JP2018063872A - リチウムイオン二次電池 - Google Patents

リチウムイオン二次電池 Download PDF

Info

Publication number
JP2018063872A
JP2018063872A JP2016201885A JP2016201885A JP2018063872A JP 2018063872 A JP2018063872 A JP 2018063872A JP 2016201885 A JP2016201885 A JP 2016201885A JP 2016201885 A JP2016201885 A JP 2016201885A JP 2018063872 A JP2018063872 A JP 2018063872A
Authority
JP
Japan
Prior art keywords
negative electrode
active material
copper
current collector
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016201885A
Other languages
English (en)
Inventor
伸夫 松井
Nobuo Matsui
伸夫 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016201885A priority Critical patent/JP2018063872A/ja
Publication of JP2018063872A publication Critical patent/JP2018063872A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

【課題】リチウムの析出が抑制されたリチウムイオン二次電池の提供。【解決手段】リチウムイオン二次電池10は、負極集電箔61と、負極集電箔61の上に形成された負極活物質層63とを備えている。負極活物質層63は、黒鉛系負極活物質を含む。負極集電箔61は、銅合金被膜が表面に形成された銅箔である。ここで、銅合金被膜の体積抵抗率は、銅よりも高く、銅合金被膜の熱伝導率は、銅よりも低い。【選択図】図1

Description

本発明は、リチウムイオン二次電池に関する。
リチウムイオン二次電池においては、高レートでの急速充電などで負極に過剰に負荷がかかると、負極上にリチウムが析出する場合がある。例えば、特開2016−115403号公報には、負極上のリチウムの析出を一定程度抑制できるリチウムイオン二次電池およびその製造方法が提案されている。同公報では、0.3≦(正極活物質の平均粒子径)/(負極活物質の平均粒子径)を満足するように、正極活物質および負極活物質を選択することが提案されている。
特開2016−115403号公報
ところで、0.3≦(正極活物質の平均粒子径)/(負極活物質の平均粒子径)を満足するように、正極活物質および負極活物質を選択することは、正極活物質粒子と負極活物質粒子の材料選択を制限する。ここではリチウムの析出を抑制しうる新規な構成を提案する。
ここで提案されるリチウムイオン二次電池は、負極集電箔と、負極集電箔の上に形成された負極活物質層とを備えている。負極活物質層は、黒鉛系負極活物質を含む。負極集電箔は、銅合金被膜が表面に形成された銅箔である。ここで、銅合金被膜の体積抵抗率は、銅よりも高く、銅合金被膜の熱伝導率は、銅よりも低い。かかるリチウムイオン二次電池によれば、リチウムの析出が抑制される。
図1は、リチウムイオン二次電池10の構成例を示す部分断面図である。
以下、ここで提案されるリチウムイオン二次電池の一実施形態を説明する。ここで説明される実施形態は、当然ながら特に本発明を限定することを意図したものではない。
ところで、本発明者の知見によれば、負極活物質として黒鉛が使用された負極を有するリチウムイオン二次電池は、大電流による急速な充電や長時間の充電のように過度な条件で充電されると、リチウム金属が析出し、容量低下が誘発される。
かかる事象について、本発明者は、以下のような要因を考えている。
まず、充電によって負極電位が低下する。
次に、負極電位がリチウム金属析出電位を下回ると負極の充電反応と並行してリチウム金属の析出反応も進行する。
その結果、リチウム金属が析出すると、その分、電池反応に寄与するリチウムが減り、電池容量が低下する。
本発明者の知見によれば、特に、充電電流が大きい場合、負極抵抗が大きい場合などにおいて、充電時の負極電位が低下しやすい。また、温度が低い場合、充電時間が長い場合に、負極抵抗が大きくなりやすい。このため、充電電流が大きい場合、温度が低い場合、充電時間が長い場合などの条件が重なると、上記のようにリチウム金属が析出することに起因して電池容量が低下しやすくなる。
このような検討において、本発明者は、以下のような新規構成を提案する。
図1は、リチウムイオン二次電池10の構成例を示す部分断面図である。図1で例示されるリチウムイオン二次電池10の構成例については、後でより詳しく述べる。ここでは、図1を参照しつつ、ここで提案されるリチウムイオン二次電池10の概要を説明する。
ここで提案されるリチウムイオン二次電池10は、負極集電箔61と、負極集電箔61の上に形成された負極活物質層63とを備えている。負極活物質層63は、黒鉛系負極活物質を含んでいる。負極集電箔61は、銅合金被膜が表面に形成された銅箔である。ここで、銅合金被膜の体積抵抗率は、銅よりも高く、銅合金被膜の熱伝導率は、銅よりも低いとよい。
本発明者の知見によれば、かかるリチウムイオン二次電池10では、負極集電箔61に、芯材である銅よりも体積抵抗率が高い銅合金被膜が形成されている。このため、負極の直流抵抗が増加する。さらに、銅合金被膜の熱伝導率は、負極集電箔61の芯材である銅よりも低い。このため、充電中に電流が印加されることによるジュール熱によって負極が発熱しやすい。負極が発熱すると、負極の反応抵抗が低下する。この際、ΔV=IRにおけるR成分が小さくなるので、負極電位の低下量ΔVが小さくなる。このため負極電位の低下が緩和され、リチウム金属析出量が減少する。
以下、図1に基づいてここで提案されるリチウムイオン二次電池10の構成例を説明する。図1では、捲回電極体を収容した角型電池が示されている。ここで、リチウムイオン二次電池10は、電極体11と、ケース12とを備えている。ケース12は、ケース本体12aと、蓋12bと、電極端子13,14とを備えている。
電極体11は、例えば、正極シート50と、負極シート60と、セパレータ72,74とを有している。図1に示された形態では、正極シート50は、正極集電箔51と、正極活物質を含む正極活物質層53とを有している。正極集電箔51は、帯状のシートである。正極集電箔51には、幅方向片側の縁に沿って露出部52が設定されている。正極集電箔51の両面には、露出部52を除いて正極活物質層53が形成されている。
ここで、二次電池の正極活物質は、特に言及されない限りにおいて限定されない。正極活物質としては、層状系、スピネル系等のリチウム複合金属酸化物(例えば、LiNiO、LiCoO、LiFeO、LiMn、LiNi1/3Co1/3Mn1/3、LiNi0.5Mn1.5、LiCrMnO、LiFePO等)を用いることができる。
負極シート60は、負極集電箔61と、負極活物質を含む負極活物質層63とを有している。負極集電箔61は、帯状のシート(例えば、銅箔)である。負極集電箔61には、幅方向片側の縁に沿って露出部62が設定されている。負極集電箔61の両面には、露出部62を除いて負極活物質層63が形成されている。
ここで、負極活物質層63には、負極活物質として黒鉛系負極活物質が含まれているとよい。ここで黒鉛系負極活物質には、例えば、天然黒鉛、非晶質カーボンでコートされた天然黒鉛、難黒鉛化性炭素、コークス類、グラファイト類、ガラス状炭素類、炭素繊維、活性炭、カーボンブラック類、有機高分子化合物焼成体などが挙げられうる。ここで、有機高分子化合物焼成体とは、フェノール類やフラン類などの高分子材料を適当な温度で焼成して炭素化したものをいう。
負極集電箔61は、銅合金被膜が表面に形成された銅箔である。銅合金被膜の体積抵抗率は、銅よりも高いとよい。銅合金被膜の熱伝導率は、銅よりも低いとよい。ここで、銅合金被膜は、例えば、めっきによって形成される。銅合金被膜に用いられる銅合金材料には、芯材である銅に組成が近い銅系合金の中からさらに、体積抵抗率が高く、かつ熱伝導率の低い青銅が(例えば、Cu95%、Sn5%の青銅)が用いられうる。
なお、かかる銅合金被膜に用いられるめっき種として、例えば、青銅(例えば、Cu95%、Sn5%の青銅)や、黄銅(例えば、Cu70%、Zn30%の黄銅)などが挙げられる。
ここで、0℃での体積抵抗率(μΩ・cm)は、負極集電箔61の芯材としてのCuが1.6μΩ・cmであるのに対して、Cu95%、Sn5%の青銅が13.6μΩ・cmであり、Cu70%、Zn30%の黄銅が6.3μΩ・cmである。
0℃での熱伝導率(W・m−1・K−1)は、負極集電箔61の芯材としてのCuが403W・m−1・K−1であるのに対して、Cu95%、Sn5%の青銅が53W・m−1・K−1であり、Cu70%、Zn30%の黄銅が106W・m−1・K−1である。
この実施形態では、負極集電箔61は、芯材である銅箔に比べて体積抵抗率が高く、熱伝導率が低い銅合金被膜が表面に形成されている。この場合、芯材であるCuに比べて体積抵抗率が高い銅合金によって芯材が被覆されているため、負極の直流抵抗が増加する。さらに、銅合金被膜は芯材である銅に比べて熱伝導率も低い。このため、充電中に発熱(電流印加によるジュール熱)しやすくなる。発熱により、負極反応抵抗が低減される。ΔV=IRのR成分が小さくなることから、負極電位の低下が緩和され、Li金属の析出量が減少する。
正極シート50と負極シート60とは、長さ方向の向きを揃え、セパレータ72、74を挟んで正極活物質層53と負極活物質層63とが対向するように重ねられている。この際、セパレータ72、74の幅方向の片側に正極集電箔51の露出部52がはみ出て、セパレータ72、74の幅方向の反対側に負極集電箔61の露出部62がはみ出るように、正極シート50と負極シート60とが重ねられている。正極シート50と負極シート60とセパレータ72、74は、上記のように重ねられた状態で正極シート50の短幅に沿って設定された捲回軸WLの周りに捲回されている。電極体11の捲回軸WLに沿った片側には、セパレータ72、74から正極集電箔51の露出部52がはみ出ている。反対側には、セパレータ72、74から負極集電箔61の露出部62がはみ出ている。セパレータ72、74は、例えば、電解液が通過しうるが正極活物質層53と負極活物質層63とは絶縁しうる多孔質のシートが用いられうる。
ケース本体12aは、電極体11を収容する部材である。図1に示された形態では、ケース本体12aは、一側面が開口した有底直方体形状を有している。蓋12bは、開口した一側面に取り付けられ、ケース本体12aの開口を塞ぐ部材である。かかる蓋12bは、ケース本体12aの開口周縁に溶接されている。ケース本体12aおよび蓋12bは、例えばアルミニウムやアルミニウム合金や鉄鋼(SUS材)等の、適度な強度を有する軽量な金属材料からなるものが好適に用いられる。
電極端子13,14は、図1に示すように、蓋12bの長手方向の両側部に設けられている。電極端子13,14は、ケース12内に配置された内部端子13a,14aと、ケース12の外に配置された外部端子13b,14bとを備えている。内部端子13a,14aと外部端子13b,14bとは、絶縁性を有するガスケット13d,14dを介在させて蓋12bの内側と外側で蓋12bを挟み、かしめ部材13c,14cによって蓋12bに固定され、かつ、電気的に接続されている。正極の内部端子13aの先端部13a1に、正極集電箔51の露出部52が溶接されている。負極の内部端子14aの先端部14a1に、負極集電箔61の露出部62が溶接されている。
ケース本体12aは、角型のケースであり、扁平な長方形の収容領域を有している。電極体11は、捲回軸WLを含む一平面に沿った扁平な形状でケース本体12aに収容されている。電極体11が収容された後でケース本体12aには蓋12bが取り付けられる。ケース本体12aおよび蓋12bと、電極体11との間には、絶縁フィルム(図示省略)が介在し、ケース本体12aおよび蓋12bと、電極体11とは絶縁されている。蓋12bには、安全弁30や注液孔32が設けられており、注液孔32にはキャップ材33が取り付けられている。電解液80は、注液孔32からケース本体12aに注入される。注液孔32は、電解液80が注入された後で、キャップ材33が取り付けられることによって塞がれる。
また、電極体の構成としては、捲回電極体が例示されている。捲回電極体は、扁平な形態が例示されているが、円筒形状でもよい。また、セパレータを介在させて、正極シートと負極シートとを交互に積層した積層型の電極体でもよい。
以下に、本発明者は以下のようなリチウムイオン二次電池のサンプルを用意した。そしてリチウムが析出しうる充放電サイクルで充放電を行い、容量維持率を測定した。
ここでは、負極集電箔には、銅箔(厚さ8μm)が用いられたサンプル1と、厚さ8μmの銅箔を芯材としてCu95%、Sn5%の青銅のめっきが施された銅箔が用いられたサンプル2〜5を用意した。ここで、サンプル2では、めっき厚が1μmの銅箔が用いられた。サンプル3は、めっき厚を2μmの銅箔が用いられた。サンプル4では、めっき厚が3μmの銅箔が用いられた。サンプル5では、めっき厚が5μmの銅箔が用いられた。
ここで用意されたリチウムイオン二次電池の各サンプルのその余の構成は、同じである。ここで用意されたリチウムイオン二次電池の各サンプルの他の主たる構成は以下の通りである。
正極集電箔には、アルミニウム箔が用いられた。
正極活物質には、ニッケルマンガンコバルト系のリチウム遷移金属複合酸化物、ここではLiNi1/3Co1/3Mn1/3が用いられた。
正極活物質層に含まれる導電助剤としてカーボンブラック、結着材としてポリフッ化ビニリデン(PVdF)が用いられた。
負極活物質には、非晶質カーボンでコートされた天然黒鉛が用いられた。
結着材には、スチレン・ブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)が用いられた。
セパレータには、ポリプロピレン(PP)とポリエチレン(PE)とがPP−PE−PPの順で積層された厚さ20μmの多孔質膜が用いられた。
上述した正極活物質粉末と、バインダとしてのPVdFと、導電助剤としてのカーボンブラックとを、87:3:10の重量比でN−メチル−2−ピロリドンと混合して、正極活物質層形成用のスラリーを調製した。得られたスラリーを正極集電体の予め定められた位置に塗布し、乾燥させ、プレスすることによって、正極活物質層を形成した。正極活物質層を正極集電箔の両面に順に形成することによって、所望の正極シートを得た。ここで正極活物質層の乾燥後の目付量を、両面合わせて12mg/cmに調整した。また、プレス後の正極活物質層の密度を2.2g/cmに調整した。
上述した負極活物質粉末と、バインダとしてのSBRと、CMCとを、98:1:1の重量比で水と混合して、負極活物質層形成用のスラリーを調製した。得られたスラリーを負極集電体の予め定められた位置に塗布し、乾燥させ、プレスし、負極活物質層を形成した。負極活物質層を負極集電箔の両面に順に形成することによって、所望の負極シートを得た。ここで負極活物質層の乾燥後の目付量を、両面合わせて8mg/cmに調整した。また、プレス後の負極活物質層の密度を1.4g/cmに調整した。
ここでは、帯状の正極シートと帯状の負極シートを用意し、帯状の正極シートと帯状の負極シートとの間にセパレータシートが介在するように、2枚のセパレータシートで正極シートを挟み、更に負極シートを重ね合わせ、帯状の正極シートの幅方向に設定された捲回軸周りに捲回する。捲回軸に直交する方向から押圧して扁平形状に成形した。このようにして作製した捲回電極体を箱型のアルミニウム製電池ケースに収容し、該電池ケースの注入孔から非水電解液を注入した後、該注入孔を封止した。非水電解液としては、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)を、EC:DMC:EMC=1:1:1の体積比で混合した混合溶媒に、支持塩としてのLiPFを1.0mol/Lの濃度で溶解させた非水電解質を使用した。このようにしてリチウムイオン二次電池の試験用サンプルを作製した。
なお、試験用サンプルは、負極集電箔に、めっきが施されていない銅箔(厚さ8μm)が用いられたサンプル1と、所定の厚さの銅合金めっきが施された銅箔とが用いられたサンプル2〜5が用意された。つまり、各サンプル1〜5は、負極集電箔を除く構成が同じであり、めっきの有無およびめっき厚のみが異なる。測定された容量維持率の差は、負極集電箔の構成の違いによるものと推察されうる。
表1は、各サンプルのめっき厚、サイクル後の容量維持率、25℃入力特性を表にしたものである。ここで、25℃入力特性については、サンプル1を1とした比が100分率で表されている。
Figure 2018063872
ここで、サイクル後の容量維持率は、各サンプルについてリチウムイオン二次電池の初期容量を1とし、所定の充放電サイクル後の容量を100分率で示したものである。
ここで、初期容量は、25℃の温度環境において1Cの定電流により、3.0Vから4.1Vの間で、1サイクルのCCCV充放電を行い、その際に放電された電気量を測定し初期容量とした。
ここで充放電サイクルは、0℃の温度環境においてSOC80%に調整した後、30Cの定電流にて10秒の充電と放電を交互に500サイクル繰り返し、その後、初期容量と同じ要領にて、サイクル後の容量を測定し、サイクル後の容量維持率を得た。
表1に示されているように、銅合金被膜が形成されていないサンプル1では、サイクル後の容量維持率が94.3%と低下している。銅合金被膜が形成されているサンプル2〜5では、容量維持率が98%以上維持されている。上述のように銅合金被膜が形成されていることによってリチウム析出が抑えられ、かつ、サイクル後の容量維持率が高く維持されたと推察される。このように、サイクル後の容量維持率が高く維持されるとの観点において、負極集電箔には、銅合金被膜が形成された銅箔が用いられているとよい。この場合、青銅のように体積抵抗率が銅よりも高く、熱伝導率が銅よりも低い銅合金が、銅合金被膜の材料として用いられているとよい。
例えば、上述したサイクル後の容量維持率が高く維持されるとの観点において、銅合金被膜はサンプル2に示されているように1μm程度でもよい。また、サイクル後の容量維持率が高く維持されるとの観点において、銅合金被膜が厚ければ厚い方がよい傾向がある。銅合金被膜が2μm以上であるサンプル3〜5では、サイクル後の容量維持率が、99.8%以上とほぼ100%の容量維持率が示されている。このようにサイクル後の容量維持率がより高く維持されるとの観点では、銅合金被膜の厚さは、より好ましくは凡そ2μm以上であるとよい。
表1における25℃入力特性は、各サンプルを初期段階において、25℃の温度環境においてSOC80%に調整した後、4.2Vの定電圧を5秒間印加する定電圧充電によって充電された電力で評価したものである。
表1で示されるように、銅合金被膜の厚さが1μm〜3μmのサンプル2〜4では、銅合金被膜が形成されていないサンプル1に比べて25℃の入力特性が良い結果が得られた。しかし、銅合金被膜の厚さが5μmであるサンプル5では、銅合金被膜が形成されていないサンプル1に比べて25℃の入力特性が悪くなる結果が得られた。このため、25℃の入力特性をも考慮する場合には、銅合金被膜の厚さは、例えば、1μm以上3μm以下であるとよい。さらに、サイクル後の容量維持率がより高く維持されるとの観点を加味すると、好ましい銅合金被膜の厚さは、例えば、2μm以上3μm以下であるとよい。
以上、ここで提案されるリチウムイオン二次電池の一実施形態を、種々説明したが、特に言及されない限りにおいて、ここで挙げられた実施形態および実施例は、本発明を限定しない。
10 リチウムイオン二次電池
11 電極体
12 ケース
12a ケース本体
12b 蓋
13,14 電極端子
13a,14a 内部端子
13b,14b 外部端子
13c,14c かしめ部材
13d,14d ガスケット
30 安全弁
32 注液孔
33 キャップ材
50 正極シート
51 正極集電箔
52 露出部
53 正極活物質層
60 負極シート
61 負極集電箔
62 露出部
63 負極活物質層
72,74 セパレータ
80 電解液
WL 捲回軸

Claims (1)

  1. 負極集電箔と、
    前記負極集電箔の上に形成された負極活物質層と
    を備え、
    前記負極活物質層は、黒鉛系負極活物質を含み、
    前記負極集電箔は、銅合金被膜が表面に形成された銅箔であり、
    前記銅合金被膜の体積抵抗率は、銅よりも高く、
    前記銅合金被膜の熱伝導率は、銅よりも低い、
    リチウムイオン二次電池。
JP2016201885A 2016-10-13 2016-10-13 リチウムイオン二次電池 Pending JP2018063872A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016201885A JP2018063872A (ja) 2016-10-13 2016-10-13 リチウムイオン二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016201885A JP2018063872A (ja) 2016-10-13 2016-10-13 リチウムイオン二次電池

Publications (1)

Publication Number Publication Date
JP2018063872A true JP2018063872A (ja) 2018-04-19

Family

ID=61966858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016201885A Pending JP2018063872A (ja) 2016-10-13 2016-10-13 リチウムイオン二次電池

Country Status (1)

Country Link
JP (1) JP2018063872A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110416488A (zh) * 2019-08-02 2019-11-05 珠海格力电器股份有限公司 电极片及储能器件
WO2024077543A1 (zh) * 2022-10-13 2024-04-18 宁德时代新能源科技股份有限公司 电极组件、二次电池、电池组及用电装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110416488A (zh) * 2019-08-02 2019-11-05 珠海格力电器股份有限公司 电极片及储能器件
WO2024077543A1 (zh) * 2022-10-13 2024-04-18 宁德时代新能源科技股份有限公司 电极组件、二次电池、电池组及用电装置

Similar Documents

Publication Publication Date Title
CN110313089B (zh) 非水电解质二次电池用负极和非水电解质二次电池
JP7241701B2 (ja) 非水電解質二次電池用負極及び非水電解質二次電池
JP7161519B2 (ja) 非水電解質二次電池
JP5813336B2 (ja) 非水電解質二次電池
KR20150139780A (ko) 비수 전해액 이차 전지 및 당해 전지의 제조 방법
JP2022508147A (ja) リチウム二次電池用正極材、これを含む正極及びリチウム二次電池
US20220052314A1 (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2010108732A (ja) リチウム二次電池
US20210194002A1 (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2014107061A (ja) 非水電解質電池
JP5741936B2 (ja) リチウムイオン二次電池
JP6250941B2 (ja) 非水電解質二次電池
JP5729609B2 (ja) 電極の評価方法
WO2015129376A1 (ja) 捲回型電極群及び非水電解質電池
JPWO2013042421A1 (ja) 二次電池
JP5432746B2 (ja) リチウムイオン二次電池
JP7344440B2 (ja) 非水電解液二次電池
JP2012252951A (ja) 非水電解質二次電池
JP2018063872A (ja) リチウムイオン二次電池
JP5890715B2 (ja) 非水電解質二次電池用正極及び非水電解質二次電池
WO2015040685A1 (ja) リチウムイオン二次電池用セパレータ、リチウムイオン二次電池用セパレータを用いたリチウムイオン二次電池、および、リチウムイオン二次電池モジュール
JP6778396B2 (ja) 非水電解質二次電池
JP5985272B2 (ja) 非水電解質二次電池
WO2022163578A1 (ja) 非水電解質二次電池の充電方法、及び、充放電方法、並びに、非水電解質二次電池の充電システム
JP6731155B2 (ja) 非水電解質二次電池