JP2018071318A - 路面状態判定システム - Google Patents

路面状態判定システム Download PDF

Info

Publication number
JP2018071318A
JP2018071318A JP2016216540A JP2016216540A JP2018071318A JP 2018071318 A JP2018071318 A JP 2018071318A JP 2016216540 A JP2016216540 A JP 2016216540A JP 2016216540 A JP2016216540 A JP 2016216540A JP 2018071318 A JP2018071318 A JP 2018071318A
Authority
JP
Japan
Prior art keywords
vehicle
acceleration
road surface
road
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016216540A
Other languages
English (en)
Other versions
JP6620720B2 (ja
Inventor
昌弘 三好
Masahiro Miyoshi
昌弘 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2016216540A priority Critical patent/JP6620720B2/ja
Publication of JP2018071318A publication Critical patent/JP2018071318A/ja
Application granted granted Critical
Publication of JP6620720B2 publication Critical patent/JP6620720B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Road Repair (AREA)
  • Traffic Control Systems (AREA)

Abstract

【課題】レーザスキャン装置やカメラを備えた路面性状測定車両を用いることなく、誤って判定する可能性を抑制して、路面に凹凸が存在しているか否かを判定する路面状態判定システムを提供する。【解決手段】路面に存在している凹凸の状態を、あらかじめ定めた道路区間ごとに判定する路面状態判定システム1であって、車両10の上下方向に加わる加速度を逐次取得する加速度取得部と、車両が位置する道路区間を逐次決定する区間決定部と、加速度に基づいて、車両に、路面に存在している凹凸による振動が生じたか否かを判定する振動判定部と、振動判定部が、判定を同一の道路区間で取得された加速度に基づいて所定の回数以上行い、振動判定部が車両に振動が生じたと判定する頻度が閾値以上の場合に、当該道路区間において路面に凹凸が存在している状態であると判定する凹凸判定部とを備える。【選択図】図1

Description

本発明は、路面の凹凸状態を判定する路面状態判定システムに関する。
従来、レーザスキャン装置やカメラを備えた路面性状測定車両による路面性状測定によって、へこみなど路面に損傷が生じているか否かを判定することが行われている。例えば、特許文献1には、車両に生じる上下方向の振動を検出することで路面に損傷が生じている可能性がある道路区間を抽出し、抽出した道路区間について路面性状測定を行うことで路面に損傷が生じているか否かを判定する手法が開示されている。
特開2015−176540号公報
特許文献1では、上下方向の振動を用いて路面に損傷が生じている可能性がある道路区間を抽出した後、抽出した道路区間についてレーザスキャン装置やカメラを備えた路面性状測定車両を用いた路面性状測定を行う。これにより、車両に振動を生じる凹凸が路面に存在している可能性のある道路区間が抽出され、路面性状測定により路面に凹凸が存在しているか否かを判定することが可能となる。しかし、路面性状測定車両がレーザスキャン装置やカメラを備えることから、レーザスキャン装置やカメラのコストが必要である。
本発明は、この事情に基づいて成されたものであり、その目的とするところは、レーザスキャン装置やカメラを備えた路面性状測定車両を用いることなく、路面に凹凸が存在しているか否かを判定する路面状態判定システムを提供することにある。
上記目的は独立請求項に記載の特徴の組み合わせにより達成され、また、下位請求項は、発明の更なる有利な具体例を規定する。特許請求の範囲に記載した括弧内の符号は、一つの態様として後述する実施形態に記載の具体的手段との対応関係を示すものであって、本発明の技術的範囲を限定するものではない。
上記目的を達成するための本発明は、路面に存在している凹凸の状態を、あらかじめ定めた道路区間ごとに判定する路面状態判定システム(1)であって、車両(10)の上下方向に加わる加速度を逐次取得する加速度取得部(110)と、車両が位置する道路区間を逐次決定する区間決定部(113)と、加速度に基づいて、車両に、路面に存在している凹凸による振動が生じたか否かを判定する振動判定部(212)と、振動判定部が、車両に振動が生じたか否かの判定を、同一の道路区間で取得された加速度に基づいて所定の回数以上行い、車両に振動が生じたと判定した頻度が閾値以上である場合に、当該道路区間において路面に凹凸が存在している状態であると判定する凹凸判定部(213)とを備える。
以上の構成によれば、路面に存在している凹凸の上を車両が走行することにより車両が上下方向に振動すると、加速度取得部が取得する加速度が変化する。振動判定部は、加速度に基づいて、車両に、路面に存在している凹凸による振動が生じたか否かを判定する。
ただし、車両が道路を走行する際にタイヤが通る道路幅方向の範囲は、道路幅方向全体の一部であることから、路面に凹凸が存在していても、車両が路面に存在している凹凸の上を走行する場合と、凹凸を回避して走行する場合がある。このため、振動判定部は、路面に凹凸が存在している道路区間であっても振動が生じていないと判定する可能性があり、振動判定部による判定1回では、路面に凹凸が存在しているか否かを正しく判定できない場合がある。
一方、区間決定部が、車両が位置する道路区間を決定することにより、振動判定部が判定を行った道路区間、すなわち判定に用いた加速度を取得した道路区間を特定することが可能となる。従って、振動判定部が、同一の道路区間について振動が生じたか否かの判定を複数回行った結果を比較することが可能となる。
振動判定部が、路面に凹凸が存在している道路区間について振動が生じたか否かの判定を所定の回数以上行うと、車両が路面に存在している凹凸の上を走行した場合についての判定が、ある頻度で含まれることが見込まれる。従って、振動判定部が、振動が生じたと判定する頻度が閾値以上の場合に、凹凸判定部が路面に凹凸が存在していると判定することで、振動判定部が路面に凹凸が存在している道路区間であっても振動が生じていないと判定することによる影響が抑制され、路面に凹凸が存在しているか否かを判定することが可能となる。
実施形態に係る路面状態判定システム1の概要を示す図である。 実施形態に係る車載機100の構成を示す図である。 実施形態に係るセンタ装置200の構成を示す図である。 車両10が位置する道路区間の決定方法を示す図である。 車載機100の作動を示すフローチャートである。 センタ装置200の作動を示すフローチャートである。 加速度取得部110が取得した加速度を道路区間に沿って示した例である。 勾配によるオフセットを除去した加速度を道路区間に沿って示した例である。 振動判定部212が振動と判定した回数を道路区間ごとに示した例である。
<第1実施形態>
以下、本発明の第1実施形態としての路面状態判定システム1を図面に基づいて説明する。路面状態判定システム1の構成及び詳細な説明に入る前に、路面状態判定システム1の作動概略を図1に沿って説明する。路面状態判定システム1は、車両10で用いられる車載機100と、データセンタ20で用いられるセンタ装置200とを備える。車両10は、例えば路線バスに用いられるバスなどの大型乗用車を含む乗用車や、運送会社で用いられるトラックを用いることができる。本実施形態では、複数の車両10に、同一の構成の車載機100をそれぞれ搭載している。
車載機100は、車両10の上下方向の加速度を逐次取得しており、取得した加速度の列をセンタ装置200に送信する。車両10が凹凸の存在している道路区間A1を走行することにより上下方向の振動が発生すると、振動が発生した旨が加速度の時間的な変化として加速度の列に現れる。
センタ装置200は、車両10が送信した加速度の列を受信し、加速度の変化から振動が発生したか否かを判定する。この判定を、道路区間A1を走行する複数の車両10について行い、振動が発生したと判定した割合に基づいて道路区間A1における路面の凹凸の状態を判定する。
[車載機100の構成]
図2を用いて、車載機100の構成を説明する。車載機100は、車載機制御部101と、加速度センサ102と、GNSS受信機103と、地図データベース104と、広域送信部105とを備えて構成される。
車載機制御部101は、CPU、ROM、RAM等よりなるマイクロコンピュータを主体として構成されており、CPUが、RAMの一時記憶機能を利用しつつ、ROMなどの非遷移的実体的記録媒体(non-transitory tangible storage medium)に記憶されているプログラムを実行することで、加速度取得部110、車速取得部111、位置取得部112、区間決定部113、およびデータ送信部114として作動する。
加速度センサ102は、車両10の上下方向に作用する加速度を計測するセンサである。例えば、加速度センサ102の検出軸の正の方向が車両10の上方向、検出軸の負の方向が車両10の下方向となるように加速度センサ102を備えればよい。
GNSS受信機103は、GNSS(Global Navigation Satellite System)を構成する測位衛星から送信された測位信号を受信し、当該GNSS受信機103の位置を測位するために用いられる受信機である。
地図データベース104は、地図データを格納したデータベースであり、本実施形態では、地図データとして、道路区間を決定するための基準位置と、道路形状と、基準位置に対する各道路区間の位置関係とを記憶している。
基準位置は、交差点など、周囲の道路と比較して車両10の進行方向が大きく変化しやすい道路形状となっている位置に決定される。本実施形態では、交差点の中央の座標を基準位置として地図データベース104に記憶する。その他の例として、カーブの一点の座標を基準位置として記憶するとしてもよい。
道路形状は、位置の軌跡を地図上の道路形状に照らし合わせることで、位置の軌跡において最も新しい点である現在位置を補正するマップマッチングに用いる地図データである。なお、本実施形態においてこの道路形状を用いてマップマッチングを実行するのは、後述の車両10が位置する道路区間を決定する処理において、車両10が基準位置周辺を通過した場合のみでよい。従って、本実施形態で地図データベース104に記憶する道路形状は、基準位置周辺の道路形状のみでもよい。
道路区間は、基準位置から延びる道路を、基準位置からの距離に従って区分することで決定される。例えば、基準位置を有するある交差点から延びる道路のうちの一つについて、基準位置からの距離が0m〜20mの範囲を第1の道路区間、20m〜40mの範囲を第2の区間、40m〜60mの範囲を第3の区間のように区分して決定し、道路区間を特定する区間IDを付与すればよい。なお、本実施形態における距離は、道路に沿って移動する場合の移動距離を意味し、直線距離とは必ずしも一致しない。具体的には、道路に沿って移動する場合の移動距離であることから、移動した道路が全て直線である場合には直線距離と一致するが、移動した道路にカーブした部分が含まれている場合には直線距離と一致しない。
このようにして道路区間が決定されている場合、いずれの道路区間に車両10が位置するかは、車両10が直近に通過した基準位置の座標と、直近に通過した基準位置から進んだ道路の方位と、直近に通過した基準位置からの距離とで特定することができる。従って、本実施形態では、車両10が位置する道路区間を決定するために、基準位置の座標と、基準位置を有する交差点から延びる道路の方位と、道路区間の両端の基準位置からの距離とに対応づけて区間IDを地図データベース104に記憶させる。これにより、基準位置に対する各道路区間の位置関係が地図データベース104に記憶される。
広域送信部105は、基地局を介した広域通信回線に接続し、広域通信回線を通じてセンタ装置200にデータを送信する無線通信装置である。
加速度取得部110は、加速度センサ102が計測する、車両10の上下方向における加速度を逐次取得する。
車速取得部111は、車速センサ11が、車両10の車速に応じて出力する車速信号を用いて、車両10の車速を取得する。位置取得部112は、GNSS受信機103が受信する測位信号に基づいて測位を行い、車載機100を搭載した車両10の位置を取得する。
区間決定部113は、車速取得部111が取得する車速と、位置取得部112が取得する位置と、地図データベース104が記憶する地図データとを用いて、車両10が位置する道路区間を決定する。これにより、加速度取得部110が各加速度を取得した時刻における、車両10が位置する道路区間を決定する。車両10が位置する道路区間の決定方法の詳細な説明は図4を用いて後述する。
データ送信部114は、広域送信部105に、加速度取得部110が取得した加速度と、区間決定部113が決定した、当該加速度を取得した時刻に車両10が位置する道路区間を示す区間IDとを含む加速度データを、センタ装置200に対して送信させる。
[センタ装置200の構成]
センタ装置200の構成を図3に沿って説明する。センタ装置200は、一つまたは複数のサーバ装置を用いて実現され、広域受信部201とセンタ演算部202とを備える。
広域受信部201は、基地局を介した広域通信回線に接続可能な通信装置であり、広域送信部105が、基地局を介した広域通信回線を通じて送信した加速度データを受信する。
センタ演算部202は、CPU、RAM、ROM、I/O、及びこれらの構成を接続するバスラインなどを備えた通常のコンピュータとして構成されている。センタ演算部202は、CPUが、RAMの一時記憶機能を利用しつつ、ROMなどの非遷移的実体的記録媒体に記憶されているプログラムを実行することで、データ受信部210と、変化量算出部211と、振動判定部212と、凹凸判定部213としての作動を行う。
データ受信部210は、広域受信部201が受信する、車載機100が送信した加速度データを取得する。変化量算出部211は、データ受信部210が取得した加速度データに含まれる加速度を用いて、当該加速度を取得した時刻において車両10が位置していた道路区間における加速度の変化量である加速度変化量を算出する。本実施形態では、データ受信部210が取得した加速度データに含まれる加速度から、当該加速度を取得した道路区間で取得された加速度の平均値を差し引いた値の絶対値を求める。これにより求められた値が、本実施形態における加速度変化量である。道路区間における加速度の平均値は、当該道路区間における路面の勾配によって生じる加速度のオフセットとおおよそ一致すると考えられる。従って、加速度の平均値を差し引くことにより、路面の勾配による影響が軽減され、振動による加速度の変化を判定することが容易となる。
振動判定部212は、加速度に基づいて、車両10が路面に存在している凹凸により上下方向に振動が生じたか否かを判定する。例えば、変化量算出部211が算出した加速度変化量が閾値以上の数値となっている場合に、路面に存在している凹凸により振動が生じたと判定するとすればよい。振動が生じたと判定する閾値は、凹凸が存在していると判定すべき程度の凹凸の上を車両10が走行して振動が生じた場合において、変化量算出部211が算出する加速度変化量に従って設定される。
なお、凹凸が存在している状態について、凹凸の程度を複数の段階に分けるとしてもよい。この場合、振動判定部212は、振動が生じたと判定することに加えて、段階に応じて生じる振動の大小の判定も行えばよい。
本実施形態では、凹凸の程度を大小の2段階に分け、0.2Gを凹凸が生じているか否かの判定における閾値とし、0.3Gを凹凸の大小に応じた振動の大小を判定する閾値とする。具体的には、加速度変化量が0.2G以上0.3G未満の値となっている場合に、路面に小さな凹凸が存在していることにより振動レベル1の振動が発生したと判定する。また、0.3G以上の値となっている場合に、路面に大きな凹凸が存在していることにより振動レベル2の振動が発生したと判定する。
凹凸判定部213は、振動判定部212が、車両10に振動が生じたか否かの判定を、同一の道路区間について所定の回数以上行い、振動が生じていると判定した頻度が閾値以上である場合に、当該道路区間において路面に凹凸が存在している状態であると判定する。
振動が生じたか否かの判定の回数が少ない場合、振動が生じたか否かの判定の結果に偏りが生じやすくなり、凹凸判定部213の判定に誤りが生じる可能性が高まる。従って、振動が生じたか否かの判定の結果に偏りが生じることを抑制して路面に凹凸が存在している状態であるか否かについて誤判定を抑制するためには、所定の回数は、極力大きな回数であることが好ましい。ただし、ある程度の回数以上になれば、判定精度はそれほど向上しない。従って、所定の回数は、例えば50〜200回程度とすればよい。
頻度の閾値は、路面に凹凸が存在している状態と、路面に凹凸が存在していない状態とを判別するための閾値である。従って、路面に凹凸が存在している状態における車両10に振動が生じたと判定される頻度と、路面に凹凸が存在していない状態における車両10に振動が生じたと判定される頻度のとの間の値となるように決定されている。
ここで、車両10が、路面に凹凸が存在している道路区間を走行した場合に、その道路区間において振動が生じたと判定される頻度は、凹凸が存在している箇所の広がりや数に従って変化する。凹凸が存在している箇所の広さが広いほど、また、凹凸が存在している箇所が多いほど、その道路区間において振動が生じたと判定される頻度は高くなる。
従って、凹凸が存在している状態であると判定すべき凹凸の程度に応じて頻度の閾値を設定することになる。頻度の閾値は、たとえば20%とする。
また、上述した所定の回数以上の振動判定回数がある場合に、全部の振動判定結果を用いて、1つの道路区間の路面に凹凸が存在している状態であるか否かを判定する必要はない。 例えば、各道路区間について、当該道路区間を走行した車両10のうち、加速度データをセンタ装置200に送信した時刻が判定を行う時刻に近いものから50台についての振動判定結果を用いて、路面に凹凸が存在しているか否かの判定を行うとしてもよい。またこのとき、頻度の閾値を、判定した回数の20%としていたとすると、振動が10回以上発生したか否かに基づいて路面の状態を判定することになる。
さらに、路面に凹凸が存在していると判定する場合に、振動レベル1の振動が生じたと判定したのか、振動レベル2の振動が生じたと判定したのかにより、路面に存在している凹凸のレベルを推定してもよい。たとえば、振動レベル2の振動が生じたと判定した回数が10回以上の場合に、路面に大きな凹凸が生じた状態である路面の荒れが進行した状態であると判定する。また、振動レベル2の振動が生じたと判定した回数が10回未満であり、かつ振動レベル1の振動が生じたと判定した回数と振動レベル2の振動が生じたと判定した回数の合計が10回以上の場合に、路面に小さな凹凸が生じた状態である路面が荒れ始めた状態と判定する。
[車両10が位置する道路区間の決定方法]
車両10が位置する道路区間の決定方法を図4に沿って説明する。基準位置Pが位置する交差点からは、道路Aが延びている。道路Aは、基準位置Pからの距離が0m〜20mの区間を道路区間A1、20m〜40mの区間を道路区間A2、40m〜60mの区間を道路区間A3とあらかじめ決定されている。
区間決定部113は、位置取得部112が取得する位置の軌跡を、地図データベース104に記憶された道路形状に照らし合わせるマップマッチングを行い、車両10が基準位置Pに位置している時刻である基準時刻を決定する。その後、車速取得部111が取得した車両10の車速に基づいて車両10と基準位置との距離を推定することにより、車両10が位置する道路区間を決定する。
まず、位置取得部112が取得する位置に基づいて、基準時刻を決定する方法を説明する。位置取得部112が取得する位置が、時刻t1に位置P1、時刻t2に位置P2、時刻t3に位置P3である場合を考える。これらの位置の軌跡を、マップマッチングにより補正することにより、位置P1が位置P1aに、位置P2が位置P2aに、位置P3が位置P3aに補正されたとする。この時、基準位置Pに最も近い補正後の位置は位置P2aであることから、位置P2aの補正前の位置である位置P2を取得した時刻t2を、基準時刻と決定する。
次に、車速取得部111が取得した車両10の車速に基づいて車両10と基準位置との距離を推定することにより、車両10が位置する道路区間を決定する方法を説明する。車速取得部111が取得した車両10の車速に、車速取得部111が車速を取得する周期を乗算することによって、車速を取得する周期ごとの車両10の移動距離を算出することができる。算出した移動距離を、基準時刻以降について合計することにより、基準位置と車両10との距離を推定し、車両10が位置する道路区間を決定することができる。
説明の簡略化のため、車速取得部111が車速を取得する周期を1秒周期とした場合を例に説明する。基準時刻と決定された時刻t2に、車速取得部111が取得した車速が秒速10mであった場合、時刻t2の1秒後に、車両10と基準位置Pとの距離は10mであると推定される。従って、時刻t2の1秒後において車両10が位置する道路区間は道路区間A1であると決定することができる。時刻t2の1秒後に車速取得部111が取得した車速が秒速15mであった場合、時刻t2の2秒後に、車両10と基準位置Pとの距離は25mであると推定される。従って、時刻t2の2秒後において車両10が位置する道路区間は、道路区間A2であると決定することができる。
[車載機100の作動]
車載機100の作動を、図5のフローチャートに沿って説明する。車載機制御部101は、車両10のイグニッションスイッチがONとなると、図5に示す処理をS1から周期的に実行する。実行する周期は、例えば100ミリ秒周期とすればよい。
S1では、加速度センサ102が計測する、車両10の上下方向に加わる加速度を取得する。S1は加速度取得部110としての処理である。S2では、車速センサ11が出力する車速信号を用いて、車両10の車速を取得する。S2は車速取得部111としての処理である。
S3では、測位信号による車両10の位置を測位する周期が経過したか否かを判断する。測位する周期は、例えば1秒周期とすればよい。経過したと判断した場合はS4の処理に進み、経過していないと判断した場合はS7の処理に進む。S4では、GNSS受信機103が受信する測位信号に基づいて測位を行い、車両10の位置を取得する。S4は位置取得部112としての処理である。
S5では、車両10が、地図データベース104に記憶された基準位置のいずれかの付近を通過したか否かを判断する。この判定は、取得された基準位置周辺の位置の軌跡が、基準位置周辺の道路形状に照らし合わせるために十分な長さであるか否かを判断する処理である。例えば、基準位置を通過して10m〜30m程度移動したと考えられる場合に、基準位置の付近を通過したと判断すればよい。本実施形態では、直前のS4の処理における測位の1回前の測位によって取得した位置が、地図データベース104に記憶されたある基準位置Pから10m以内であり、かつ直前のS4の処理における測位によって取得した位置がその基準位置Pから10m以内でない場合に、基準位置Pの付近を通過したと判断する。基準位置の付近を通過したと判断した場合はS6の処理に進み、通過していないと判断した場合はS7の処理に進む。
S6では、S4の処理で取得した位置の軌跡を、地図データベース104に記憶された道路形状に照らし合わせるマップマッチングによって補正する。これにより、車両10が基準位置に位置していた時刻である基準時刻と、基準位置を通過した車両10が、進行方向に対していずれの方角に進行しているか、すなわち車両10が走行している道路の基準位置を有する交差点から延びる方位を決定する。
S7では、直近のS6の処理で決定された基準時刻以降にS2の処理で取得された車速を用いて車両10と基準位置との距離を算出する。S8の処理では、地図データベース104に、S5の判断で通過したと判断された直近の基準位置の座標と、直近のS6の処理で決定された道路の延びる方位と、直前のS7の処理で算出した車両10と基準位置との距離とに対応づけて記憶された区間IDを、車両10が位置する道路区間を示す区間IDとして決定する。S3、S5、S6、およびS7の処理は道路区間決定部としての処理である。
S9では、加速度データの送信周期が経過したか否かを判断する。送信周期が経過していない場合は図5に示す処理を終了する。送信周期が経過したと判断した場合はS10に進み、S1で取得した加速度とS8で決定した区間IDとを含む加速度データを送信した後図5に示す処理を終了する。
本実施形態では、車両10が基準位置を通過したと判断した場合に、車両10が基準位置に位置していた時刻である基準時刻を決定する。すなわち、基準時刻を遡って決定することから、基準位置付近では加速度を取得した時刻における道路区間が決定されていない場合がある。また、路面の凹凸の状態は即座に判定する必要性がないことから、取得した加速度を即座にセンタ装置200に送信する必要性がない。そのため、測定した加速度を逐次送信することなく蓄積し、取得した時刻における道路区間が決定された加速度のみがセンタ装置200に送信されるように、S9の処理における送信周期と、S10の処理において送信する加速度の範囲を決定する。
例えば、S9の処理における送信周期を1分周期とし、S10の処理においては1分20秒前から20秒前までに取得した加速度と、それらの加速度を取得した時刻における道路区間とを加速度データとしてセンタ装置200に送信するとすればよい。なお、本実施形態では、車両10が基準位置の周辺を通過するまで、車両10が位置する道路区間を決定することができない。従って、車両10が基準位置の周辺を通過する以前に取得された加速度は、取得された時刻において車両10が位置する道路区間を決定できないため、それらの加速度はS10の処理でセンタ装置200に送信しない。S9およびS10はデータ送信部114としての処理である。
[センタ装置200の作動]
センタ装置200の作動を図6のフローチャートに沿って説明する。センタ演算部202は、図6に示す処理をS11から順に周期的に実行する。実行する周期は、例えば1週間〜1カ月に1回とすればよい。
S11では、前回S11の処理を実行して以降に、広域受信部201が受信した加速度データを取得する。S11はデータ受信部210としての処理である。S12では、加速度の変化量である加速度変化量を算出する。具体的には、S11で取得した加速度データに含まれる各加速度について、その加速度を取得した道路区間における加速度の平均値を差し引いた値の絶対値を求める。これにより、加速度の道路区間における平均値からの変化量を加速度変化量として算出する。S12は変化量算出部211としての処理である。
S13では、車両10が走行した回数が所定の回数以上となっている道路区間があるか否かを判断する。本実施形態では、車両10が50回以上走行した道路区間があるか否かを判断する。走行した回数が50回以上となっている道路区間があると判断した場合はS14の処理に進み、50回以上となっている道路区間がないと判断した場合は図6に示す処理を終了する。
S14では、直近のS13の処理で走行した回数が50回以上となっていると判断された道路区間のうち、直近のS13の処理以降に路面に凹凸が存在しているか否かの判定を行っていない道路区間の1つについて、直近の50回の走行で取得した加速度を用いて算出された加速度変化量を取得する。S13およびS14の処理は、振動が生じたか否かの判定を行った回数が少ない状態で路面の凹凸の状態を判定することを避け、路面の凹凸の状態を誤って判定する可能性を抑制するための処理である。
S15では、S14で取得した加速度変化量について、振動レベル1および振動レベル2の振動が生じたと判定した回数を求める。S15の処理は振動判定部212としての処理である。
S16では、S15の処理で求めた、振動レベル1および振動レベル2の振動が生じたと判定した回数の合計が10回以上であるか否かを判断する。10回以上である場合はS17の処理に進み、10回未満である場合はS18の処理に進む。
S17では、S15の処理で求めた、振動レベル2の振動が生じた回数が10回以上であるか否かを判断する。10回以上である場合はS20の処理に進み、10回未満である場合はS19の処理に進む。
S18の処理では、S14の処理で加速度変化量を取得した道路区間の路面が、路面の凹凸の程度が小さく、凹凸が存在していると判断しない状態である通常路面状態であると判定する。S19の処理では、S14の処理で加速度変化量を取得した道路区間の路面が、路面に小さい凹凸が存在している状態である荒れ始め状態であると判定する。S20の処理では、S14の処理で加速度変化量を取得した道路区間の路面が、路面に大きな凹凸が存在している状態である進行した荒れ状態であると判定する。
S21では、直近のS13の処理で、車両10が50回以上走行したと判断された道路区間の全てが、S14からS20の処理によって路面に凹凸が存在しているか否かの判定が行われたか否かを判断する。全ての区間の判定が行われていると判断した場合は図6に示す処理を終了し、判定が行われていない区間があると判断した場合はS14の処理に戻る。S13とS14、およびS16からS21の処理は凹凸判定部213としての処理である。
[加速度、加速度変化量、および振動回数の例]
ある車両10が道路を走行した際に加速度取得部110が取得した加速度の例を図7に示す。縦軸が加速度を、横軸は距離を示しており、道路の勾配によるオフセットの影響が加速度に含まれている。
図7に示した加速度から、道路区間ごとの加速度の平均値を差し引くことによって道路の勾配によるオフセットを補正した加速度の値を図8に示す。図7と比較すると道路の勾配によるオフセットの影響が軽減され、振動による加速度の変化が判断しやすい状態となっている。本実施形態では、この値の絶対値を加速度変化量として用いている。
加速度変化量を、車両10の走行50回分について取得し、道路区間ごとの振動の回数を求めた例を図9に示す。縦軸が振動レベル1および振動レベル2の振動の回数の合計を示し、横軸が距離を示す。なお、この図では、各道路区間の長さを100mとして道路区間を決定した場合の各道路区間の振動の回数を示している。
[実施形態のまとめ]
以上、説明した実施形態によれば、路面に存在している凹凸により車両10が上下方向に振動すると、加速度取得部110が取得する加速度が変化する。振動判定部212は、加速度が変化することにより変化量算出部211が算出する加速度変化量が増加して閾値以上となると、路面に存在している凹凸により車両に振動が生じたと判定する。
一方、区間決定部113が、車両10が位置する道路区間を決定することにより、振動判定部212が判定を行った道路区間、すなわち判定に用いた加速度変化量の算出に用いた加速度を取得した道路区間を特定することが可能となる。従って、凹凸判定部213は、振動判定部212が同一の道路区間について複数回判定した結果を比較することが可能となる。振動判定部212が路面に凹凸が存在している道路区間について判定を所定の回数以上行うと、車両10が路面に存在している凹凸の上を走行した場合についての判定が、ある頻度で含まれることが見込まれる。
従って、振動判定部212が、振動が生じたと判定する頻度が閾値以上の場合に、凹凸判定部213が路面に凹凸が存在していると判定することで、路面に凹凸が存在しているにもかかわらず、車両10が凹凸を回避して走行して振動が生じないことによる影響を抑制して、路面に凹凸が存在しているか否かを判定することが可能となる。
また、区間決定部113が、車両10が位置する道路区間を決定するにあたり、車両10が基準位置周辺に位置する場合にのみ、位置取得部112が取得する車両10の位置を用いてマップマッチングを行っている。そのため、車両10の位置が基準位置周辺でない場合に位置取得部112が取得する位置に誤差が生じても、区間決定部113が決定する道路区間が誤差に影響されない。また、車両10の位置が基準位置周辺でない場合に、位置取得部112が位置を取得する周期を長くする、あるいは取得を一時停止することが可能となる。
以上、本発明の実施形態を説明したが、本発明は上述の実施形態に限定されるものではなく、次の変形例も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施できる。なお、以下の説明において、それまでに使用した符号と同一番号の符号を有する要素は、特に言及する場合を除き、それ以前の実施形態における同一符号の要素と同一である。また、構成の一部のみを説明している場合、構成の他の部分については先に説明した実施形態を適用できる。
<変形例1>
実施形態において、道路区間は、20mごとに区分するとしていたが、道路区間の長さはこれに限られない。例えば、10mごとや100mごとに区分するとしてもよいし、道路区間ごとに長さが違うとしてもよい。
<変形例2>
実施形態において、車両10に振動が生じたか否かの判定を行う回数を一定としていた。しかし、車両10に振動が生じたか否かの判定を行う回数を可変としてもよい。例えば、判定を行う時点から1週間前までの期間に取得された加速度を用いて算出された加速度変化量について、車両10に振動が生じたか否かの判定を行うとしてもよい。
<変形例3>
実施形態において、加速度変化量は、加速度から、加速度を取得した道路区間における加速度の平均値を差し引いた値の絶対値を用いるとしていた。しかし、加速度変化量として用いる値はこれに限られない。
例えば、ある加速度から、当該加速度を取得した時刻に基づいて決定される所定の期間における加速度の移動平均を差し引いた値の絶対値を加速度変化量としてもよい。具体的には、加速度取得部110が、ある加速度を取得した直前の1分間に取得した加速度の移動平均も、路面の勾配によるオフセットとおおよそ一致すると考えられる。従って、ある加速度から、当該加速度を取得した直前の1分間における加速度の移動平均を差し引いた値の絶対値を、加速度変化量として用いるとしてもよい。
その他の例として、加速度取得部110が直前に取得した加速度を差し引いた値の絶対値、すなわち直前の加速度との差分を加速度変化量として用いるとしてもよい。このとき、直前に取得した加速度には、路面の勾配によるオフセットが同程度加わっていると考えられる。従って、この場合も、路面の勾配による影響を軽減し、振動による加速度の変化を判定することが容易となる。
<変形例4>
実施形態において、振動判定部212は、路面に存在している凹凸により振動が生じたか否かの判定に、変化量算出部211が算出する加速度変化量を用いるとしていた。しかし、振動が生じたか否かを判定する際に用いるパラメータはこれに限られない。
例えば、路面の傾斜が小さく、路面の傾斜によるオフセットが振動によって生じる加速度の変化に対して小さい道路区間について判定する場合、加速度変化量を算出することなく、加速度取得部110が取得した加速度を用いて車両10に振動が生じたか否かを判定するとしてもよい。具体的には、加速度の絶対値が閾値以上である場合に、路面に存在している凹凸により車両10に振動が生じたと判定すればよい。この場合の閾値は、凹凸が存在していると判定すべき程度の凹凸の上を車両10が走行して振動が生じた場合において、加速度取得部110が取得する加速度に従って設定される。なお、加速度を用いて判定する道路区間は、測量などで取得された路面の傾斜を用いてあらかじめ決定すればよい。
<変形例5>
実施形態において、区間決定部113は、マップマッチングによって補正された位置の軌跡を用いて基準時刻を決定し、基準時刻以降の車速に基づいて求めた距離を用いて車両10が位置する道路区間を決定するとしていた。しかし、道路区間を決定する方法はこれに限られない。例えば、位置取得部112が取得した位置を、マップマッチングを行うことなく用いるとしてもよい。この場合、位置取得部112が取得した位置を、あらかじめ決定された位置と道路区間との対応関係に当てはめて道路区間を決定すればよい。
1:路面状態判定システム 10:車両 11:車速センサ 20:データセンタ 100:車載機 101:車載機制御部 102:加速度センサ 103:GNSS受信機 104:地図データベース 105:広域送信部 110:加速度取得部 111:車速取得部 112:位置取得部 113:区間決定部 114:データ送信部 200:センタ装置 201:広域受信部 202:センタ演算部 210:データ受信部 211:変化量算出部 212:振動判定部 213:凹凸判定部

Claims (3)

  1. 路面に存在している凹凸の状態を、あらかじめ定めた道路区間ごとに判定する路面状態判定システム(1)であって、
    車両(10)の上下方向に加わる加速度を逐次取得する加速度取得部(110)と、
    前記車両が位置する前記道路区間を逐次決定する区間決定部(113)と、
    前記加速度に基づいて、前記車両に、路面に存在している凹凸による振動が生じたか否かを判定する振動判定部(212)と、
    前記振動判定部が、前記車両に振動が生じたか否かの判定を、同一の前記道路区間で取得された加速度に基づいて所定の回数以上行い、前記車両に振動が生じたと判定した頻度が閾値以上である場合に、当該道路区間において前記路面に凹凸が存在している状態であると判定する凹凸判定部(213)とを備える路面状態判定システム。
  2. 請求項1において、
    前記路面状態判定システムは、
    前記加速度から、当該加速度が取得された時刻に基づいて決定される所定の期間に前記加速度取得部が取得した前記加速度の移動平均を差し引いた値の絶対値を加速度変化量として算出する変化量算出部(211)をさらに備え、
    前記振動判定部は、前記加速度変化量が閾値以上である場合に、当該加速度変化量の算出に用いた前記加速度が取得された前記道路区間において、前記車両に、路面に存在している凹凸による振動が生じたと判定する路面状態判定システム。
  3. 請求項1または2において、
    前記道路区間は、前記道路区間の基準となる位置である基準位置からの距離に応じてあらかじめ決定され、
    前記路面状態判定システムは、
    前記車両の位置を取得する位置取得部(112)と、
    前記車両の車速を逐次取得する車速取得部(111)とをさらに備え、
    前記区間決定部は、前記位置取得部が取得する前記位置の軌跡を地図上の道路に照らし合わせるマップマッチングを行うことにより、前記車両が、前記基準位置に位置した基準時刻を決定し、前記基準時刻以降に前記車速取得部が取得した車速に基づいて前記基準位置と前記車両との距離を求め、求めた前記基準位置と前記車両との距離を、あらかじめ決定された前記基準位置からの距離と前記道路区間との関係に当てはめることによって前記道路区間を決定する路面状態判定システム。
JP2016216540A 2016-11-04 2016-11-04 路面状態判定システム Active JP6620720B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016216540A JP6620720B2 (ja) 2016-11-04 2016-11-04 路面状態判定システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016216540A JP6620720B2 (ja) 2016-11-04 2016-11-04 路面状態判定システム

Publications (2)

Publication Number Publication Date
JP2018071318A true JP2018071318A (ja) 2018-05-10
JP6620720B2 JP6620720B2 (ja) 2019-12-18

Family

ID=62114032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016216540A Active JP6620720B2 (ja) 2016-11-04 2016-11-04 路面状態判定システム

Country Status (1)

Country Link
JP (1) JP6620720B2 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020006038A (ja) * 2018-07-11 2020-01-16 ナブテスコ株式会社 電動車両および電動車両の制御方法
KR20200022726A (ko) * 2018-08-23 2020-03-04 한국지질자원연구원 갱도의 노면상태 모니터링 장치 및 이를 이용한 갱도의 노면 유지관리 시스템
JP2020172825A (ja) * 2019-04-12 2020-10-22 株式会社ブリヂストン 橋梁ジョイントの劣化状態推定方法とその装置
CN111877108A (zh) * 2020-07-15 2020-11-03 中公高科养护科技股份有限公司 一种基于线激光的路面平整度测量方法
CN112014317A (zh) * 2019-05-29 2020-12-01 爱信精机株式会社 路面损伤检测装置以及道路信息提供系统
JP2021113399A (ja) * 2020-01-16 2021-08-05 矢崎エナジーシステム株式会社 車載器、及び、車載システム
CN114152666A (zh) * 2020-09-08 2022-03-08 丰田自动车株式会社 车辙判定装置、车辙判定方法和存储介质
KR20220029902A (ko) * 2020-09-02 2022-03-10 한국항공우주연구원 도로노면 감시 시스템 및 방법
KR20220147569A (ko) * 2021-01-21 2022-11-03 모셔널 에이디 엘엘씨 도로 표면 조건 기반 의사 결정 및 예측

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004294244A (ja) * 2003-03-26 2004-10-21 Japan Aviation Electronics Industry Ltd 移動体の速度極性付加装置
US20120197588A1 (en) * 2011-01-27 2012-08-02 Hon Hai Precision Industry Co., Ltd. Apparatus and method for inspecting road surfaces
JP2013140448A (ja) * 2011-12-28 2013-07-18 Fujitsu Ltd 路面調査プログラム及び路面調査装置
JP2015178702A (ja) * 2014-03-18 2015-10-08 富士通株式会社 路面劣化検出方法、情報処理装置及びプログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004294244A (ja) * 2003-03-26 2004-10-21 Japan Aviation Electronics Industry Ltd 移動体の速度極性付加装置
US20120197588A1 (en) * 2011-01-27 2012-08-02 Hon Hai Precision Industry Co., Ltd. Apparatus and method for inspecting road surfaces
JP2013140448A (ja) * 2011-12-28 2013-07-18 Fujitsu Ltd 路面調査プログラム及び路面調査装置
JP2015178702A (ja) * 2014-03-18 2015-10-08 富士通株式会社 路面劣化検出方法、情報処理装置及びプログラム

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7122894B2 (ja) 2018-07-11 2022-08-22 ナブテスコ株式会社 電動車両および電動車両の制御方法
JP2020006038A (ja) * 2018-07-11 2020-01-16 ナブテスコ株式会社 電動車両および電動車両の制御方法
KR20200022726A (ko) * 2018-08-23 2020-03-04 한국지질자원연구원 갱도의 노면상태 모니터링 장치 및 이를 이용한 갱도의 노면 유지관리 시스템
KR102151477B1 (ko) * 2018-08-23 2020-09-03 한국지질자원연구원 갱도의 노면상태 모니터링 장치 및 이를 이용한 갱도의 노면 유지관리 시스템
JP2020172825A (ja) * 2019-04-12 2020-10-22 株式会社ブリヂストン 橋梁ジョイントの劣化状態推定方法とその装置
CN112014317A (zh) * 2019-05-29 2020-12-01 爱信精机株式会社 路面损伤检测装置以及道路信息提供系统
JP2021113399A (ja) * 2020-01-16 2021-08-05 矢崎エナジーシステム株式会社 車載器、及び、車載システム
JP7387455B2 (ja) 2020-01-16 2023-11-28 矢崎エナジーシステム株式会社 車載器、及び、車載システム
CN111877108A (zh) * 2020-07-15 2020-11-03 中公高科养护科技股份有限公司 一种基于线激光的路面平整度测量方法
KR20220029902A (ko) * 2020-09-02 2022-03-10 한국항공우주연구원 도로노면 감시 시스템 및 방법
KR102396146B1 (ko) * 2020-09-02 2022-05-11 한국항공우주연구원 도로노면 감시 시스템 및 방법
CN114152666A (zh) * 2020-09-08 2022-03-08 丰田自动车株式会社 车辙判定装置、车辙判定方法和存储介质
CN114152666B (zh) * 2020-09-08 2024-04-02 丰田自动车株式会社 车辙判定装置、车辙判定方法和存储介质
KR20220147569A (ko) * 2021-01-21 2022-11-03 모셔널 에이디 엘엘씨 도로 표면 조건 기반 의사 결정 및 예측
KR102550730B1 (ko) 2021-01-21 2023-06-30 모셔널 에이디 엘엘씨 도로 표면 조건 기반 의사 결정 및 예측
US11708066B2 (en) 2021-01-21 2023-07-25 Motional Ad Llc Road surface condition guided decision making and prediction

Also Published As

Publication number Publication date
JP6620720B2 (ja) 2019-12-18

Similar Documents

Publication Publication Date Title
JP6620720B2 (ja) 路面状態判定システム
KR101920303B1 (ko) 3차원 위치 판정 장치 및 방법
US10089867B2 (en) Anomalous travel location detection device and anomalous travel location detection method
CN101334294B (zh) 基于gps的车辆中传感器校准算法
JP5441809B2 (ja) 列車位置検出装置
US20140032078A1 (en) Apparatus and method for calculating inter-vehicle distance
KR20190028528A (ko) 자기 위치 추정 방법 및 자기 위치 추정 장치
JP2013020576A (ja) 位置通知装置及び車両位置通知方法、並びに車載器、車両位置算出方法及びプログラム、並びに車両位置算出システム
KR20190031544A (ko) 자기 위치 추정 방법 및 자기 위치 추정 장치
JPWO2018212292A1 (ja) 情報処理装置、制御方法、プログラム及び記憶媒体
JP2013205248A (ja) 速度検出装置、走行位置算出装置及び速度算出方法
US20180372858A1 (en) Distance estimation device, distance estimation method and program
US8024117B2 (en) Map display apparatus for vehicle
JP2013238529A (ja) 移動体の情報処理装置、移動体の情報処理方法及び運転支援装置
JP2013104861A (ja) 車載カメラ及び車載カメラシステム
JP2007015483A (ja) 鉄道車両の走行位置検出方法
CN106842245A (zh) 车辆位置校正的方法及导航系统
JP2016091422A (ja) 車線変更判定システム
US20230184555A1 (en) Lane estimation apparatus and lane estimation method
KR102031879B1 (ko) 도로상태 전송 방법, 장치 및 컴퓨터 프로그램과 도로상태 지도 생성 방법, 장치 및 컴퓨터 프로그램
US20190011282A1 (en) Distance estimation device, distance estimation method and program
JP6173714B2 (ja) 車載装置及びその位置補正方法並びに位置補正プログラム
JP6978889B2 (ja) 位置検出装置
JP2005055192A (ja) 走行道路特定装置および走行道路特定方法
WO2017026108A1 (ja) 補正方法およびそれを利用した補正装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191105

R151 Written notification of patent or utility model registration

Ref document number: 6620720

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250