JP2011146704A - Hydrogen annealing treatment method and hydrogen annealing treatment device - Google Patents

Hydrogen annealing treatment method and hydrogen annealing treatment device Download PDF

Info

Publication number
JP2011146704A
JP2011146704A JP2011002580A JP2011002580A JP2011146704A JP 2011146704 A JP2011146704 A JP 2011146704A JP 2011002580 A JP2011002580 A JP 2011002580A JP 2011002580 A JP2011002580 A JP 2011002580A JP 2011146704 A JP2011146704 A JP 2011146704A
Authority
JP
Japan
Prior art keywords
line
exhaust
hydrogen
reaction chamber
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011002580A
Other languages
Japanese (ja)
Other versions
JP5700646B2 (en
Inventor
Yasunori Takakuwa
康憲 高桑
Koji Tomezuka
幸二 遠目塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2011002580A priority Critical patent/JP5700646B2/en
Publication of JP2011146704A publication Critical patent/JP2011146704A/en
Application granted granted Critical
Publication of JP5700646B2 publication Critical patent/JP5700646B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To allow pressure-reduced hydrogen annealing treatment to be safely performed. <P>SOLUTION: A hydrogen annealing treatment device includes: a reaction chamber 2; a hydrogen gas introduction line 18 for introducing hydrogen gas into the reaction chamber; a pressure reducing exhaust line 5 connected to the reaction chamber; an exhauster which is provided in the pressure reducing exhaust line and reduces pressure in the reaction chamber; and an exhaust dilution line 48 which provides an inert gas to the downstream side of the exhauster to dilute a hydrogen concentration in exhaust gas to a predetermined value or lower. Safe pressure-reduced hydrogen anneal treatment is achieved by a hydrogen annealing treatment method including steps of: subjecting a target substrate to be treated, to pressure-reduced annealing treatment while introducing hydrogen gas from the hydrogen gas introduction line into the reaction chamber wherein pressure is reduced, and sucking and exhausting residual gas in the reaction chamber after the pressure-reduced annealing treatment, to the downstream side of the exhauster via the pressure reducing exhaust line by the exhauster; and supplying the inert gas from the exhaust dilution line 48 to the downstream side of the exhauster to dilute the hydrogen concentration in the residual gas to a predetermined value or lower. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は半導体製造装置製造工程の1つである水素アニール処理を行う為の水素アニール処理方法及びその装置に関するものである。   The present invention relates to a hydrogen annealing method and apparatus for performing hydrogen annealing, which is one of the manufacturing steps of a semiconductor manufacturing apparatus.

デバイスの配線はAl膜、Cu膜から形成される。Al膜、Cu膜に酸素が残存すると、微細な配線の為経時変化を起こして断線の原因となることがある。この為、被処理基板について水素アニール処理によるAl膜、Cuの膜還元処理を行っている。   Device wiring is formed of an Al film and a Cu film. If oxygen remains in the Al film and the Cu film, the fine wiring may cause a change with time, which may cause disconnection. For this reason, Al film and Cu film reduction treatment is performed on the substrate to be treated by hydrogen annealing treatment.

上記したデバイスの配線には安価で加工性が良いことからAl配線が多用されている。
ところが、Al自体は導体抵抗が大きい為、より高速処理が可能なデバイスを製作するには、Cu又はCu合金の配線が有利である。然し、Cuは酸化し易い為、配線にCu又はCu合金を用いる場合は、水素アニール処理がより重要となる。
Al wiring is frequently used for the wiring of the above devices because it is inexpensive and has good workability.
However, since Al itself has a large conductor resistance, Cu or Cu alloy wiring is advantageous for manufacturing a device capable of higher-speed processing. However, since Cu easily oxidizes, hydrogen annealing is more important when Cu or Cu alloy is used for the wiring.

従来の水素アニール処理装置としては、特開平5−291268号にも見られる様に、常圧での水素アニール処理がある。以下図5に於いて、特開平5−291268号に示されるアニール処理装置の概要を説明する。   As a conventional hydrogen annealing treatment apparatus, there is a hydrogen annealing treatment at normal pressure as seen in Japanese Patent Laid-Open No. 5-291268. The outline of an annealing apparatus shown in Japanese Patent Laid-Open No. 5-291268 will be described below with reference to FIG.

反応炉1の内部には反応室2が画成され、該反応室2にはボート3が挿脱される様になっている。前記反応室2には水素ガス導入管4が連通すると共に真空排気管5が連通し、該真空排気管5はバルブ6を介して真空排気装置7が接続されている。前記真空排気管5の上流側にバルブ8を介して水素燃焼パイプ9が連通し、該水素燃焼パイプ9は燃焼箱10に連通し、前記水素燃焼パイプ9の先端は燃焼ノズル11となっている。前記燃焼箱10には水素火種ライン12が連通し、該水素火種ライン12の先端は前記燃焼ノズル11近傍に導かれて種火が灯されている。又、前記燃焼箱10には排気ダクト13が連通し、図示しない排気装置に接続されている。図中、14は前記燃焼箱10の内部を大気に開放するダンパである。   A reaction chamber 2 is defined inside the reaction furnace 1, and a boat 3 is inserted into and removed from the reaction chamber 2. A hydrogen gas introduction pipe 4 and a vacuum exhaust pipe 5 communicate with the reaction chamber 2, and a vacuum exhaust apparatus 7 is connected to the vacuum exhaust pipe 5 through a valve 6. A hydrogen combustion pipe 9 communicates with the upstream side of the vacuum exhaust pipe 5 via a valve 8, the hydrogen combustion pipe 9 communicates with a combustion box 10, and a tip of the hydrogen combustion pipe 9 serves as a combustion nozzle 11. . A hydrogen flame line 12 communicates with the combustion box 10, and the tip of the hydrogen flame line 12 is led to the vicinity of the combustion nozzle 11 to light the flame. An exhaust duct 13 communicates with the combustion box 10 and is connected to an exhaust device (not shown). In the figure, 14 is a damper that opens the inside of the combustion box 10 to the atmosphere.

上記水素アニール処理装置に於いて、水素アニール処理が行われる場合、前記バルブ6が開かれ、前記反応室2内の空気が前記真空排気装置7により排気され、次に前記バルブ6が閉じられ、前記バルブ8が開かれる。前記水素ガス導入管4より前記反応室2に水素が常圧状態で導入され、水素アニール処理が行われる。   In the hydrogen annealing apparatus, when hydrogen annealing is performed, the valve 6 is opened, the air in the reaction chamber 2 is exhausted by the vacuum exhaust device 7, and then the valve 6 is closed. The valve 8 is opened. Hydrogen is introduced into the reaction chamber 2 from the hydrogen gas introduction pipe 4 at normal pressure, and a hydrogen annealing process is performed.

又、処理後の余剰の水素ガスは前記燃焼箱10に排気される。前記水素燃焼パイプ9を経て前記燃焼ノズル11から排出される水素は、前記種火で着火され前記燃焼箱10内で燃焼する。該燃焼箱10内で排気水素が燃焼することで、前記排気ダクト13からは水素が除去された或は所定濃度以下とされた排気ガスが排出される。   Further, surplus hydrogen gas after the treatment is exhausted to the combustion box 10. Hydrogen discharged from the combustion nozzle 11 through the hydrogen combustion pipe 9 is ignited by the seed fire and burned in the combustion box 10. As the exhaust hydrogen burns in the combustion box 10, the exhaust duct 13 is discharged with exhaust gas from which hydrogen has been removed or whose concentration has been reduced to a predetermined concentration or less.

水素アニール処理を行う目的として、上記した金属導体膜中の酸素を除去する事(還元)を主たる目的として行う場合と、金属導体膜、特にCu膜中の不純物を除去し電気的特性を向上する目的、及び下地とCu膜との密着性の向上を図る目的で行われる場合とがある。   The purpose of performing the hydrogen annealing treatment is to remove oxygen (reduction) in the metal conductor film as described above and to remove impurities in the metal conductor film, particularly the Cu film, thereby improving the electrical characteristics. It may be performed for the purpose and to improve the adhesion between the base and the Cu film.

還元を目的とした場合には、常圧状態で処理する方が効果的であり、これは多層配線に
対する還元処理を行う場合である。
For the purpose of reduction, it is more effective to perform the treatment under normal pressure, which is the case where the reduction treatment is performed on the multilayer wiring.

電気的特性の向上、下地との密着性の向上については、減圧下(例えば50Torr程度)で処理することが効果的である。   In order to improve electrical characteristics and adhesion to the substrate, it is effective to perform the treatment under reduced pressure (for example, about 50 Torr).

これは、水素アニール処理の前工程であるエッチング等で、残留不純物、添加物が付着していることがあり、これらはデバイス特性上悪影響があるとされている。これらの物質は蒸気圧が低く蒸圧しにくい物質であり、除去する条件としては減圧状態とするのが良く、更に水素を供給することで前記残留不純物を除去した後が水素原子に置換され、その為に分子結合が強くなり、その結果密着性も向上すると考えられている。即ち、減圧下で水素アニール処理を行った場合、還元処理が行えると共に電気的特性の向上、下地との密着性の向上が図れる。従って、より品質が要求される場合には減圧水素アニール処理が行わ
れている。
This is because etching or the like, which is a pre-process of the hydrogen annealing process, may have residual impurities and additives attached thereto, which are considered to have an adverse effect on device characteristics. These substances are substances that have a low vapor pressure and are difficult to vaporize, and the conditions for removal are preferably reduced pressure. After the residual impurities are removed by supplying hydrogen, they are replaced with hydrogen atoms. Therefore, it is considered that the molecular bond becomes stronger, and as a result, the adhesion is improved. That is, when hydrogen annealing treatment is performed under reduced pressure, reduction treatment can be performed, electrical characteristics can be improved, and adhesion to the substrate can be improved. Accordingly, when higher quality is required, a reduced pressure hydrogen annealing process is performed.

上述した様に、水素アニール処理を行う場合、目的に応じ常圧処理を行った方が良い場合と、減圧処理を行った方が良い場合とがある。   As described above, when performing the hydrogen annealing treatment, there are cases where it is better to perform the atmospheric pressure treatment depending on the purpose, and cases where it is better to perform the pressure reduction treatment.

ところが、上記した水素アニール処理装置は常圧でのみ水素アニール処理を行うものであり、減圧水素アニール処理は行えない。従って、減圧水素アニール処理を行う為の水素アニール処理装置を別途設備しなければならない。   However, the hydrogen annealing apparatus described above performs hydrogen annealing only at normal pressure and cannot perform reduced pressure hydrogen annealing. Accordingly, a hydrogen annealing apparatus for performing the reduced pressure hydrogen annealing process must be provided separately.

又、上記の水素アニール処理装置に於いて、減圧処理を行う為反応室を減圧にして使用すると、前記燃焼箱10が常圧で水素ガスを燃焼させる方式であるので、燃焼箱から反応室へ雰囲気が逆流する可能性があり、逆流した場合は未反応水素ガスと大気中の酸素とが反応して爆発するということも考えられ、又、燃焼箱内の水素ガス燃焼用の火が逆流し、爆発することも考えられ、未反応水素ガスの処理が難しいとされ、減圧水素アニール処理装置が実用化されたものはなかった。   Further, in the above hydrogen annealing apparatus, when the reaction chamber is used at a reduced pressure in order to perform a decompression process, the combustion box 10 is a system in which hydrogen gas is burned at normal pressure. There is a possibility that the atmosphere will flow backward, and if it flows backward, it is possible that unreacted hydrogen gas reacts with oxygen in the atmosphere and explodes, and the fire for burning hydrogen gas in the combustion box flows backward. However, it is considered that it is difficult to treat unreacted hydrogen gas, and no vacuum hydrogen annealing treatment apparatus has been put to practical use.

本発明は斯かる実情に鑑み、減圧水素アニール処理装置を実現すると共に減圧水素アニール処理と常圧水素アニール処理との両処理を同一の水素アニール処理装置で行える様にし、設備費の低減を図るものである。   In view of such circumstances, the present invention realizes a reduced pressure hydrogen annealing apparatus and enables both the reduced pressure hydrogen annealing process and the atmospheric hydrogen annealing process to be performed by the same hydrogen annealing apparatus, thereby reducing the equipment cost. Is.

本発明は、反応室と、該反応室に水素ガスを供給する水素ガス導入ラインと、前記反応室に接続された減圧排気ラインと、該減圧排気ラインに設けられ、前記反応室を減圧する為の排気装置と、該排気装置の下流側に不活性ガスを供給し排気ガス中の水素濃度を所定値以下に希釈する排気希釈ラインと、前記反応室に接続された常圧排気ラインと、該常圧排気ラインに接続された水素ガス燃焼部と、前記反応室と前記排気装置の下流側とを連絡する連絡ラインとを具備し、前記減圧排気ラインと前記常圧排気ラインと前記連絡ラインとを切替えることにより、前記排気装置を駆動させ、前記減圧排気ラインから排気するこ
とで前記反応室が減圧された状態で、前記水素ガス導入ラインから水素ガスを前記反応室へ供給しつつ前記排気希釈ラインから前記排気装置の下流側に前記不活性ガスを供給し、排気ガス中の水素濃度を所定値以下に希釈する減圧水素アニール処理と前記常圧排気ラインから排気する常圧水素アニール処理と前記連絡ラインから排気する休止状態とを選択して行う水素アニール処理方法に係るものである。
又本発明は、反応室と、該反応室に水素ガスを供給する水素ガス導入ラインと、前記反応室に接続された減圧排気ラインと、該減圧排気ラインに設けられ、前記反応室を減圧する為の排気装置と、該排気装置の下流側に不活性ガスを供給し、排気ガス中の水素濃度を所定値以下に希釈する排気希釈ラインと、前記反応室に接続された常圧排気ラインと、該常圧排気ラインに接続された水素ガス燃焼部と、前記反応室と前記排気装置の下流側とを連絡する連絡ラインと、前記常圧排気ラインと前記減圧排気ラインと前記連絡ラインと前記反応室との接続状態を切替える弁とを具備することを特徴とする水素アニール処理装置に係るものである。
又本発明は、反応室と、該反応室に水素ガスを供給する水素ガス導入ラインと、前記反応室に接続された減圧排気ラインと、該減圧排気ラインに設けられ、前記反応室を減圧する為の排気装置と、該排気装置の下流側に不活性ガスを供給し、排気ガス中の水素濃度を所定値以下に希釈する排気希釈ラインと、前記反応室に接続された常圧排気ラインと、該常圧排気ラインに接続された水素ガス燃焼部と、前記反応室と前記排気装置の下流側とを連絡する連絡ラインと、前記常圧排気ラインと前記減圧排気ラインと前記連絡ラインと前記反応室との接続状態を切替える弁と、前記排気装置の下流側に設けられたガス濃度検知器と、前記排気希釈ラインに設けられた流量コントローラとを具備し、放出される水素濃度が4%以下となる様不活性ガス供給流量を制御する水素アニール処理装置に係るものである。
The present invention is provided in a reaction chamber, a hydrogen gas introduction line for supplying hydrogen gas to the reaction chamber, a vacuum exhaust line connected to the reaction chamber, and the vacuum exhaust line for decompressing the reaction chamber. A gas exhaust line, an exhaust gas dilution line for supplying an inert gas downstream of the gas exhaust apparatus to dilute a hydrogen concentration in the exhaust gas to a predetermined value or less, a normal pressure exhaust line connected to the reaction chamber, A hydrogen gas combustion section connected to a normal pressure exhaust line; and a communication line connecting the reaction chamber and the downstream side of the exhaust device, the reduced pressure exhaust line, the normal pressure exhaust line, and the communication line; The exhaust dilution is performed while supplying the hydrogen gas from the hydrogen gas introduction line to the reaction chamber in a state where the reaction chamber is decompressed by driving the exhaust device and exhausting from the decompression exhaust line. Rye The inert gas is supplied to the downstream side of the exhaust device from the above, and the reduced pressure hydrogen annealing treatment for diluting the hydrogen concentration in the exhaust gas to a predetermined value or less and the normal pressure hydrogen annealing treatment for exhausting from the normal pressure exhaust line and the communication The present invention relates to a hydrogen annealing treatment method that is performed by selecting a dormant state that is exhausted from a line.
The present invention also includes a reaction chamber, a hydrogen gas introduction line for supplying hydrogen gas to the reaction chamber, a reduced pressure exhaust line connected to the reaction chamber, and the reduced pressure exhaust line to depressurize the reaction chamber. An exhaust system for supplying the inert gas downstream of the exhaust system, diluting the hydrogen concentration in the exhaust gas below a predetermined value, and a normal pressure exhaust line connected to the reaction chamber, The hydrogen gas combustion unit connected to the normal pressure exhaust line, the communication line connecting the reaction chamber and the downstream side of the exhaust device, the normal pressure exhaust line, the vacuum exhaust line, the communication line, and the The present invention relates to a hydrogen annealing apparatus comprising a valve for switching a connection state with a reaction chamber.
The present invention also includes a reaction chamber, a hydrogen gas introduction line for supplying hydrogen gas to the reaction chamber, a reduced pressure exhaust line connected to the reaction chamber, and the reduced pressure exhaust line to depressurize the reaction chamber. An exhaust system for supplying the inert gas downstream of the exhaust system, diluting the hydrogen concentration in the exhaust gas below a predetermined value, and a normal pressure exhaust line connected to the reaction chamber, The hydrogen gas combustion unit connected to the normal pressure exhaust line, the communication line connecting the reaction chamber and the downstream side of the exhaust device, the normal pressure exhaust line, the vacuum exhaust line, the communication line, and the It comprises a valve for switching the connection state with the reaction chamber, a gas concentration detector provided downstream of the exhaust device, and a flow rate controller provided in the exhaust dilution line, and the hydrogen concentration released is 4%. Inactive gas so that Those related to the hydrogen annealing device for controlling the supply flow rate.

本発明によれば、減圧水素アニール処理が可能となり、被処理基板からの脱ガス、不純物離脱が効果的に行われ、デバイスの電気的特性が向上する。 According to the present invention, it is possible to perform a low-pressure hydrogen annealing process, effectively degassing and detaching impurities from the substrate to be processed, and the electrical characteristics of the device are improved.

又、反応室と、該反応室に水素ガスを導入する水素ガス導入ラインと、前記反応室に接続された常圧排気ラインと減圧排気ラインとを具備し、前記排気ラインを切替えることで減圧水素アニール処理と常圧水素アニール処理とを選択して行うことができるので、還元が必要なデバイス、不純物除去が必要なデバイスなど被処理物に応じた処理方法が選択でき製品品質の向上が図れる。   The apparatus further comprises a reaction chamber, a hydrogen gas introduction line for introducing hydrogen gas into the reaction chamber, and a normal pressure exhaust line and a vacuum exhaust line connected to the reaction chamber. Since the annealing treatment and the atmospheric hydrogen annealing treatment can be selected and performed, a treatment method according to the object to be treated such as a device that requires reduction or a device that requires removal of impurities can be selected, thereby improving product quality.

反応室と、該反応室に水素ガスを導入する水素ガス導入ラインと、前記反応室に接続された常圧排気ラインと減圧排気ラインと、前記常圧排気ラインと前記減圧排気ラインと前記反応室との接続状態を切替える弁とを具備するので、減圧水素アニール処理と常圧水素アニール処理とを1台の水素アニール処理装置で行えるので設備する水素アニール処理装置の台数が少なくてすみ、設備費が低減できる等の優れた効果を発揮する。   A reaction chamber, a hydrogen gas introduction line for introducing hydrogen gas into the reaction chamber, a normal pressure exhaust line and a vacuum exhaust line connected to the reaction chamber, the normal pressure exhaust line, the vacuum exhaust line, and the reaction chamber And a valve for switching the connection state between the hydrogen annealing process and the low pressure hydrogen annealing process and the normal pressure hydrogen annealing process can be performed with one hydrogen annealing apparatus. Exhibits excellent effects such as reduction of

以下、図面を参照しつつ本発明の実施の形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1に於いて、図5中に示したものと同一のものには同符号を付してある。   In FIG. 1, the same components as those shown in FIG.

反応炉1は反応管15、均熱管16、ヒータ17が同心多重に設けられた構成であり、前記反応管15の内部に反応室2が画成される。   The reaction furnace 1 has a configuration in which a reaction tube 15, a soaking tube 16, and a heater 17 are provided concentrically. A reaction chamber 2 is defined inside the reaction tube 15.

該反応室2に連通する様に、前記反応管15にガス導入管18が接続されると共に排ガス管19が接続されている。   A gas introduction pipe 18 and an exhaust gas pipe 19 are connected to the reaction pipe 15 so as to communicate with the reaction chamber 2.

前記ガス導入管18は上流側で分岐され、分岐した一方は水素ガス導入管21として図示しない水素ガス供給源に接続され、分岐した他方は窒素ガス導入管22として図示しない窒素ガス供給源に接続されている。   The gas introduction pipe 18 is branched upstream, one of the branches is connected to a hydrogen gas supply source (not shown) as a hydrogen gas introduction pipe 21, and the other branch is connected to a nitrogen gas supply source (not shown) as a nitrogen gas introduction pipe 22. Has been.

前記水素ガス導入管21は更に分岐し、水素火種ライン12として燃焼箱10に導かれる。前記水素火種ライン12の分岐点より下流側の位置に水素ガス給停弁23、流量コントローラ24が前記水素ガス導入管21に順次設けられ、前記水素火種ライン12には下流側に向かって火種ライン開閉弁25、流量コントローラ26が設けられる。   The hydrogen gas introduction pipe 21 is further branched and led to the combustion box 10 as a hydrogen fire type line 12. A hydrogen gas supply / stop valve 23 and a flow rate controller 24 are sequentially provided in the hydrogen gas introduction pipe 21 at a position downstream of the branch point of the hydrogen fire type line 12. An on-off valve 25 and a flow rate controller 26 are provided.

前記窒素ガス導入管22は更に2つの窒素ガス希釈ライン27,28に分岐し、一方の窒素ガス希釈ライン27は前記反応管15と均熱管16との間の空間に導かれ、他方の窒素ガス希釈ライン28は前記均熱管16とヒータ17との間の空間に導かれている。前記窒素ガス希釈ライン27,28の分岐点より下流側の位置に窒素ガス給停弁29、流量コントローラ31が順次設けられ、又前記窒素ガス希釈ライン27には第1希釈ライン開閉弁32が設けられ、前記窒素ガス希釈ライン28には第2希釈ライン開閉弁33が設けられている。前記窒素ガス導入管22の窒素ガス給停弁29より上流側位置と前記水素火種
ライン12の火種ライン開閉弁25と流量コントローラ26間の位置とを窒素ガスバイパスライン34により接続し、該窒素ガスバイパスライン34にはバイパス開閉弁35を設ける。
The nitrogen gas introduction pipe 22 is further branched into two nitrogen gas dilution lines 27 and 28. One nitrogen gas dilution line 27 is led to a space between the reaction pipe 15 and the soaking pipe 16, and the other nitrogen gas is supplied. The dilution line 28 is led to a space between the soaking tube 16 and the heater 17. A nitrogen gas supply / stop valve 29 and a flow rate controller 31 are sequentially provided at a position downstream of the branch point of the nitrogen gas dilution lines 27 and 28, and a first dilution line opening / closing valve 32 is provided in the nitrogen gas dilution line 27. The nitrogen gas dilution line 28 is provided with a second dilution line opening / closing valve 33. A position upstream of the nitrogen gas supply / stop valve 29 of the nitrogen gas introduction pipe 22 and a position between the fire line open / close valve 25 of the hydrogen fire type line 12 and the flow rate controller 26 are connected by a nitrogen gas bypass line 34, and the nitrogen gas A bypass opening / closing valve 35 is provided in the bypass line 34.

前記排ガス管19には前記反応室2の圧力を検出する圧力センサ36が設けられ、又前記排ガス管19は前記圧力センサ36の下流側で分岐し、一方は真空排気管5として真空排気ラインとして機能し、他方は水素燃焼パイプ9として前記燃焼箱10に導かれ、先端部は燃焼ノズル11として前記水素火種ライン12の先端近傍に開口する。   The exhaust gas pipe 19 is provided with a pressure sensor 36 for detecting the pressure in the reaction chamber 2, and the exhaust gas pipe 19 branches downstream of the pressure sensor 36, and one of them serves as a vacuum exhaust pipe 5 as a vacuum exhaust line. The other is led to the combustion box 10 as a hydrogen combustion pipe 9, and the tip opens as a combustion nozzle 11 near the tip of the hydrogen fire line 12.

前記真空排気管5には上流側より、排気開閉弁37、流量調整弁38、排気ポンプ40を順次設け、該排気ポンプ40の下流側には排気ダクト50が接続されている。又、前記真空排気管5の流量調整弁38と排気ポンプ40との間には第1窒素ガスバラストライン39、第2窒素ガスバラストライン41が連通し、該第1窒素ガスバラストライン39、第2窒素ガスバラストライン41は図示しない窒素ガス供給源に接続されている。   An exhaust opening / closing valve 37, a flow rate adjusting valve 38, and an exhaust pump 40 are sequentially provided in the vacuum exhaust pipe 5 from the upstream side, and an exhaust duct 50 is connected to the downstream side of the exhaust pump 40. A first nitrogen gas ballast line 39 and a second nitrogen gas ballast line 41 are connected between the flow rate adjusting valve 38 of the vacuum exhaust pipe 5 and the exhaust pump 40, and the first nitrogen gas ballast line 39, The 2 nitrogen gas ballast line 41 is connected to a nitrogen gas supply source (not shown).

前記第1窒素ガスバラストライン39には上流側に向かって第1開閉弁42、第1逆流防止弁43、第1流量制御弁44が順次設けられ、前記第2窒素ガスバラストライン41には上流側に向かって第2開閉弁45、第2逆流防止弁46、第2流量制御弁47が順次設けられている。   The first nitrogen gas ballast line 39 is provided with a first on-off valve 42, a first backflow prevention valve 43, and a first flow control valve 44 in that order upstream, and the second nitrogen gas ballast line 41 is upstream. A second on-off valve 45, a second backflow prevention valve 46, and a second flow rate control valve 47 are sequentially provided toward the side.

前記排気ダクト50に排気希釈ライン48が連通し、該排気希釈ライン48の先端には下流側に向かって開口するL型ノズル49が設けられ、前記排気希釈ライン48は図示しない窒素ガス供給源に接続されている。該排気希釈ライン48には窒素ガス供給源側から下流に向かって、流量コントローラ66、開閉弁67、逆流防止弁68が設けられている。   An exhaust dilution line 48 communicates with the exhaust duct 50, and an L-shaped nozzle 49 opening toward the downstream side is provided at the tip of the exhaust dilution line 48. The exhaust dilution line 48 is connected to a nitrogen gas supply source (not shown). It is connected. The exhaust dilution line 48 is provided with a flow rate controller 66, an on-off valve 67, and a backflow prevention valve 68 from the nitrogen gas supply source side toward the downstream.

前記水素燃焼パイプ9の分岐点より下流側に向かって圧力スイッチ51、開閉弁52が設けられ、前記水素燃焼パイプ9の圧力スイッチ51と開閉弁52間の位置と前記真空排気管5の排気ポンプ40の下流位置とが連絡ライン53により接続され、該連絡ライン53には水素燃焼パイプ9側から開閉弁54、逆流防止弁55が設けられている。   A pressure switch 51 and an opening / closing valve 52 are provided downstream from the branch point of the hydrogen combustion pipe 9, and a position between the pressure switch 51 and the opening / closing valve 52 of the hydrogen combustion pipe 9 and an exhaust pump of the vacuum exhaust pipe 5 are provided. The downstream position of 40 is connected by a connecting line 53, and an open / close valve 54 and a backflow prevention valve 55 are provided from the hydrogen combustion pipe 9 side to the connecting line 53.

前記燃焼箱10は排気ダクト56を介して排気装置(図示せず)に接続され、該排気ダクト56には排気希釈ライン57が接続され、該排気希釈ライン57は図示しない窒素ガス供給源に接続され、該窒素ガス供給源側から流量コントローラ58、逆流防止弁59、開閉弁60が順次設けられている。又、前記燃焼箱10には温度センサ62、炎検知センサ63が設けられており、該両センサにより前記燃焼箱10内で水素ガスの燃焼が行われているかどうかが検出され、前記排気ダクト56にはガス濃度検知器69を設けられ、前記排気ダクト56から排出される排ガス中の水素濃度を検出する。   The combustion box 10 is connected to an exhaust device (not shown) through an exhaust duct 56, an exhaust dilution line 57 is connected to the exhaust duct 56, and the exhaust dilution line 57 is connected to a nitrogen gas supply source (not shown). A flow rate controller 58, a backflow prevention valve 59, and an on-off valve 60 are sequentially provided from the nitrogen gas supply source side. Further, the combustion box 10 is provided with a temperature sensor 62 and a flame detection sensor 63, which detect whether or not hydrogen gas is being burned in the combustion box 10, and the exhaust duct 56. Is provided with a gas concentration detector 69 for detecting the hydrogen concentration in the exhaust gas discharged from the exhaust duct 56.

以下、作用について説明する。   The operation will be described below.

先ず、図1に於いて、減圧水素アニール処理について説明する。   First, referring to FIG. 1, the reduced-pressure hydrogen annealing process will be described.

前記第2希釈ライン開閉弁33、第1希釈ライン開閉弁32、窒素ガス給停弁29、火種ライン開閉弁25、バイパス開閉弁35、第2開閉弁45、開閉弁54、開閉弁52、開閉弁60がそれぞれ閉とされ、前記水素ガス給停弁23、排気開閉弁37、第1開閉弁42、開閉弁67が開とされる。   The second dilution line opening / closing valve 33, the first dilution line opening / closing valve 32, the nitrogen gas supply / closing valve 29, the fire type line opening / closing valve 25, the bypass opening / closing valve 35, the second opening / closing valve 45, the opening / closing valve 54, the opening / closing valve 52, opening / closing. The valves 60 are closed, and the hydrogen gas supply / stop valve 23, the exhaust on / off valve 37, the first on / off valve 42, and the on / off valve 67 are opened.

前記排気ポンプ40が駆動され、前記反応室2が減圧状態とされる。ここで、減圧状態とは高度な真空状態ではなく、減圧時の圧力が大気圧より低い状態を意味し、減圧の状態は水素アニール処理の状態により決定される。   The exhaust pump 40 is driven, and the reaction chamber 2 is in a reduced pressure state. Here, the reduced pressure state means not a high vacuum state but a state where the pressure during the reduced pressure is lower than the atmospheric pressure, and the reduced pressure state is determined by the state of the hydrogen annealing treatment.

前記水素ガス給停弁23が開かれ、前記流量コントローラ24で流量コントロールされながら、水素ガスが反応室2に導入される。反応後の残存ガスは前記真空排気管5を介して前記排気ポンプ40により吸引排気される。該真空排気管5の圧力は前記圧力センサ36により検出され、又前記流量調整弁38の開閉度の調整、前記第1窒素ガスバラストライン39からの窒素ガスの流入量がコントロールされることで、反応室2の背圧が制御されることで、前記反応室2の圧力がコントロールされる。ここで、減圧水素アニール処理時の反応室内の圧力は、基板上に形成された配線の電気的特性の向上、下地との密着性向
上を図る為に、1〜750Torrの範囲が好ましく、更には50Torr程度がより好ましい。
又、第1窒素ガスバラストライン39から流入する窒素ガスは排気を希釈し、水素ガス濃度を低下させる。
The hydrogen gas supply / stop valve 23 is opened, and hydrogen gas is introduced into the reaction chamber 2 while the flow rate is controlled by the flow rate controller 24. The residual gas after the reaction is sucked and exhausted by the exhaust pump 40 through the vacuum exhaust pipe 5. The pressure of the evacuation pipe 5 is detected by the pressure sensor 36, the opening / closing degree of the flow rate adjusting valve 38 is adjusted, and the inflow amount of nitrogen gas from the first nitrogen gas ballast line 39 is controlled. By controlling the back pressure in the reaction chamber 2, the pressure in the reaction chamber 2 is controlled. Here, the pressure in the reaction chamber during the low-pressure hydrogen annealing treatment is preferably in the range of 1 to 750 Torr in order to improve the electrical characteristics of the wiring formed on the substrate and improve the adhesion to the substrate. About 50 Torr is more preferable.
Moreover, the nitrogen gas flowing in from the first nitrogen gas ballast line 39 dilutes the exhaust gas and lowers the hydrogen gas concentration.

水素ガスの自然爆発条件は水素ガス濃度4%から70%である。前記排気ポンプ40から排気されるガス中の水素ガス濃度が4パーセント以下となる様に、前記排気希釈ライン48は前記流量コントローラ66により窒素ガス供給量を調整しつつ排ガスを希釈する。
尚、前記L型ノズル49は下流側に開口しており、排気ダクト50中の排気ガスの流れを乱さない様に考慮されている。
The natural explosion condition of hydrogen gas is a hydrogen gas concentration of 4% to 70%. The exhaust dilution line 48 dilutes the exhaust gas while adjusting the nitrogen gas supply amount by the flow rate controller 66 so that the hydrogen gas concentration in the gas exhausted from the exhaust pump 40 is 4% or less.
Note that the L-shaped nozzle 49 is opened on the downstream side so that the flow of the exhaust gas in the exhaust duct 50 is not disturbed.

而して、大気に放出しても支障ない状態に希釈された排ガスが前記排気ダクト50を介して放出される。   Thus, the exhaust gas diluted so as not to interfere with the release to the atmosphere is discharged through the exhaust duct 50.

上述の様に、前記流量調整弁38による排気抵抗の調整、第1窒素ガスバラストライン39からの窒素ガスの供給による背圧制御により、前記反応室2を所定の減圧状態に維持し、而も、第1窒素ガスバラストライン39にからの窒素ガスの供給、更に前記排気希釈ライン48からの窒素ガスの供給により、放出ガス中の水素ガス濃度を4%以下に制御できる為、安全に減圧下での水素アニール処理が実現される。   As described above, the reaction chamber 2 is maintained in a predetermined reduced pressure state by adjusting the exhaust resistance by the flow rate adjusting valve 38 and by controlling the back pressure by supplying nitrogen gas from the first nitrogen gas ballast line 39. By supplying nitrogen gas from the first nitrogen gas ballast line 39 and further supplying nitrogen gas from the exhaust dilution line 48, the hydrogen gas concentration in the released gas can be controlled to 4% or less, so the pressure can be safely reduced. The hydrogen annealing process is realized.

図2は休止状態を示している。   FIG. 2 shows a dormant state.

休止状態では前記排気ポンプ40は停止され、第2希釈ライン開閉弁33、第1希釈ライン開閉弁32、水素ガス給停弁23、火種ライン開閉弁25、排気開閉弁37、第1開閉弁42、開閉弁52が閉とされ、前記窒素ガス給停弁29、バイパス開閉弁35、第2開閉弁45、開閉弁54、開閉弁67、開閉弁60が開とされている。   In the resting state, the exhaust pump 40 is stopped, the second dilution line opening / closing valve 33, the first dilution line opening / closing valve 32, the hydrogen gas supply / stop valve 23, the fire type line opening / closing valve 25, the exhaust opening / closing valve 37, the first opening / closing valve 42. The on-off valve 52 is closed, and the nitrogen gas supply / stop valve 29, the bypass on-off valve 35, the second on-off valve 45, the on-off valve 54, the on-off valve 67, and the on-off valve 60 are opened.

窒素ガスが前記窒素ガス導入管22を経て前記ガス導入管18を流れ、前記反応室2に供給される。前記反応室2の水素ガスが押出され、前記反応室2は窒素ガスで置換される。前記反応室2から排出される窒素ガスは更に、前記水素燃焼パイプ9、連絡ライン53を経て排気ポンプ40の下流側の排気ダクト50に排出され、前記水素燃焼パイプ9内の残存水素ガスを排出する。   Nitrogen gas flows through the gas introduction pipe 18 through the nitrogen gas introduction pipe 22 and is supplied to the reaction chamber 2. Hydrogen gas in the reaction chamber 2 is extruded, and the reaction chamber 2 is replaced with nitrogen gas. The nitrogen gas discharged from the reaction chamber 2 is further discharged to the exhaust duct 50 on the downstream side of the exhaust pump 40 through the hydrogen combustion pipe 9 and the connection line 53, and the residual hydrogen gas in the hydrogen combustion pipe 9 is discharged. To do.

又、前記第2窒素ガスバラストライン41から真空排気管5の排気ポンプ40上流側に窒素ガスが供給され、真空排気管5を窒素ガスで置換すると共に余剰の窒素ガスは排気ポンプ40を通って排気ダクト50に排出される。尚、休止状態では該排気ポンプ40は停止しており、第2窒素ガスバラストライン41から前記排気ポンプ40を経て排出する窒素ガスの流量は少ない。   Further, nitrogen gas is supplied from the second nitrogen gas ballast line 41 to the upstream side of the exhaust pump 40 of the vacuum exhaust pipe 5, the vacuum exhaust pipe 5 is replaced with nitrogen gas, and excess nitrogen gas passes through the exhaust pump 40. It is discharged to the exhaust duct 50. In the resting state, the exhaust pump 40 is stopped, and the flow rate of the nitrogen gas discharged from the second nitrogen gas ballast line 41 through the exhaust pump 40 is small.

尚、窒素ガスの供給当初は、排ガス中に水素ガスが含まれており、前記排気希釈ライン48からは、排ガス中の水素ガスの濃度が4%以下となる様に、窒素ガスが供給される。   At the beginning of supply of nitrogen gas, hydrogen gas is contained in the exhaust gas, and nitrogen gas is supplied from the exhaust dilution line 48 so that the concentration of hydrogen gas in the exhaust gas becomes 4% or less. .

又、前記窒素ガスバイパスライン34を経て前記水素火種ライン12に窒素ガスを流通させ、水素火種ライン12内の水素ガスを排出する。水素火種ライン12を経て窒素ガスは、燃焼箱10に排出され、更に前記排気ダクト56を経て放出される。尚、水素火種ライン12から排出される窒素ガス中に水素ガスが含まれるている場合は、排気ダクト56から排出される時点で前記排気希釈ライン57より窒素ガスが供給され、水素ガスの濃度が確実に4%以下とされる。   Further, the nitrogen gas is circulated to the hydrogen flame line 12 through the nitrogen gas bypass line 34, and the hydrogen gas in the hydrogen flame line 12 is discharged. Nitrogen gas is discharged to the combustion box 10 through the hydrogen flame line 12 and further discharged through the exhaust duct 56. If the nitrogen gas discharged from the hydrogen fire line 12 contains hydrogen gas, the nitrogen gas is supplied from the exhaust dilution line 57 at the time of discharge from the exhaust duct 56, and the concentration of the hydrogen gas is reduced. It is certainly 4% or less.

尚、上記窒素ガス希釈ライン27、窒素ガス希釈ライン28は水素ガスが漏出し、前記反応管15と均熱管16との空間に、又該均熱管16と前記ヒータ17との空間に水素ガス溜った場合に、前記第2希釈ライン開閉弁33、第1希釈ライン開閉弁32を開いて窒素ガスを供給し、水素濃度を安全値迄低下させるものである。前記空間への窒素ガス供給は定期的に流してもよく、或は少量を常時流してもよい。   The nitrogen gas dilution line 27 and the nitrogen gas dilution line 28 leak hydrogen gas, and hydrogen gas is accumulated in the space between the reaction tube 15 and the soaking tube 16 and in the space between the soaking tube 16 and the heater 17. In this case, the second dilution line opening / closing valve 33 and the first dilution line opening / closing valve 32 are opened and nitrogen gas is supplied to reduce the hydrogen concentration to a safe value. Nitrogen gas supply to the space may flow periodically or a small amount may flow constantly.

図3により、常圧時での水素アニール処理について説明する。   The hydrogen annealing process at normal pressure will be described with reference to FIG.

前記第2希釈ライン開閉弁33、第1希釈ライン開閉弁32、窒素ガス給停弁29、バイパス開閉弁35、第2開閉弁45、第1開閉弁42、排気開閉弁37、開閉弁67、開閉弁54がそれぞれ閉とされ、前記開閉弁52、開閉弁60が開とされる。   The second dilution line opening / closing valve 33, the first dilution line opening / closing valve 32, the nitrogen gas supply / closing valve 29, the bypass opening / closing valve 35, the second opening / closing valve 45, the first opening / closing valve 42, the exhaust opening / closing valve 37, the opening / closing valve 67, The on-off valve 54 is closed, and the on-off valve 52 and the on-off valve 60 are opened.

前記水素ガス給停弁23が開かれる。前記流量コントローラ24で流量コントロールされながら、水素ガスが前記反応室2に常圧状態で導入される。又、前記火種ライン開閉弁25が開かれ、水素火種ライン12を経て前記燃焼箱10内に水素ガスが導かれ、種火として点火、燃焼される。   The hydrogen gas supply / stop valve 23 is opened. Hydrogen gas is introduced into the reaction chamber 2 at normal pressure while the flow rate is controlled by the flow rate controller 24. The fire line open / close valve 25 is opened, hydrogen gas is introduced into the combustion box 10 via the hydrogen fire line 12, and ignited and burned as a fire.

前記反応室2に導入され、水素アニール処理後の残存ガスは水素燃焼パイプ9を通って、前記燃焼ノズル11より排気される。未反応の水素ガスは前記種火により着火され燃焼する。   The residual gas introduced into the reaction chamber 2 and subjected to the hydrogen annealing treatment passes through the hydrogen combustion pipe 9 and is exhausted from the combustion nozzle 11. Unreacted hydrogen gas is ignited and burned by the above-mentioned seed fire.

燃焼後の排ガスは前記排気ダクト56を介して排出される。該排気ダクト56には前記排気希釈ライン57を介して水素ガス濃度を低減させる為の窒素ガスが供給されており、前記排気ダクト56を流通する排ガス中の水素ガス濃度が前記ガス濃度検知器69により検出され、検出した水素ガス濃度が4%以下となる様供給流量が制御され、又前記ガス濃度検知器69が検出する水素ガス濃度が4%を越える状態となった場合は、排気希釈ライン57より窒素ガスが供給された状態で、前記水素ガス給停弁23、火種ライン開閉弁25が閉とされる等、装置の水素アニール処理のシーケンスが停止される。水素ガス濃度が
4%以上となる場合は、例えば種火70が消火し、前記燃焼ノズル11から流出する水素ガスの燃焼が停止した場合等がある。
The exhaust gas after combustion is discharged through the exhaust duct 56. Nitrogen gas for reducing the hydrogen gas concentration is supplied to the exhaust duct 56 through the exhaust dilution line 57, and the hydrogen gas concentration in the exhaust gas flowing through the exhaust duct 56 is the gas concentration detector 69. The supply flow rate is controlled so that the detected hydrogen gas concentration is 4% or less, and if the hydrogen gas concentration detected by the gas concentration detector 69 exceeds 4%, the exhaust dilution line While the nitrogen gas is supplied from 57, the hydrogen annealing process sequence of the apparatus is stopped, for example, the hydrogen gas supply / stop valve 23 and the fire type open / close valve 25 are closed. When the hydrogen gas concentration is 4% or more, for example, the seed fire 70 may be extinguished and the combustion of the hydrogen gas flowing out from the combustion nozzle 11 may be stopped.

而して、常圧での水素アニール処理が行われる。   Thus, hydrogen annealing at normal pressure is performed.

常圧での水素アニール処理が完了すると、図4に示す如く前記第2希釈ライン開閉弁33、第1希釈ライン開閉弁32、水素ガス給停弁23、火種ライン開閉弁25、排気開閉弁37、第1開閉弁42、開閉弁52が閉とされる。   When the hydrogen annealing process at normal pressure is completed, the second dilution line opening / closing valve 33, the first dilution line opening / closing valve 32, the hydrogen gas supply / closing valve 23, the fire type line opening / closing valve 25, and the exhaust opening / closing valve 37 as shown in FIG. The first opening / closing valve 42 and the opening / closing valve 52 are closed.

前記窒素ガス給停弁29、バイパス開閉弁35、第2開閉弁45、開閉弁67、開閉弁54、開閉弁60が開とされる。   The nitrogen gas supply / stop valve 29, the bypass on / off valve 35, the second on / off valve 45, the on / off valve 67, the on / off valve 54, and the on / off valve 60 are opened.

前記窒素ガス給停弁29が開とされることで、前記窒素ガス導入管22を通って前記反応室2内に窒素ガスが供給され、反応室2内の水素ガスを窒素ガスに置換する。該反応室2内の水素ガスが窒素ガスに置換される迄の過程で、水素燃焼パイプ9より水素ガスが排出される。前記開閉弁52が閉となっているので、ガスは前記連絡ライン53を経て前記排気ダクト50に排出される。前記排気ダクト50には排気希釈ライン48からL型ノズル49より窒素ガスが供給される。排気ダクト50から排出される排ガス中の水素濃度はガス濃度検知器71により検出され、水素濃度が4%以下迄希釈される様、前記L型ノズ
ル49からの窒素ガス供給流量が前記流量コントローラ66により制御される。
When the nitrogen gas supply stop valve 29 is opened, nitrogen gas is supplied into the reaction chamber 2 through the nitrogen gas introduction pipe 22, and the hydrogen gas in the reaction chamber 2 is replaced with nitrogen gas. In the process until the hydrogen gas in the reaction chamber 2 is replaced with nitrogen gas, the hydrogen gas is discharged from the hydrogen combustion pipe 9. Since the on-off valve 52 is closed, the gas is discharged to the exhaust duct 50 through the communication line 53. Nitrogen gas is supplied to the exhaust duct 50 from an L-type nozzle 49 from an exhaust dilution line 48. The hydrogen concentration in the exhaust gas discharged from the exhaust duct 50 is detected by a gas concentration detector 71, and the nitrogen gas supply flow rate from the L-type nozzle 49 is set to the flow controller 66 so that the hydrogen concentration is diluted to 4% or less. Controlled by

又、前記バイパス開閉弁35が開とされることで、前記窒素ガスバイパスライン34を経て水素火種ライン12に窒素ガスが供給され、水素火種ライン12内の水素ガスを窒素ガスにより押出す。水素火種ライン12内の水素ガスがなくなる迄、前記種火70が維持される。又、前記排気ダクト56から排出されるガス中の水素濃度は前記ガス濃度検知器69により検出されており、排出するガス中の水素濃度が4%以下となる様に、前記排気希釈ライン57から供給される窒素ガスの流量が前記流量コントローラ58により制御される。   When the bypass opening / closing valve 35 is opened, nitrogen gas is supplied to the hydrogen flame line 12 through the nitrogen gas bypass line 34, and the hydrogen gas in the hydrogen flame line 12 is pushed out by nitrogen gas. The seed fire 70 is maintained until the hydrogen gas in the hydrogen fire line 12 runs out. Further, the hydrogen concentration in the gas discharged from the exhaust duct 56 is detected by the gas concentration detector 69, and from the exhaust dilution line 57 so that the hydrogen concentration in the discharged gas becomes 4% or less. The flow rate of the supplied nitrogen gas is controlled by the flow rate controller 58.

而して、大気に放出しても支障ない状態に希釈された排ガスが前記排気ダクト50及び排気ダクト56を介して放出される。   Thus, the exhaust gas diluted so as not to interfere with the release to the atmosphere is discharged through the exhaust duct 50 and the exhaust duct 56.

前記反応炉1、水素燃焼パイプ9、水素火種ライン12中の水素ガスが完全に排出された状態では、図2で示した減圧処理後の休止状態と図4で示した常圧処理後の休止状態とは同一となる。   When the hydrogen gas in the reactor 1, the hydrogen combustion pipe 9, and the hydrogen flame line 12 is completely discharged, the rest state after the decompression process shown in FIG. 2 and the rest state after the normal pressure process shown in FIG. The state is the same.

上記した減圧水素アニール処理、常圧水素アニール処理のいずれに於いても、前記圧力センサ36による反応室2の圧力、又前記ガス濃度検知器69、ガス濃度検知器71により放出される排ガス中の水素濃度、更に前記温度センサ62、炎検知センサ63による排ガスの燃焼の状態等は常時監視されており、前記各種センサからの検出結果が異常を示した場合は、操作部の表示装置にエラー表示を行い、更に、放出ガスの水素濃度が所定を越える様な場合、或は温度センサ62、炎検知センサ63が水素ガスの燃焼を検知しない場合は、前記水素ガス給停弁23を閉じ、装置が休止状態となる様に制御される。   In any of the above-described reduced pressure hydrogen annealing treatment and normal pressure hydrogen annealing treatment, the pressure in the reaction chamber 2 by the pressure sensor 36, or in the exhaust gas discharged by the gas concentration detector 69 and the gas concentration detector 71 is used. The hydrogen concentration, the combustion state of the exhaust gas by the temperature sensor 62 and the flame detection sensor 63, etc. are constantly monitored, and if the detection results from the various sensors indicate an abnormality, an error is displayed on the display device of the operation unit. Further, when the hydrogen concentration of the released gas exceeds a predetermined value, or when the temperature sensor 62 and the flame detection sensor 63 do not detect the combustion of hydrogen gas, the hydrogen gas supply / stop valve 23 is closed, and the device Is controlled to be in a dormant state.

尚、減圧処理に於ける減圧度は前述した如く、1〜750Torrであり、高い真空度は必要とされないので、前記排気ポンプ40の代わりに排気管路にオリフィス部を設け、該オリフィス部に減圧空間(反応室2)を連通し、流体の静圧を利用したコンバム方式の排気装置であってもよい。コンバム方式では数十Torr迄の減圧が可能であり、本発明の減圧処理には充分である。又、排気ポンプの場合、機械的トラブル等によりポンプが停止してしまった際大気が逆流し、爆発の危険があるが、本コンバム方式の場合はその点安全に使用できる。更には、不活性ガスとしては水素ガスの燃焼を抑制するガスで有ればよく、窒素ガスに限定されるものではない。   As described above, the degree of decompression in the decompression process is 1 to 750 Torr, and a high degree of vacuum is not required. Therefore, instead of the exhaust pump 40, an orifice is provided in the exhaust line, and the orifice is decompressed. It may be a Convum type exhaust device that communicates the space (reaction chamber 2) and uses the static pressure of the fluid. The convert system can reduce the pressure up to several tens of Torr, and is sufficient for the decompression process of the present invention. Also, in the case of an exhaust pump, when the pump stops due to mechanical trouble or the like, the atmosphere flows backward and there is a danger of explosion. However, in the case of this comb system, it can be used safely. Furthermore, the inert gas may be any gas that suppresses the combustion of hydrogen gas, and is not limited to nitrogen gas.

本発明の実施の形態を示す構成骨子図である。FIG. 2 is a structural outline diagram showing an embodiment of the present invention. 同前本発明の実施の形態の減圧処理の作用を説明する説明図である。It is explanatory drawing explaining the effect | action of the pressure reduction process of embodiment of this invention same as the above. 同前本発明の実施の形態の常圧処理の作用を説明する説明図である。It is explanatory drawing explaining the effect | action of the normal pressure process of embodiment of this invention same as the above. 同前本発明の実施の形態の常圧処理の作用を説明する説明図である。It is explanatory drawing explaining the effect | action of the normal pressure process of embodiment of this invention same as the above. 従来の水素アニール処理装置を示す説明図である。It is explanatory drawing which shows the conventional hydrogen annealing treatment apparatus.

1 反応炉
2 反応室
5 真空排気管
9 水素燃焼パイプ
10 燃焼箱
12 水素火種ライン
18 ガス導入管
19 排ガス管
22 窒素ガス導入管
24 流量コントローラ
34 窒素ガスバイパスライン
36 圧力センサ
38 流量調整弁
39 第1窒素ガスバラストライン
40 排気ポンプ
41 第2窒素ガスバラストライン
48 排気希釈ライン
49 L型ノズル
50 排気ダクト
59 逆流防止弁
66 流量コントローラ
69 ガス濃度検知器
71 ガス濃度検知器


DESCRIPTION OF SYMBOLS 1 Reaction furnace 2 Reaction chamber 5 Vacuum exhaust pipe 9 Hydrogen combustion pipe 10 Combustion box 12 Hydrogen fire type line 18 Gas introduction pipe 19 Exhaust pipe 22 Nitrogen gas introduction pipe 24 Flow controller 34 Nitrogen gas bypass line 36 Pressure sensor 38 Flow control valve 39 1st 1 Nitrogen gas ballast line 40 Exhaust pump 41 Second nitrogen gas ballast line 48 Exhaust dilution line 49 L-type nozzle 50 Exhaust duct 59 Backflow prevention valve 66 Flow controller 69 Gas concentration detector 71 Gas concentration detector


Claims (3)

反応室と、該反応室に水素ガスを供給する水素ガス導入ラインと、前記反応室に接続された減圧排気ラインと、該減圧排気ラインに設けられ、前記反応室を減圧する為の排気装置と、該排気装置の下流側に不活性ガスを供給し排気ガス中の水素濃度を所定値以下に希釈する排気希釈ラインと、前記反応室に接続された常圧排気ラインと、該常圧排気ラインに接続された水素ガス燃焼部と、前記反応室と前記排気装置の下流側とを連絡する連絡ラインとを具備し、前記減圧排気ラインと前記常圧排気ラインと前記連絡ラインとを切替えることにより、前記排気装置を駆動させ、前記減圧排気ラインから排気
することで前記反応室が減圧された状態で、前記水素ガス導入ラインから水素ガスを前記反応室へ供給しつつ前記排気希釈ラインから前記排気装置の下流側に前記不活性ガスを供給し、排気ガス中の水素濃度を所定値以下に希釈する減圧水素アニール処理と前記常圧排気ラインから排気する常圧水素アニール処理と前記連絡ラインから排気する休止状態とを選択して行うことを特徴とする水素アニール処理方法。
A reaction chamber, a hydrogen gas introduction line for supplying hydrogen gas to the reaction chamber, a vacuum exhaust line connected to the reaction chamber, an exhaust device provided in the vacuum exhaust line for decompressing the reaction chamber, An exhaust dilution line for supplying an inert gas downstream of the exhaust device to dilute a hydrogen concentration in the exhaust gas to a predetermined value or less; a normal pressure exhaust line connected to the reaction chamber; and the normal pressure exhaust line And a communication line that connects the reaction chamber and the downstream side of the exhaust device, and switching between the reduced pressure exhaust line, the normal pressure exhaust line, and the communication line. The exhaust device is driven, and the reaction chamber is decompressed by exhausting from the decompression exhaust line, while supplying hydrogen gas from the hydrogen gas introduction line to the reaction chamber, From the communication line, the reduced pressure hydrogen annealing process for supplying the inert gas downstream of the gas apparatus and diluting the hydrogen concentration in the exhaust gas below a predetermined value, the atmospheric hydrogen annealing process for exhausting from the atmospheric pressure exhaust line, and the communication line A hydrogen annealing treatment method characterized by selecting a dormant state to be exhausted.
反応室と、該反応室に水素ガスを供給する水素ガス導入ラインと、前記反応室に接続された減圧排気ラインと、該減圧排気ラインに設けられ、前記反応室を減圧する為の排気装置と、該排気装置の下流側に不活性ガスを供給し、排気ガス中の水素濃度を所定値以下に希釈する排気希釈ラインと、前記反応室に接続された常圧排気ラインと、該常圧排気ラインに接続された水素ガス燃焼部と、前記反応室と前記排気装置の下流側とを連絡する連絡ラインと、前記常圧排気ラインと前記減圧排気ラインと前記連絡ラインと前記反応室との接続状態を切替える弁とを具備することを特徴とする水素アニール処理装置。 A reaction chamber, a hydrogen gas introduction line for supplying hydrogen gas to the reaction chamber, a vacuum exhaust line connected to the reaction chamber, an exhaust device provided in the vacuum exhaust line for decompressing the reaction chamber, An exhaust gas dilution line for supplying an inert gas downstream of the exhaust device to dilute a hydrogen concentration in the exhaust gas to a predetermined value or less; a normal pressure exhaust line connected to the reaction chamber; and the normal pressure exhaust gas A hydrogen gas combustion section connected to a line, a communication line connecting the reaction chamber and the downstream side of the exhaust device, a connection between the normal pressure exhaust line, the vacuum exhaust line, the communication line, and the reaction chamber A hydrogen annealing apparatus comprising: a valve for switching a state. 反応室と、該反応室に水素ガスを供給する水素ガス導入ラインと、前記反応室に接続された減圧排気ラインと、該減圧排気ラインに設けられ、前記反応室を減圧する為の排気装置と、該排気装置の下流側に不活性ガスを供給し、排気ガス中の水素濃度を所定値以下に希釈する排気希釈ラインと、前記反応室に接続された常圧排気ラインと、該常圧排気ラインに接続された水素ガス燃焼部と、前記反応室と前記排気装置の下流側とを連絡する連絡ラインと、前記常圧排気ラインと前記減圧排気ラインと前記連絡ラインと前記反応室との接続状態を切替える弁と、前記排気装置の下流側に設けられたガス濃度検知器と、前記排気希釈ラインに設けられた流量コントローラとを具備し、放出される水素濃度が4%以下となる様不活性ガス供給流量を制御する水素アニール処理装置。






A reaction chamber, a hydrogen gas introduction line for supplying hydrogen gas to the reaction chamber, a vacuum exhaust line connected to the reaction chamber, an exhaust device provided in the vacuum exhaust line for decompressing the reaction chamber, An exhaust gas dilution line for supplying an inert gas downstream of the exhaust device to dilute a hydrogen concentration in the exhaust gas to a predetermined value or less; a normal pressure exhaust line connected to the reaction chamber; and the normal pressure exhaust gas A hydrogen gas combustion section connected to a line, a communication line connecting the reaction chamber and the downstream side of the exhaust device, a connection between the normal pressure exhaust line, the vacuum exhaust line, the communication line, and the reaction chamber A valve for switching the state, a gas concentration detector provided on the downstream side of the exhaust device, and a flow rate controller provided in the exhaust dilution line, so that the concentration of released hydrogen is 4% or less. Active gas supply flow rate Hydrogen annealing apparatus Gosuru.






JP2011002580A 2011-01-08 2011-01-08 Hydrogen annealing treatment method and hydrogen annealing treatment apparatus Expired - Lifetime JP5700646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011002580A JP5700646B2 (en) 2011-01-08 2011-01-08 Hydrogen annealing treatment method and hydrogen annealing treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011002580A JP5700646B2 (en) 2011-01-08 2011-01-08 Hydrogen annealing treatment method and hydrogen annealing treatment apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006186756A Division JP2006344984A (en) 2006-07-06 2006-07-06 Hydrogen annealing treatment method and its device

Publications (2)

Publication Number Publication Date
JP2011146704A true JP2011146704A (en) 2011-07-28
JP5700646B2 JP5700646B2 (en) 2015-04-15

Family

ID=44461231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011002580A Expired - Lifetime JP5700646B2 (en) 2011-01-08 2011-01-08 Hydrogen annealing treatment method and hydrogen annealing treatment apparatus

Country Status (1)

Country Link
JP (1) JP5700646B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020128832A (en) * 2019-02-07 2020-08-27 関東冶金工業株式会社 Continuous heat treatment furnace
CN114823331A (en) * 2022-04-22 2022-07-29 江苏晟驰微电子有限公司 Nitrogen-hydrogen annealing equipment for manufacturing triode device and process thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0247266A (en) * 1988-08-04 1990-02-16 Tel Sagami Ltd Treating device
JPH0570954A (en) * 1991-09-19 1993-03-23 Nec Kyushu Ltd Exhaust gas diluting device
JPH05291268A (en) * 1992-04-06 1993-11-05 Kokusai Electric Co Ltd Annealing device
JPH05326419A (en) * 1992-05-20 1993-12-10 Oki Electric Ind Co Ltd Method for forming semiconductor thin film
JPH0758032A (en) * 1993-08-09 1995-03-03 Hitachi Electron Eng Co Ltd Apparatus and method for controlling pressure
JPH07283164A (en) * 1994-04-14 1995-10-27 Tokyo Electron Ltd Device and method for heat treatment
JPH09235189A (en) * 1996-03-01 1997-09-09 Shin Etsu Handotai Co Ltd Production of semiconductor single crystal thin film
JPH1079354A (en) * 1996-09-02 1998-03-24 Koyo Lindbergh Kk Method and device for discharging gas from heat treatment oven
JP2001203211A (en) * 2000-01-20 2001-07-27 Hitachi Kokusai Electric Inc Hydrogen annealing method and its device
JP2006344984A (en) * 2006-07-06 2006-12-21 Hitachi Kokusai Electric Inc Hydrogen annealing treatment method and its device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0247266A (en) * 1988-08-04 1990-02-16 Tel Sagami Ltd Treating device
JPH0570954A (en) * 1991-09-19 1993-03-23 Nec Kyushu Ltd Exhaust gas diluting device
JPH05291268A (en) * 1992-04-06 1993-11-05 Kokusai Electric Co Ltd Annealing device
JPH05326419A (en) * 1992-05-20 1993-12-10 Oki Electric Ind Co Ltd Method for forming semiconductor thin film
JPH0758032A (en) * 1993-08-09 1995-03-03 Hitachi Electron Eng Co Ltd Apparatus and method for controlling pressure
JPH07283164A (en) * 1994-04-14 1995-10-27 Tokyo Electron Ltd Device and method for heat treatment
JPH09235189A (en) * 1996-03-01 1997-09-09 Shin Etsu Handotai Co Ltd Production of semiconductor single crystal thin film
JPH1079354A (en) * 1996-09-02 1998-03-24 Koyo Lindbergh Kk Method and device for discharging gas from heat treatment oven
JP2001203211A (en) * 2000-01-20 2001-07-27 Hitachi Kokusai Electric Inc Hydrogen annealing method and its device
JP2006344984A (en) * 2006-07-06 2006-12-21 Hitachi Kokusai Electric Inc Hydrogen annealing treatment method and its device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020128832A (en) * 2019-02-07 2020-08-27 関東冶金工業株式会社 Continuous heat treatment furnace
JP7253779B2 (en) 2019-02-07 2023-04-07 関東冶金工業株式会社 Continuous heat treatment furnace
CN114823331A (en) * 2022-04-22 2022-07-29 江苏晟驰微电子有限公司 Nitrogen-hydrogen annealing equipment for manufacturing triode device and process thereof
CN114823331B (en) * 2022-04-22 2023-03-03 江苏晟驰微电子有限公司 Nitrogen-hydrogen annealing equipment for manufacturing triode device and process thereof

Also Published As

Publication number Publication date
JP5700646B2 (en) 2015-04-15

Similar Documents

Publication Publication Date Title
JP2001203211A (en) Hydrogen annealing method and its device
KR20160095657A (en) Substrate processing apparatus, substrate processing method and storage medium
TW200618112A (en) Semiconductor device manufacturing method and plasma oxidation treatment method
WO2002082523A1 (en) Heat treating method and heat treating device
KR20000017160A (en) Oxidation method and oxidation apparatus
JP5700646B2 (en) Hydrogen annealing treatment method and hydrogen annealing treatment apparatus
JP4934117B2 (en) Gas processing apparatus, gas processing method, and storage medium
US8597401B2 (en) Exhausting method and gas processing apparatus
WO2007111351A1 (en) Semiconductor device manufacturing method
US20120024394A1 (en) Method for lowering the pressure in a load lock and associated equipment
JP2007127032A (en) Decompression processing device
TW201737406A (en) Vacuum chuck pressure control system
JP2008281155A (en) Cylinder cabinet
JP2006344984A (en) Hydrogen annealing treatment method and its device
JP6990207B2 (en) Heat decomposition type exhaust gas abatement device and backflow prevention method
US6936108B1 (en) Heat treatment device
KR20060102447A (en) Exhaust apparatus of semiconductor manufacturing equipment
JP2010177357A (en) Vacuum treatment device and vacuum treatment method
JP2009129925A (en) Device and method for treating substrate
JP2023055466A (en) Annealing furnace, annealing method
TW200509196A (en) Vacuum chamber load lock purging method and apparatus
JPH10122539A (en) Discharged gas processing device
JP2006261362A (en) Substrate-treating device
JP4994424B2 (en) Substrate processing apparatus and method for forming semiconductor device
JP2005216911A (en) Exhaust gas treatment system of epitaxial growth device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150213

R150 Certificate of patent or registration of utility model

Ref document number: 5700646

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term