JP2018085412A - 貫通電極基板及びその製造方法 - Google Patents

貫通電極基板及びその製造方法 Download PDF

Info

Publication number
JP2018085412A
JP2018085412A JP2016226970A JP2016226970A JP2018085412A JP 2018085412 A JP2018085412 A JP 2018085412A JP 2016226970 A JP2016226970 A JP 2016226970A JP 2016226970 A JP2016226970 A JP 2016226970A JP 2018085412 A JP2018085412 A JP 2018085412A
Authority
JP
Japan
Prior art keywords
substrate
hole
metal layer
electrode substrate
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016226970A
Other languages
English (en)
Inventor
浅野 雅朗
Masaaki Asano
雅朗 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2016226970A priority Critical patent/JP2018085412A/ja
Publication of JP2018085412A publication Critical patent/JP2018085412A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73257Bump and wire connectors

Abstract

【課題】貫通孔内に充填した樹脂に凹みが生じたり、応力によって貫通電極基板に反りが発生するのを防止する貫通電極基板及びその製造方法を提供する。【解決手段】貫通電極基板は100は、第1面101a及び第1面とは反対側の第2面101bを有する基板101と、第1面101a及び第2面101bにかけて基板101を貫通する貫通孔103と、貫通孔103の内壁に設けられた第1金属層105と、貫通孔内103に充填された無機粒子109と、を含む。また、貫通電極基板の製造方法は、第1面101a及び第1面とは反対側に位置する第2面101bを有する基板101に、第1面101a及び第2面101bにかけて基板101を貫通する貫通孔103を形成する工程と、貫通孔103の内壁に第1金属層105を形成する工程と、貫通孔103内に無機粒子109を充填する工程と、を含む。【選択図】図1

Description

本開示は、貫通電極基板及びその製造方法に関する。
近年、電子機器の高密度化、小型化が進み、LSIチップが半導体パッケージと同程度まで縮小化しており、パッケージ内におけるチップの2次元配置による高密度化は限界に達しつつある。そこで、パッケージ内におけるチップの実装密度を上げるため、LSIチップを3次元に積層することが検討されている。LSIチップを3次元に積層するにあたり、LSIチップを積層した半導体パッケージ全体を高速動作させるために積層回路間の距離を近づける必要がある。
そこで、上記要求に応えるため、LSIチップ間のインターポーザとして、基板の表面と裏面とを貫通する貫通孔内に導電部を設け、該基板の表面と裏面とを導通させる貫通電極基板が提案されている。このような貫通電極基板では、貫通孔の内部に電解メッキ等によって導電材(Cu等)を充填したり、導電材を含む層を貫通孔の内壁に形成したりすることによって貫通電極が形成されている。
例えば、特許文献1及び特許文献2には、基板に設けられた貫通孔の内壁に導電層を形成することによって貫通電極を形成する方法が開示されている。
特開2014−67992号公報 特開2015−198192号公報
基板に設けられた貫通孔の内壁に貫通電極を設ける場合、貫通孔の内部は、貫通孔の内壁を除いて空洞となる。このような貫通電極を有する貫通電極基板の上下に別の基板又は層を設けると、加熱時に貫通孔の内部の空洞に含まれる空気が膨張し、貫通孔の内壁に設けられた貫通電極や、貫通電極基板を破損させる虞がある。また、空洞である貫通孔の上に別の層を設けることは困難であるため、貫通孔を充填物で埋める必要がある。
貫通電極の破損を防ぐため、また、貫通孔上に別の層を形成するために、貫通電極が設けられた貫通孔の内部の空洞を有機材料を含む樹脂で充填するなどの対策が考えられる。しかしながら、貫通孔の内部を有機材料を含む樹脂で充填する場合、樹脂が外部から侵入した水分により加水分解を起こる虞がある。この場合、樹脂の加水分解の際に発生したガスが貫通孔の内部に溜まり、貫通孔の内壁に設けられた貫通電極や、貫通電極基板を破損させる可能性がある。また、貫通孔内に充填した樹脂が乾燥した場合、樹脂の体積が収縮することによって、樹脂を充填した部分に凹みが生じたり、応力によって貫通電極基板に反りが発生する虞もある。
本開示は、上記実情に鑑み、貫通電極及び貫通電極が設けられた基板の破損を防止することができる貫通電極基板及びその製造方法を提供することを目的とする。
本開示の一実施形態による貫通電極基板は、第1面及び前記第1面とは反対側の第2面を有する基板と、前記第1面及び前記第2面にかけて前記基板を貫通する貫通孔と、前記貫通孔の内壁に設けられた第1金属層と、前記貫通孔内に充填された無機粒子と、を含む。
前記無機粒子は、金属粒子であってもよい。
また、前記無機粒子は、絶縁性粒子であってもよい。
前記第1金属層上に設けられた第2金属層をさらに含んでもよい。
前記第1金属層は、前記内壁の一部に設けられ、前記金属粒子は、前記第1金属層に接着していてもよい。
前記貫通孔内の前記無機粒子の間隙に絶縁性樹脂をさらに含んでもよい。
また、本開示の一実施形態による貫通電極基板の製造方法は、第1面及び前記第1面とは反対側に位置する第2面を有する基板に、前記第1面及び前記第2面にかけて前記基板を貫通する貫通孔を形成する工程と、前記貫通孔の内壁に第1金属層を形成する工程と、前記貫通孔内に無機粒子を充填する工程と、を含む。
前記無機粒子は、金属粒子であってもよい。
また、前記無機粒子は、絶縁性粒子であってもよい。
前記第1金属層上に第2金属層を形成する工程をさらに含んでもよい。
前記金属粒子を加熱する工程をさらに含んでもよい。
前記貫通電極の前記第1面側及び前記第2面側の開口部の絶縁性樹脂を塗布する工程をさらに含んでもよい。
本開示によると、貫通電極及び貫通電極が設けられた基板の破損を防止することができる貫通電極基板及びその製造方法を提供することができる。
(a)本開示の一実施形態に係る貫通電極基板の上面図である。(b)(a)に示した貫通電極基板の断面図である。 (a)本開示の一実施形態に係る貫通電極基板の断面図である。(b)本開示の一実施形態に係る貫通電極基板の断面図である。 本開示の一実施形態に係る貫通電極基板の一部を示す平面図である。 本開示の一実施形態に係る貫通電極基板の製造工程を説明するための図である。 本開示の一実施形態に係る貫通電極基板の製造工程を説明するための図である。 本開示の一実施形態に係る貫通電極基板の製造工程を説明するための図である。 本開示の一実施形態に係る貫通電極基板の製造工程を説明するための図である。 本開示の一実施形態に係る貫通電極基板の製造工程を説明するための図である。 本開示の一実施形態に係る貫通電極基板の製造工程を説明するための図である。 本開示の一実施形態に係る貫通電極基板の製造工程を説明するための図である。 本開示の一実施形態に係る貫通電極基板の製造工程を説明するための図である。 本開示の一実施形態に係る貫通電極基板の製造工程を説明するための図である。 本開示の一実施形態に係る貫通電極基板の製造工程を説明するための図である。 本開示の一実施形態に係る貫通電極基板の製造工程を説明するための図である。 本開示の一実施形態に係る貫通電極基板の製造工程を説明するための図である。 本開示の一実施形態に係る貫通電極基板の製造工程を説明するための図である。 本開示の一実施形態に係る貫通電極基板の製造工程を説明するための図である。 (a)本開示の別の一実施形態に係る貫通電極基板の上面図である。(b)(a)に示した貫通電極基板の断面図である。 本開示の別の一実施形態に係る貫通電極基板の一部を示す平面図である。 本開示の別の一実施形態に係る貫通電極基板の製造工程を説明するための図である。 本開示の別の一実施形態に係る貫通電極基板の製造工程を説明するための図である。 本開示の別の一実施形態に係る貫通電極基板の製造工程を説明するための図である。 本開示の別の一実施形態に係る貫通電極基板の製造工程を説明するための図である。 本開示の別の一実施形態に係る貫通電極基板の製造工程を説明するための図である。 本開示の別の一実施形態に係る貫通電極基板の製造工程を説明するための図である。 本開示の一実施形態に係る貫通電極基板を用いた半導体装置を示す断面図である。 本開示の一実施形態に係る貫通電極基板を用いた半導体装置の別の例を示す断面図である。 本開示の一実施形態に係る貫通電極基板を用いた半導体装置のさらに別の例を示す断面図である。
以下、本開示の実施形態に係る貫通電極基板について、図面を参照しながら詳細に説明する。なお、以下に示す実施形態は一例であって、本開示はこれらの実施形態に限定して解釈されるものではない。なお、以下の実施形態で参照する図面において、同一部分または同様な機能を有する部分には同一の符号または類似の符号を付し、その繰り返しの説明は省略する場合がある。また、図面の寸法比率は説明の都合上実際の比率とは異なる場合や、構成の一部を図面から省略している場合がある。
<第1実施形態>
[貫通電極基板の構造]
図1(a)乃至図2(b)を参照しながら、本開示の第1実施形態に係る貫通電極基板について詳細に説明する。
図1(a)は、本開示の第1実施形態に係る貫通電極基板100の上面図である。図1(b)は、図1(a)に示す本開示の第1実施形態に係る貫通電極基板100の破線で示したB領域におけるA−A線に沿った断面図である。
図1(a)及び図1(b)を参照すると、本実施形態に係る貫通電極基板100は、第1面101aと、第1面101aとは反対側の第2面101bを有する基板101を含む。基板101には、第1面101a及び第2面101bにかけて基板101を貫通する貫通孔103が設けられる。貫通孔103の内壁には、第1金属層105、及び第1金属層105上に設けられた第2金属層107が設けられる。貫通電極基板100において、第1金属層105及び第2金属層107は、貫通孔103の内壁全体に設けられる。貫通孔103内には、無機粒子109が充填されている。尚、図1(a)及び(b)では、基板101に複数の貫通孔103が設けられた例を示しているが、基板101に設けられる貫通孔103の数は、一つ以上であればよい。
基板101は、絶縁性基板である。絶縁性基板としては、例えば、ガラス基板、サファイア基板、樹脂基板などである。また、基板101は、シリコン基板などの半導体基板であってもよい。上述したように、基板101には、貫通孔103が設けられている。貫通孔103は、基板101の第1面101a及び第1面101aとは反対側の第2面101bにかけて基板101を貫通している。
貫通孔103の内壁には、第1金属層105が設けられ、第1金属層105上に第2金属層107が設けられる。この第1金属層105及び第2金属層107が貫通電極として機能する。第1金属層105及び第2金属層107は金属材料を含む。第1金属層105に含まれる金属材料としては、例えば、銅、金、白金、スズ、アルミニウム、ニッケル、クロム、チタン、タングステンなどの金属又はこれらの金属を組み合わせた合金が用いられる。第1金属層102は、上述した金属の単層構造であってもよく、上述した2種以上の金属を組み合わせた多層構造であってもよい。第2金属層107に含まれる金属材料としては、例えば、銅、金、スズ、銀、ニッケル、クロムなどが用いられる。
尚、図示はしないが、貫通孔103の内壁と第1金属層105との間に絶縁層が設けられてもよい。
貫通孔103内には、無機粒子109が充填される。無機粒子109は、導電性粒子であってもよく、絶縁性粒子であってもよい。導電性粒子としては、例えば、銀、銅、ニッケル、ケイ素、金、チタン、スズ、これらの金属のいずれかを含む合金、及びソルダーボールなどの金属粒子である。また、絶縁性粒子としては、例えば、シリカや上述した金属粒子に用いられる金属の酸化物粒子などである。
本実施形態に係る貫通電極基板100では、貫通孔103内に無機粒子109が充填されている。そのため、貫通孔103上に別の層を設けることが容易になる。また、貫通孔103内に無機粒子109が充填されているため、貫通孔103内における空気の容積が低減し、加熱時において、貫通孔103の内部に含まれる空気の膨張が抑制され、貫通孔103の内壁に設けられた貫通電極として機能する第1金属層105及び第2金属層107の破損、又、貫通電極基板100自体の破損を防止し、貫通電極基板100の信頼性を向上させることができる。
また、貫通孔103に充填される無機粒子109が金属粒子等の導電性粒子である場合、貫通孔103の内壁に設けられた第2金属層107と導電性粒子である無機粒子109とを互いに接着させることにより、無機粒子109が導電パスとなる。即ち、第1金属層105及び第2金属層107に加えて、導電性粒子である無機粒子109も貫通電極として機能するため、貫通電極の電気抵抗を低減することができる。
また、図2(a)、(b)に示すように、貫通孔103内における無機粒子109の間隙に絶縁性樹脂を充填してもよい。絶縁性樹脂としては、ポリイミド樹脂、エポキシ樹脂などを用いることができる。図2(a)に示すように、貫通孔103内において、絶縁性樹脂201が、無機粒子109の間隙に全体的に充填されてもよい。また、図2(b)に示すように、基板101の第1面101a及び第2面101bにおける貫通孔103の開口部付近においてのみ、無機粒子109の間隙に絶縁性樹脂201a、201bが充填されてもよい。
貫通孔103内に樹脂を充填した場合、上述したように、樹脂が分解しガスが発生する虞があるが、本開示では、貫通孔103内に無機粒子109を充填し、無機粒子109の間隙に絶縁性樹脂201又は201a、201bを充填する。そのため、本開示では、貫通孔103内における絶縁性樹脂201又は201a及び201bの量が、貫通孔103内全体を絶縁性樹脂で充填する場合よりも少なくなり、絶縁性樹脂201又は201a及び201bから発生するガスの影響を無視することができる。
[貫通電極基板の製造方法]
図3〜図15を参照して、本実施形態の貫通電極基板100の製造方法の一例について説明する。図3は、本実施形態の貫通電極基板100の一部を示す平面図である。図4〜図15は、図3のC−C線に沿った断面図である。尚、ここでは、基板101としてガラス基板を使用した貫通電極基板100の製造方法を説明する。
図4は、基板101内部にレーザ光を照射する工程を示す断面図である。図4では、フェムト秒レーザを基板101に照射することで、貫通孔を形成したい領域の基板101の材料を変質させ、エッチングする方法について説明する。ここで、光源400から出射されたレーザ光401は基板101の第1面101a側から入射され、基板101の内部の貫通孔を形成したい領域で焦点を結ぶ。レーザ光401が焦点を結んだ位置では、高いエネルギーが基板101に供給され、基板の材料が変質する。
上記では、変質層を形成する方法としてフェムト秒レーザを用いた製造方法を例示したが、フェムト秒レーザ以外の方法で変質層を形成することができる。例えば、波長λのパルスレーザをレンズで集光することで変質層を形成してもよい。尚、レーザ光401は、基板101の第2面101b側から入射されてもよく、第1面101a側及び第2面101b側から入射されてもよい。
上記のレーザのパルス幅、波長、及びエネルギー等は、基板に用いられる材質の組成及び吸収係数等に応じて適宜設定される。例えば、ガラス基板に変質層を形成する場合、パルスレーザのパルス幅は1ナノ秒(nsec)以上200nsec以下の範囲とするとよい。パルス幅が下限よりも短いと、高価なレーザ発振器が必要となり、パルス幅が上限よりも長いと、レーザパルスの尖頭値が低下して加工性が低下するという問題が生じる。また、パルスレーザの波長λは、535nm以下とするとよい。波長λが上限よりも長いと、照射スポットが大きくなるため、微小孔を形成することが困難になる、及び熱の影響で照射スポットの周囲が割れやすくなるという問題が生じる。
図5は、基板101の内部に変質領域を形成する工程を示す断面図である。図5に示すように、上記のレーザ照射によって基板101には第1面101a側から第2面101b側に向かって変質領域501が形成される。変質領域501の領域が後の貫通孔103になるため、貫通孔103の形状及び大きさに合わせて変質領域501を調整する。
ここで、変質領域について詳しく説明する。上記のように、ガラス基板のレーザ光が照射された領域では、光化学的な反応が起きる。その結果、レーザ光が照射された領域では、E’センターや非架橋酸素などの欠陥、及び/又は、レーザ照射による急熱・急冷によって発生した、高温度域における疎なガラス構造が生成される。上記の欠陥及び疎なガラス構造は、レーザ光の照射を行っていない領域のガラス基板に比べて所定のエッチング液に対してエッチングされやすくなる。
図6は、薬液を使用して基板101の変質領域をエッチングする工程を示す断面図である。基板101を薬液601に浸漬させると、変質領域501には微小な孔や微小な溝が形成されるため、変質領域501は変質していない領域と比べて薬液によるエッチングレートが早い。つまり、基板101全体を薬液601に浸漬させることで変質領域501が選択的に又は変質していない領域に比べて早い速度でエッチングされる。図6では、容器600に入れられた薬液601に基板101を浸漬することで基板101の第1面101a側及び第2面101b側の両面側からエッチングを行う方法を示す。
ここで、エッチングに使用する薬液601は、変質領域501以外の領域に対して変質領域501を選択的又は早いエッチングレートでエッチングできる薬液を用いる。基板101がガラス基板の場合、フッ酸(HF)、バッファードフッ酸(BHF)、界面活性剤添加バッファードフッ酸(LAL)などを使用することができる。エッチングに使用する薬液は基板の材質によって適宜選択することができる。また、エッチングの方法は浸漬させる方法以外にも、スピンコート式のエッチング方法でもよい。スピンコート式のエッチングを行う場合は、片面ずつ処理を行う。ここで、エッチング液、エッチング時間、エッチング処理温度については、形成された変質領域901の形状や、目的とする貫通孔の加工形状に応じて適宜選択されてもよい。
図7は、基板101に貫通孔103を形成する工程を示す断面図である。上述の薬液601を使用したエッチングによって変質領域501を除去することで、基板101の第1面101a及び第2面101bにかけて基板101を貫通する貫通孔103を形成する。
図4至図7は、基板101において貫通孔を形成したい領域にレーザ光を照射して変質領域を形成し、薬液によってウェットエッチングすることで貫通孔103を形成する方法を説明したが、貫通孔103の形成方法は、この方法に限定されない。例えば、高出力のレーザを基板101に照射し、基板101を融解することで貫通孔103を形成してもよい。例えば、ガラス基板を加工するレーザとしてはCOレーザなどを使用することができる。
図8は、基板101の一方の面(第1面101a)側から貫通孔103内部に第1金属層105を形成する工程を示す断面図である。図8に示すように、基板101に設けられた貫通孔103に対して、まず、基板101の第1面101a及び貫通孔103の内壁に第1金属層105aを形成する。
第1金属層105aは、例えば、Cu、Ti、Ta、W等の金属またはこれらを用いた合金の単層または積層を使用することができ、真空蒸着法又はスパッタリング法等のPVD法により形成することができる。第1金属層105aに使用する材料は、後に第1金属層105a上に形成する第2金属層107と同じ材質を選択することができる。ここで、第1金属層105aは、好ましくは20nm以上1μm以下の膜厚で形成する。また、第1金属層105aは、より好ましくは100nm以上300nm以下の膜厚で形成する。
図9は、基板の他方の面(第2面101b)側から貫通孔103内部に第1金属層105を形成する工程を示す断面図である。図9に示すように、基板101に設けられた貫通孔103に対して、基板101の第2面101b及び貫通孔103の内壁に第1金属層105bを形成する。
第1金属層105bは、第1金属層105aと同様に、Cu、Ti、Ta、W等の金属またはこれらを用いた合金の単層または積層を使用することができ、真空蒸着法又はスパッタリング法等のPVD法により形成することができる。第1金属層105bに使用する材料は、後に第1金属層105b上に形成する第2金属層107と同じ材質を選択することができる。つまり、第1金属層105aと同様の材料を選択することができる。ここで、第1金属層105bは、好ましくは20nm以上1μm以下の膜厚で形成する。また、第1金属層105bは、より好ましくは100nm以上300nm以下の膜厚で形成する。以下、第1金属層105a及び第1金属層105bを併せて第1金属層105という。第1金属層105は、図9に示すように、貫通孔103の内壁全体に形成される。
尚、第1金属層105は、基板101の一方の面側(第1面101a側又は第2面101b側)から真空蒸着法などによって形成されてもよい。例えば、蒸着源から飛来する蒸着材料が、成膜対象となる基板101の表面の垂線に対して傾斜した方向から基板101の表面に到達するように設定することにより、貫通孔103内に第1金属層105を形成してもよい。
図10は、第1金属層105上に第2金属層107を形成する工程を示す断面図である。図10に示すように、まず、第1金属層105上にフォトレジストを塗布した後に、露光及び現像を行うことによりレジストパターン1000を形成する。レジストパターン1000は、少なくとも貫通孔103を露出するように形成される。次に、第1金属層105に通電することで電解めっきを行い、レジストパターン1000から露出している第1シード層105上に第2金属層107を形成する。
図11は、レジストマスクを除去する工程を示す断面図である。図11に示すように、第2金属層107を形成した後に、レジストパターン1000を構成するフォトレジストを有機溶媒により除去する。なお、フォトレジストの除去には、有機溶媒を用いる代わりに、酸素プラズマによるアッシングを用いることもできる。
図12は、第2金属層107から露出した第1金属層105をエッチングする工程を示す断面図である。図12に示すように、レジストパターン1000によって覆われ、第2金属層107が形成されなかった領域の第1金属層105を除去する。
図示はしないが、第2金属層107が形成されなかった領域における第1金属層105を除去した後、貫通孔103にフラックス膜を形成することが好ましい。フラックスは、後述するソルダーボール1400の表面に形成された酸化膜を還元して除去する。フラックス膜は、スクリーン印刷などにより形成することができる。フラックス膜は、基板101の両面(第1面101a及び第2面101b)側からスクリーン印刷により形成されてもよい。フラックス膜は、貫通孔103内に均一に形成されることが好ましいが、少なくとも貫通孔103の開口部付近に形成されればよい。尚、フラックスは、ソルダーボール1400などの無機粒子の表面に付着させ、フラックスを付着させた無機粒子を貫通孔103に充填してもよい。
図13は、基板101の一方の面(第2面101b)上に支持基板1300を配置する工程を示す断面図である。支持基板1300としては、例えば、微細な空孔が設けられたガラス基板、サファイア基板、及びシリコン基板などの半導体基板、金属基板や多孔質セラミック基板などを用いることができる。尚、ここでは、基板100の第2面101b上に支持基板1300を配置しているが、支持基板1300は、基板101の第1面101a側に配置してもよい。支持基板1300は、真空ポンプなどの真空吸着器に接続され、基板101は、支持基板1300上に配置されて真空吸着される。
図14は、基板101に設けられた貫通孔103に無機粒子を充填する工程を示す断面図である。ここでは、無機粒子としてソルダーボール1400を用いる例を説明する。ソルダーボール1400を貫通孔103に充填するには、例えば、ハンダボールマウンタ(澁谷工業株式会社製、SBP550)を使用することができる。また、ソルダーボール1400としては、数十〜百数十μmΦのソルダーボール(千住金属工業株式会社製)を使用することができる。
まず、上述したハンダボールマウンタを用いてするソルダーボール1400を貫通孔103内に配置する。その後、真空吸着を一旦解除し、余分なソルダーボール1400を基板101上から除去し、再び基板101を支持基板1300上に真空吸着する。次に、加熱し、フラックス膜を軟化させ、フラックスが貫通孔103内に配置されたソルダーボール1400の表面を覆うようにする。ここで、加熱温度は、使用されるフラックスが軟化する温度であればよい。その後、ローラーなどで貫通孔103内のソルダーボール1400を加圧する。
以上に述べた、工程を繰り返すことにより、ソルダーボール1400を貫通孔103内に充填する。即ち、(1)フラックスを少なくとも貫通孔103の開口部付近にパターニングし、(2)ハンダボールマウンタを用いてソルダーボール1400を貫通孔103内に配置し、(3)加熱及び加圧する、という(1)〜(3)の工程を繰り返すことにより、図14に示すように、ソルダーボール1400を貫通孔103内に充填することができる。
また、表面にフラックスを付着させたソルダーボール1400を貫通孔103内に充填する場合は、ソルダーボール1400をハンダボールマウンタで貫通孔103内に配置し、ローラーなどで貫通孔103内のソルダーボール1400を加圧する。これを繰り返すことにより、表面にフラックスを付着させたソルダーボール1400を貫通孔103内に充填する。その後、余分なソルダーボール1400を取り除くために、基板101の表面を研磨する。以上の工程により、図14に示すように、ソルダーボール1400を貫通孔103内に充填することができる。
貫通孔103に、ソルダーボール1400を充填した後、130℃〜230℃に加熱してソルダーボール1400を焼成して、貫通孔103内にされたソルダーボール1400同士とソルダーボール1400及び貫通孔103の内壁に形成された第2金属層107とを接着させる。ここでの焼成温度は、ソルダーボール1400の外周が溶融し、ソルダーボール1400同士、及びソルダーボール1400と貫通孔103の内壁に形成された第2金属層107とが接着できる温度であればよい。尚、ソルダーボール以外の無機粒子109、例えば、銀、銅、スズ、金などの金属粒子やシリカなどの絶縁性粒子である場合の焼成温度も、これらの粒子の外周が溶融する温度であればよい。
図15は、基板101の一方の面(第2面101b)上に配置された支持基板1300を取り除く工程を示す断面図である。以上のように、本実施形態の貫通電極基板100の製造方法の一例によると、図1(b)に示したような、貫通孔103内に無機粒子(ここでは、ソルダーボール1400)が充填された貫通電極基板100を製造することができる。
以上の図3〜図15を参照して説明した、本実施形態に係る貫通電極基板100の製造方法の一例において、無機粒子(図3〜図15においては、ソルダーボール1400)を導電パスとして機能させる場合は、貫通孔103内に充填されたソルダーボール1400を焼成して、ソルダーボール1400同士、及び、ソルダーボール1400と第2金属層140とを接着させる必要がある。しかしながら、ソルダーボール1400を導電パスとして機能させない場合は、貫通孔103内に充填されたソルダーボール1400を焼成する工程は必須ではない。例えば、図2(a)、(b)に示したように、貫通孔103内における無機粒子109の間隙に絶縁性樹脂を充填する場合は、充填されたソルダーボール1400を焼成する工程を省略することができる。
図16は、貫通孔103に充填されたソルダーボール1400の間隙に絶縁性樹脂201を充填する工程を示す断面図である。図16に示すように、貫通孔103内に無機粒子(ここでは、ソルダーボール1400)を充填した後、ディスペンサなどにより、基板101の一方の面(第1面101a)側の貫通孔103の開口部にポリイミド樹脂、エポキシ樹脂などの絶縁性樹脂201を塗布する。塗布された絶縁性樹脂201は、貫通孔103において、ソルダーボール1400の間隙に充填される。その後、絶縁性樹脂201を硬化する。
図17は、基板101の一方の面(第2面101b)上に配置された支持基板1300を取り除く工程を示す断面図である。以上のように、本実施形態の貫通電極基板100の製造方法の一例によると、図2(a)に示したような、貫通孔103内に充填された無機粒子109(ここでは、ソルダーボール1400)の間隙に絶縁性樹脂201が充填された貫通電極基板100を製造することができる。
尚、図16においては、基板101の一方の面(第1面101a)側の貫通孔103の開口部に絶縁性樹脂201を塗布する例を説明したが、基板101の両側の面(第1面101a及び第2面101b)側の貫通孔103の開口部に絶縁性樹脂201を塗布してもよい。例えば、基板101の第1面101a側の貫通孔103の開口部に絶縁性樹脂201を塗布して硬化させた後、基板101の第2面101b上に配置された支持基板1300を取り除いて、第2面101b側の貫通孔103の開口部に絶縁性樹脂201を塗布して硬化させてもよい。この場合、貫通孔103の開口部に塗布する絶縁性樹脂201の量を調節することにより、図2(b)に示したような、基板101の第1面101a及び第2面101bにおける貫通孔103の開口部付近においてのみ、絶縁性樹脂201a、201bが充填された貫通電極基板100を製造することができる。
以上の本開示の第1実施形態に係る貫通電極基板100の説明において、基板101に設けられた貫通孔103内に無機粒子109としてソルダーボール1400を充填した例を説明した。しかしながら、無機粒子109としては、ソルダーボール以外の導電性粒子や絶縁性粒子を用いてもよい。また、以上の説明においては、ハンダボールマウンタを用いてソルダーボール1400を貫通孔103に充填する例を説明したが、無機粒子109の貫通孔103への充填方法はこれに限定されない。例えば、無機粒子109を分散させた液状樹脂や溶媒をスクリーン印刷やスキージ印刷などにより、貫通孔103内に流し込み、その後、加熱して液状樹脂や溶媒成分を除去することにより、無機粒子109を貫通孔103へ充填することができる。
<第2実施形態>
以上に説明した本開示の第1実施形態に係る貫通電極基板100では、貫通電極として機能する第1金属層105及び第2金属層107が内壁に設けられた貫通孔103の内部が無機粒子109により充填される。基板100に設けられた貫通孔103の内壁に貫通電極を形成する方法として、上述したように、スパッタリング法や蒸着法などによって貫通孔103の内壁に第1金属層105を形成し、第1金属層をシード層として、電解めっきなどにより第2金属層107を形成する方法がある。しかしながら、スパッタリング法や蒸着法などによって貫通孔103の内壁に第1金属層105を形成する際、貫通孔103のアスペクト比(孔径に対する孔の深さ)が大きくなると、貫通孔103内における第1金属層105の付き回り性が悪くなる。その結果、貫通孔103の内壁全体に第1金属層105を形成することができず、第2金属層107も貫通孔103の内壁全体に電解めっきによって形成することができない虞がある。そのため、基板100の第1面101a側及び第2面101b側に配置された導電層同士を電気的に接続するための構成が必要となる。
[貫通電極基板の構造]
以下に述べる本開示の第2実施形態に係る貫通電極基板では、貫通孔内に充填された無機粒子として導電性粒子を用いて、該導電性粒子と、貫通孔の内壁の一部に設けられた第1金属層とを接着させて電気的に接続することにより、導電性粒子を導電パスとして機能させて基板の第1面側及び第2面側に配置された導電層同士の電気的接続を確保する。
図18(a)は、本開示の第2実施形態に係る貫通電極基板1800の上面図である。図18(b)は、図18(a)に示す本開示の第2実施形態に係る貫通電極基板1800の破線で示したE領域におけるD−D線に沿った断面図である。
図18(a)及び図18(b)を参照すると、本実施形態に係る貫通電極基板1800は、第1面101aと、第1面101aとは反対側の第2面101bを有する基板101を含む。基板101には、第1面101a及び第2面101bにかけて基板101を貫通する貫通孔1803が設けられる。基板101に設けられる貫通孔1803のアスペクト比(孔径に対する孔の深さ)は、上述した第1実施形態に係る貫通電極基板100の基板101に設けられた貫通孔103のアスペクト比よりも大きく、アスペクト比は4を上回る。貫通孔1803の内壁には、第1金属層1805a、1805bが設けられる。尚、図18(a)及び(b)では、基板101に複数の貫通孔1803が設けられた例を示しているが、基板101に設けられる貫通孔1803の数は、一つ以上であればよい。
上述した第1実施形態に係る、貫通孔103の内壁全体に設けられた第1金属層105を有する貫通電極基板100とは異なり、本実施形態に係る貫通電極基板1800においては、第1金属層1805a、1805bは、貫通孔1803の内壁の一部に設けられる。具体的には、第1金属層1805aは、基板100の第1面101a側の貫通孔1803の内壁に設けられ、第1金属層1805bは、第2面101b側の貫通孔1803の内壁に設けられており、貫通孔1803の第1面101a側の内壁に設けられた第1金属層1805aと第2面側101b側の内壁に設けられた第1金属層1805bとは接触していない。
貫通孔1803内には、導電性粒子1809が充填されている。導電性粒子1809は、例えば、銀、銅、ニッケル、ケイ素、金、チタン、ソルダーボールなどの金属粒子である。貫通孔1803内に充填された導電性粒子1809は、貫通孔1803の第1面101a側の内壁に設けられた第1金属層1805aと、貫通孔1803の第2面101b側の内壁に設けられた第1金属層1805bとにそれぞれ接着している。さらに、貫通孔1803内に充填された導電性粒子1809同士も接着している。そのため、貫通孔1803内に充填された導電性粒子1809が、貫通孔1803の第1面101a側の内壁に設けられた第1金属層1805aと、貫通孔1803の第2面101b側の内壁に設けられた第1金属層1805bとの導電パスとなる。即ち、第1金属層1805a、1805b及び貫通孔1803内に充填された導電性粒子1809が、貫通電極として機能する。
そのため、貫通孔1803のアスペクト比(孔径に対する孔の深さ)が大きく、スパッタリング法や蒸着法などによって貫通孔1803の内壁全体に第1金属層を形成できない場合であっても、貫通孔1803の内に導電性粒子1809を充填することにより、基板100の第1面101a側と第2面101b側を電気的に接続する貫通電極を形成することができる。また、貫通孔1803内に導電性粒子1809が充填されているため、貫通孔1803内における空気の容積が低減し、加熱時において、貫通孔1803の内部に含まれる空気の膨張が抑制され、貫通孔1803の内壁に設けられた貫通電極として機能する第1金属層1805a、1805bの破損や貫通電極基板1800自体の破損を防止し、貫通電極基板1800の信頼性を向上させることができる。
尚、図示はしないが、上述した第1実施形態に係る貫通電極基板100と同様に、本実施形態に係る貫通電極基板1800においても、貫通孔1803内に充填された導電性粒子1809の間隙に絶縁性樹脂が充填されてもよい。絶縁性樹脂は、貫通孔1803内において、導電性粒子1809の間隙に全体的に充填されてもよい。また、基板101の第1面101a及び第2面101bにおける貫通孔1803の開口部付近においてのみ、導電性粒子1809の間隙に絶縁性樹脂が充填されてもよい。
[貫通電極基板の製造方法]
図19〜図25を参照して、本実施形態の貫通電極基板1800の製造方法の一例について説明する。図19は、本実施形態の貫通孔1803が設けられた貫通電極基板1800の一部を示す平面図である。図20〜図25は、図19のF−F線に沿った断面図である。尚、ここでは、基板101としてガラス基板を使用した貫通電極基板1800の製造方法を説明する。尚、貫通電極基板1800の製造方法について、上述した第1実施形態に係る貫通電極基板100の製造方法と同一又は類似の工程については、詳細な説明を省略する。
図20は、基板101に貫通孔1803を形成する工程を示す断面図である。上述の第1実施形態に係る貫通電極基板100の製造方法と同様に、基板101にフェムト秒レーザを照射することによって、貫通孔を形成したい領域の基板101の材料を変質させて、変質領域を形成する。変質領域が形成された基板101をフッ酸(HF)、バッファードフッ酸(BHF)、界面活性剤添加バッファードフッ酸(LAL)などの薬液に浸漬し、変質領域を選択的にエッチングすることにより、基板101の第1面101a及び第2面101bにかけて基板101を貫通する貫通孔1803を形成する。
図21は、基板101の一方の面(第1面101a)側から貫通孔1803内部に第1金属層1805aを形成する工程を示す断面図である。図21に示すように、基板101に設けられた貫通孔1803に対して、まず、基板101の第1面101a及び貫通孔1803の内壁に第1金属層1805aを形成する。
第1金属層1805aは、例えば、Cu、Ti、Ta、W等の金属またはこれらを用いた合金の単層または積層を使用することができ、真空蒸着法又はスパッタリング法等のPVD法により形成することができる。第1金属層1805aは、好ましくは20nm以上1μm以下の膜厚で形成する。また、第1金属層1805aは、より好ましくは100nm以上300nm以下の膜厚で形成する。図21に示すように、スパッタリング原子は貫通孔1803の内部にまで到達せず、基板101の第1面101a側にのみ堆積する。したがって、第1金属層1805aは、貫通孔1803の第1面101a側の内壁にのみ形成される。
図22は、基板の他方の面(第2面101b)側から貫通孔1803内部に第1金属層1805bを形成する工程を示す断面図である。図22に示すように、基板101に設けられた貫通孔1803に対して、基板101の第2面101b及び貫通孔1803の内壁に第1金属層1805bを形成する。
第1金属層1805bは、第1金属層1805aと同様に、Cu、Ti、Ta、W等の金属またはこれらを用いた合金の単層または積層を使用することができ、真空蒸着法又はスパッタリング法等のPVD法により形成することができる。ここで、第1金属層1805bは、好ましくは20nm以上1μm以下の膜厚で形成する。また、第1金属層1805bは、より好ましくは100nm以上300nm以下の膜厚で形成する。図22に示すように、スパッタリング原子は貫通孔1803の内部にまで到達せず、基板101の第2面101b側にのみ堆積する。したがって、第1金属層1805bは、貫通孔1803の第2面101b側の内壁にのみ形成される。そのため、貫通孔1803の第1面101a側の内壁に形成された第1金属層1805aと、貫通孔1803の第2面101b側の内壁に形成された第1金属層1805bとは接触していない。
尚、図示はしないが、第1金属層1805a、1805bを形成した後、貫通孔1803内にフラックス膜を形成してもよい。フラックス膜は、スクリーン印刷などにより形成することができる。フラックス膜は、基板101の両面(第1面101a及び第2面101b)側からスクリーン印刷により形成されてもよい。
図23は、基板101の一方の面(第2面101b)上に支持基板2300を配置する工程を示す断面図である。支持基板2300としては、上述した支持基板1300と同様に、微細な空孔が設けられたガラス基板、サファイア基板、及びシリコン基板などの半導体基板、金属基板や多孔質セラミック基板などを用いることができる。支持基板2300は、真空ポンプなどの真空吸着器に接続され、基板101は、支持基板2300上に配置されて真空吸着される。尚、ここでは、基板100の第2面101b上に支持基板2300を配置しているが、支持基板2300は、基板101の第1面101a側に配置してもよい。
図24は、基板101に設けられた貫通孔1803に導電性粒子を充填する工程を示す断面図である。ここでは、導電性粒子としてソルダーボール2400を用いる例を説明する。ソルダーボール2400を貫通孔1803に充填する方法は、上述した第1実施形態に係る貫通電極基板100の製造方法におけるソルダーボール1400の充填方法と同様に、ハンダボールマウンタ(澁谷工業株式会社製、SBP550)を使用する。また、ソルダーボール2400としては、数十〜百数十μmΦのソルダーボール(千住金属工業株式会社製)を使用する。
貫通孔1803に、ソルダーボール2400を充填した後、130℃〜230℃に加熱してソルダーボール2400を焼成して、貫通孔1803内に充填されたソルダーボール2400同士とソルダーボール2400及び貫通孔1803の内壁に形成された第1金属層1805a、1805bとを接着させる。
図25は、基板101の一方の面(第2面101b)上に配置された支持基板2300を取り除く工程を示す断面図である。以上のように、本実施形態の貫通電極基板1800の製造方法の一例によると、図18(b)に示したような、貫通孔1803内に導電性粒子(ここでは、ソルダーボール2400)が充填された貫通電極基板1800を製造することができる。
また、図示はしないが、本実施形態に係る貫通電極基板1800において、貫通孔1803内に充填された導電性粒子1809(ここでは、ソルダーボール2400)の間隙に絶縁性樹脂が充填される場合は、第1実施形態に係る貫通電極基板100の製造方法において説明したように、絶縁性樹脂を基板101の一方の面(第1面101a又は第2面101b)側又は両方の面(第1面101a及び第2面101b)側の貫通孔1803の開口部に絶縁性樹脂を塗布し、塗布した絶縁性樹脂を硬化する工程をさらに含んでもよい。但し、絶縁性樹脂を貫通孔1803の開口部に塗布する工程は、導電性粒子1809(ソルダーボール2400)を焼成する工程の後に実施する。
<第3実施形態>
以下に上述した本開示の一実施形態に係る貫通電極基板を用いて製造される半導体装置について説明する。
図26は、本開示の一実施形態に係る貫通電極基板を用いた半導体装置を示す断面図である。半導体装置2600は、3つの貫通電極基板2601、2603、2605が積層され、例えば、DRAM等の半導体素子が形成されたLSI基板2607に接続されている。貫通電極基板2601は、第1面(上面)側に設けられた配線、及び第2面(下面)側に設けられた配線等で形成された接続端子2609、2611を有している。これらの貫通電極基板2601、2603、2605はそれぞれが異なる材質の基板から形成された貫通電極基板であってもよい。貫通電極基板2601の接続端子2611は、LSI基板2607の接続端子2619にバンプ2621を介して接続されている。貫通電極基板2601の接続端子2609は、貫通電極基板2603の接続端子2615にバンプ2623を介して接続されている。貫通電極基板2603の接続端子2613は、貫通電極基板2605の接続端子2617にバンプ2425を介して接続されている。バンプ2621、2623、2625は、例えば、インジウム、銅、金等の金属を用いる。
なお、貫通電極基板を積層する場合には、3層に限らず、2層であってもよいし、さらに4層以上であってもよい。また、貫通電極基板と他の基板との接続においては、バンプによるものに限らず、共晶接合など、他の接合技術を用いてもよい。また、ポリイミド、エポキシ樹脂等を塗布、焼成して、貫通電極基板と他の基板とを接着してもよい。
図27は、本開示の一実施形態に係る貫通電極基板を用いた半導体装置の別の例を示す断面図である。図27に示す半導体装置2700は、MEMSデバイス、CPU、メモリ等の半導体チップ(LSIチップ)2701、2703、および貫通電極基板2705が積層され、LSI基板2707に接続されている。
半導体チップ2701と半導体チップ2703との間に貫通電極基板2705が配置され、バンプ2717、2719により接続されている。LSI基板2707上に半導体チップ2701が載置され、LSI基板2701と半導体チップ2703とはワイヤ2721により接続されている。この例では、貫通電極基板2705は、それぞれ機能の異なる複数の半導体チップを積層することで、多機能の半導体装置を製造することができる。例えば、半導体チップ2701を3軸加速度センサとし、半導体チップ2703を2軸磁気センサとすることによって、5軸モーションセンサを1つのモジュールで実現した半導体装置を製造することができる。
半導体チップがMEMSデバイスにより形成されたセンサなどである場合には、センシング結果がアナログ信号により出力されるようなときがある。この場合には、ローパスフィルタ、アンプ等についても半導体チップまたは貫通電極基板2705に形成してもよい。
図28は、本開示の一実施形態に係る貫通電極基板を用いた半導体装置のさらに別の例を示す断面図である。図26及び図27に示した2つの例は、3次元実装であったが、この例では、2次元と3次元との併用実装に適用した例である(2.5次元という場合もある)。図28に示す例では、LSI基板2813には、6つの貫通電極基板2801、2803、2805、2807、2809、2811が積層されて接続されている。ただし、全ての貫通電極基板が積層して配置されているだけでなく、基板面内方向にも並んで配置されている。これらの貫通電極基板はそれぞれが異なる材質の基板から形成された貫通電極基板であってもよい。
図28の例では、LSI基板2813上に貫通電極基板2801、2809が接続され、貫通電極基板2801上に貫通電極基板2803、2807が接続され、貫通電極基板2803上に貫通電極基板2805が接続され、貫通電極基板2809上に貫通電極基板2811が接続されている。尚、貫通電極基板を複数の半導体チップを接続するためのインターポーザとして用いても、このよう2次元と3次元との併用実装が可能である。例えば、図28に示す貫通電極基板2805、2807、2811などが半導体チップに置き換えられてもよい。
図26〜図28を参照して説明した半導体装置は、例えば、携帯端末(携帯電話、スマートフォンおよびノート型パーソナルコンピュータ等)、情報処理装置(デスクトップ型パーソナルコンピュータ、サーバ、カーナビゲーション等)、家電等、様々な電気機器に搭載される。
尚、本開示は上記の実施形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。
本開示に係る貫通電極基板は種々の多層配線基板及び電子機器等の製造において有用である。
100、1800…貫通電極基板
100…基板
101a…第1面
101b…第2面
103、1803…貫通孔
105、1805a、1805b…第1金属層
107…第2金属層
109…無機粒子
1809…導電性粒子
201、201a、201b…絶縁性樹脂
1400、2400…ソルダーボール
2600、2700、2800…半導体装置

Claims (12)

  1. 第1面及び前記第1面とは反対側の第2面を有する基板と、
    前記第1面及び前記第2面にかけて前記基板を貫通する貫通孔と、
    前記貫通孔の内壁に設けられた第1金属層と、
    前記貫通孔内に充填された無機粒子と、
    を含む、貫通電極基板。
  2. 前記無機粒子は、金属粒子である、請求項1に記載の貫通電極基板。
  3. 前記無機粒子は、絶縁性粒子である、請求項1に記載の貫通電極基板。
  4. 前記第1金属層上に設けられた第2金属層をさらに含む、請求項1乃至3の何れか一項に記載の貫通電極基板。
  5. 前記第1金属層は、前記内壁の一部に設けられ、
    前記金属粒子は、前記第1金属層に接着している、請求項2に記載の貫通電極基板。
  6. 前記貫通孔内の前記無機粒子の間隙に絶縁性樹脂をさらに含む、請求項1乃至5の何れか一項に記載の貫通電極基板。
  7. 第1面及び前記第1面とは反対側に位置する第2面を有する基板に、前記第1面及び前記第2面にかけて前記基板を貫通する貫通孔を形成する工程と、
    前記貫通孔の内壁に第1金属層を形成する工程と、
    前記貫通孔内に無機粒子を充填する工程と、
    を含む、貫通電極基板の製造方法。
  8. 前記無機粒子は、金属粒子である、請求項7に記載の貫通電極基板の製造方法。
  9. 前記無機粒子は、絶縁性粒子である、請求項7に記載の貫通電極基板の製造方法。
  10. 前記第1金属層上に第2金属層を形成する工程をさらに含む、請求項7乃至9の何れか一項に記載の貫通電極基板の製造方法。
  11. 前記金属粒子を加熱する工程をさらに含む、請求項8に記載の貫通電極基板の製造方法。
  12. 前記貫通電極の前記第1面側及び前記第2面側の開口部の絶縁性樹脂を塗布する工程をさらに含む、請求項7乃至11の何れか一項に記載の貫通電極基板の製造方法。
JP2016226970A 2016-11-22 2016-11-22 貫通電極基板及びその製造方法 Pending JP2018085412A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016226970A JP2018085412A (ja) 2016-11-22 2016-11-22 貫通電極基板及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016226970A JP2018085412A (ja) 2016-11-22 2016-11-22 貫通電極基板及びその製造方法

Publications (1)

Publication Number Publication Date
JP2018085412A true JP2018085412A (ja) 2018-05-31

Family

ID=62237288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016226970A Pending JP2018085412A (ja) 2016-11-22 2016-11-22 貫通電極基板及びその製造方法

Country Status (1)

Country Link
JP (1) JP2018085412A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020031521A1 (ja) * 2018-08-10 2020-02-13 ソニーセミコンダクタソリューションズ株式会社 配線基板およびその製造方法
CN114451075A (zh) * 2019-09-30 2022-05-06 京瓷株式会社 电子装置用盖体、封装件、电子装置以及电子模块
US11430712B2 (en) 2020-03-12 2022-08-30 Fujitsu Limited Filling member between a heat sink and substrate
KR20220148684A (ko) * 2021-04-29 2022-11-07 (주)샘씨엔에스 범용의 관통 비아를 갖는 공간 변환기 및 이의 제조 방법

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020031521A1 (ja) * 2018-08-10 2020-02-13 ソニーセミコンダクタソリューションズ株式会社 配線基板およびその製造方法
JPWO2020031521A1 (ja) * 2018-08-10 2021-08-12 ソニーセミコンダクタソリューションズ株式会社 配線基板およびその製造方法
CN114451075A (zh) * 2019-09-30 2022-05-06 京瓷株式会社 电子装置用盖体、封装件、电子装置以及电子模块
CN114451075B (zh) * 2019-09-30 2024-03-15 京瓷株式会社 电子装置用盖体、封装件、电子装置以及电子模块
US11430712B2 (en) 2020-03-12 2022-08-30 Fujitsu Limited Filling member between a heat sink and substrate
KR20220148684A (ko) * 2021-04-29 2022-11-07 (주)샘씨엔에스 범용의 관통 비아를 갖는 공간 변환기 및 이의 제조 방법
KR102575741B1 (ko) 2021-04-29 2023-09-06 (주)샘씨엔에스 범용의 관통 비아를 갖는 공간 변환기 및 이의 제조 방법

Similar Documents

Publication Publication Date Title
US11881414B2 (en) Method for manufacturing glass device, and glass device
CN107112297B (zh) 配线电路基板、半导体装置、配线电路基板的制造方法、半导体装置的制造方法
TW591765B (en) Method of making electronic element-mounted substrate
JP6596906B2 (ja) 貫通電極基板並びに貫通電極基板を用いたインターポーザ及び半導体装置
TWI670803B (zh) 中介層、半導體裝置、中介層的製造方法及半導體裝置的製造方法
JP5568357B2 (ja) 半導体装置及びその製造方法
JP2018085412A (ja) 貫通電極基板及びその製造方法
JP2013537365A (ja) ポリマー充填剤溝を有する半導体チップデバイス
TW202226468A (zh) 貫通電極基板及其製造方法、以及安裝基板
JP2019519930A (ja) モジュール及び複数のモジュールを製造するための方法
JP6557953B2 (ja) 構造体及びその製造方法
JP2016063114A (ja) 貫通電極基板及びその製造方法
JP2015165533A (ja) 配線基板及びその製造方法と半導体装置
JP2018107419A (ja) 貫通電極基板、貫通電極基板を備える実装基板並びに貫通電極基板の製造方法
JP2008277733A (ja) 半導体装置
JP4608297B2 (ja) 積層配線基板の製造方法
JP2024057090A (ja) 貫通電極基板、配線基板および配線基板の製造方法
JP2005150417A (ja) 半導体装置用基板及びその製造方法並びに半導体装置
JP4260672B2 (ja) 半導体装置の製造方法及び中継基板の製造方法
JP6809511B2 (ja) 貫通電極基板および半導体装置
JP6911531B2 (ja) 貫通電極基板、貫通電極基板を用いた半導体装置、および貫通電極基板の製造方法
JP2019016733A (ja) 貫通電極基板、貫通電極基板の製造方法及び貫通電極基板を用いた半導体装置
JP2016225360A (ja) 貫通電極基板並びに貫通電極基板を用いたインターポーザ及び半導体装置
JP6690142B2 (ja) 貫通電極基板、貫通電極基板の製造方法及び貫通電極基板を用いたインターポーザ
JP2019114734A (ja) 貫通電極基板、貫通電極基板の製造方法及び貫通電極基板を用いた半導体装置