JP2018100203A - Manufacturing apparatus and manufacturing method of glass substrate - Google Patents

Manufacturing apparatus and manufacturing method of glass substrate Download PDF

Info

Publication number
JP2018100203A
JP2018100203A JP2016247970A JP2016247970A JP2018100203A JP 2018100203 A JP2018100203 A JP 2018100203A JP 2016247970 A JP2016247970 A JP 2016247970A JP 2016247970 A JP2016247970 A JP 2016247970A JP 2018100203 A JP2018100203 A JP 2018100203A
Authority
JP
Japan
Prior art keywords
gas
path
processing gas
air supply
glass substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016247970A
Other languages
Japanese (ja)
Other versions
JP6752447B2 (en
Inventor
好晴 山本
Yoshiharu Yamamoto
好晴 山本
弘樹 中塚
Hiroki Nakatsuka
弘樹 中塚
大野 和宏
Kazuhiro Ono
和宏 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2016247970A priority Critical patent/JP6752447B2/en
Priority to PCT/JP2017/043024 priority patent/WO2018116779A1/en
Priority to KR1020197019872A priority patent/KR102414501B1/en
Priority to CN201780079164.XA priority patent/CN110088055B/en
Priority to TW106143085A priority patent/TWI751242B/en
Publication of JP2018100203A publication Critical patent/JP2018100203A/en
Application granted granted Critical
Publication of JP6752447B2 publication Critical patent/JP6752447B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surface Treatment Of Glass (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing apparatus and a manufacturing method of a glass substrate in which maintenance of a surface treatment apparatus, which performs surface treatment onto a tabular glass by using treatment gas, can be executed safely and in a short time.SOLUTION: A manufacturing apparatus 10 of a glass substrate comprises a surface treatment apparatus 11 which supplies treatment gas Ga onto one principal surface Pa of a tabular glass being a glass substrate P, and applies predetermined surface treatment, in which the surface treatment apparatus 11 comprises: a treatment gas generating device 16; an air supply path 17 which supplies the treatment gas Ga onto one principal surface Pa of the tabular glass; a detoxifying device 18 which applies detoxifying treatment to the treatment gas Ga; an exhaust path 19 which introduces the treatment gas Ga, which was supplied onto one principal surface Pa, into the detoxifying device 18; and a nontoxic gas introducing path 20 which introduces nontoxic gas Gb into the air supply path 17, and either the nontoxic gas Gb or the treatment gas Ga can be introduced to an area of the air supply path 17 which is a downstream side of a merging position P1 between the nontoxic gas introducing path 20 and the air supply path 17.SELECTED DRAWING: Figure 1

Description

本発明は、ガラス基板の製造装置及び製造方法に関し、特に、ガラス基板となる板状ガラスの表面に対して処理ガスによる表面処理を施すための技術に関する。   The present invention relates to a glass substrate manufacturing apparatus and manufacturing method, and more particularly to a technique for performing a surface treatment with a processing gas on the surface of a sheet glass to be a glass substrate.

周知のように、近年の画像表示装置については、液晶ディスプレイ(LCD)、プラズマディスプレイ(PDP)、フィールドエミッションディスプレイ(FED)、有機ELディスプレイ(OLED)などに代表されるフラットパネルディスプレイ(以下、単にFPDという。)が主流となっている。これらFPDについては軽量化が推進されていることから、FPDに使用されるガラス基板についても薄板化に対する要求が高まっている。   As is well known, with respect to recent image display devices, flat panel displays (hereinafter simply referred to as liquid crystal displays (LCD), plasma displays (PDP), field emission displays (FED), organic EL displays (OLED), etc.). FPD) is the mainstream. Since weight reduction is promoted about these FPD, the request | requirement with respect to thickness reduction also about the glass substrate used for FPD is increasing.

上述したガラス基板は、例えば各種ダウンドロー法に代表される板状ガラスの成形方法により帯状に成形した板状ガラス(帯状板ガラス)を所定の寸法に切断し、切断した板状ガラスの幅方向(帯状板ガラスの主表面に平行で、かつ長手方向に直交する向きをいう。以下、同じ。)両端部分をさらに切断した後、必要に応じて、各切断面に研磨加工を施す等により得られる。   The glass substrate mentioned above cut | disconnects the plate-shaped glass (band-shaped plate glass) shape | molded by the strip shape by the shaping | molding method of the plate-shaped glass represented by various downdraw methods, for example to the predetermined dimension, and the width direction ( This refers to the direction parallel to the main surface of the belt-shaped plate glass and perpendicular to the longitudinal direction (the same applies hereinafter). After further cutting both end portions, it is obtained by polishing each cut surface as necessary.

ところで、この種のガラス基板を製造するに際しては、その製造過程における静電気の帯電が問題となることがある。すなわち、絶縁体であるガラスは非常に帯電し易い性質を有しており、ガラス基板の製造工程において、例えば載置台にガラス基板を載置し所定の加工を施す際、ガラス基板と載置台との接触剥離によりガラス基板が帯電することがある(これを、剥離帯電と呼ぶことがある。)。帯電したガラス基板に導電性の物体が近づくと放電が生じ、この放電によって、ガラス基板の主表面上に形成された各種素子や電子回路を構成する電極線の破損、あるいはガラス基板自体の破損を招くおそれがある(これらを、絶縁破壊又は静電破壊と呼ぶことがある。)。また、帯電したガラス基板は載置台に貼り付き易く、これを無理やり引き剥がすことでガラス基板の破損を招くおそれもある。これらは当然に表示不良の原因となるため、極力回避すべき事象である。   By the way, when this type of glass substrate is manufactured, electrostatic charging in the manufacturing process may be a problem. That is, the glass as an insulator has a property of being easily charged, and in the glass substrate manufacturing process, for example, when a glass substrate is placed on a mounting table and subjected to predetermined processing, the glass substrate and the mounting table The glass substrate may be charged by contact peeling (this may be referred to as peeling charging). When a conductive object approaches the charged glass substrate, a discharge occurs, and this discharge causes damage to various elements formed on the main surface of the glass substrate and the electrode wires constituting the electronic circuit, or to the glass substrate itself. (These are sometimes called dielectric breakdown or electrostatic breakdown.) Further, the charged glass substrate is likely to stick to the mounting table, and there is a possibility that the glass substrate may be damaged by forcibly peeling it off. Since these naturally cause display defects, they should be avoided as much as possible.

上記事象を回避するための手段として、例えばガラス基板の裏面(載置台の載置面と接触する側の主表面)に所定の処理ガスを供給して裏面に表面処理を施すことにより、裏面を粗面化する方法が考えられる。ガラス基板と載置台との接触面積が大きいほど剥離した際の帯電量が増大する傾向にあることから、載置台の載置面と接触するガラス基板の裏面を粗面化することで、ガラス基板と載置台との接触面積を減少させて、剥離時の帯電抑制を図ることが可能になるものと期待される。また、ガラス基板の裏面が平滑であるほど載置面の如き平滑面に貼り付き易い点に鑑み、上述のように、ガラス基板の裏面を粗面化して例えば当該裏面の表面粗さを載置面の表面粗さよりも大きくすることで、ガラス基板を載置面に貼り付き難くすることができる。これにより、剥離時のガラス基板の破損防止が可能になるものと期待される。   As a means for avoiding the above-mentioned phenomenon, for example, by supplying a predetermined processing gas to the back surface of the glass substrate (the main surface on the side contacting the mounting surface of the mounting table) and subjecting the back surface to surface treatment, A roughening method is conceivable. The larger the contact area between the glass substrate and the mounting table, the greater the amount of charge when peeling, so the glass substrate can be roughened by roughening the back surface of the glass substrate in contact with the mounting surface of the mounting table. It is expected that it is possible to reduce charging area at the time of peeling by reducing the contact area between and the mounting table. In addition, in view of the fact that the smoother the back surface of the glass substrate is, the easier it is to stick to a smooth surface such as a mounting surface, as described above, the back surface of the glass substrate is roughened and, for example, the surface roughness of the back surface is mounted. By making it larger than the surface roughness of the surface, the glass substrate can be made difficult to stick to the mounting surface. Thereby, it is expected that the glass substrate can be prevented from being damaged during peeling.

ここで、上記の如き表面処理を可能とする構成として、例えば下記特許文献1には、ガラス基板を載置した状態で所定の方向に搬送する搬送手段と、フッ化水素ガスを含む処理ガスを搬送経路上のガラス基板の裏面に向けて供給し、かつ供給した処理ガスを排気系へ排出するインジェクタとを備えた表面処理装置が記載されている。ここで、インジェクタには、フッ化水素ガス源と接続される第一のスリットがガラス基板の搬送方向所定位置に設けられると共に、キャリアガス源と接続される第二のスリットが第一のスリットの上記搬送方向両側の所定位置に設けられている。また、排気系と接続される第三のスリットが第二のスリットのさらに上記搬送方向両側の所定位置に設けられている。   Here, as a configuration that enables the surface treatment as described above, for example, in Patent Document 1 below, a conveying means that conveys a glass substrate in a predetermined direction and a processing gas containing hydrogen fluoride gas are provided. There is described a surface treatment apparatus that includes an injector that supplies the processing gas supplied toward the back surface of the glass substrate on the conveyance path and discharges the supplied processing gas to an exhaust system. Here, the injector is provided with a first slit connected to the hydrogen fluoride gas source at a predetermined position in the transport direction of the glass substrate, and a second slit connected to the carrier gas source is the first slit. It is provided at a predetermined position on both sides in the transport direction. A third slit connected to the exhaust system is provided at a predetermined position on both sides of the second slit in the transport direction.

特開2014−80331号公報JP 2014-80331 A

この種の表面処理装置が稼働している間は、特許文献1に記載のように、フッ化水素ガス源で生成したフッ化水素ガスを第一のスリット(いわば給気口)を介して連続的にガラス基板に供給して、供給したフッ化水素ガスを第一のスリットの周囲に配置した第三のスリット(いわば排気口)を介して排気系に向けて排出するフッ化水素ガスの流れ(給気系及び排気系)が形成される。ところが、何らかの事情で表面処理装置を停止してメンテナンスを行う場合には、表面処理装置の分解に先立って、まず人体にとって有害なフッ化水素ガスを上記給気系及び排気系から排除する必要が生じる。   While this type of surface treatment apparatus is operating, as described in Patent Document 1, hydrogen fluoride gas generated by a hydrogen fluoride gas source is continuously supplied through a first slit (so-called air supply port). The flow of hydrogen fluoride gas that is supplied to the glass substrate and discharged to the exhaust system through a third slit (so-called exhaust port) arranged around the first slit. (Air supply system and exhaust system) are formed. However, when maintenance is performed with the surface treatment apparatus stopped for some reason, it is necessary to first remove hydrogen fluoride gas harmful to the human body from the air supply system and the exhaust system before disassembling the surface treatment apparatus. Arise.

しかしながら、特許文献1に記載のように、フッ化水素ガス源と第一のスリットが所定の給気系を介して接続された構造をとる場合、たとえフッ化水素ガス源によるフッ化水素ガス源の生成及び供給を停止したとしても、上記給気系にはフッ化水素ガスが残存している。そのため、この給気系に残存しているフッ化水素ガスが完全に排出されるまでに多大な時間が必要となり、メンテナンスのための待ち時間が増大する。これでは、生産性の大幅な低下を招くおそれがあった。   However, as described in Patent Document 1, when a structure in which the hydrogen fluoride gas source and the first slit are connected via a predetermined air supply system is employed, even if the hydrogen fluoride gas source is a hydrogen fluoride gas source Even if the production and supply of the gas are stopped, hydrogen fluoride gas remains in the air supply system. Therefore, a long time is required until the hydrogen fluoride gas remaining in the air supply system is completely discharged, and the waiting time for maintenance increases. This may cause a significant decrease in productivity.

以上の事情に鑑み、本発明では、処理ガスを用いて板状ガラスへの表面処理を行う表面処理装置のメンテナンスを安全かつ短時間に実施可能とすることを、解決すべき技術的課題とする。   In view of the above circumstances, in the present invention, it is a technical problem to be solved to enable maintenance of a surface treatment apparatus that performs surface treatment on a sheet glass using a treatment gas safely and in a short time. .

前記課題の解決は、本発明に係るガラス基板の製造装置により達成される。すなわち、この製造装置は、ガラス基板となる板状ガラスの一方の主表面に処理ガスを供給して、所定の表面処理を施すための表面処理装置を備えたものであって、表面処理装置は、処理ガスを生成する処理ガス生成装置と、処理ガスを一方の主表面に供給する給気路と、処理ガスに除害処理を施す除害装置と、一方の主表面に供給された処理ガスを除害装置に導入する排気路とを備え、給気路に無害ガスを導入可能とする無害ガス導入路が給気路に合流する点をもって特徴付けられる。なお、ここでいう「無害ガス」とは、およそ人体に対して有害であると一般的に認識されている類のガス(大気汚染法等で規定されている有害物質を含むガス、有害ガス)を除いたガスであって、直接的に又は大気と混ざった状態で人体に接触し、又は吸い込んだりしても実質的に無害と認められるものを指す。   The solution to the above problem is achieved by the glass substrate manufacturing apparatus according to the present invention. That is, this manufacturing apparatus is provided with a surface treatment apparatus for supplying a treatment gas to one main surface of a sheet glass serving as a glass substrate and performing a predetermined surface treatment. , A processing gas generating device for generating a processing gas, an air supply passage for supplying the processing gas to one main surface, a detoxifying device for performing a detoxifying process on the processing gas, and a processing gas supplied to the one main surface And an exhaust passage for introducing a harmless gas into the detoxification device, and the harmless gas introduction passage that enables the introduction of the harmless gas into the air supply passage is characterized by joining the air supply passage. “Non-hazardous gas” as used herein is a gas that is generally recognized to be harmful to the human body (gas containing harmful substances regulated by the Air Pollution Law, harmful gases). It is a gas excluding the gas, which is recognized as being substantially harmless even if it is in contact with the human body or inhaled directly or mixed with the atmosphere.

このように、本発明では、給気路に無害ガスを導入する無害ガス導入路を給気路に合流させることにより、無害ガス導入路と給気路との合流位置よりも給気路の下流側に、無害ガスと処理ガスの何れか一方を導入可能とした。この構成によれば、給気路に無害ガスのみを導入することができるので、少なくとも給気路に残存している処理ガスを無害ガスで置換することができる。よって、作業者が安全に表面処理装置を分解してメンテナンスを行うことができる。また、給気路に無害ガス導入路が合流する形態をとることで、処理ガス生成装置を通過することなく給気路に無害ガスを導入することができる。処理ガス生成装置のような精密機器を通過させる場合、無害ガスの流量などが制限されるおそれがあるが、処理ガス生成装置を通過することなく無害ガスを導入するのであれば、その導入条件(無害ガスの流量、圧力、温度など)を比較的自由に設定することができる。よって、例えば流量を多めに設定することにより、無害ガスによる処理ガスの置換を短時間で行うことが可能となる。   As described above, in the present invention, the harmless gas introduction path that introduces the harmless gas into the supply path is joined to the supply path, so that the downstream of the supply path from the merging position of the harmless gas introduction path and the supply path. On the side, either harmless gas or processing gas can be introduced. According to this configuration, since only harmless gas can be introduced into the air supply path, at least the processing gas remaining in the air supply path can be replaced with harmless gas. Therefore, the operator can safely disassemble the surface treatment apparatus and perform maintenance. Moreover, by taking the form in which the harmless gas introduction path joins the air supply path, the harmless gas can be introduced into the air supply path without passing through the processing gas generation device. When passing a precision instrument such as a process gas generator, the flow rate of the harmless gas may be limited. However, if the harmless gas is introduced without passing through the process gas generator, the introduction condition ( The flow rate, pressure, temperature, etc. of the harmless gas can be set relatively freely. Therefore, for example, by setting a larger flow rate, it is possible to replace the processing gas with a harmless gas in a short time.

また、本発明に係るガラス基板の製造装置は、無害ガス導入路を開閉可能な第一開閉弁と、合流位置よりも給気路の上流側で給気路を開閉可能な第二開閉弁とをさらに備えたものであってもよい。あるいは、合流位置に設けられ、給気路のうち合流位置の上流側から下流側に向かう処理ガスの流れと、無害ガス導入路から合流位置の下流側に向かう無害ガスの流れとを切り替え可能な三方弁をさらに備えたものであってもよい。   The glass substrate manufacturing apparatus according to the present invention includes a first on-off valve capable of opening and closing a harmless gas introduction path, and a second on-off valve capable of opening and closing the air supply path upstream of the merging position. May be further provided. Alternatively, it is provided at the merging position and can switch between the flow of processing gas from the upstream side of the merging position to the downstream side of the air supply path and the flow of harmless gas from the harmless gas introduction path to the downstream side of the merging position. It may further include a three-way valve.

このように第一開閉弁と第二開閉弁を設けるようにすれば、簡易に合流位置よりも給気路の下流側に、無害ガスと処理ガスの何れか一方を導入することができる。また、合流位置に上記三方弁を設けるようにすれば、より簡易に合流位置よりも給気路の下流側に、無害ガス又は処理ガスを導入することができる。   If the first on-off valve and the second on-off valve are provided in this way, either harmless gas or processing gas can be easily introduced downstream of the merging position in the air supply path. If the three-way valve is provided at the joining position, harmless gas or processing gas can be introduced more easily on the downstream side of the air supply path than the joining position.

また、本発明に係るガラス基板の製造装置は、合流位置よりも給気路の上流側で分岐して排気路に処理ガスを導入する処理ガス分岐路をさらに備えたものであってもよい。また、例えば給気路に第二開閉弁を備える場合、処理ガス分岐路を開閉する第三開閉弁をさらに備えたものであってもよい。   Moreover, the glass substrate manufacturing apparatus according to the present invention may further include a processing gas branch path that branches off upstream of the air supply path from the merging position and introduces the processing gas into the exhaust path. Further, for example, when a second opening / closing valve is provided in the air supply passage, a third opening / closing valve for opening / closing the processing gas branch passage may be further provided.

上述のように、処理ガス分岐路を設けて、処理ガス分岐路に処理ガスを導入可能とすることによって(第二開閉弁を備える場合、さらに上述の第三開閉弁を備えることによって)、処理ガスを無害ガスに置換する間、処理ガス生成装置で生成した処理ガスを、処理ガス分岐路を通って排気路に送り続けることができる。よって、置換処理の間、処理ガス生成装置の内部、又は給気路のうち処理ガス生成装置と合流位置との間に処理ガスが閉じ込められることによる不具合の発生を回避して、安全に置換作業を行うことが可能となる。   As described above, a processing gas branch path is provided so that the processing gas can be introduced into the processing gas branch path (when the second on-off valve is provided, the above-described third on-off valve is further provided). While replacing the gas with a harmless gas, the processing gas generated by the processing gas generation device can continue to be sent to the exhaust path through the processing gas branch. Therefore, during the replacement process, it is possible to safely perform the replacement work by avoiding the occurrence of problems due to the process gas being confined between the process gas generation apparatus and the merging position in the process gas generation apparatus or in the supply path. Can be performed.

また、第三開閉弁を備える場合、本発明に係るガラス基板の製造装置は、処理ガス分岐路が排気路に合流する位置よりも排気路の上流側に配設され、排気路の開閉を行う第四開閉弁をさらに備えたものであってもよい。   When the third on-off valve is provided, the glass substrate manufacturing apparatus according to the present invention is disposed on the upstream side of the exhaust path from the position where the processing gas branch path joins the exhaust path, and opens and closes the exhaust path. A fourth open / close valve may be further provided.

このように、処理ガス分岐路が排気路に合流する位置よりも排気路の上流側に開閉弁(第四開閉弁)を設けることで、給気路のうち第二開閉弁より下流側の領域と板状ガラスの処理空間(処理ガスに曝される空間)が、処理ガスの流路(処理ガス分岐路及び排気路のうち第四開閉弁より下流側の領域)と完全に切り離された状態にすることができる。よって、例えば第四開閉弁を開いた状態で無害ガスによる処理ガスの置換を行い、上述した給気路と板状ガラスの処理空間が完全に無害ガスで満たされた状態となった時点で、第四開閉弁を閉じることで、処理ガス生成装置を停止させることなく、処理ガス分岐路と排気路の一部下流側を除いて表面処理装置を安全に分解してメンテナンスを行うことが可能となる。   Thus, by providing the on-off valve (fourth on-off valve) on the upstream side of the exhaust passage from the position where the processing gas branch passage joins the exhaust passage, the region on the downstream side of the second on-off valve in the supply passage And the glass processing space (the space exposed to the processing gas) are completely separated from the processing gas flow path (the processing gas branching path and the exhaust path downstream of the fourth on-off valve) Can be. Therefore, for example, when the fourth on-off valve is opened, the processing gas is replaced with a harmless gas, and when the above-described supply path and the processing space of the sheet glass are completely filled with the harmless gas, By closing the fourth on-off valve, it is possible to safely disassemble the surface treatment device and perform maintenance without stopping the treatment gas generation device, except for a part of the treatment gas branching passage and the exhaust passage downstream. Become.

また、本発明に係るガラス基板の製造装置は、無害ガスが、クリーンドライエアーであってもよい。   In the glass substrate manufacturing apparatus according to the present invention, the harmless gas may be clean dry air.

無害ガスとしては、人体に実質的に無害なガスであれば任意のガスを使用することができるが、板状ガラスに対する影響、コスト面等を総合的に考慮した場合、クリーンドライエアーが好適である。   As the harmless gas, any gas can be used as long as it is substantially harmless to the human body, but clean dry air is preferable when comprehensively considering the influence on the sheet glass, cost, etc. is there.

また、前記課題の解決は、本発明に係るガラス基板の製造方法によっても達成される。すなわち、この製造方法は、ガラス基板となる板状ガラスの表面に処理ガスを供給して、所定の表面処理を施す表面処理工程と、表面処理工程を停止している間に、表面処理を施すための装置のメンテナンスを行うメンテナンス工程とを備えた方法であって、表面処理工程において、処理ガス生成装置で生成した処理ガスを、給気路を介して表面に供給すると共に、表面に供給された処理ガスを、排気路を介して除害装置に導入して処理ガスに除害処理を施し、メンテナンス工程において、給気路を閉じると共に、給気路を閉じた位置よりも給気路の下流側で給気路に無害ガスを導入することで、給気路を通る処理ガスを無害ガスに置換する点をもって特徴付けられる。   Moreover, the solution of the above problem is also achieved by the method for manufacturing a glass substrate according to the present invention. That is, in this manufacturing method, a processing gas is supplied to the surface of a sheet glass to be a glass substrate to perform a predetermined surface treatment, and the surface treatment is performed while the surface treatment step is stopped. And a maintenance process for performing maintenance of the apparatus for supplying the processing gas generated by the processing gas generation device to the surface through the air supply path and being supplied to the surface in the surface treatment process. The treated gas is introduced into the abatement device through the exhaust passage to remove the treatment gas, and in the maintenance process, the supply passage is closed and the supply passage is closed from the position where the supply passage is closed. By introducing harmless gas into the air supply path on the downstream side, the processing gas passing through the air supply path is replaced with harmless gas.

このように、本発明に係るガラス基板の製造方法では、メンテナンス工程において、給気路を閉じると共に、給気路を閉じた位置よりも給気路の下流側で給気路に無害ガスを導入することで、給気路を通る処理ガスを無害ガスに置換するようにしたので、本発明に係るガラス基板の製造装置と同様、給気路に無害ガスのみを導入することができる。これにより少なくとも給気路に残存している処理ガスを無害ガスで置換することができるので、作業者が安全に表面処理装置を分解することが可能となる。また、給気路を閉じた位置よりも給気路の下流側に無害ガスを導入することにより、処理ガス生成装置を通過することなく給気路に無害ガスを導入することができる。そのため、無害ガスの給気路への導入条件(無害ガスの流量、圧力、温度など)を比較的自由に設定することができ、例えば流量を多めに設定することにより、無害ガスによる処理ガスの置換を短時間で行うことが可能となる。   As described above, in the method for manufacturing a glass substrate according to the present invention, in the maintenance process, the air supply path is closed, and a harmless gas is introduced into the air supply path downstream of the position where the air supply path is closed. Thus, since the processing gas passing through the air supply path is replaced with a harmless gas, only the harmless gas can be introduced into the air supply path as in the glass substrate manufacturing apparatus according to the present invention. As a result, at least the processing gas remaining in the air supply path can be replaced with a harmless gas, so that the operator can safely disassemble the surface treatment apparatus. Further, by introducing harmless gas downstream of the air supply path from the position where the air supply path is closed, it is possible to introduce the harmless gas into the air supply path without passing through the processing gas generation device. Therefore, the conditions for introducing harmless gas into the air supply path (hazardous gas flow rate, pressure, temperature, etc.) can be set relatively freely. For example, by setting a larger flow rate, Replacement can be performed in a short time.

また、本発明に係るガラス基板の製造方法は、メンテナンス工程において、給気路を閉じた位置よりも給気路の上流側で給気路から分岐して排気路に処理ガスを導入可能としたものであってもよい。   Further, the glass substrate manufacturing method according to the present invention allows the processing gas to be introduced into the exhaust passage by branching from the supply passage upstream of the supply passage in the maintenance process, upstream of the supply passage. It may be a thing.

このように、給気路を閉じた位置よりも給気路の上流側で給気路から分岐して排気路に処理ガスを導入可能とすることによって、給気路を閉じた状態においても、処理ガスを無害ガスに置換する間、処理ガス生成装置で生成した処理ガスを排気路に送り続けることができる。よって、置換処理の間、処理ガス生成装置の内部、又は給気路のうち処理ガス生成装置と給気路を閉じた位置までの間に処理ガスが閉じ込められることによる不具合の発生を回避して、安全に置換作業を行うことが可能となる。   In this way, even when the supply passage is closed, the processing gas can be introduced into the exhaust passage by branching from the supply passage on the upstream side of the supply passage from the position where the supply passage is closed. While the processing gas is replaced with a harmless gas, the processing gas generated by the processing gas generation device can be continuously sent to the exhaust path. Therefore, during the replacement process, avoid the occurrence of problems due to the process gas being trapped inside the process gas generator or between the supply gas path and the position where the process gas generator and the supply path are closed. It becomes possible to perform the replacement work safely.

また、この場合、本発明に係るガラス基板の製造方法は、メンテナンス工程において、給気路を通る処理ガスを無害ガスに置換した後、給気路への無害ガスの導入を停止すると共に、給気路から分岐して処理ガスを排気路に導入した位置よりも排気路の上流側で排気路を閉じるものであってもよい。   Further, in this case, the glass substrate manufacturing method according to the present invention replaces the processing gas passing through the air supply path with a harmless gas in the maintenance process, and then stops the introduction of the harmless gas into the air supply path. The exhaust passage may be closed on the upstream side of the exhaust passage from the position where the processing gas is branched from the air passage and introduced into the exhaust passage.

このように、各流路の開閉動作を行うことによって、給気路のうち給気路を閉じた位置よりも下流側の領域と板状ガラスの処理空間(処理ガスに曝される空間)が、処理ガスの流路(給気路からの処理ガスの分岐路及び排気路のうち排気路を閉じた位置よりも下流側の領域)と完全に切り離された状態にすることができる。よって、例えば排気路を開いた状態で無害ガスによる処理ガスの置換を行い、上述した給気路と板状ガラスの処理空間が完全に無害ガスで満たされた状態となった時点で、排気路を閉じることで、処理ガスの生成及び供給を一旦停止させることなく、処理ガスの上記流路を除いて表面処理装置を安全に分解してメンテナンスを行うことが可能となる。   Thus, by performing the opening / closing operation of each flow path, an area on the downstream side of the air supply path from the position where the air supply path is closed and a processing space of plate glass (a space exposed to the processing gas) are formed. In addition, the processing gas flow path (a region downstream of the position where the exhaust path is closed among the branch path and the exhaust path of the processing gas from the air supply path) can be completely separated. Thus, for example, when the exhaust gas is opened, the processing gas is replaced with a harmless gas, and when the above-described air supply channel and the processing space of the glass sheet are completely filled with the harmless gas, the exhaust gas is discharged. By closing the, the surface treatment apparatus can be safely disassembled and maintained without removing the flow path of the treatment gas without temporarily stopping the generation and supply of the treatment gas.

また、この場合、本発明に係るガラス基板の製造方法は、給気路を開いて給気路に処理ガスを導入すると共に、給気路から分岐した流路を閉じて、かつ排気路を開くことで、無害ガスを処理ガスに置換する、表面処理の再開準備工程をさらに備えたものであってもよい。   In this case, the glass substrate manufacturing method according to the present invention opens the air supply path to introduce the processing gas into the air supply path, closes the flow path branched from the air supply path, and opens the exhaust path. Thus, it may be further provided with a surface treatment resumption preparation step of replacing the harmless gas with the treatment gas.

給気路を閉じた状態で処理ガスを排気路に導入し続けることができるのであれば、少なくとも置換作業の間、処理ガスの生成を一旦停止せずに済む。そのため、例えばメンテナンス等の作業が終わった後、上述のように無害ガスの導入を停止した状態で給気路を開くと共に、処理ガスの分岐路を閉じ、かつ排気路を開くことで無害ガスを処理ガスに置換することによって、短時間で給気路及び排気路を再び処理ガスで満たすことができる。従って、処理ガスの生成を再開してから処理ガスの生成状態が安定するまでの時間を省略して、メンテナンス後、早急に表面処理を再開することが可能となる。   If the process gas can be continuously introduced into the exhaust path with the air supply path closed, generation of the process gas does not have to be stopped at least during the replacement operation. For this reason, for example, after maintenance work has been completed, the air supply passage is opened with the introduction of the harmless gas stopped as described above, the treatment gas branching passage is closed, and the exhaust passage is opened to remove the harmless gas. By substituting with the processing gas, the air supply path and the exhaust path can be filled with the processing gas again in a short time. Therefore, it is possible to omit the time until the process gas generation state is stabilized after the process gas generation is restarted, and to resume the surface treatment immediately after the maintenance.

また、本発明に係るガラス基板の製造方法は、メンテナンス工程において、処理ガス生成装置による処理ガスの生成を停止すると共に、処理ガスの原料となるガスの処理ガス生成装置への供給を停止し、処理ガスに含まれるキャリアガスの処理ガス生成装置への供給を続行するものであってもよい。   Further, the method for manufacturing a glass substrate according to the present invention stops the generation of the processing gas by the processing gas generation device in the maintenance process, and also stops the supply of the gas as the raw material of the processing gas to the processing gas generation device, The supply of the carrier gas contained in the processing gas to the processing gas generation device may be continued.

処理ガスとしてフッ化水素ガスを含むガスを使用する場合、このフッ化水素ガスを生成するための装置として、プラズマ反応を発生させることのできる処理ガス生成装置が使用される場合がある。この場合、処理ガス生成装置には、通常、フッ化水素ガスの原料となる四フッ化炭素ガスなどのガス(原料ガス)と、水、及びフッ化水素ガスに含まれる窒素ガスなどのキャリアガスが供給される。よって、メンテナンス工程において、酸性ガスの供給を停止して、キャリアガスを引き続き処理ガス生成装置に供給することによって、給気路だけでなく、処理ガス発生装置の内部の処理ガスを無害なガス(キャリアガス)で置換することができる。よって、表面処理装置の表面処理のための稼働停止時、処理ガス生成装置の内部が処理ガスに曝され続けることによる劣化を防止して、処理ガス生成装置を長期間にわたって使用することができる。また、処理ガス生成装置の内部の処理ガスをキャリアガスで置換することで、処理ガスを処理ガス生成装置の内部から完全に排除することができる。これにより、処理ガス生成装置の交換が必要となった場合であっても、安全に処理ガス生成装置を給気路から取り外すことが可能となる。   When a gas containing hydrogen fluoride gas is used as the processing gas, a processing gas generation device capable of generating a plasma reaction may be used as an apparatus for generating the hydrogen fluoride gas. In this case, the processing gas generation apparatus generally includes a gas (raw material gas) such as carbon tetrafluoride gas that is a raw material of hydrogen fluoride gas, and a carrier gas such as water and nitrogen gas contained in the hydrogen fluoride gas. Is supplied. Therefore, in the maintenance process, the supply of the acidic gas is stopped and the carrier gas is continuously supplied to the processing gas generation device, so that not only the air supply path but also the processing gas inside the processing gas generation device is harmless ( Carrier gas). Therefore, when the operation for the surface treatment of the surface treatment apparatus is stopped, deterioration due to the inside of the treatment gas generation apparatus being continuously exposed to the treatment gas can be prevented, and the treatment gas generation apparatus can be used for a long period of time. Further, by replacing the processing gas inside the processing gas generation apparatus with the carrier gas, the processing gas can be completely excluded from the inside of the processing gas generation apparatus. Thereby, even if it is a case where replacement | exchange of a process gas production | generation apparatus is needed, it becomes possible to remove a process gas production | generation apparatus from an air supply path safely.

以上に述べたように、本発明によれば、処理ガスを用いて板状ガラスへの表面処理を行う表面処理装置のメンテナンスを安全かつ短時間に実施することが可能となる。   As described above, according to the present invention, it is possible to safely and quickly perform maintenance of a surface treatment apparatus that performs surface treatment on a sheet glass using a treatment gas.

本発明の第一実施形態に係る表面処理装置の流路構成図である。It is a flow-path block diagram of the surface treatment apparatus which concerns on 1st embodiment of this invention. 図1に示す表面処理装置を用いた表面処理及びメンテナンスの手順を示すフローチャートである。It is a flowchart which shows the procedure of the surface treatment and maintenance using the surface treatment apparatus shown in FIG. 図1に示す表面処理装置を用いた表面処理及びメンテナンスの手順を説明するための流路構成図である。It is a flow-path block diagram for demonstrating the procedure of the surface treatment and maintenance using the surface treatment apparatus shown in FIG. 図1に示す表面処理装置を用いた表面処理及びメンテナンスの手順を説明するための流路構成図である。It is a flow-path block diagram for demonstrating the procedure of the surface treatment and maintenance using the surface treatment apparatus shown in FIG. 本発明の第二実施形態に係る表面処理装置の流路構成図である。It is a flow-path block diagram of the surface treatment apparatus which concerns on 2nd embodiment of this invention. 図5に示す表面処理装置を用いた表面処理及びメンテナンスの手順を示すフローチャートである。It is a flowchart which shows the procedure of the surface treatment and maintenance using the surface treatment apparatus shown in FIG. 図5に示す表面処理装置を用いた表面処理及びメンテナンスの手順を説明するための流路構成図である。It is a flow-path block diagram for demonstrating the procedure of the surface treatment and maintenance using the surface treatment apparatus shown in FIG. 図5に示す表面処理装置を用いた表面処理及びメンテナンスの手順を説明するための流路構成図である。It is a flow-path block diagram for demonstrating the procedure of the surface treatment and maintenance using the surface treatment apparatus shown in FIG. 図5に示す表面処理装置を用いた表面処理及びメンテナンスの手順を説明するための流路構成図である。It is a flow-path block diagram for demonstrating the procedure of the surface treatment and maintenance using the surface treatment apparatus shown in FIG. 本発明の第三実施形態に係る表面処理及びメンテナンスの手順を示すフローチャートである。It is a flowchart which shows the procedure of the surface treatment and maintenance which concern on 3rd embodiment of this invention. 本発明の第四実施形態に係る表面処理及びメンテナンスの手順を示すフローチャートである。It is a flowchart which shows the procedure of the surface treatment and maintenance which concern on 4th embodiment of this invention. 図11に示す表面処理及びメンテナンスの手順を説明するための表面処理装置の流路構成図である。It is a flow-path block diagram of the surface treatment apparatus for demonstrating the procedure of the surface treatment and a maintenance shown in FIG. 本発明の第五実施形態に係る表面処理装置の流路構成図である。It is a flow-path block diagram of the surface treatment apparatus which concerns on 5th embodiment of this invention. 本発明の第六実施形態に係る表面処理装置の流路構成図である。It is a flow-path block diagram of the surface treatment apparatus which concerns on 6th embodiment of this invention.

≪本発明の第一実施形態≫
以下、本発明の第一実施形態を図1〜図4を参照して説明する。なお、本実施形態では、板状ガラスとして、成形した帯状板ガラスから所定の寸法に切り出したガラス基板の裏面に表面処理を施す場合を例にとって説明する。
<< First embodiment of the present invention >>
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. In the present embodiment, a case will be described as an example in which surface treatment is performed on the back surface of a glass substrate cut out to a predetermined size from a formed strip-shaped plate glass as the plate-shaped glass.

図1は、本発明の第一実施形態に係るガラス基板の製造装置10を示している。この製造装置10は、ガラス基板Pの一方の主表面Pa(図1でいえば下面)に所定の表面処理を施す表面処理装置11と、表面処理装置11を収容する処理槽12とを備える。   FIG. 1 shows a glass substrate manufacturing apparatus 10 according to a first embodiment of the present invention. The manufacturing apparatus 10 includes a surface treatment apparatus 11 that performs a predetermined surface treatment on one main surface Pa (lower surface in FIG. 1) of the glass substrate P, and a treatment tank 12 that houses the surface treatment apparatus 11.

このうち、表面処理装置11は、ガラス基板Pの一方の主表面Paに処理ガスGaを供給して所定の表面処理を施すためのもので、処理対象となるガラス基板Pが挿通される挿通路13と、挿通路13に開口する給気口14と、給気口14とは異なる位置で挿通路13に開口する排気口15と、処理ガスGaを生成する処理ガス生成装置16と、処理ガス生成装置16と給気口14とをつなぐ給気路17と、処理ガスGaに除害処理を施す除害装置18と、排気口15と除害装置18とをつなぐ排気路19と、無害ガスGbを給気路17に導入する無害ガス導入路20とを備える。本実施形態では、表面処理装置11は、上述した要素に加えて、給気路17から分岐して処理ガスGaを排気路19に導入する処理ガス分岐路21をさらに備える。また、無害ガス導入路20の上流側にはコンプレッサ等の無害ガス導入装置22が配設されており、無害ガスGbの供給及び停止を操作できるようになっている。   Among these, the surface treatment apparatus 11 is for supplying a treatment gas Ga to one main surface Pa of the glass substrate P to perform a predetermined surface treatment, and an insertion path through which the glass substrate P to be treated is inserted. 13, an air supply opening 14 that opens to the insertion passage 13, an exhaust opening 15 that opens to the insertion passage 13 at a position different from the air supply opening 14, a processing gas generation device 16 that generates processing gas Ga, and a processing gas An air supply path 17 that connects the generating device 16 and the air supply port 14, a detoxification device 18 that performs a detoxification process on the processing gas Ga, an exhaust path 19 that connects the exhaust port 15 and the detoxification device 18, and a harmless gas A harmless gas introduction path 20 for introducing Gb into the air supply path 17. In the present embodiment, the surface treatment apparatus 11 further includes a processing gas branch path 21 that branches from the air supply path 17 and introduces the processing gas Ga into the exhaust path 19 in addition to the elements described above. Further, a harmless gas introduction device 22 such as a compressor is disposed on the upstream side of the harmless gas introduction path 20 so that the supply and stop of the harmless gas Gb can be operated.

無害ガス導入路20には、無害ガス導入路20を開閉する第一開閉弁23が配設されている。これにより、無害ガスGbの給気路17への導入とその停止を切り替えできるようになっている。   The harmless gas introduction path 20 is provided with a first on-off valve 23 that opens and closes the harmless gas introduction path 20. As a result, the introduction and stop of the harmless gas Gb into the air supply path 17 can be switched.

また、給気路17のうち無害ガス導入路20の合流位置P1よりも上流側には、給気路17を開閉する第二開閉弁24が配設されている。これにより、処理ガスGaの給気路17への導入とその停止を切り替えできるようになっている。   Further, a second opening / closing valve 24 for opening and closing the air supply passage 17 is disposed upstream of the merging position P1 of the harmless gas introduction passage 20 in the air supply passage 17. Thereby, the introduction of the processing gas Ga into the air supply path 17 and the stop thereof can be switched.

また、処理ガス分岐路21は、給気路17の第二開閉弁24が配設されている位置よりも上流側で給気路17から分岐して排気路19とつながっている。これにより、処理ガス生成装置16で生成した処理ガスGaを、第二開閉弁24を通ることなく、迂回して排気路19及びその下流側に位置する除害装置18に導入できるようになっている。   Further, the processing gas branch path 21 branches from the air supply path 17 upstream of the position where the second opening / closing valve 24 of the air supply path 17 is disposed and is connected to the exhaust path 19. As a result, the processing gas Ga generated by the processing gas generation device 16 can be bypassed and introduced into the exhaust passage 19 and the abatement device 18 located downstream thereof without passing through the second on-off valve 24. Yes.

本実施形態では、この処理ガス分岐路21に、処理ガス分岐路21を開閉する第三開閉弁25が配設されている。これにより、処理ガスGaの排気路19への導入とその停止を切り替えできるようになっている。   In the present embodiment, the process gas branch path 21 is provided with a third on-off valve 25 that opens and closes the process gas branch path 21. Thereby, introduction and stop of the processing gas Ga into the exhaust path 19 can be switched.

処理ガスGaの種類、組成は、ガラス基板Pに対する所定の表面処理(例えば腐食による粗面化)を可能とする限りにおいて任意であり、例えばフッ化水素ガスなどの酸性ガスを含むものを使用することができる。この場合、処理ガス生成装置16には、処理ガスGaの原料となるガス(原料ガス)Faとしての四フッ化炭素ガスと、同じく原料となる流体Fcとしての水、及びキャリアガスFbとしての窒素ガスが導入される(図1を参照)。そして、処理ガス生成装置16内部でプラズマ反応を発生させることにより、フッ化水素ガスとキャリアガスFbとを含む処理ガスGaを生成可能としている。   The type and composition of the processing gas Ga is arbitrary as long as a predetermined surface treatment (for example, roughening due to corrosion) can be performed on the glass substrate P. For example, a gas containing an acidic gas such as hydrogen fluoride gas is used. be able to. In this case, the processing gas generation device 16 includes a carbon tetrafluoride gas as a gas (raw material gas) Fa that is a raw material of the processing gas Ga, water as a fluid Fc that is also a raw material, and nitrogen as a carrier gas Fb. Gas is introduced (see FIG. 1). Then, by generating a plasma reaction inside the processing gas generation device 16, it is possible to generate the processing gas Ga including the hydrogen fluoride gas and the carrier gas Fb.

無害ガスGbの種類、組成は、上述のように、人体に対して実質的に無害である限りにおいて任意であり、例えば清浄度、コスト面等の観点から、クリーンドライエアーが好適に使用される。もちろん、クリーンドライエアーに限らず例えば窒素ガスやアルゴンガスなどの不活性ガスをはじめクリーンドライエアー以外の処理を施した空気(ドライエアー)を使用することもでき、処理していない空気(外気)をそのまま使用することも可能である。   As described above, the kind and composition of the harmless gas Gb are arbitrary as long as they are substantially harmless to the human body. For example, clean dry air is preferably used from the viewpoint of cleanliness, cost, and the like. . Of course, not limited to clean dry air, for example, air that has been treated other than clean dry air, including inert gases such as nitrogen gas and argon gas (dry air) can be used, and untreated air (outside air) Can be used as they are.

次に、以上の構成をなす表面処理装置11を用いた表面処理及びメンテナンスの手順を、本発明による作用効果と併せて、主に図2〜図4に基づき説明する。   Next, the surface treatment and maintenance procedures using the surface treatment apparatus 11 having the above configuration will be described based on FIGS. 2 to 4 together with the effects of the present invention.

すなわち、本実施形態に係るガラス基板の製造方法は、図2に示すように、表面処理工程S1と、メンテナンス工程S2とを備える。このうち、表面処理工程S1では、処理ガスGaを板状ガラスとしてのガラス基板Pに供給して当該ガラス基板Pに所定の表面処理を施すと共に、供給した処理ガスGaを除害して排気するガスの流れが形成され、メンテナンス工程S2では、給気路17(図1を参照)を閉じて、給気路17を閉じた位置(図1でいえば第二開閉弁24が配設された位置)よりも下流側で給気路17に無害ガスGbを導入することにより、処理ガスGaを無害ガスGbに置換するガスの流れが形成される。以下、各工程の詳細を説明する。   That is, the manufacturing method of the glass substrate which concerns on this embodiment is provided with surface treatment process S1 and maintenance process S2, as shown in FIG. Among these, in the surface treatment step S1, the processing gas Ga is supplied to the glass substrate P as a sheet glass to perform a predetermined surface treatment on the glass substrate P, and the supplied processing gas Ga is detoxified and exhausted. A gas flow is formed, and in the maintenance step S2, the supply passage 17 (see FIG. 1) is closed, and the supply passage 17 is closed (in FIG. 1, the second on-off valve 24 is provided). By introducing the harmless gas Gb into the air supply path 17 on the downstream side of the position), a gas flow for replacing the processing gas Ga with the harmless gas Gb is formed. Hereinafter, details of each process will be described.

(S1)表面処理工程
この工程S1では、図3に示すように、第一開閉弁23を閉じて、第二開閉弁24を開けると共に、第三開閉弁25を閉じる。これにより、処理ガス生成装置16で生成された処理ガスGaは給気路17に導入され、給気路17の下流端に位置する給気口14から放出される。給気口14が面する挿通路13に図1に示すガラス基板P(図3では省略)が挿通されると、給気口14から放出された処理ガスGaがガラス基板Pの一方の主表面Pa(給気口14に面する下面)に供給され、一方の主表面Paに所定の表面処理が施される。ガラス基板に供給された処理ガスGaは、給気口14と異なる位置で挿通路13に面する排気口15(本実施形態では二つ)を介して排気路19に引き込まれ、排気路19の下流側に位置する除害装置18に導入される。導入された処理ガスGaは除害装置18により除害され、有害物質を取り除いた状態で除害装置18の外に排出される。
(S1) Surface Treatment Step In this step S1, as shown in FIG. 3, the first on-off valve 23 is closed, the second on-off valve 24 is opened, and the third on-off valve 25 is closed. Thus, the processing gas Ga generated by the processing gas generation device 16 is introduced into the air supply path 17 and is discharged from the air supply port 14 located at the downstream end of the air supply path 17. When the glass substrate P (not shown in FIG. 3) shown in FIG. 1 is inserted into the insertion passage 13 facing the air supply port 14, the processing gas Ga released from the air supply port 14 is one main surface of the glass substrate P. It is supplied to Pa (the lower surface facing the air supply port 14), and a predetermined surface treatment is performed on one main surface Pa. The processing gas Ga supplied to the glass substrate is drawn into the exhaust passage 19 through the exhaust ports 15 (two in this embodiment) facing the insertion passage 13 at positions different from the air supply port 14. It is introduced into the abatement apparatus 18 located on the downstream side. The introduced processing gas Ga is detoxified by the detoxifying device 18 and is discharged out of the detoxifying device 18 in a state where harmful substances are removed.

一方、無害ガス導入路20は第一開閉弁23により閉じられているので、図3に示す状態においては、給気路17に無害ガスGbが混入して表面処理に影響を及ぼすおそれはない。また、処理ガスGaが無害ガス導入路20を通って外部に漏出するおそれもない。   On the other hand, since the harmless gas introduction path 20 is closed by the first on-off valve 23, in the state shown in FIG. 3, there is no possibility that the harmless gas Gb is mixed into the air supply path 17 and the surface treatment is not affected. Further, there is no possibility that the processing gas Ga leaks outside through the harmless gas introduction path 20.

また、処理ガス分岐路21は第三開閉弁25により閉じられているので、図3に示す状態においては、本来給気路17に導入されるべき処理ガスGaの流量が減少して表面処理に影響を及ぼすおそれはない。   Further, since the processing gas branch path 21 is closed by the third on-off valve 25, in the state shown in FIG. 3, the flow rate of the processing gas Ga to be originally introduced into the air supply path 17 decreases, and the surface treatment is performed. There is no risk of impact.

(S2)メンテナンス工程
上述のように表面処理装置11を稼働している間、ガラス基板Pに対して所定の表面処理が施される。一方で、何らかの理由で表面処理を停止して、表面処理装置11を分解する必要が生じた場合には、以下の処理(動作)を行った上で表面処理装置11のメンテナンスを行う。すなわち、メンテナンスを始めるに際しては、稼働時の状態から、図4に示すように、まず第二開閉弁24を閉じると共に第三開閉弁25を開く。そして、第一開閉弁23を開く。これにより、給気路17のうち少なくとも第二開閉弁24よりも下流側に向けた処理ガスGaの供給が停止されると共に、合流位置P1よりも下流側で給気路17に無害ガスGbが新たに導入される。よって、給気路17、挿通路13、及び排気路19に流通していた処理ガスGaは無害ガスGbに押し出される形で除害装置18に排出され、これにより、処理ガス分岐路21内を除く、表面処理装置11中の処理ガスGaが無害ガスGbによって置換される。従って、作業者が安全に表面処理装置11を分解して状態確認や整備等のメンテナンスを行うことが可能となる。また、上述のように無害ガス導入路20を設けることで、処理ガス生成装置16を通ることなく給気路17に無害ガスGbを導入することができるので、無害ガスGbの導入条件(流量、圧力、温度など)を比較的自由に設定することができる。よって、例えば流量を多めに設定することにより、無害ガスGbによる処理ガスGaの置換を短時間で行うことが可能となる。
(S2) Maintenance process While the surface treatment apparatus 11 is operating as described above, a predetermined surface treatment is performed on the glass substrate P. On the other hand, when it is necessary to stop the surface treatment for some reason and to disassemble the surface treatment apparatus 11, maintenance of the surface treatment apparatus 11 is performed after performing the following processing (operation). That is, when starting the maintenance, as shown in FIG. 4, the second on-off valve 24 is first closed and the third on-off valve 25 is opened from the operating state. Then, the first on-off valve 23 is opened. As a result, the supply of the processing gas Ga toward the downstream side of at least the second on-off valve 24 in the air supply path 17 is stopped, and the harmless gas Gb is present in the air supply path 17 on the downstream side of the joining position P1. Newly introduced. Therefore, the processing gas Ga flowing in the air supply path 17, the insertion path 13, and the exhaust path 19 is discharged to the detoxifying device 18 in a form that is pushed out by the harmless gas Gb. The processing gas Ga in the surface treatment apparatus 11 is replaced by the harmless gas Gb. Therefore, the operator can disassemble the surface treatment apparatus 11 safely and perform maintenance such as state confirmation and maintenance. In addition, by providing the harmless gas introduction path 20 as described above, the harmless gas Gb can be introduced into the air supply path 17 without passing through the processing gas generation device 16, so that the conditions for introducing the harmless gas Gb (flow rate, Pressure, temperature, etc.) can be set relatively freely. Therefore, for example, by setting a larger flow rate, it is possible to replace the processing gas Ga with the harmless gas Gb in a short time.

また、第三開閉弁25を開くことで、給気路17の第二開閉弁24よりも上流側で分岐している処理ガス分岐路21に処理ガスGaを供給可能な状態となる。よって、例えば処理ガス生成装置16による処理ガスGaの生成及び供給を続行する場合、図4に示すように、処理ガスGaは処理ガス分岐路21を通って排気路19、さらには除害装置18へと導入される。従って、上述した置換処理の間、処理ガス生成装置16の内部、又は給気路17のうち処理ガス生成装置16と第二開閉弁24との間に処理ガスGaが閉じ込められることによる不具合の発生を回避して、安全に置換作業を行うことが可能となる。   Further, by opening the third opening / closing valve 25, the processing gas Ga can be supplied to the processing gas branching passage 21 that is branched upstream of the second opening / closing valve 24 of the air supply passage 17. Therefore, for example, when the generation and supply of the processing gas Ga by the processing gas generation device 16 are continued, the processing gas Ga passes through the processing gas branch passage 21 and the exhaust passage 19 as shown in FIG. Introduced into Therefore, during the above-described replacement process, problems occur due to the processing gas Ga being confined between the processing gas generation device 16 and the second on-off valve 24 in the processing gas generation device 16 or the supply passage 17. This makes it possible to perform the replacement work safely.

以上、本発明の第一実施形態に係るガラス基板の製造装置10及び製造方法を説明したが、これら製造装置10及び製造方法は、当然に本発明の範囲内において任意の形態を採ることができる。   As mentioned above, although the manufacturing apparatus 10 and the manufacturing method of the glass substrate which concern on 1st embodiment of this invention were demonstrated, these manufacturing apparatuses 10 and a manufacturing method can naturally take arbitrary forms within the scope of the present invention. .

≪本発明の第二実施形態≫
図5は、第二実施形態に係る製造装置30の流路構成図、図6は、この製造装置30を用いた製造方法(表面処理及びメンテナンス)の手順を示すフローチャートをそれぞれ示している。図5に示すように、この製造装置30は、第一実施形態とは流路構成の異なる表面処理装置31を備えており、具体的には、排気路19のうち処理ガス分岐路21の合流位置P2よりも上流側に、排気路19を開閉する第四開閉弁26が配設されている。なお、これ以外の構成は、第一実施形態に係る製造装置10(表面処理装置11)と同じであるので、詳細な説明を省略する。
<< Second Embodiment of the Present Invention >>
FIG. 5 is a flow path configuration diagram of the manufacturing apparatus 30 according to the second embodiment, and FIG. 6 is a flowchart showing a procedure of a manufacturing method (surface treatment and maintenance) using the manufacturing apparatus 30. As shown in FIG. 5, the manufacturing apparatus 30 includes a surface treatment apparatus 31 having a flow path configuration different from that of the first embodiment, and specifically, a merge of the process gas branch path 21 in the exhaust path 19. A fourth on-off valve 26 that opens and closes the exhaust passage 19 is disposed upstream of the position P2. In addition, since the structure of those other than this is the same as the manufacturing apparatus 10 (surface treatment apparatus 11) which concerns on 1st embodiment, detailed description is abbreviate | omitted.

また、本実施形態に係るガラス基板の製造方法は、図6に示すように、表面処理工程S1と、メンテナンス工程S2とを有する。このうち、メンテナンス工程S2の詳細が、第一実施形態に係る製造方法と異なっている。すなわち、本実施形態に係るメンテナンス工程S2は、給気路17を閉じ、排気路19を開いた状態で、第二開閉弁24よりも下流側で給気路17に無害ガスGbを導入することにより、処理ガスGaを無害ガスGbに置換する無害ガス導入ステップS21と、無害ガスGbの供給を停止した後、処理ガス分岐路21の合流位置P2よりも上流側で排気路19を閉じることで、処理ガスGaの流路と無害ガスGbの流路とを完全に分断する流路分断ステップS22とを有する。以下、各ステップの詳細を中心に説明する。   Moreover, the manufacturing method of the glass substrate which concerns on this embodiment has surface treatment process S1 and maintenance process S2, as shown in FIG. Among these, the details of the maintenance step S2 are different from the manufacturing method according to the first embodiment. That is, in the maintenance step S2 according to the present embodiment, the harmless gas Gb is introduced into the air supply path 17 on the downstream side of the second opening / closing valve 24 with the air supply path 17 closed and the exhaust path 19 opened. Thus, the non-hazardous gas introduction step S21 for replacing the process gas Ga with the non-hazardous gas Gb, and the supply of the non-hazardous gas Gb are stopped, and then the exhaust path 19 is closed on the upstream side of the joining position P2 of the process gas branch path 21. And a flow path dividing step S22 for completely dividing the flow path of the processing gas Ga and the flow path of the harmless gas Gb. The details of each step will be described below.

(S1)表面処理工程
この工程では、図7に示すように、第一開閉弁23を閉じて、第二開閉弁24を開け、第三開閉弁25を閉じると共に、第四開閉弁26を開いた状態とする。これにより、処理ガス生成装置16で生成された処理ガスGaは給気路17に導入され、給気路17の下流端に位置する給気口14から放出される。給気口14が面する挿通路13に図1に示すガラス基板P(図7では省略)が挿通されると、給気口14から放出された処理ガスGaがガラス基板Pの一方の主表面Pa(給気口14に面する下面)に供給され、一方の主表面Paに所定の表面処理が施される。また、排気路19上に設けた第四開閉弁26を開いた状態にしているので、ガラス基板Pに供給された処理ガスGaは、給気口14と異なる位置で挿通路13に面する排気口15(本実施形態では二つ)を介して排気路19に引き込まれ、排気路19の下流側に位置する除害装置18に導入される。導入された処理ガスGaは除害装置18により除害され、有害物質を取り除いた状態で除害装置18の外に排出される。
(S1) Surface treatment step In this step, as shown in FIG. 7, the first on-off valve 23 is closed, the second on-off valve 24 is opened, the third on-off valve 25 is closed, and the fourth on-off valve 26 is opened. State. Thus, the processing gas Ga generated by the processing gas generation device 16 is introduced into the air supply path 17 and is discharged from the air supply port 14 located at the downstream end of the air supply path 17. When the glass substrate P shown in FIG. 1 (not shown in FIG. 7) is inserted into the insertion passage 13 facing the air supply port 14, the processing gas Ga released from the air supply port 14 is one main surface of the glass substrate P. It is supplied to Pa (the lower surface facing the air supply port 14), and a predetermined surface treatment is performed on one main surface Pa. Further, since the fourth on-off valve 26 provided on the exhaust path 19 is opened, the processing gas Ga supplied to the glass substrate P is exhausted facing the insertion passage 13 at a position different from the air supply port 14. It is drawn into the exhaust passage 19 through the mouth 15 (two in this embodiment) and introduced into the abatement device 18 located on the downstream side of the exhaust passage 19. The introduced processing gas Ga is detoxified by the detoxifying device 18 and is discharged out of the detoxifying device 18 in a state where harmful substances are removed.

一方、無害ガス導入路20は第一開閉弁23により閉じられているので、図7に示す状態においては、給気路17に無害ガスGbが混入して表面処理に影響を及ぼすおそれはない。また、処理ガスGaが無害ガス導入路20を通って外部に漏出するおそれもない。   On the other hand, since the harmless gas introduction path 20 is closed by the first on-off valve 23, in the state shown in FIG. 7, there is no possibility that the harmless gas Gb is mixed into the air supply path 17 and the surface treatment is not affected. Further, there is no possibility that the processing gas Ga leaks outside through the harmless gas introduction path 20.

また、処理ガス分岐路21は第三開閉弁25により閉じられているので、図7に示す状態においては、本来給気路17に導入されるべき処理ガスGaの流量が減少して表面処理に影響を及ぼすおそれはない。   Further, since the processing gas branch passage 21 is closed by the third on-off valve 25, in the state shown in FIG. 7, the flow rate of the processing gas Ga to be originally introduced into the air supply passage 17 is reduced and surface treatment is performed. There is no risk of impact.

(S2)メンテナンス工程
(S21)無害ガス導入ステップ
また、本実施形態において、何らかの理由で表面処理を停止して、表面処理装置31のメンテナンスを行う必要が生じた場合には、以下の処理(動作)を行う。すなわち、無害ガスGbで処理ガスGaを置換するステップにおいては、図8に示すように、まず第二開閉弁24を閉じると共に第三開閉弁25を開く。そして、第一開閉弁23を開く。第四開閉弁26は開いたままの状態とする。これにより、給気路17のうち少なくとも第二開閉弁24よりも下流側に向けた処理ガスGaの供給が停止されると共に、合流位置P1よりも下流側に無害ガスGbが新たに導入される。よって、給気路17、挿通路13、及び排気路19に流通していた処理ガスGaは無害ガスGbに押し出される形で除害装置18に排出され、これにより、処理ガス分岐路21内を除く、表面処理装置11中の処理ガスGaが無害ガスGbよって置換される。従って、作業者が安全に表面処理装置11を分解してメンテナンスを行うことが可能となる。
(S2) Maintenance step (S21) Harmless gas introduction step In the present embodiment, when it is necessary to stop the surface treatment for some reason and perform maintenance of the surface treatment apparatus 31, the following treatment (operation) )I do. That is, in the step of replacing the processing gas Ga with the harmless gas Gb, as shown in FIG. 8, first, the second on-off valve 24 is closed and the third on-off valve 25 is opened. Then, the first on-off valve 23 is opened. The fourth on-off valve 26 is kept open. As a result, the supply of the processing gas Ga toward the downstream side of at least the second opening / closing valve 24 in the air supply path 17 is stopped, and the harmless gas Gb is newly introduced downstream of the joining position P1. . Therefore, the processing gas Ga flowing in the air supply path 17, the insertion path 13, and the exhaust path 19 is discharged to the detoxifying device 18 in a form that is pushed out by the harmless gas Gb. The processing gas Ga in the surface treatment apparatus 11 is replaced by the harmless gas Gb. Therefore, the operator can safely disassemble the surface treatment apparatus 11 and perform maintenance.

また、第三開閉弁25を開くことで、給気路17の第二開閉弁24よりも上流側で分岐している処理ガス分岐路21に処理ガスGaを供給可能な状態となる。よって、例えば処理ガス生成装置16による処理ガスGaの生成及び供給を続行する場合、図8に示すように、処理ガスGaは処理ガス分岐路21を通って排気路19、さらには除害装置18へと導入される。従って、処理ガス生成装置16による処理ガスGaの生成及び供給を停止することなく、上述した置換作業を行うことができる。   Further, by opening the third opening / closing valve 25, the processing gas Ga can be supplied to the processing gas branching passage 21 that is branched upstream of the second opening / closing valve 24 of the air supply passage 17. Therefore, for example, when the generation and supply of the processing gas Ga by the processing gas generation device 16 is continued, the processing gas Ga passes through the processing gas branch passage 21 and the exhaust passage 19 and further the abatement device 18 as shown in FIG. Introduced into Therefore, the above-described replacement operation can be performed without stopping the generation and supply of the processing gas Ga by the processing gas generation device 16.

(S22)流路分断ステップ
ステップS21において、給気路17に無害ガスGbを導入し、給気路17と挿通路13、及び排気路19が無害ガスGbで置換された後、このステップを実施する。すなわち、図9に示すように、第一開閉弁23を閉じて無害ガスGbの給気路17への供給を停止すると共に、第四開閉弁26を閉じて排気路19のうち処理ガス分岐路21の合流位置P2よりも上流側で排気路19の流れを塞ぐ。第二開閉弁24は閉じた状態のまま、及び第三開閉弁25は開いた状態のままとする。これにより、給気路17のうち第二開閉弁24よりも下流側の領域と、ガラス基板の処理空間となる挿通路13、及び排気路19のうち第四開閉弁26よりも上流側の領域が、処理ガス分岐路21及び排気路19のうち第四開閉弁26よりも下流側の領域と完全に切り離された状態となる。言い換えると、表面処理装置31の流路が、無害ガスGbのみが存在する空間と、処理ガスGaのみが存在する空間とに分断された状態となる。例えば図4に示す流路構成をとる場合、無害ガスGbの流量又は流体圧が、処理ガスGaの流量又は流体圧より大幅に大きく設定されていれば、処理ガスGaが、処理ガス分岐路21の合流位置P2から排気路19の上流側に逆流する事態を防ぐことはできるが、完全に遮断された状態でない以上、わずかな量であっても処理ガスGaが給気路17側に流れ込む可能性を完全に排除することは難しい。これに対して、本実施形態に係る製造装置30によれば、上述した給気路17とガラス基板の処理空間(挿通路13)が完全に無害ガスGbで満たされた状態となった時点で、第四開閉弁26を閉じることで、処理ガスGaの生成及び供給を続行したままで無害ガスGbの置換を行う場合であっても、作業者が処理ガスGaに触れる可能性を完全に排除して、表面処理装置31を安全に分解して確認作業やメンテナンスを行うことが可能となる。
(S22) Flow path dividing step In step S21, the harmless gas Gb is introduced into the air supply path 17, and this step is performed after the air supply path 17, the insertion path 13, and the exhaust path 19 are replaced with the harmless gas Gb. To do. That is, as shown in FIG. 9, the first on-off valve 23 is closed to stop the supply of the harmless gas Gb to the air supply path 17, and the fourth on-off valve 26 is closed to dispose the processing gas branch path in the exhaust path 19. The flow of the exhaust passage 19 is blocked upstream of the merging position P <b> 2 of 21. The second on-off valve 24 remains closed, and the third on-off valve 25 remains open. Thereby, the area | region downstream from the 2nd on-off valve 24 in the supply path 17, the insertion path 13 used as the processing space of a glass substrate, and the area | region upstream from the 4th on-off valve 26 in the exhaust path 19 However, the processing gas branch path 21 and the exhaust path 19 are completely separated from the region downstream of the fourth on-off valve 26. In other words, the flow path of the surface treatment apparatus 31 is divided into a space where only the harmless gas Gb exists and a space where only the processing gas Ga exists. For example, when the flow path configuration shown in FIG. 4 is adopted, if the flow rate or fluid pressure of the harmless gas Gb is set to be significantly larger than the flow rate or fluid pressure of the processing gas Ga, the processing gas Ga is converted into the processing gas branch 21. Although it is possible to prevent a situation in which the gas flows backward from the merging position P2 to the upstream side of the exhaust passage 19, the processing gas Ga can flow into the supply passage 17 even if the amount is small as long as it is not completely shut off. It is difficult to completely eliminate sex. On the other hand, according to the manufacturing apparatus 30 according to the present embodiment, when the air supply path 17 and the glass substrate processing space (insertion path 13) described above are completely filled with the harmless gas Gb. By closing the fourth on-off valve 26, even when replacing the harmless gas Gb while continuing the generation and supply of the processing gas Ga, the possibility of the operator touching the processing gas Ga is completely eliminated. As a result, the surface treatment apparatus 31 can be safely disassembled for confirmation work and maintenance.

≪本発明の第三実施形態≫
次に、本発明の第三実施形態を、主に図10に基づき説明する。なお、本実施形態において使用する製造装置は、図5に示す製造装置30とする。
<< Third embodiment of the present invention >>
Next, a third embodiment of the present invention will be described mainly based on FIG. Note that the manufacturing apparatus used in this embodiment is a manufacturing apparatus 30 shown in FIG.

本実施形態に係るガラス基板の製造方法は、図10に示すように、表面処理工程S1と、メンテナンス工程S2と、表面処理の再開準備工程S3とを備える。表面処理工程S1とメンテナンス工程S2は、第二実施形態と同じであるので、以下では、表面処理の再開準備工程S3の詳細を説明する。   As shown in FIG. 10, the glass substrate manufacturing method according to the present embodiment includes a surface treatment step S1, a maintenance step S2, and a surface treatment restart preparation step S3. Since the surface treatment step S1 and the maintenance step S2 are the same as those in the second embodiment, the details of the surface treatment restart preparation step S3 will be described below.

(S3)表面処理の再開準備工程
この工程S3では、直前のメンテナンス工程S2時の状態(図9に示す状態)から、まず第二開閉弁24を開くと共に第四開閉弁26を開き、かつ第三開閉弁25を閉じる。第一開閉弁23は閉じたままの状態とする。この間、処理ガス生成装置16による処理ガスGaの生成及び供給は停止することなく続行されている(何れも図7を参照)。このようにすることで、即座に図7に示すように給気路17に処理ガスGaが導入され、給気路17に流通していた無害ガスGbが処理ガスGaで置換されるので、短時間で給気路17及び排気路19を再び処理ガスGaで満たすことができる。従って、例えば一旦処理ガス生成装置16を停止した状態から再起動させた場合に生じ得る、処理ガスGaの生成を再開してから処理ガスGaの生成状態が安定するまでの待ち時間を省略して、メンテナンス後、早急に表面処理を再開することが可能となる。
(S3) Surface treatment resumption preparation step In this step S3, the second on-off valve 24 and the fourth on-off valve 26 are first opened from the state at the time of the immediately preceding maintenance step S2 (the state shown in FIG. 9). The three on-off valve 25 is closed. The first on-off valve 23 is kept closed. During this time, the generation and supply of the processing gas Ga by the processing gas generation device 16 continues without stopping (both refer to FIG. 7). By doing so, the processing gas Ga is immediately introduced into the air supply path 17 as shown in FIG. 7, and the harmless gas Gb flowing through the air supply path 17 is replaced with the processing gas Ga. In time, the supply passage 17 and the exhaust passage 19 can be filled again with the processing gas Ga. Therefore, for example, the waiting time until the process gas Ga generation state is stabilized after the process gas Ga generation is restarted, which may occur when the process gas generation device 16 is restarted from a stopped state, is omitted. After the maintenance, the surface treatment can be resumed immediately.

≪本発明の第四実施形態≫
次に、本発明の第四実施形態を、主に図11及び図12に基づき説明する。なお、本実施形態において使用する製造装置は、図5に示す製造装置30とする。
<< Fourth embodiment of the present invention >>
Next, a fourth embodiment of the present invention will be described mainly based on FIG. 11 and FIG. Note that the manufacturing apparatus used in this embodiment is a manufacturing apparatus 30 shown in FIG.

本実施形態に係るガラス基板の製造方法は、図11に示すように、表面処理工程S1と、メンテナンス工程S2とを有する。このうち、メンテナンス工程S2の詳細が、第一〜第三実施形態に係る製造方法と異なっている。すなわち、本実施形態に係るメンテナンス工程S2は、処理ガス生成装置16による処理ガスGaの生成を停止すると共に、処理ガスGaの原料となるガス(図1等に示す原料ガスFa)の処理ガス生成装置16への供給を停止し、処理ガスGaに含まれるキャリアガスFbの処理ガス生成装置16への供給を続行する、キャリアガス導入ステップS23を有する。表面処理工程S1については、第二及び第三実施形態と同じであるので、以下では、キャリアガス導入ステップS23を含むメンテナンス工程S2の詳細を図12に基づき説明する。   As shown in FIG. 11, the glass substrate manufacturing method according to the present embodiment includes a surface treatment step S1 and a maintenance step S2. Among these, the detail of maintenance process S2 differs from the manufacturing method which concerns on 1st-3rd embodiment. That is, in the maintenance step S2 according to the present embodiment, the generation of the processing gas Ga by the processing gas generation device 16 is stopped, and the processing gas generation of the gas that is the raw material of the processing gas Ga (the raw material gas Fa shown in FIG. 1 and the like) There is a carrier gas introduction step S23 in which the supply to the apparatus 16 is stopped and the supply of the carrier gas Fb contained in the process gas Ga to the process gas generation apparatus 16 is continued. Since the surface treatment step S1 is the same as in the second and third embodiments, the details of the maintenance step S2 including the carrier gas introduction step S23 will be described below with reference to FIG.

(S2)メンテナンス工程
(S23)キャリアガス導入ステップ
このメンテナンス工程S2では、第二実施形態と同様、まず第二開閉弁24を閉じると共に第三開閉弁25を開く。そして、第一開閉弁23を開く。第四開閉弁26は開いた状態のままとする。これにより、給気路17のうち少なくとも第二開閉弁24よりも下流側に向けた処理ガスGaの供給が停止されると共に、合流位置P1よりも下流側で給気路17に無害ガスGbが新たに導入される。よって、給気路17、挿通路13、及び排気路19に流通していた処理ガスGaは無害ガスGbに押し出される形で除害装置18に排出され、これにより、処理ガス分岐路21内を除く、表面処理装置11中の処理ガスGaが無害ガスGbよって置換される。従って、作業者が安全に表面処理装置11を分解してメンテナンスを行うことが可能となる。
(S2) Maintenance Step (S23) Carrier Gas Introducing Step In this maintenance step S2, the second on-off valve 24 is first closed and the third on-off valve 25 is opened as in the second embodiment. Then, the first on-off valve 23 is opened. The fourth on-off valve 26 remains open. As a result, the supply of the processing gas Ga toward the downstream side of at least the second on-off valve 24 in the air supply path 17 is stopped, and the harmless gas Gb is present in the air supply path 17 on the downstream side of the joining position P1. Newly introduced. Therefore, the processing gas Ga flowing in the air supply path 17, the insertion path 13, and the exhaust path 19 is discharged to the detoxifying device 18 in a form that is pushed out by the harmless gas Gb. The processing gas Ga in the surface treatment apparatus 11 is replaced by the harmless gas Gb. Therefore, the operator can safely disassemble the surface treatment apparatus 11 and perform maintenance.

また、この際、図12に示すように、処理ガス生成装置16による処理ガスGaの生成を停止すると共に、処理ガスGaの原料となる四フッ化炭素ガスなどの原料ガスFa(図1を参照)の処理ガス生成装置16への供給を停止し、かつ処理ガスGaに含まれるキャリアガスFbの処理ガス生成装置16への供給を続行する。これにより、キャリアガスFbが、処理ガス生成装置16の内部と、給気路17のうち第二開閉弁24よりも上流側の領域と、処理ガス分岐路21とを通って排気路19に導入される。従って、直前まで処理ガス生成装置16の内部に存在していた処理ガスGaがキャリアガスFbに置換される。キャリアガスFbは、通常、窒素ガスなどの不活性ガスであり、少なくとも空気と混じった状態では人体にとって実質的に無害なガスである。よって、表面処理装置31の稼働停止時(メンテナンス工程S2の際)、処理ガス生成装置16の内部が処理ガスGaに曝され続けることによる劣化を防止して、処理ガス生成装置16を長期間にわたって使用することができる。また、処理ガス生成装置16の内部の処理ガスGaをキャリアガスFbで置換することで、処理ガスGaを処理ガス生成装置16の内部から完全に排除することができる。上述したようにキャリアガスFbは処理ガスGaに比べて格段に安全なガスであるから、処理ガス生成装置16の交換が必要となった場合であっても、安全に処理ガス生成装置16を給気路17から取り外すことが可能となる。   At this time, as shown in FIG. 12, the generation of the processing gas Ga by the processing gas generation device 16 is stopped, and the raw material gas Fa such as carbon tetrafluoride gas used as the raw material of the processing gas Ga (see FIG. 1). ) And the supply of the carrier gas Fb contained in the processing gas Ga to the processing gas generation device 16 is continued. Thereby, the carrier gas Fb is introduced into the exhaust passage 19 through the inside of the processing gas generation device 16, the region upstream of the second opening / closing valve 24 in the air supply passage 17, and the processing gas branch passage 21. Is done. Therefore, the processing gas Ga existing in the processing gas generator 16 until just before is replaced with the carrier gas Fb. The carrier gas Fb is usually an inert gas such as nitrogen gas, and is a gas that is substantially harmless to the human body at least when mixed with air. Therefore, when the operation of the surface treatment apparatus 31 is stopped (in the maintenance step S2), deterioration due to continuous exposure of the inside of the processing gas generation device 16 to the processing gas Ga is prevented, and the processing gas generation device 16 is kept for a long period of time. Can be used. Further, by replacing the processing gas Ga inside the processing gas generation device 16 with the carrier gas Fb, the processing gas Ga can be completely excluded from the processing gas generation device 16. As described above, since the carrier gas Fb is much safer than the processing gas Ga, the processing gas generation device 16 can be supplied safely even when the processing gas generation device 16 needs to be replaced. It can be removed from the air passage 17.

なお、以上の説明では、無害ガス導入路20上に第一開閉弁23を配設し、給気路17上に第一開閉弁23とは別個に第二開閉弁24を配設した場合を例示したが、特にこの形態には限定されない。無害ガス導入路20と給気路17との合流位置P1よりも給気路17の下流側に、無害ガスGbと処理ガスGaの何れか一方を導入可能とする限りにおいて、他の形態をとることも可能である。   In the above description, the first on-off valve 23 is disposed on the harmless gas introduction path 20 and the second on-off valve 24 is disposed on the air supply path 17 separately from the first on-off valve 23. Although illustrated, it is not particularly limited to this form. As long as it is possible to introduce either the harmless gas Gb or the processing gas Ga to the downstream side of the air supply path 17 from the joining position P1 of the harmless gas introduction path 20 and the air supply path 17, other forms are adopted. It is also possible.

≪本発明の第五実施形態≫
図13はその一例(本発明の第五実施形態)に係るガラス基板製造装置40を示している。この製造装置40は、図1に示す第一開閉弁23及び第二開閉弁24の代わりに、無害ガス導入路20と給気路17との合流位置P1に、流路の切り替えを行う三方弁41を配設してなる。この三方弁41は、給気路17のうち合流位置P1の上流側から導入されてきた処理ガスGaが合流位置P1を通過して給気路17の下流側に向かう流れと、無害ガス導入路20から導入されてきた無害ガスGbが合流位置P1を通過して給気路17の下流側に向かう流れとに択一的に切り替え可能としている。そのため、処理ガスGaと無害ガスGbを共に供給している場合であっても、給気路17の合流位置P1よりも下流側には、常に処理ガスGaと無害ガスGbの何れか一方のみが導入され、他方の導入は防止されるようになっている。
<< Fifth embodiment of the present invention >>
FIG. 13 shows a glass substrate manufacturing apparatus 40 according to an example (fifth embodiment of the present invention). This manufacturing apparatus 40 is a three-way valve that switches the flow path to the merging position P1 between the harmless gas introduction path 20 and the air supply path 17 instead of the first on-off valve 23 and the second on-off valve 24 shown in FIG. 41 is arranged. The three-way valve 41 includes a flow of processing gas Ga introduced from the upstream side of the merging position P1 in the air supply path 17 toward the downstream side of the air supply path 17 through the merging position P1, and a harmless gas introduction path. The harmless gas Gb introduced from 20 can be switched selectively to a flow that passes through the merge position P <b> 1 and goes to the downstream side of the air supply path 17. Therefore, even when both the processing gas Ga and the harmless gas Gb are supplied, only one of the processing gas Ga and the harmless gas Gb is always on the downstream side of the joining position P1 of the air supply path 17. The introduction of the other is prevented.

この構成によれば、上述のように、給気路17の合流位置P1よりも下流側には、必ず処理ガスGaと無害ガスGbの何れか一方のみが導入されるので、二種類のガスGa,Gbのうち不要なガスが混入する事態を確実に防いで、製造装置40の信頼性をさらに向上させることが可能となる。   According to this configuration, as described above, only one of the processing gas Ga and the harmless gas Gb is always introduced downstream of the merging position P1 of the air supply path 17, so that the two types of gas Ga , Gb can be reliably prevented from being mixed with unnecessary gas, and the reliability of the manufacturing apparatus 40 can be further improved.

また、以上の説明では、給気路17上に第二開閉弁24を配設し、処理ガス分岐路21上に第三開閉弁25を第二開閉弁24とは別個に配設した場合を例示したが、特にこの形態には限定されない。処理ガスGaを、処理ガス分岐路21と、給気路17の処理ガス分岐路21が分岐する位置よりも下流側との何れか一方に導入可能とする限りにおいて、他の形態をとることも可能である。   In the above description, the second on-off valve 24 is disposed on the air supply path 17, and the third on-off valve 25 is disposed on the processing gas branch path 21 separately from the second on-off valve 24. Although illustrated, it is not particularly limited to this form. As long as the processing gas Ga can be introduced to either the processing gas branch path 21 and the downstream side of the position where the processing gas branch path 21 of the supply air path 17 branches, other forms may be taken. Is possible.

≪本発明の第六実施形態≫
図14はその一例(本発明の第六実施形態)に係るガラス基板製造装置50を示している。この製造装置50は、図1に示す第二開閉弁24と第三開閉弁25の代わりに、給気路17からの処理ガス分岐路21の分岐位置P3に、流路の切り替えを行う三方弁51を配設してなる。この三方弁51は、給気路17のうち分岐位置P3の上流側から導入されてきた処理ガスGaが分岐位置P3を通過してそのまま給気路17の下流側に向かう流れと、上記処理ガスGaが分岐位置P3を経由して処理ガス分岐路21に向かう流れとに択一的に切り替え可能としている。そのため、処理ガス生成装置16から処理ガスGaが供給されている場合、常に給気路17の分岐位置P3より下流側と処理ガス分岐路21の何れか一方のみに処理ガスGaが導入され、他方への導入は防止されるようになっている。上述の理由から、処理ガスGaを継続して生成、供給する場合(第一〜第三実施形態の場合)、処理ガスGaは常に給気路17と処理ガス分岐路21の何れか一方のみに導入すれば足りるためである。よって、分岐位置P3に三方弁51を設けて、表面処理工程S1時には給気路17の側を開き、メンテナンス工程S2時には処理ガス分岐路21の側を開くように三方弁51を操作することで、設備コストを抑えつつ安全にメンテナンスを行うことが可能となる。
<< Sixth embodiment of the present invention >>
FIG. 14 shows a glass substrate manufacturing apparatus 50 according to an example (sixth embodiment of the present invention). This manufacturing apparatus 50 is a three-way valve that switches the flow path to the branch position P3 of the process gas branch path 21 from the air supply path 17 instead of the second on-off valve 24 and the third on-off valve 25 shown in FIG. 51 is arranged. The three-way valve 51 is configured such that the processing gas Ga introduced from the upstream side of the branch position P3 in the air supply path 17 passes through the branch position P3 and goes directly downstream of the air supply path 17 and the processing gas. Ga can alternatively be switched to the flow toward the process gas branch path 21 via the branch position P3. Therefore, when the processing gas Ga is supplied from the processing gas generation device 16, the processing gas Ga is always introduced into only one of the downstream side of the branch position P3 of the air supply path 17 and the processing gas branch path 21, and the other side. Introduction to is prevented. For the above-described reasons, when the processing gas Ga is continuously generated and supplied (in the case of the first to third embodiments), the processing gas Ga is always supplied to only one of the air supply path 17 and the processing gas branch path 21. This is because introduction is sufficient. Therefore, the three-way valve 51 is provided at the branch position P3, and the three-way valve 51 is operated so that the supply passage 17 side is opened during the surface treatment step S1 and the treatment gas branch passage 21 side is opened during the maintenance step S2. Therefore, it is possible to perform maintenance safely while suppressing the equipment cost.

また、以上の説明では、帯状板ガラスから切り出したガラス基板Pの一方の主表面Paに対して所定の表面処理を施す場合を説明したが、もちろん帯状板ガラスの何れか一方の主表面に本発明を適用することも可能である。すなわち、図示は省略するが、帯状に成形して幅方向に切断した後、その長手方向一端又は両端を巻き取ったガラスフィルムの表裏一方の面のみに表面処理を実施する場合にも上述した構成に係る表面処理を好適に施すことが可能である。また、上述した種々の板ガラスに対して、一方の主表面Paだけに限らず、他方の主表面(図1でいえば上側の主表面Pb)にも表面処理を実施する際に、本発明を適用することも可能である。   In the above description, the case where a predetermined surface treatment is applied to one main surface Pa of the glass substrate P cut out from the band-shaped plate glass has been described. Of course, the present invention is applied to any one main surface of the band-shaped plate glass. It is also possible to apply. That is, although not shown in the drawings, the structure described above is also applied to the case where surface treatment is performed only on one surface of the front and back surfaces of a glass film which has been formed into a strip shape and cut in the width direction and wound up at one or both ends in the longitudinal direction. It is possible to suitably perform the surface treatment according to the above. Further, when the surface treatment is performed not only on one main surface Pa but also on the other main surface (upper main surface Pb in FIG. 1), the present invention is applied to the various plate glasses described above. It is also possible to apply.

10,30,40,50 ガラス基板の製造装置
11,31 表面処理装置
12 処理槽
13 挿通路
14 給気口
15 排気口
16 処理ガス生成装置
17 給気路
18 除害装置
19 排気路
20 無害ガス導入路
21 処理ガス分岐路
22 無害ガス導入装置
23 第一開閉弁
24 第二開閉弁
25 第三開閉弁
26 第四開閉弁
41,51 三方弁
Fa 原料ガス
Fb キャリアガス
Fc 流体(水)
Ga 処理ガス
Gb 無害ガス
S1 表面処理工程
S2 メンテナンス工程
S21 無害ガス導入ステップ
S22 流路分断ステップ
S23 キャリアガス導入ステップ
S3 表面処理の再開準備工程
DESCRIPTION OF SYMBOLS 10, 30, 40, 50 Glass substrate manufacturing apparatus 11, 31 Surface treatment apparatus 12 Processing tank 13 Insertion passage 14 Supply port 15 Exhaust port 16 Process gas production | generation apparatus 17 Supply path 18 Detoxification apparatus 19 Exhaust path 20 Harmless gas Introduction path 21 Processing gas branch path 22 Harmless gas introduction device 23 First on-off valve 24 Second on-off valve 25 Third on-off valve 26 Fourth on-off valve 41, 51 Three-way valve Fa Source gas Fb Carrier gas Fc Fluid (water)
Ga treatment gas Gb Harmless gas S1 Surface treatment process S2 Maintenance process S21 Harmless gas introduction step S22 Flow path dividing step S23 Carrier gas introduction step S3 Surface treatment resumption preparation process

Claims (12)

ガラス基板となる板状ガラスの表面に処理ガスを供給して、所定の表面処理を施すための表面処理装置を備えたガラス基板の製造装置であって、
前記表面処理装置は、前記処理ガスを生成する処理ガス生成装置と、前記処理ガスを前記表面に供給する給気路と、前記処理ガスに除害処理を施す除害装置と、前記表面に供給された前記処理ガスを前記除害装置に導入する排気路とを備え、
前記給気路に無害ガスを導入可能とする無害ガス導入路が前記給気路に合流している、ガラス基板の製造装置。
A glass substrate manufacturing apparatus provided with a surface treatment apparatus for supplying a processing gas to the surface of a sheet glass to be a glass substrate and performing a predetermined surface treatment,
The surface treatment device includes a treatment gas generation device that produces the treatment gas, an air supply path that supplies the treatment gas to the surface, a detoxification device that performs a detoxification treatment on the treatment gas, and a supply to the surface An exhaust path for introducing the treated gas into the abatement device,
An apparatus for manufacturing a glass substrate, wherein a harmless gas introduction path that enables introduction of a harmless gas into the air supply path joins the air supply path.
前記無害ガス導入路を開閉可能な第一開閉弁と、前記合流位置よりも前記給気路の上流側で前記給気路を開閉可能な第二開閉弁とをさらに備えた請求項1に記載のガラス基板の製造装置。   The first on-off valve capable of opening and closing the harmless gas introduction path, and a second on-off valve capable of opening and closing the air supply path upstream of the merging position on the air supply path. Glass substrate manufacturing equipment. 前記合流位置に設けられ、前記給気路のうち前記合流位置の上流側から下流側に向かう前記処理ガスの流れと、前記無害ガス導入路から前記合流位置の下流側に向かう前記無害ガスの流れとを切り替え可能な三方弁をさらに備えた請求項1に記載のガラス基板の製造装置。   The flow of the processing gas that is provided at the merging position and flows from the upstream side to the downstream side of the merging position in the supply path, and the flow of the harmless gas that flows from the harmless gas introduction path to the downstream side of the merging position. The apparatus for producing a glass substrate according to claim 1, further comprising a three-way valve capable of switching between the two. 前記合流位置よりも前記給気路の上流側で分岐して前記排気路に前記処理ガスを導入可能とする処理ガス分岐路をさらに備えた請求項1〜3の何れか一項に記載のガラス基板の製造装置。   The glass according to any one of claims 1 to 3, further comprising a processing gas branch path that branches from an upstream side of the air supply path with respect to the merging position so that the processing gas can be introduced into the exhaust path. Board manufacturing equipment. 前記処理ガス分岐路を開閉する第三開閉弁をさらに備えた請求項4に記載のガラス基板の製造装置。   The glass substrate manufacturing apparatus according to claim 4, further comprising a third on-off valve that opens and closes the processing gas branch path. 前記処理ガス分岐路が前記排気路に合流する位置よりも前記排気路の上流側に配設され、前記排気路の開閉を行う第四開閉弁をさらに備えた、請求項4又は5に記載のガラス基板の製造装置。   6. The fourth on-off valve according to claim 4, further comprising a fourth on-off valve disposed upstream of the exhaust path from a position where the processing gas branch path joins the exhaust path and opens and closes the exhaust path. Glass substrate manufacturing equipment. 前記無害ガスは、クリーンドライエアーである請求項1〜6の何れか一項に記載のガラス基板の製造装置。   The said harmless gas is clean dry air, The manufacturing apparatus of the glass substrate as described in any one of Claims 1-6. ガラス基板となる板状ガラスの表面に処理ガスを供給して、所定の表面処理を施す表面処理工程と、表面処理工程を停止している間に、前記表面処理を施すための装置のメンテナンスを行うメンテナンス工程とを備えたガラス基板の製造方法であって、
前記表面処理工程において、処理ガス生成装置で生成した前記処理ガスを、給気路を介して前記表面に供給すると共に、前記表面に供給された前記処理ガスを、排気路を介して除害装置に導入して前記処理ガスに除害処理を施し、
前記メンテナンス工程において、前記給気路を閉じると共に、前記給気路を閉じた位置よりも前記給気路の下流側に無害ガスを導入することで、前記給気路を通る前記処理ガスを前記無害ガスに置換する、ガラス基板の製造方法。
Supply a processing gas to the surface of the plate-like glass serving as a glass substrate to perform a predetermined surface treatment, and maintain the apparatus for performing the surface treatment while the surface treatment step is stopped. A method for producing a glass substrate comprising a maintenance step to be performed,
In the surface treatment step, the processing gas generated by a processing gas generation device is supplied to the surface through an air supply path, and the processing gas supplied to the surface is removed from the surface through an exhaust path. To remove the treatment gas
In the maintenance step, the processing gas passing through the air supply passage is closed by closing the air supply passage and introducing a harmless gas downstream of the air supply passage from a position where the air supply passage is closed. A method for producing a glass substrate, which is replaced with a harmless gas.
前記メンテナンス工程において、前記給気路を閉じた位置よりも前記給気路の上流側で前記給気路から分岐して前記排気路に前記処理ガスを導入可能とした請求項8に記載のガラス基板の製造方法。   9. The glass according to claim 8, wherein in the maintenance step, the processing gas can be introduced into the exhaust passage by branching from the supply passage upstream of the supply passage in a position upstream of the supply passage. A method for manufacturing a substrate. 前記メンテナンス工程において、前記給気路を通る前記処理ガスを前記無害ガスに置換した後、前記給気路への前記無害ガスの導入を停止すると共に、前記給気路から分岐して前記処理ガスを前記排気路に導入した位置よりも前記排気路の上流側で前記排気路を閉じる請求項9に記載のガラス基板の製造方法。   In the maintenance step, after the processing gas passing through the air supply path is replaced with the harmless gas, introduction of the harmless gas into the air supply path is stopped, and the processing gas is branched from the air supply path. The method for manufacturing a glass substrate according to claim 9, wherein the exhaust path is closed on the upstream side of the exhaust path from a position where the gas is introduced into the exhaust path. 前記給気路を開いて前記給気路に前記処理ガスを導入すると共に、前記給気路から分岐した流路を閉じ、かつ前記排気路を開くことで、前記無害ガスを前記処理ガスに置換する表面処理の再開準備工程をさらに備えた請求項10に記載のガラス基板の製造方法。   The process gas is introduced into the supply path by opening the supply path, and the harmless gas is replaced with the process gas by closing the flow path branched from the supply path and opening the exhaust path. The manufacturing method of the glass substrate of Claim 10 further equipped with the resumption preparation process of the surface treatment to perform. 前記メンテナンス工程において、前記処理ガス生成装置による前記処理ガスの生成を停止すると共に、
前記処理ガスの原料となるガスの前記処理ガス生成装置への供給を停止し、前記処理ガスに含まれるキャリアガスの前記処理ガス生成装置への供給を続行する請求項9に記載のガラス基板の製造方法。
In the maintenance step, the generation of the processing gas by the processing gas generation device is stopped,
10. The glass substrate according to claim 9, wherein supply of the gas serving as a raw material of the processing gas to the processing gas generation device is stopped, and supply of the carrier gas contained in the processing gas to the processing gas generation device is continued. Production method.
JP2016247970A 2016-12-21 2016-12-21 Glass substrate manufacturing equipment and manufacturing method Active JP6752447B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016247970A JP6752447B2 (en) 2016-12-21 2016-12-21 Glass substrate manufacturing equipment and manufacturing method
PCT/JP2017/043024 WO2018116779A1 (en) 2016-12-21 2017-11-30 Device and method for producing glass substrate
KR1020197019872A KR102414501B1 (en) 2016-12-21 2017-11-30 Glass substrate manufacturing apparatus and manufacturing method
CN201780079164.XA CN110088055B (en) 2016-12-21 2017-11-30 Glass substrate manufacturing device and manufacturing method
TW106143085A TWI751242B (en) 2016-12-21 2017-12-08 Manufacturing device and manufacturing method of glass substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016247970A JP6752447B2 (en) 2016-12-21 2016-12-21 Glass substrate manufacturing equipment and manufacturing method

Publications (2)

Publication Number Publication Date
JP2018100203A true JP2018100203A (en) 2018-06-28
JP6752447B2 JP6752447B2 (en) 2020-09-09

Family

ID=62627622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016247970A Active JP6752447B2 (en) 2016-12-21 2016-12-21 Glass substrate manufacturing equipment and manufacturing method

Country Status (5)

Country Link
JP (1) JP6752447B2 (en)
KR (1) KR102414501B1 (en)
CN (1) CN110088055B (en)
TW (1) TWI751242B (en)
WO (1) WO2018116779A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6437718A (en) * 1987-08-04 1989-02-08 Asahi Glass Co Ltd Production of substrate for magnetic disk
JP2014125414A (en) * 2012-12-27 2014-07-07 Nippon Electric Glass Co Ltd Surface treatment apparatus and surface treatment method of tabular glass

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359229A (en) * 2001-06-01 2002-12-13 Mitsubishi Electric Corp Method and apparatus for manufacturing semiconductor device
JP3891848B2 (en) * 2002-01-17 2007-03-14 東京エレクトロン株式会社 Processing apparatus and processing method
JP4579522B2 (en) * 2003-09-29 2010-11-10 株式会社イー・スクエア Plasma surface treatment equipment
CN100397569C (en) * 2005-02-08 2008-06-25 东京毅力科创株式会社 Substrate processing apparatus, control method adopted in substrate processing apparatus and program
US20110020187A1 (en) * 2008-03-06 2011-01-27 Toyo Tanso Co., Ltd. Surface treatment apparatus
JP5277784B2 (en) * 2008-08-07 2013-08-28 東京エレクトロン株式会社 Raw material recovery method, trap mechanism, exhaust system, and film forming apparatus using the same
JP5887201B2 (en) * 2012-05-14 2016-03-16 東京エレクトロン株式会社 Substrate processing method, substrate processing apparatus, substrate processing program, and storage medium
JP2014080331A (en) 2012-10-17 2014-05-08 Asahi Glass Co Ltd Method for producing anti-reflective glass

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6437718A (en) * 1987-08-04 1989-02-08 Asahi Glass Co Ltd Production of substrate for magnetic disk
JP2014125414A (en) * 2012-12-27 2014-07-07 Nippon Electric Glass Co Ltd Surface treatment apparatus and surface treatment method of tabular glass

Also Published As

Publication number Publication date
WO2018116779A1 (en) 2018-06-28
JP6752447B2 (en) 2020-09-09
KR20190098997A (en) 2019-08-23
TW201827375A (en) 2018-08-01
CN110088055A (en) 2019-08-02
TWI751242B (en) 2022-01-01
CN110088055B (en) 2022-05-27
KR102414501B1 (en) 2022-06-29

Similar Documents

Publication Publication Date Title
KR101302927B1 (en) Surface processing apparatus
KR20140123930A (en) Method for treating inner surface of chlorine trifluoride supply path in device using chlorine trifluoride
KR20110068896A (en) Method and apparatus for producing float glass
JP2014125414A (en) Surface treatment apparatus and surface treatment method of tabular glass
KR101739611B1 (en) Substrate processing apparatus, substrate processing method, computer readable storage medium for recording substrate processing program
TW201730927A (en) Substrate treating apparatus and substrate treating method
WO2018116779A1 (en) Device and method for producing glass substrate
JP6520928B2 (en) Etching apparatus, etching method, method of manufacturing substrate, and substrate
JP4530825B2 (en) In-line type plasma processing equipment
JP2009213958A (en) Substrate processing equipment
JP2007117953A (en) Conveying/processing apparatus
KR101609346B1 (en) Apparatus for generating plasma
JP6990207B2 (en) Heat decomposition type exhaust gas abatement device and backflow prevention method
KR101982158B1 (en) Film surface treatment device and system
JP2014026955A (en) Ion beam irradiation device and operation method of ion beam irradiation device
KR101488300B1 (en) The separation and recycling system for a perfluoro compounds that have a separation fillter heating equipment
JP4914415B2 (en) Surface treatment equipment
JP2008177205A (en) Cleaning apparatus and cleaning method
JP2011146704A (en) Hydrogen annealing treatment method and hydrogen annealing treatment device
ATE505822T1 (en) FUEL CELL SYSTEM AND METHOD FOR STARTING THE FUEL CELL SYSTEM
JP2004158517A (en) Substrate processing apparatus
KR20200123365A (en) Method for removing remaining gas of pipe connected to substrate process apparatus
JP4733615B2 (en) Plasma processing method and processing apparatus
KR20200123364A (en) Removing remaining gas system including removing remaining gas apparatus and method for removing remaining gas thereof
JP2019089667A (en) Glass substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200802

R150 Certificate of patent or registration of utility model

Ref document number: 6752447

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150