電流が流れる導電部材を通すための貫通孔を有する。前記コイルは、前記コアに巻回される。前記一次電流測定部は、前記コイルの両端間に接続される負担抵抗の両端電圧から、前記一次電流の測定値を求める。前記測定電流補正部は、前記測定値の変化に応じて前記測定値を補正して、補正後測定値を求める。
本発明の一態様に係る分電盤は、前記電流計測システムと、前記導電部材と、前記導電部材に接続されるブレーカと、少なくとも前記導電部材及び前記ブレーカを収納するキャビネットと、を備える。
本発明は、周囲環境が変化しても電流の検出精度の低下を抑制することが可能な電流計測システム、及びこれを備えた分電盤を提供できるという利点がある。
図1は、一実施形態に係る電流計測システムの概略構成図である。 図2は、同上の電流計測システム及び分電盤の正面図である。 図3は、同上の電流計測システム及び分電盤の構成を示す概略構成図である。 図4は、同上の電流計測システムが備えるカレントトランス、及び導電部材を示す斜視図である。 図5は、カレントトランスのコアにかかる磁界とコア内に生じる磁束密度との関係を説明するためのコアのB−H曲線図である。 図6は、コア内に生じる磁束密度の時間変化を説明するための説明図である。 図7は、コア内の残留磁束密度と補正係数との関係を示す説明図である。
以下に説明する実施形態は、本発明の種々の実施形態の一つに過ぎない。本発明の実施形態は、下記実施形態に限定されることはなく、この実施形態以外も含み得る。また、下記の実施形態は、本発明の目的を達成できる範囲であれば、設計等に応じて種々の変更が可能である。
(1)実施形態
以下、本実施形態に係る電流計測システム2、及びそれを備えた分電盤1について、図1〜図7に基づいて説明する。
本実施形態の電流計測システム2は、需要家施設において消費電力と消費電力量との少なくとも一方を計測するための電力計測システムに用いられる。電流計測システム2は、分電盤1内の導電バー84(後述する)を流れる電流(一次電流)を計測する。電力計測システムは、電流計測システム2で計測された一次電流と、2本の電力線81(後述する)の線間電圧と、に基づいて、消費電力と消費電力量との少なくとも一方を求める演算を行う。ここでいう「需要家施設」は、電力の需要家の施設を意味しており、電力会社等の電気事業者から電力の供給を受ける施設だけでなく、太陽光発電設備等の自家発電設備から電力の供給を受ける施設も含む。本実施形態では、店舗や事務所等の非住宅施設を需要家施設の一例として説明する。ただし、この例に限らず、需要家施設は集合住宅や戸建て住宅、集合住宅の各住戸等であってもよい。
(1.1)分電盤
ここではまず、電流計測システム2を備えた分電盤1の基本構成について、図2、図3を参照して説明する。本実施形態では、交流100〔V〕/200〔V〕を取り出し可能な単相三線式配線の分電盤1を例に説明する。
分電盤1はキャビネット70を備える。分電盤1は、主幹ブレーカ10と、複数個(図2の例では18個)の分岐ブレーカ(回路遮断器)20と、3個の導電バー84と、少なくとも1個(図2の例では3個)の電流センサ30とを、キャビネット70内に備えている。以下では、分電盤1が設置された状態における上下、左右、前後(図2等に矢印で示した上下、左右、前後)を上下、左右、前後として説明する。ただし、分電盤1及び電流センサ30の取付方向は、図2の矢印で示す方向に限定されない。また、各図において、上下、左右、前後を付した矢印は、方向を示すための矢印であって実体は伴わない。
キャビネット70は、前面に開口71を有する箱状に形成されている。キャビネット70は、正面視が(すなわち前方から見て)上下方向に長い矩形状に形成されている。キャビネット70の底板72の左右両側には、それぞれ、上下方向に延びるレール部材73が設置されている。一対のレール部材73には、第1取付板74及び第2取付板75が固定されている。第1取付板74及び第2取付板75の各々は、一対のレール部材73間に架け渡されるように設置されている。第1取付板74は第2取付板75の上方に配置されている。第2取付板75の前面には、合成樹脂製の取付ベース76が固定されている。取付ベース76には、分電盤1内の温度(導電部材の周囲温度)を測定するための温度センサ99が取り付けられている。
主幹ブレーカ10は、第1取付板74の前面に取り付けられることで、キャビネット70に収納される。複数個の分岐ブレーカ20は、取付ベース76に取り付けられることで、キャビネット70に収納される。キャビネット70は、開口71を塞ぐ扉を備えていてもよい。
主幹ブレーカ10の一次側端子11は、3線式の電力線(幹線)81を介して、交流電源200(図3参照)に電気的に接続されている。主幹ブレーカ10の二次側端子12には、L1相、L2相、N相の3本の母線導体82(図2及び図3参照)が電気的に接続されている。L1相、L2相、N相の母線導体82は、3本の電力線81の各々と一対一に電気的に接続される。3本の母線導体82の各々は、主幹ブレーカ10に直接接続される連結部材(ジョイントバー)83と、連結部材83を介して主幹ブレーカ10に接続される上記の導電バー84とで構成されている。
3本の導電バー84の各々は、例えば銅等の導電性材料にて長尺の平板状(帯状)に形成されている。ここで、3本の導電バー84はそれぞれL1相、L2相、N相に相当する。3本の導電バー84は、各々の長手方向を上下方向と一致させ、かつ各々の厚み方向を前後方向に一致させる向きで、取付ベース76に保持されている。3本の導電バー84は、取付ベース76の前方において、前後方向(各々の厚み方向)に適当な間隔を空けて並ぶように、取付ベース76の左右方向の中央部に取り付けられている。本実施形態では、3本の導電バー84が取付ベース76の左右方向の中央部に取り付けられているが、導電バー84の取付位置は上記の位置に限定されない。3本の導電バー84は、取付ベース76において左右方向の中央位置からずれた位置に取り付けられてもよい。
本実施形態では、3本の導電バー84は、前後方向において、前方からL1相、N相、L2相の順に並んでいる。ここで、取付ベース76の前方において、取付ベース76の上下方向の両端間に亘って3本の導電バー84が位置するように、3本の導電バー84の各々は、取付ベース76の上下方向の寸法よりも長く形成されている。
3本の連結部材83の各々は、例えば銅等の導電性材料にて形成されている。3本の連結部材83は、それぞれ3本の導電バー84と主幹ブレーカ10の二次側端子12とを電気的に接続する。
複数個の分岐ブレーカ20は、導電バー84に接続されることにより、母線導体82を介して主幹ブレーカ10の二次側端子12に電気的に接続される。各分岐ブレーカ20は、取付ベース76の前面のうち、導電バー84の短手方向(左右方向)の両側(左側と右側)に設けられた取付スペースに取り付けられる。取付ベース76の取付スペースには、複数の分岐ブレーカ20をそれぞれ保持するための複数の取付構造が設けられている。
各分岐ブレーカ20は2つの電源端子と2つの負荷端子とを備えている。各分岐ブレーカ20の電源端子が導電バー84に電気的に接続され、各分岐ブレーカ20の負荷端子には分岐回路が接続される。各分岐ブレーカ20は、3本の導電バー84が差し込まれるスリットを、左右方向における中央側の面に有している。スリットは3本の導電バー84に対応するように3個設けられている。各分岐ブレーカ20の2つの電源端子は、これら3個のスリットのうち2個のスリット内に露出するように設けられている。これにより、各分岐ブレーカ20は、取付ベース76に取り付けられた状態で、スリットに導電バー84が差し込まれ、電源端子が導電バー84と電気的に接続される。
N相及びL1相に接続される100〔V〕用の分岐ブレーカ20には、N相の導電バー84及びL1相の導電バー84に対応する2つのスリットの各々に電源端子が設けられている。N相及びL2相に接続される100〔V〕用の分岐ブレーカ20には、N相の導電バー84及びL2相の導電バー84に対応する2つのスリットの各々に電源端子が設けられている。L1相及びL2相に接続される200〔V〕用の分岐ブレーカ20には、L1相の導電バー84及びL2相の導電バー84に対応する2つのスリットの各々に電源端子が設けられている。
本実施形態においては、電流センサ30は、複数個の分岐ブレーカ20と同様に、取付ベース76に取り付けられる。そして、取付ベース76が第2取付板75の前面に取り付けられることで、電流センサ30がキャビネット70内に収納される。
(1.2)電流センサ
次に、電流計測システム2が備える電流センサ30について、図2〜図4に基づいて説明する。
電流計測システム2は、少なくとも1個の電流センサ30を備えている。図2に示すように、本実施形態では、電流計測システム2は複数個(具体的には、3個)の電流センサ31〜33を備えている。
本実施形態においては、18個の分岐ブレーカ20は、複数のブレーカ群G1〜G3に分かれている。具体的には、18個の分岐ブレーカ20は、導電バー84の長手方向(上下方向)において6個単位でブレーカ群G1〜G3に分かれている。ブレーカ群G1〜G3のうちブレーカ群G1が主幹ブレーカ10に最も近く、ブレーカ群G3が主幹ブレーカ10から最も遠くなるように、ブレーカ群G1〜G3は、導電バー84の主幹ブレーカ10側から順に並んでいる。
電流センサ31は主幹ブレーカ10とブレーカ群G1との間に配置され、電流センサ32はブレーカ群G1とブレーカ群G2との間に配置され、電流センサ33はブレーカ群G2とブレーカ群G3との間に配置されている。これにより、電流センサ31は、ブレーカ群G1〜G3に流れる電流を測定可能となる。一方、電流センサ32は、ブレーカ群G2,G3に流れる電流を測定可能となり、電流センサ33は、ブレーカ群G3に流れる電流を測定可能となる。
電流計測システム2においては、2本の母線導体82の各々を流れる電流を1個の電流センサ30で測定できるように、コア50及びコイル60を2個ずつ有した複極(2極)用の電流センサ30が用いられる。複極用の電流センサ30の各々は、コア50及びコイル60を1個ずつ有した単極用の電流センサを2つ備えている、といえる。
単極用の電流センサは、3本の導電バー84のうちの1つを電流測定対象とし、電流測定対象である導電バー84を流れる電流(一次電流)を非接触で検出する。つまり、電流センサにおける1個のコイル60からは、導電バー84を流れる電流に応じた電気信号が出力される。ここで、3本の導電バー84のうち、電流センサの電流測定対象となる導電バー84を「導電部材」と定義する。例えば、導電部材となる電流測定対象の導電バー84は、L1相の導電バー84である。
コア50は、例えばフェライト等の磁性材料により形成されている。図4に示すように、コア50は、1本の導電部材(導電バー84)が通される貫通孔500を有しており、コア50には、貫通孔500に通される導電バー84を囲む閉磁路が形成される。コア50は、例えば、上下方向に直交する断面形状が、左右方向に長い矩形枠状となるように形成されている。言い換えれば、コア50は前後方向の寸法よりも左右方向の寸法が大きな形状に形成されている。
コア50は、本実施形態では左右方向において第1コア51と第2コア52とに分割されている。第1コア51は、前後方向に延びる中央片512と、中央片512の前後方向の両端部からそれぞれ右方に向けて突出する第1脚片513及び第2脚片514と、を有している。第2コア52は、前後方向に延びる中央片522と、中央片522の前後方向の両端部からそれぞれ左方に向けて突出する第1脚片523及び第2脚片524と、を有している。
左右方向において、第1コア51の第1及び第2脚片513,514の端面と、第2コア52の第1及び第2脚片523,524の端面と、をそれぞれ互いに突き合わせることによって、第1コア51と第2コア52との間に貫通孔500が形成される。貫通孔500には電流測定対象の導電部材(導電バー84)が通され、第1コア51と第2コア52とで導電部材(導電バー84)を囲む閉磁路が形成される。
コア50の少なくとも一部には、コイル60が巻き付けられている。これにより、コイル60の巻き数をnとした場合、コア50と導電部材(導電バー84)とコイル60とにより、巻き数比が1対nのトランスが構成される。すなわち、電流センサ30は、貫通孔500に通された導電バー84を流れる電流に応じた電気信号をコイル60から出力するCT(Current Transformer)センサとして機能する。
本実施形態では、コイル60は、第1コイル61と第2コイル62とを有している。第1コイル61は第2コア52の第1脚片523に巻き付けられ、第2コイル62は第2コア52の第2脚片524に巻き付けられている。第1コイル61と第2コイル62とは電気的に直列に接続されている。
ここで、コイル60は、導電部材(導電バー84)を流れる電流に起因して第1コイル61に生じる誘導電流と第2コイル62に生じる誘導電流とが加算されるように、第1コイル61及び第2コイル62の巻き方向及び接続関係が設定されている。つまり、導電バー84を流れる電流(一次電流)に起因して生じる誘導電流(二次電流)の流れる向きは、コイル60の両端間において、第1コイル61と第2コイル62とで同じ向きになる。具体的には、導電バー84を流れる電流によって生じる磁束は、第1脚片523と第2脚片524とで逆向きになる。そのため、例えば、第1コイル61の巻き終わりに第2コイル62の巻き始めがつながるように第1コイル61及び第2コイル62が接続される場合には、第1コイル61と第2コイル62とでは、右側面視における巻き方向が逆向きになる。第1コイル61と第2コイル62とは、例えば電線によって電気的に接続されていてもよいし、プリント配線板等を経由して電気的に接続されていてもよい。
(1.3)電流計測システム
次に、電流センサ30を用いた電流計測システム2の構成について、図1〜図3を参照して説明する。
電流計測システム2は、少なくとも1個の電流センサ30(本実施形態では、3個の電流センサ31〜33)に加えて、計測装置100を備えている。図3に示すように、計測装置100には、電流センサ31〜33の各々が複数(4本)の電線64を介して電気的に接続されている。また、計測装置100は、温度センサ99に接続されている。計測装置100は、例えばプロセッサとメモリとを有するマイクロコンピュータを備えている。マイクロコンピュータのプロセッサがメモリに記録されたプログラムを実行することによって、計測装置100が備える種々の機能が実現される。計測装置100のプロセッサが実行するプログラムは、あらかじめマイクロコンピュータのメモリに記録されていてもよいし、メモリカードのような記録媒体に記録されて提供されてもよいし、電気通信回線を通して提供されてもよい。
図1に示すように、計測装置100は、少なくとも一つの負担抵抗101と、一次電流測定部40と、測定電流補正部90と、を備えている。計測装置100は、コア50の数(コイル60の数)と同数の負担抵抗101を備えている。図1では、電流計測システム2が備える6個のコア50のうちの一つのコア50と、このコア50に対応する負担抵抗101と、を図示している。
図1に示すように、一次電流測定部40は、電圧検出部41と、二次電流算出部42と、一次電流算出部43と、を備えている。
導電バー84に電流(一次電流)が流れると、導電バー84の周りに、一次電流に応じた磁界が生じる。コア50の貫通孔500に導電バー84が通されている状態で、導電バー84の周りに磁界が生じると、コア50内には、磁界に応じた磁束が生じる。コイル60には、コア50内に生じた磁束の時間変化に応じた電圧が生じ、この電圧によって、コイル60には誘導電流(二次電流)が流れる。なお、二次電流は、一次電流によりコア50内に生じる磁束とは反対向き(一次電流により生じる磁束を打ち消す向き)の磁束をコア50内に生じさせる向きで、コイル60を流れる。
導電バー84を流れる一次電流は交流の電流であるため、一次電流により生じる磁界の大きさ及び向きは時間に応じて変化し、コア50内の磁束も時間に応じて変化する。したがって、コア50内に生じる磁束(一次電流により生じる磁束と二次電流により生じる磁束との和)も、時間に応じて変化する。コア50が磁化されていないとき、コア50内の磁界Hと磁束密度Bとの時間変化をプロットすると、原点を中心とする閉曲線(図5に、概略的に二点鎖線A1で示す)となる。なお、図5において、横軸はコア50にかかる磁界Hを示し、縦軸はコア50内の磁束密度Bを示している。また、図5における実線の矢印は、磁界Hの時間変化に対する磁束密度Bの変化の向きを示す。図5に示すように、磁界Hの大きさが増加するときと減少するときとで、同じ磁界Hの値に対するコア50の磁束密度Bの値は互いに異なる。すなわち、コア50の磁束密度Bは磁界Hに対してヒステリシスを示す。
コア50が磁化されていないときには、二次電流の大きさは一次電流の大きさに比例し、具体的には一次電流の大きさをコイル60の巻き数nで割った値で与えられる。コイル60に二次電流が流れると、負担抵抗101の両端間には、二次電流に比例する電圧が生じる。
本実施形態の一次電流測定部40において、電圧検出部41は、負担抵抗101の両端に接続されている。電圧検出部41は、負担抵抗101の両端間の電圧を、検出電圧として検出する。二次電流算出部42は、負担抵抗101の電気抵抗値を記憶している。二次電流算出部42は、検出電圧を負担抵抗101の電気抵抗値で割った値を、二次電流の測定値として算出する。一次電流算出部43は、コア50に対するコイル60の巻き数nを記憶している。一次電流算出部43は、二次電流の測定値とコイル60の巻き数nとの積を、一次電流の測定値として算出する。これにより、一次電流測定部40は、コイル60の両端間に接続されている負担抵抗101の両端電圧(検出電圧)から、一次電流の測定値を求めることができる。
上記のように、本実施形態の一次電流測定部40は、コイル60に流れる二次電流の測定値から、導電部材(導電バー84)を流れる一次電流を算出している。この二次電流は、コア50内に生じた磁束の時間変化によって生じる。しかし、コア50の周囲環境によっては、導電部材に流れる一次電流からの磁界によらない残留磁束が、コア50内に生じることがある。コア50内に残留磁束が生じると、コア50内に残留磁束がないときと比べて、コア50内の磁束の時間変化によって生じる二次電流が変化する可能性がある。
例えば、導電バー84に接続された負荷回路における負荷が短絡する等して、導電バー84に一方向(例えば交流電源200から負荷に向かう向き)の大電流(例えば、瞬時値が5kA程度の電流)が流れると、導電バー84の周りにこの電流に応じた磁界が発生する。コア50内の磁束密度Bは、この磁界によって増大して(図5の点線A2参照)、コア50が磁化され(磁気飽和し)、コア50内に残留磁束が生じることになる。このときのコア50内の磁束密度Bは、コア50にかかる磁界Hにより生じる成分と残留磁束密度との足し合わせとなる。例えば、コア50内の磁界Hと磁束密度Bとの時間変化をプロットすると、原点とは異なる点を中心とする閉曲線(図5に、概略的に一点鎖線A3で示す)となる。
また、コア50の透磁率等は、コア50の温度の影響を受ける。したがって、例えば導電部材(導電バー84)を流れる一次電流によって導電部材(導電バー84)が発熱し、コア50の温度が変化(上昇)すると、一次電流測定部40で測定される一次電流の測定値が、実際の一次電流の大きさとは異なる可能性がある。
そこで、本実施形態の電流計測システム2は、測定電流補正部90を備えている。測定電流補正部90は、一次電流測定部40による一次電流の測定値を測定値の変化に応じて補正して、補正後測定値を求める。すなわち、測定電流補正部90は、一次電流の測定値の変化から推定されるコア50の周囲環境の変化に応じて、一次電流測定部40による一次電流の測定値を補正する。本実施形態の電流計測システム2では、測定電流補正部90で求めた補正後測定値を、一次電流の実測値として外部に出力する。
以下、測定電流補正部90について、図1を参照して説明する。
一次電流測定部40は、所定の時間間隔で、一次電流の測定値を測定電流補正部90に送信する。所定の時間間隔は、一次電流の一周期(例えば、交流電源200が商用電源であれば、1/50又は1/60秒)よりも十分短い時間に設定される。測定電流補正部90は、所定期間(一次電流測定部40が測定値を送信する時間間隔よりも十分長い期間、例えば一次電流の一周期)内に一次電流測定部40から取得する一次電流の測定値を用いて、一次電流の測定値を補正する。
本実施形態の測定電流補正部90は、第1補正部91と第2補正部92とを備える。第1補正部91は、コア50内の残留磁束密度に応じて一次電流の測定値を補正する。第1補正部91は、例えば、コア50内の残留磁束密度に応じた補正係数で、一次電流の測定値を補正する。第2補正部92は、コア50の温度変化に応じて一次電流の測定値を補正する。第2補正部92は、例えば、コア50の温度変化量に応じた補正係数で、一次電流の測定値を補正する。
また、本実施形態の測定電流補正部90は、磁化判定部93と温度変化推定部94と現在温度推定部95とを更に備える。磁化判定部93は、コア50が磁化されているか否かを判定する。温度変化推定部94は、コア50の温度変化量を推定する。現在温度推定部95は、温度変化推定部94で推定されたコア50の温度変化量と、温度センサ99で測定された温度とをもとに、コア50の現在温度を推定する。
まず、第1補正部91及び磁化判定部93について説明する。
磁化判定部93は、一次電流測定部40による一次電流の測定値が所定の閾値を超えたか否かに基づいて、コア50が磁化されたか否かを判定する。上記の閾値は、一次電流測定部40による一次電流の測定に影響する程度の残留磁束密度がコア50内に生じる一次電流の大きさ、として設定される。上記の閾値は、例えば、一次電流の所望の検出精度、コア50の材料及び形状、導電部材(導電バー84)とコア50との距離、等に応じて設定される。磁化判定部93は、一次電流測定部40による一次電流の測定値が上記の閾値を超えた(コア50が磁化された)と判定すると、その旨を第1補正部91に通知する。
第1補正部91は、コア50内の残留磁束密度に応じて、一次電流測定部40による一次電流の測定値を補正する。第1補正部91は、コア50内の残留磁束密度に応じた補正係数で、一次電流測定部40による一次電流の測定値を補正する。第1補正部91は、磁化判定部93で、一次電流測定部40による一次電流の測定値が閾値を超えたと判定された場合、それ以降に一次電流測定部40で測定された一次電流の測定値を、所定期間内における測定値の変化に応じて補正する。
第1補正部91は、一次電流の半周期毎における一次電流の測定値の極値に基づいて、測定値を補正する。より詳細には、第1補正部91は、一次電流の半周期毎における一次電流の測定値の極値に基づいて、コア50内の残留磁束密度を求める(推定する)。第1補正部91は、求めたコア50内の残留磁束密度に応じて、一次電流測定部40による一次電流の測定値を補正する。
例えば、第1補正部91は、各半周期における一次電流の測定値の極値から、一次電流の一周期におけるコア50内の磁束密度中央値を求め(推定し)、求めた磁束密度中央値に応じて一次電流の測定値を補正する。磁束密度中央値は、B−H曲線図(図5,図6参照)において、コア50内の磁界Hと磁束密度Bとの時間変化のプロットで表される閉曲線(図5のA1,A3参照)の、中心の座標の縦軸方向の成分に相当する。すなわち、磁束密度中央値は、コア50の磁化の程度(偏磁状態の程度)を示している。
コア50内の磁束密度Bは、コア50にかかる磁界Hの時間変化に応じて、図5のA1,A3等で示される閉曲線に沿って変化する。コア50にかかる磁界Hは、一次電流による磁界と二次電流による磁界との和であって一次電流にほぼ比例するので、一次電流の一周期の間に、コア50内の磁束密度Bは図5のB−H曲線図の閉曲線(例えば、A3参照)を一周する。コア50内の磁束密度Bの一周期は、一次電流の一周期に相当し、横軸に時間t、縦軸にコア50内の磁束密度Bをとると、コア50内の磁束密度Bは、図6の右図の実線のように変化する。すなわち、周期的に変化するコア50内の磁束密度Bの、ある周期Ti(iは自然数)における磁束密度Bは、極大値B(i)maxと極小値B(i)minとを持つ。
第1補正部91は、磁束密度Bのある周期Tiにおける、一次電流測定部40による一次電流の測定値を補正するために、この周期Tiの磁束密度中央値B0(i)を求める。第1補正部91は、磁束密度中央値B0(i)を求めるために、この周期Tiの直前の周期Ti−1の負の半周期におけるコア50内の磁束密度Bの極値(極小値B(i−1)min)を求める。また、第1補正部91は、この周期Tiのうちの正の半周期におけるコア50内の磁束密度Bの極値(極大値B(i)max)と、負の半周期における磁束密度Bの極値(極小値B(i)min)と、を求める。なお、周期Tiの正の半周期は、周期Tiのうちでコア50内の磁束密度Bが極大となる時点を含む半周期を意味する。また、周期Tiの負の半周期は、コア50内の磁束密度Bが極小となる時点を含む半周期を意味する。
ある周期Tiにおける正の半周期のコア50内の磁束密度Bの極値は、例えば、直前の周期Ti−1において一次電流の補正後測定値を求めるために用いた補正係数と、この周期Tiのうちの正の半周期における一次電流の測定値と、から推定される。同様に、ある周期Tiにおける負の半周期のコア50内の磁束密度Bの極値は、直前の周期Ti−1において一次電流の補正後測定値を求めるために用いた補正係数と、この周期Tiのうちの負の半周期における一次電流の測定値と、から推定される。そして、第1補正部91は、直前の周期Ti−1の負の半周期におけるコア50の磁束密度Bの極小値B(i−1)minと、周期Tiのうちの正の半周期におけるコア50の磁束密度Bの極大値B(i)maxと、の差(変化量:増加量ΔB(i)=|B(i)max−B(i−1)min|)を求める。また、第1補正部91は、周期Tiのうちの正の半周期におけるコア50の磁束密度Bの極大値B(i)maxと、周期Tiのうちの負の半周期におけるコア50の磁束密度Bの極小値B(i)minと、の差(変化量:減少量ΔB(i)=|B(i)min−B(i)max|)を求める。第1補正部91は、増加量ΔB(i)と減少量ΔB(i)との差と、直前の周期Ti−1に関して求めた磁束密度中央値B0(i−1)と、の和を、この周期Tiの磁束密度中央値B0(i)として算出する。したがって、周期Tiにおける磁束密度中央値B0(i)は、
B0(i)=B0(i−1)+{ΔB(i)−ΔB(i)}(iは、自然数)
で与えられる。
第1補正部91は、求めた磁束密度中央値B0(i)に応じて、一次電流の測定値を補正するための補正係数を決定する。
一例において、第1補正部91は、磁束密度中央値B0(i)と補正係数とを対応付けたテーブル(第1テーブル)を備えている。第1補正部91は、求めた磁束密度中央値B0(i)に対応する補正係数を第1テーブルから読み出し、一次電流測定部40で測定された一次電流の測定値と読み出した補正係数との積を求めることで、補正後測定値を算出する。
別例において、第1補正部91は、磁束密度中央値B0(i)と補正係数とを対応付けた補正式(第1補正式)を備えている。第1補正部91は、求めた磁束密度中央値B0(i)に対応する補正係数を第1補正式から求め、一次電流測定部40で測定された一次電流の測定値と得られた補正係数との積を求めることで、補正後測定値を算出する。
磁束密度中央値B0(i)と補正係数との対応関係は、図7に示すように、例えば、磁束密度中央値B0(i)の大きさが所定の閾値B0th以下の範囲では、補正係数は磁束密度中央値B0(i)によらずに“1”であり、測定値に対する補正は行われない。また、磁束密度中央値B0(i)の大きさが閾値B0thより大きい範囲では、補正係数は、磁束密度中央値B0(i)の大きさに対して線形に増加する。
すなわち、第1補正部91が、コア50の磁化の程度に応じて決まる補正係数で、一次電流測定部40による一次電流の測定値を補正するので、電流計測システム2は、一次電流の検出精度の低下を抑制することが可能となる。
図1に示すように、電流計測システム2は、通知部102と消磁部103とを更に備えていることが好ましい。
通知部102は、例えば計測装置100に設けられている。通知部102は、磁化判定部93で一次電流測定部40により一次電流の測定値が閾値を超えたと判定されたときに、報知を行う。通知部102は、例えばLED(Light emitting diode)とLEDを点灯させるための駆動回路とを備える。通知部102の駆動回路は、磁化判定部93で一次電流の測定値が閾値を超えたと判定されると、LEDを点灯させる。或いは、通知部102は、スピーカと、スピーカを駆動するための駆動回路とを備えてもよい。通知部102の駆動回路は、磁化判定部93で一次電流の測定値が閾値を超えたと判定されると、スピーカを動作させてスピーカから所定の音(例えば、「ピー」という音)を出力させる。
消磁部103は、例えば計測装置100に設けられている。消磁部103は、例えば使用者の操作を受け付ける操作部(例えば押し釦)と、コイル60の両端間に介在して負担抵抗101と直列に接続された可変抵抗と、可変抵抗を制御して可変抵抗の電気抵抗値を変化させる駆動回路と、を備える。消磁部103は、操作部が操作されると、可変抵抗の電気抵抗値を増加させた後に減少させる。可変抵抗の電気抵抗値が増加すると、コイル60に流れる二次電流が小さくなるから、二次電流によりコア50にかかる磁界も小さくなる。したがって、コア50内の磁束密度Bは、二次電流によりコア50にかかる磁界によらず、交流の一次電流による磁界の時間変化に応じて変化することになる。例えば、コア50内の磁界Hと磁束密度Bとの時間変化をプロットすると、原点を中心とし曲線A1,A3を内部に含む大きな閉曲線(図5に、概略的に点線A4で示す)となる。この後、可変抵抗の電気抵抗値を徐々に減少させれば、二次電流及びそれによりコア50内に生じる磁束が徐々に大きくなり、コア50内の残留磁束密度はゼロに近づく。これにより、コア50を消磁することが可能となる。或いは、消磁部103は、コア50の近くに設けられてコア50の温度をキュリー温度以上に上昇させるための熱源を備えていてもよい。
次に、第2補正部92、温度変化推定部94、及び現在温度推定部95について説明する。
温度変化推定部94は、一次電流測定部40による一次電流の測定値の変化に応じて、コア50の温度変化量を推定する。導電部材(導電バー84)に一次電流が流れると、流れた一次電流に応じて導電部材が発熱し、導電部材の周りに配置されたコア50の温度も上昇する。温度変化推定部94は、この、導電部材に流れた一次電流により生じるコア50の温度変化量を、推定する。
現在温度推定部95は、温度センサ99で測定された温度(分電盤1の基準温度;導電部材の周囲温度)と温度変化推定部94で推定されたコア50の温度変化量とから、(コア50毎に)コア50の現在温度を推定する。そして、第2補正部92は、現在温度推定部95で推定されたコア50の現在温度に応じて、一次電流測定部40で測定された一次電流の測定値を補正する。第2補正部92は、コア50の現在温度に応じた補正係数で、一次電流測定部40による一次電流の測定値を補正する。
一例において、第2補正部92は、コア50の現在温度と補正係数とを対応付けたテーブル(第2テーブル)を備えている。第2補正部92は、現在温度推定部95で求めたコア50の現在温度に対応する補正係数を、第2テーブルから読み出し、一次電流測定部40で測定された一次電流の測定値と読み出した補正係数との積を求めることで、補正後測定値を算出する。
別例において、第2補正部92は、コア50の現在温度と補正係数とを対応付けた補正式(第2補正式)を備えている。第2補正部92は、現在温度推定部95で求めたコア50の現在温度に対応する補正係数を第2補正式から求め、一次電流測定部40で測定された一次電流の測定値と得られた補正係数との積を求めることで、補正後測定値を算出する。
すなわち、第2補正部92は、一次電流測定部40による一次電流の測定値から推定されるコア50の温度変化に応じて、測定値を補正するので、電流計側システム2は、一次電流の検出精度の低下を抑制することが可能となる。
上記のように、本実施形態の電流計測システム2は、一次電流測定部40による一次電流の測定値の変化に応じて測定値を補正する測定電流補正部90を備えている。したがって、周囲環境の変化によってコア50の状態が変化しても、一次電流測定部40による一次電流の測定値からコア50の状態を推定して測定値を補正することで、電流の検出精度の低下を抑制することが可能となる。
なお、第2補正部92は、磁化判定部93でコア50が磁化されていないと判定されている場合に、一次電流測定部40による一次電流の測定値を補正してもよい。
また、図2及び図3に示すように、本実施形態の電流計測システム2は、複数の電流センサ30(31〜33)を備えており、複数(6個)のコア50及び複数(6個)のコイル60を備えている。複数(6個)のコイル60のうちのいくつか(3個)のコイル60には、同一の導電部材(L1相の導電バー84)が通されている。複数(6個)のコイル60のうちの別のいくつか(3個)のコイル60には、別の導電部材(L2相の導電バー84)が通されている。複数のコイル60の各々は、複数のコア50のうちの対応するコア50に巻回されている。一次電流測定部40は、複数のコイル60毎に、このコイル60の両端間に接続される負担抵抗101の両端電圧から、導電部材(導電バー84)に流れる一次電流の測定値を求める。また測定電流補正部90は、複数のコイル60毎に(個別に)、このコイル60に対して求めた測定値の変化に応じて測定値を補正する。
複数(6個)のコア50のうちのいくつか(3個)のコア50には、同一の導電部材(例えばL1相の導電バー84)が通されている。しかし、コア50とコア50との間の位置において、導電部材(L1相の導電バー84)は分岐ブレーカ20によって分岐されているので、コア50が位置する場所によって導電部材(L1相の導電バー84)を流れる電流は互いに異なる。本実施形態では、コイル60毎に、一次電流の測定値を補正しているので、検出精度の低下をより抑制することが可能となる。
(2)変形例
以下、変形例に係る電流計測システム2について、説明する。以下では、図1〜図4に基づいて説明した実施形態を、「基本例」と呼ぶ。各変形例の電流計測システム2は、基本例の電流計測システム2に変えて、分電盤1に設けることが可能である。
一変形例において、第1補正部91は、磁束密度中央値を求めなくてもよい。例えば、第1補正部91は、一次電流の測定値の最大値のみに応じて、測定値を補正してもよい。例えば、第1補正部91は、一次電流の測定値の最大値と補正係数とを対応付けたテーブルを備え、このテーブルに基づいて、一次電流測定部40による一次電流の測定値を補正する。例えば、短絡電流等の大電流が導電部材(導電バー84)に一度のみ流れるだけの場合には、この補正方法で測定値を補正しても電流の検出精度の低下を十分に抑制することが可能である。
一変形例において、測定電流補正部90は、一次電流の測定値に代えて、負担抵抗101の両端電圧の測定値に基づいて補正を行ってもよいし、負担抵抗101の両端電圧から算出される二次電流の測定値に基づいて補正を行ってもよい。
基本例の測定電流補正部90は、第1補正部91と第2補正部92との両方を備えているが、一変形例の測定電流補正部90は第1補正部91と第2補正部92とのうちの一方だけを備えていてもよい。
基本例の第1補正部91は、磁化判定部93で一次電流の測定値が閾値を超えたと判定された場合に一次電流の測定値の補正を行う構成であるが、一変形例の第1補正部91は、磁化判定部93の判定結果によらずに(常に)一次電流の測定値の補正を行ってもよい。すなわち、磁化判定部93は省略可能である。
一変形例において、第2補正部92は、温度変化推定部94で推定された温度変化量と補正係数とを対応付けたテーブル又は補正式を備えていてもよい。すなわち、温度センサ99及び現在温度推定部95は省略可能である。
(3)態様
以上説明したように、第1の態様に係る電流計測システム(2)は、コア(50)と、コイル(60)と、一次電流測定部(40)と、測定電流補正部(90)と、を備える。コア(50)は、交流の一次電流が流れる導電部材(導電バー84)を通すための貫通孔(500)を有する。コイル(60)は、コア(50)に巻回される。一次電流測定部(40)は、コイル(60)の両端間に接続される負担抵抗(101)の両端電圧から、一次電流の測定値を求める。測定電流補正部(90)は、一次電流測定部(40)による一次電流の測定値を測定値の変化に応じて補正して、補正後測定値を求める。
この構成によれば、測定電流補正部(90)が、一次電流測定部(40)による一次電流の測定値の変化に応じて、測定値を補正する。したがって、周囲環境の変化によってコア(50)の状態が変化しても、このコア(50)の状態の変化を反映した補正係数で一次電流の測定値を補正することで、電流の検出精度の低下を抑制することが可能となる。
第2の態様の電流計測システム(2)は、第1の態様において、測定電流補正部(90)は、磁化判定部(93)と、第1補正部(91)と、を備える。磁化判定部(93)は、一次電流測定部(40)による一次電流の測定値が閾値を超えたか否かに基づいて、コア(50)が磁化されているか否かを判定する。第1補正部(91)は、磁化判定部(93)でコア(50)が磁化されたと判定された場合に、所定期間内における測定値の変化に応じて測定値を補正する。
この構成によれば、短絡電流等の大電流によってコア(50)が磁化した場合であっても、磁化判定部(93)でこれを検知し、第1補正部(91)で一次電流の測定値を補正することで、電流の検出精度の低下を抑制することが可能となる。
第3の態様の電流計測システム(2)は、第2の態様において、第1補正部(91)は、一次電流の半周期毎における測定値の極値に基づいて、一次電流測定部(40)による一次電流の測定値を補正する。
コア(50)内の磁束密度(B)は、一次電流と同じ周期で変動する。したがって、この構成によれば、コア(50)内の磁束密度(B)の時間変化に応じて、一次電流の測定値を補正することが可能となる。
第4の態様の電流計測システム(2)は、第3の態様において、第1補正部(91)は、一次電流の半周期毎における測定値の極値に基づいて、コア(50)内の残留磁束密度を推定する。また、第1補正部(91)は、推定されたコア(50)内の残留磁束密度に応じて、一次電流測定部(40)による一次電流の測定値を補正する。
この構成によれば、コア(50)内の残留磁束密度に応じて一次電流の測定値を補正するので、電流の検出精度の低下をより抑制することが可能となる。
第5の態様の電流計測システム(2)は、第1〜第4の何れかの態様において、測定電流補正部(90)は、温度変化推定部(94)と、第2補正部(92)と、を備える。温度変化推定部(94)は、一次電流測定部(40)による一次電流の測定値の変化に応じて、コア(50)の温度変化を推定する。第2補正部(92)は、温度変化推定部(94)で推定されたコア(50)の温度変化に応じて、一次電流測定部(40)による一次電流の測定値を補正する。
この構成によれば、コア(50)の温度変化に応じて、一次電流の測定値を補正することが可能となる。
第6の態様の電流計測システム(2)は、第5の態様において、導電部材(導電バー84)の周囲温度を測定する温度センサ(99)を更に備える。測定電流補正部(90)は、現在温度推定部(95)を更に備える。現在温度推定部(95)は、温度センサ(99)で測定された温度と温度変化推定部(94)で推定されたコア(50)の温度変化とから、コア(50)の現在温度を推定する。第2補正部(92)は、現在温度推定部(95)で推定されたコア(50)の現在温度に応じて、一次電流測定部(40)による一次電流の測定値を補正する。
この構成によれば、コア(50)の温度変化から求めたコア(50)の現在温度に応じて、一次電流の測定値を補正することが可能となる。
第7の態様の電流計測システム(2)は、第2〜第6の何れかの態様において、一次電流測定部(40)による一次電流の測定値が閾値を超えたと磁化判定部(93)で判定されたときに、報知を行う通知部(102)を、更に備える。
この構成によれば、使用者に、コア(50)の消磁を促すことができる。
第8の態様の電流計測システム(2)は、第1〜第7の何れかの態様において、コア(50)と、コイル(60)と、を複数備える。複数のコイル(60)の各々は、複数のコア(50)のうちの対応するコア(50)に巻回される。一次電流測定部(40)は、複数のコイル(60)毎に、このコイル(60)の両端間に接続される負担抵抗(101)の両端電圧から一次電流の測定値を求める。測定電流補正部(90)は、複数のコイル(60)毎に、このコイル(60)に対して求めた測定値の変化に応じてこの測定値を補正する。
この構成によれば、コア(50)毎に、一次電流の測定値を補正することが可能となる。
第9の態様の分電盤(1)は、第1〜第8の何れかの態様の電流計測システム(2)と、導電部材(導電バー84)と、ブレーカ(主幹ブレーカ10又は分岐ブレーカ20)と、キャビネット(70)と、を備える。ブレーカ(主幹ブレーカ10又は分岐ブレーカ20)は、導電部材(導電バー84)に接続される。キャビネット(70)は、少なくとも導電部材(導電バー84)及びブレーカ(主幹ブレーカ10又は分岐ブレーカ20)を収納する。
この構成によれば、周囲環境の変化によってコア(50)の状態が変化しても、電流の検出精度の低下を抑制することが可能となる。
1 分電盤
2 電流計測システム
10 主幹ブレーカ(ブレーカ)
20 分岐ブレーカ(ブレーカ)
40 一次電流測定部
50 コア
500 貫通孔
60 コイル
84 導電バー(導電部材)
90 測定電流補正部
91 第1補正部
92 第2補正部
93 磁化判定部
94 温度変化推定部
95 現在温度推定部
99 温度センサ
101 負担抵抗
102 通知部

Claims (9)

  1. 交流の一次電流が流れる導電部材を通すための貫通孔を有するコアと、
    前記コアに巻回されるコイルと、
    前記コイルの両端間に接続される負担抵抗の両端電圧から、前記一次電流の測定値を求める一次電流測定部と、
    前記測定値の変化に応じて前記測定値を補正して、補正後測定値を求める測定電流補正部と、
    を備える
    電流計測システム。
  2. 前記測定電流補正部は、
    前記測定値が閾値を超えたか否かに基づいて前記コアが磁化されているか否かを判定する磁化判定部と、
    前記磁化判定部で前記コアが磁化されたと判定された場合に、所定期間内における前記測定値の変化に応じて前記測定値を補正する第1補正部と、
    を備える
    請求項1記載の電流計測システム。
  3. 前記第1補正部は、前記一次電流の半周期毎における前記測定値の極値に基づいて、前記測定値を補正する
    請求項2記載の電流計測システム。
  4. 前記第1補正部は、
    前記一次電流の半周期毎における前記測定値の極値に基づいて、前記コア内の残留磁束密度を推定し、
    推定された前記コア内の残留磁束密度に応じて前記測定値を補正する
    請求項3記載の電流計測システム。
  5. 前記測定電流補正部は、
    前記測定値の変化に応じて前記コアの温度変化を推定する温度変化推定部と、
    前記温度変化推定部で推定された前記コアの温度変化に応じて前記測定値を補正する第2補正部と、
    を備える
    請求項1〜4の何れか一項に記載の電流計測システム。
  6. 前記導電部材の周囲温度を測定する温度センサを更に備え、
    前記測定電流補正部は、前記温度センサで測定された温度と前記温度変化推定部で推定された前記コアの温度変化とから、前記コアの現在温度を推定する現在温度推定部を更に備え、
    前記第2補正部は、前記現在温度推定部で推定された前記コアの現在温度に応じて前記測定値を補正する
    請求項5記載の電流計測システム。
  7. 前記測定値が前記閾値を超えたと前記磁化判定部で判定されたときに、報知を行う通知部を、更に備える
    請求項2〜4の何れか一項に記載の電流計測システム。
  8. 前記コアと、前記コイルと、を複数備え、
    前記複数のコイルの各々は、前記複数のコアのうちの対応するコアに巻回され、
    前記一次電流測定部は、前記複数のコイル毎に、このコイルの両端間に接続される負担抵抗の両端電圧から一次電流の測定値を求め、
    前記測定電流補正部は、前記複数のコイル毎に、このコイルに対して求めた測定値の変化に応じてこの測定値を補正する
    請求項1〜7の何れか一項に記載の電流計測システム。
  9. 請求項1〜8のいずれか1項に記載の電流計測システムと、
    前記導電部材と、
    前記導電部材に接続されるブレーカと、
    少なくとも前記導電部材及び前記ブレーカを収納するキャビネットと、
    を備える分電盤。
JP2017004709A 2017-01-13 2017-01-13 電流計測システム、及び分電盤 Pending JP2018112535A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017004709A JP2018112535A (ja) 2017-01-13 2017-01-13 電流計測システム、及び分電盤

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017004709A JP2018112535A (ja) 2017-01-13 2017-01-13 電流計測システム、及び分電盤

Publications (1)

Publication Number Publication Date
JP2018112535A true JP2018112535A (ja) 2018-07-19

Family

ID=62911144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017004709A Pending JP2018112535A (ja) 2017-01-13 2017-01-13 電流計測システム、及び分電盤

Country Status (1)

Country Link
JP (1) JP2018112535A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200060149A (ko) * 2018-11-22 2020-05-29 주식회사 아이티엑스엠투엠 시스템 정보를 이용한 보정 기능을 갖는 전류 측정 장치 및 방법
KR20200080007A (ko) * 2018-12-26 2020-07-06 엘에스일렉트릭(주) 기중회로차단기의 변류기
CN112557736A (zh) * 2020-12-17 2021-03-26 武汉第二船舶设计研究所(中国船舶重工集团公司第七一九研究所) 一种导体面电流密度分布的测量系统及测量方法
JPWO2020022255A1 (ja) * 2018-07-23 2021-08-02 日本電気株式会社 測定装置及び電圧生成方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020022255A1 (ja) * 2018-07-23 2021-08-02 日本電気株式会社 測定装置及び電圧生成方法
JP7111163B2 (ja) 2018-07-23 2022-08-02 日本電気株式会社 測定装置及び電圧生成方法
KR20200060149A (ko) * 2018-11-22 2020-05-29 주식회사 아이티엑스엠투엠 시스템 정보를 이용한 보정 기능을 갖는 전류 측정 장치 및 방법
KR102141598B1 (ko) * 2018-11-22 2020-08-05 주식회사 아이티엑스엠투엠 시스템 정보를 이용한 보정 기능을 갖는 전류 측정 장치 및 방법
KR20200080007A (ko) * 2018-12-26 2020-07-06 엘에스일렉트릭(주) 기중회로차단기의 변류기
KR102153970B1 (ko) 2018-12-26 2020-09-09 엘에스일렉트릭(주) 기중회로차단기의 변류기
US11810709B2 (en) 2018-12-26 2023-11-07 Ls Electric Co., Ltd. Current transformer of air circuit breaker
CN112557736A (zh) * 2020-12-17 2021-03-26 武汉第二船舶设计研究所(中国船舶重工集团公司第七一九研究所) 一种导体面电流密度分布的测量系统及测量方法

Similar Documents

Publication Publication Date Title
JP2018112535A (ja) 電流計測システム、及び分電盤
KR101505754B1 (ko) 건축물의 전력 사용량을 모니터링하기 위한 시스템 및 그 방법
US7821253B2 (en) Direct current measuring device having magnetic sensors for current generated magnetic fields
JP6234385B2 (ja) 車両内の連続成分を含む漏れ電流の検出
US4278940A (en) Means for automatically compensating DC magnetization in a transformer
DE60002319D1 (de) Elektrischer stromsensor
JP4103608B2 (ja) 車両用発電機のトルク演算装置
BR112012026073B1 (pt) método e aparelho para a detecção de um parâmetro magnético e suas aplicações
KR20120076320A (ko) 전류 측정 시스템 및 그 조립 방법
WO2010043937A1 (en) Method and apparatus for current measurement using hall sensors without iron cores
JPS6321867B2 (ja)
US20080125988A1 (en) Current measuring device and method
JPS63306608A (ja) 電気導体を流れる電流を測定する計器用変成器
JP2017058288A (ja) 非接触型直流電流センサ及び該非接触型直流電流センサを用いてなる直流電流計測システム
JP2002202328A (ja) 磁界型電流センサ
JPH06174753A (ja) 大電流検出装置
Wang et al. Split core closed loop Hall effect current sensors and applications
US4573012A (en) Method and apparatus for measuring core loss of a laminated ferromagnetic structure
JP2018105798A (ja) 電流計測システム、及び分電盤
JP2018132300A (ja) 電流計測システム、及び分電盤
JP6323778B2 (ja) 分電盤用キャビネット及びそれを用いた分電盤
WO2021003719A1 (en) Sensing apparatus and sensing method
JP6631903B2 (ja) 電流センサ、およびそれを備えた分電盤
JP6607498B2 (ja) 電流センサ、及びそれを備えた分電盤
JP2015208095A (ja) 電流計測器及びそれを用いた分電盤