WO2015040685A1 - リチウムイオン二次電池用セパレータ、リチウムイオン二次電池用セパレータを用いたリチウムイオン二次電池、および、リチウムイオン二次電池モジュール - Google Patents

リチウムイオン二次電池用セパレータ、リチウムイオン二次電池用セパレータを用いたリチウムイオン二次電池、および、リチウムイオン二次電池モジュール Download PDF

Info

Publication number
WO2015040685A1
WO2015040685A1 PCT/JP2013/075067 JP2013075067W WO2015040685A1 WO 2015040685 A1 WO2015040685 A1 WO 2015040685A1 JP 2013075067 W JP2013075067 W JP 2013075067W WO 2015040685 A1 WO2015040685 A1 WO 2015040685A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion secondary
reference electrode
lithium
secondary battery
separator
Prior art date
Application number
PCT/JP2013/075067
Other languages
English (en)
French (fr)
Inventor
安藤 慎輔
篤彦 大沼
貴嗣 上城
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2013/075067 priority Critical patent/WO2015040685A1/ja
Publication of WO2015040685A1 publication Critical patent/WO2015040685A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0445Multimode batteries, e.g. containing auxiliary cells or electrodes switchable in parallel or series connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium ion secondary battery separator, a lithium ion secondary battery using the lithium ion secondary battery separator, and a lithium ion secondary battery module.
  • lithium ion secondary battery (hereinafter also referred to as a single cell) capable of rapid charge and discharge is actively promoted.
  • the lithium ion secondary battery is expected to have a long life, but it is known that the life characteristics vary depending on the method of use. Therefore, in order to operate the lithium ion secondary battery under the optimum conditions, it is necessary to charge and discharge after grasping the deterioration state in the single cell.
  • a lithium ion secondary battery having a means capable of measuring positive and negative electrode potentials using a reference electrode is disclosed as a means for grasping the state of deterioration in the cell.
  • the main positive electrode active material has a general formula: xLiMO 2 ⁇ (1-x) Li 2 NO 3 (where, x is a number satisfying 0 ⁇ x ⁇ 1 and M is , And one or more transition metals having an average oxidation state of 3 +, and N is one or more transition metals having an average oxidation state of 4 +.
  • At least one battery 10a includes a third electrode 25 which is electrically insulated from the positive electrode 12 and the negative electrode 15, and includes the third electrode 25 as a reference electrode. It is characterized in that the same current is supplied to the entire series-connected lithium ion battery system so that the charge and discharge pretreatment is performed so that the potential of the positive electrode 12 of 10a becomes a predetermined potential range with respect to the third electrode.
  • Lithium ion It discloses a technique related to the system.
  • Patent Document 1 discloses that a positive and negative electrodes and, for example, a separator in which sheets of polyethylene and polypropylene are laminated are laminated to form a battery, and the reference electrode is also laminated similarly. There is.
  • a positive and negative electrodes and, for example, a separator in which sheets of polyethylene and polypropylene are laminated are laminated to form a battery, and the reference electrode is also laminated similarly.
  • the positions of the reference electrodes may be shifted.
  • the reference electrode is placed between positive and negative electrodes as in Patent Document 2
  • An object of the present invention is to accurately measure positive and negative electrode potentials, and to facilitate positioning of a reference electrode during battery assembly without increasing the number of battery components.
  • a separator for a lithium ion secondary battery comprising a reference electrode and an insulating porous material, wherein the reference electrode is sandwiched by the insulating porous material, and the reference electrode and the insulating porous material are integrated.
  • FIG. 1 is a cross-sectional view of the separator in the first embodiment.
  • the reference electrode 202 is sandwiched by the insulating porous material 201.
  • two porous polyethylenes were used as the insulating porous material 201.
  • the separator 200 was produced by heat pressing at 80 ° C. for 1 minute, with the reference electrode 202 sandwiched between two porous polyethylenes.
  • the reference electrode 202 and the insulating porous material 201 are integrated in a state in which the reference electrode 202 is sandwiched by the insulating porous material 201.
  • the reference electrode 202 is sandwiched between two porous polyethylenes, it can be manufactured by roll to roll.
  • porous polypropylene, non-woven fabric, etc. may be used other than porous polyethylene excellent in thermal stability.
  • two sheets of the same porous polyethylene are used in this embodiment, different materials can be used as the insulating porous material 201, such as one sheet of porous polyethylene and one sheet of porous polypropylene.
  • the number of the insulating porous materials 201 is not limited to two, and three or more may be used as in porous polyethylene, porous polypropylene, and porous polyethylene.
  • the reference electrode 202 may be covered with a single insulating porous material 201, and then the reference electrode 202 may be sandwiched with the insulating porous material 201 and then heat treated to fabricate the separator 200.
  • porous polypropylene plays a role of core material
  • two sheets of porous polyethylene can be used because the reference electrode 202 can be substituted for the core material, that is, porous polypropylene depending on the shape.
  • the reference electrode 202 includes a metal portion 203 and a reference electrode measurement unit 204.
  • 90 wt% of lithium titanate and 10 wt% of polyvinyl fluoride (PVdF) as a binder are added as a reference electrode measurement unit 204 and mixed with N-methyl-2-pyrrolidone in a mixture of 10 wt%, and the reference electrode is prepared.
  • the slurry of the measurement unit 204 was prepared.
  • the slurry of the reference electrode measurement unit 204 was applied to a copper wire as the metal portion 203 and vacuum dried at 120 ° C. for 2 hours to form a reference electrode 202.
  • the reference electrode measurement unit 204 covers a part of the metal unit 203, the reference electrode measurement unit 204 does not have to cover the terminal portion outside the lithium ion secondary battery.
  • the metal portion 203 is used for the reference electrode 202 as a connection terminal between the reference electrode 202 and the positive electrode 100 and the negative electrode 103.
  • a method of charging lithium to the manufactured reference electrode 202 will be described.
  • Metallic lithium was laminated as a counter electrode on the separator 200 in which the reference electrode 202 and the insulating porous material 201 were integrated, and in the state of being immersed in the electrolytic solution, a current flowed.
  • Li 4 Ti 5 O 12 is the standard (0%) and lithium is filled and the composition becomes Li 7 Ti 5 O 12 as 100%, 50% of lithium ions are contained in the reference electrode 202 When charged, it was confirmed that the potential of the reference electrode 202 was 1.55 V based on lithium.
  • the lithium filling amount in the reference electrode 202 may increase or decrease during charge and discharge of the battery. Since the influence on the potential measurement is small, the potential can be measured accurately. Further, if such a material is selected, the potential does not change even if lithium ions are released as a lithium supply source, so that the reference electrode measurement unit 204 is used without correcting the reference electrode potential even before and after lithium ion release. be able to.
  • lithium titanate is used as the reference electrode measurement unit 204, but there is no particular limitation if it is a material such as lithium transition metal phosphate or lithium metal whose potential is stable with respect to lithium loading. Absent. Since the insulating porous material such as polyethylene or polypropylene is susceptible to moisture absorption 201, it is difficult to react even if moisture is absorbed, that is, a transition metal phosphate or lithium titanate having a relatively high potential is used as the reference electrode measurement portion 204 Is desirable.
  • the metal portion 203 is not particularly limited in kind of material as long as it has conductivity and does not react in the battery environment.
  • the material of the metal portion 203 platinum, gold, nickel, aluminum, an alloy composed of one or more of these materials, or the like may be used besides copper.
  • FIG. 3 is a front view of the separator 200 of this embodiment. Since the insulating porous material 201 and the reference electrode 202 are integrated as one component, the position of the reference electrode 202 can be fixed, and the positioning of the reference electrode 202 at the time of single cell assembly is easy. become.
  • FIG. 4 shows an example of the configuration of a single cell (lithium ion secondary battery) 300 incorporating the separator 200 of this embodiment.
  • the configuration of the single cell 300 will be described with reference to FIG.
  • a single cell 300 includes a positive electrode 100, a negative electrode 103, and a separator 200.
  • the positive electrode 100 includes a positive electrode foil 101 and a positive electrode material 102
  • the negative electrode 103 includes a negative electrode foil 104 and a negative electrode material 105.
  • the reference electrode 202 is added to the unit cell 300 having the configuration of the positive electrode 100, the separator 200, and the negative electrode 103, the positive electrode 100, the separator 200, the reference electrode 202, the separator 200, and the negative electrode 103 become components.
  • the configuration of the single cell 300 is a component that constitutes the battery as the separator 200 and the negative electrode 103 in which the positive electrode 100 and the reference electrode 202 are integrated. Can be reduced.
  • LiCoO 2 as a positive electrode active material 7 wt% of acetylene black as a conductive agent, and 5 wt% of polyvinylidene fluoride (PVDF) as a binder are added and mixed with N-methyl-2-pyrrolidone.
  • the slurry of the positive electrode mixture was prepared.
  • the slurry of the positive electrode mixture is a material for forming the positive electrode material 102.
  • the positive electrode material mixture slurry is applied and dried on a positive electrode foil 101 which is an aluminum foil having a thickness of 25 ⁇ m, and then pressed and cut to bind the positive electrode material 102 to the positive electrode foil 101.
  • the positive electrode 101 contains a positive electrode active material made of a lithium-containing oxide capable of reversibly inserting and releasing lithium ions.
  • a positive electrode active material a layered transition metal oxide with or without a substitution element, lithium transition metal phosphate, spinel transition metal oxide and the like can be mentioned.
  • LiCoO 2 lithium nickelate LiNiO 2 as a layered transition metal oxide
  • lithium iron phosphate LiFePO 4 as a lithium transition metal transition metal
  • lithium manganese phosphate LiMnPO 4 spinel type transition metal oxide
  • manganese manganate LiMn2O4 etc. are mentioned.
  • the above materials may be contained singly or in combination of two or more as the positive electrode active material.
  • the positive electrode active material in the positive electrode 101 lithium ions are desorbed in the charging process, and lithium ions desorbed from the negative electrode active material in the negative electrode 103 are inserted in the discharging process.
  • non-graphitizable carbon was used as a negative electrode active material
  • 8 wt% of PVDF was added as a binder
  • N-methyl-2-pyrrolidone was added to this, and mixed to prepare a slurry of a negative electrode mixture.
  • the slurry of the negative electrode mixture is a material for forming the negative electrode material 105.
  • the negative electrode material mixture slurry was applied to a negative electrode foil 104 which is a copper foil having a thickness of 10 ⁇ m, and pressed and cut to bind the negative electrode material 105 to the negative electrode foil, whereby a negative electrode 103 was obtained.
  • the negative electrode 102 contains a negative electrode active material capable of reversibly inserting and removing lithium ions.
  • the negative electrode active material carbon materials, silicon materials Si, SiO, lithium titanate with or without a substitution element, lithium vanadium complex oxide, lithium and metal, for example, an alloy of tin, aluminum, antimony, etc. It can be mentioned.
  • the carbon material in addition to the above-mentioned non-graphitizable carbon, natural graphite, a composite carbonaceous material obtained by forming a film on natural graphite by dry CVD method or wet spray method, resin material such as epoxy or phenol, petroleum or coal The artificial graphite etc. which are manufactured by baking are mentioned as a raw material using the pitch type material obtained from these.
  • the above materials may be contained singly or in combination as the negative electrode active material.
  • insertion and desorption reactions or conversion reactions of lithium ions proceed in the charge and discharge process.
  • the reference electrode 202 of the separator 200 used was one in which 70% of lithium ions were filled.
  • the unit cell 300 is configured by sequentially stacking the positive electrode 100, the separator 200, and the negative electrode 103, storing them in an exterior member (not shown), and then filling them with an electrolytic solution containing a solvent and a lithium salt.
  • the exterior member was sealed by heat fusion using a laminate film.
  • a non-protic organic solvent such as ethylene carbonate (EC), dimethyl carbonate (DMC), propylene carbonate or the like, or a solvent of two or more of these mixed organic compounds is used.
  • Lithium ion secondary batteries have good discharge characteristics during charge and discharge cycles, good discharge characteristics at low temperature and high current discharge, and good capacity storage characteristics when stored for a long time or for a long time at high temperature, etc. There is a need for an organic electrolyte that satisfies these requirements. In order to satisfy the various requirements described above, it is difficult to use a solvent consisting of only one kind of compound, and it is desirable to mix two or more kinds of compounds and use them as the solvent.
  • the dissociation degree of lithium salt is improved, and the ion conductivity is improved.
  • EMC ethyl methyl carbonate
  • EPC ethyl propyl carbonate
  • EPC ethyl propyl carbonate
  • an electrolytic solution is used as the electrolyte, but a solid electrolyte may be used.
  • the potential of the positive electrode 100 can be measured by connecting the positive electrode terminal connected to the positive electrode 100 and the reference electrode terminal connected to the separator 200 with the single cell 300 described above. Further, by connecting the positive electrode terminal connected to the negative electrode 103 and the reference electrode terminal connected to the separator 200, the potential of the negative electrode 103 can be measured.
  • a laminate type is adopted as the shape of the lithium ion secondary battery, but a cylindrical, flat oblong circular type in which the electrode group including the positive electrode 100, the negative electrode 103 and the separator 200 is wound. Either a square or a square may be selected.
  • the present embodiment is the same as the first embodiment except for the configuration of the separator.
  • FIG. 5 is a view showing a configuration example of the separator in the present embodiment.
  • the metal portion 203 of the reference electrode 202 is configured as a copper mesh. Since the reference electrode 202 also functions as a core material of the separator 200 and shape stability is increased, battery assembly can be improved.
  • the present embodiment is the same as the first embodiment except for the configuration of the separator.
  • FIG. 6 is a view showing a configuration example of the separator in the present embodiment.
  • the metal portion 203 of the reference electrode 202 is formed in a frame shape. Since the configuration can be performed by processing the reference electrode 202, the separator 200 having a high degree of freedom in shape of the reference electrode 202 can be configured.
  • the present embodiment is an example of another form of the third embodiment. Except for the separator configuration, the second embodiment is the same as the first embodiment.
  • FIG. 7 is a view showing a configuration example of the separator in the present embodiment.
  • the metal portion 203 of the reference electrode 202 is formed in a serpentine shape.
  • Serpentine means meandering like a snake.
  • a lithium ion secondary battery using a carbon material as a negative electrode active material can form a film on the negative electrode surface by a side reaction accompanied by a negative electrode charging reaction at the time of initial charge after producing the battery.
  • silicon, alloy negative electrode active materials containing tin, etc. which are actively studied as high-capacity negative electrode active materials in recent years have a larger amount of side reactions as compared with carbon materials. It is known that these side reactions cause irreversible capacity in which lithium ions which have been temporarily charged are fixed in the negative electrode and can not be completely discharged, which causes the reduction of the capacity of the entire battery.
  • FIG. 8 is a view showing a configuration example of a lithium ion secondary battery module in the present embodiment.
  • the positive electrode material 102 and the negative electrode material 105 were respectively applied to both surfaces of the positive electrode foil 100 and the negative electrode foil 104 to produce the positive electrode 100 and the negative electrode 103.
  • the lithium ion secondary battery module 301 is formed by sequentially stacking a plurality of negative electrodes 103, a separator 200, a positive electrode 100, and a separator 200, respectively, storing them in an exterior member (not shown), filling the electrolytic solution and heat sealing. Stopped and configured.
  • the reference electrode 202 contained in the separator 200 was electrically connected in parallel, and was configured to be able to measure the potential of the positive electrode 100 and the negative electrode 103.
  • FIG. 9 shows the charge / discharge cycle change of the capacity retention ratio of the lithium ion secondary battery module 301.
  • the capacity retention rate of the assembled battery 301 monotonously decreased by repeating charge and discharge, and the capacity retention rate when the number of charge and discharge cycles was 399 was 83%.
  • the cycle charge / discharge was temporarily interrupted, the terminal of the reference electrode 202 and the terminal of the positive electrode 100 were connected, and control was performed so as to obtain a predetermined current, the capacity retention ratio was recovered by about 3%.
  • the cycle charge and discharge was carried out up to 1000 cycles, and after the test was completed, the lithium ion secondary battery module was disassembled and the lithium loading of the reference electrode 202 in the separator 200 was measured. I confirmed that.
  • the lithium ion in the reference electrode 202 is released into the electrolytic solution by connecting the terminal of the reference electrode 202 and the terminal of the positive electrode 100, but the terminal of the reference electrode 202 and the terminal of the negative electrode 103 are By connection, lithium ions in the reference electrode 202 may be released into the electrolytic solution. It is not necessary for all of the separators 200 included in the lithium ion secondary battery module to include the reference electrode 202, and it is sufficient for the reference electrode 202 to be partially included.

Abstract

 正負極電位を正確に計測でき、電池構成部品点数を増やすことなく電池組立時の参照極の位置決めを容易にする。参照極および絶縁性多孔質材を有し、参照極は前記絶縁性多孔質材で挟持され、参照極と前記絶縁性多孔質材とは一体化しているリチウムイオン二次電池用セパレータであり、参照極は、金属部および参照極測定部を有し、金属部は、メッシュ、枠状、またはサーペンタイン状に構成されているリチウムイオン二次電池用セパレータ。

Description

リチウムイオン二次電池用セパレータ、リチウムイオン二次電池用セパレータを用いたリチウムイオン二次電池、および、リチウムイオン二次電池モジュール
 本発明は、リチウムイオン二次電池用セパレータ、リチウムイオン二次電池用セパレータを用いたリチウムイオン二次電池、および、リチウムイオン二次電池モジュールに関する。
 近年、スマートフォンやノート型パソコンなどの民生用途携帯機器向け電源、ハイブリッド自動車や電気自動車などの移動体向け電源、電力貯蔵などの産業用途電源として、二次電池への期待が急速に高まりつつある。特に、急速充放電が可能なリチウムイオン二次電池(以下、単セルとも称する)の開発が盛んに進められている。リチウムイオン二次電池には、長寿命化が期待されているが、その寿命特性は使用方法によって変動することが知られている。したがって、リチウムイオン二次電池を最適な条件で運転するには、単セル内の劣化状態を把握した上で充放電することが必要である。セル内の劣化状態を把握する手段として、参照極を用いて正負極電位を計測できる手段を有したリチウムイオン二次電池が開示されている。
 参照極を用いて正負極電位を計測する技術として、特許文献1によれば、電解液中でセパレータを介して積層される複数の電極と、前記複数の電極と電気的に絶縁され、前記電極の積層方向における当該電極の投影面内に配置される参照極と、を有する技術が開示されている。また、特許文献2によれば、主要正極活物質が、一般式:xLiMO2・(1-x)Li2NO3(ここで、xは、0<x<1を満たす数であり、Mは、平均酸化状態が3+である1種類以上の遷移金属であり、Nは、平均酸化状態が4+である1種類以上の遷移金属である。)で表されるリチウムイオン電池を複数直列接続したリチウムイオン電池システムにおいて、少なくとも1つの電池10aが、正極12と負極15から電子的に絶縁された第3電極25を備え、この第3電極25を参照電極として、該第3電極25を備えた電池10aの正極12の電位が該第3電極に対し所定の電位範囲となるように、直列接続されたリチウムイオン電池システム全体に同じ電流を流して充放電前処理をしてなることを特徴とするリチウムイオン電池システムに関する技術が開示されている。
特開2010-073558号公報 特開2010-80299号公報
 従来技術のように、参照極を用いることで正負極電位を計測することを可能としている。正負極電位は、特許文献1に記載されているように参照極を設置する位置に依存して変化することが知られている。したがって、電位を正確に測定するためには、参照極を設置する位置を正確に決める必要がある。
 それに対して、特許文献1には、正負極および、例えば、ポリエチレンとポリプロピレンのシートが積層されているセパレータを積層して電池を構成することが開示されており、参照極も同様に積層している。複数の電極および複数の参照極を積層する場合、参照極の位置がずれる懸念がある。また、特許文献2のように、参照極を正負極間に設置する場合、電気的絶縁性を保つために少なくとも2枚のセパレータの間に設置する必要があり、電池組立時の部品点数が増大する課題がある。本発明の目的は、正負極電位を正確に計測でき、電池構成部品点数を増やすことなく電池組立時の参照極の位置決めを容易にすることである。
 上記課題を解決するための本発明の特徴は、例えば以下の通りである。
 参照極および絶縁性多孔質材を有し、参照極は前記絶縁性多孔質材で挟持され、参照極と前記絶縁性多孔質材とは一体化しているリチウムイオン二次電池用セパレータ。
 本発明によれば、電池構成部品を増やすことなく、電池組立時の参照極の位置決めが容易にできる。上記以外の課題、構成及び効果は以下の実施形態の説明により明らかにされる。
本発明の実施例1におけるセパレータの断面図である。 本発明の実施例1における参照極の構成例を示した図である。 本発明の実施例1におけるセパレータの構成例を示した図である。 本発明の実施例1における単セルの構成例を示した図である。 本発明の実施例2におけるセパレータの構成例を示した図である。 本発明の実施例3におけるセパレータの構成例を示した図である。 本発明の実施例4におけるセパレータの構成例を示した図である。 本発明の実施例5におけるリチウムイオン二次電池モジュールの構成例を示した図である。 本発明の実施例5におけるリチウムイオン二次電池モジュールの容量維持率のサイクル依存性を示した図である。
 以下、図面等を用いて、本発明の実施形態について説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。また、本発明を説明するための全図において、同一の機能を有するものは、同一の符号を付け、その繰り返しの説明は省略する場合がある。
 図1は、実施例1におけるセパレータの断面図である。参照極202は、絶縁性多孔質材201に挟持されている。本実施例では、絶縁性多孔質材201として2枚の多孔質ポリエチレンを用いた。セパレータ200は、参照極202を2枚の多孔質ポリエチレンの間に挟んだ状態で、80℃で1分間熱プレスを施して作製した。これにより、参照極202は、絶縁性多孔質材201で挟持された状態で、参照極202と絶縁性多孔質材201は一体化している。参照極202を2枚の多孔質ポリエチレンの間に挟んだ場合、roll to rollで製造できる。
 絶縁性多孔質材201の材料として、熱的安定性に優れた多孔質ポリエチレン以外に多孔質ポリプロピレン、不織布等を用いても良い。本実施例では、2枚の同じ多孔質ポリエチレンを用いているが、1枚の多孔質ポリエチレンと1枚の多孔質ポリプロピレンのように、異なる材料を絶縁性多孔質材201として用いることもできる。絶縁性多孔質材201として2枚に限らず、多孔質ポリエチレン、多孔質ポリプロピレン、多孔質ポリエチレンのように、3枚以上用いてもよい。参照極202を1枚の絶縁性多孔質材201で捲くことで、参照極202を絶縁性多孔質材201で挟持してから熱処理して、セパレータ200を作製しても良い。多孔質ポリプロピレンは芯材の役割を果たすが、本実施例では参照極202が形状によっては芯材すなわち多孔質ポリプロピレンの代わりになりえるので、2枚の多孔質ポリエチレンを用いていることができる。
 参照極202の構成例について、図2を用いて説明する。参照極202は、金属部203および参照極測定部204を有している。本実施例では、参照極測定部204として、チタン酸リチウム90wt%と、結着材としてポリフッ化ビニルデン(PVdF)を10wt%の混合物にN-メチル-2-ピロリドンを加えて混合し、参照極測定部204のスラリーを調整した。この参照極測定部204のスラリーを金属部203である銅線に塗布し、120℃で2時間真空乾燥することで、参照極202とした。参照極測定部204は金属部203の一部を覆うことにより、リチウムイオン二次電池の外となる端子部分には、参照極測定部204で覆う必要がない。参照極測定部204中のリチウムが空気中にさらされることを防ぐために、参照極202と正極100および負極103との接続端子として、参照極202に金属部203が用いられている。
 作製した参照極202へリチウムを充填する方法を説明する。参照極202と絶縁性多孔質材201を一体化したセパレータ200に対極として金属リチウムを積層し、電解液中に侵漬した状態で、電流を流した。その結果、Li4Ti512が基準(0%)、リチウムを充填して組成がLi7Ti512となった状態を100%と定義したとき、参照極202にリチウムイオンを50%充填させたところ、参照極202の電位は、リチウム基準で1.55Vになったことを確認した。リチウムイオン充填量を20%から80%まで操作したセパレータ200を複数作製し、参照極202の電位を測定したところ、いずれも参照極202の電位が1.55V±0.01Vであることを確認した。その後、2週間放置し、参照極202の電位を再測定したところ、参照極202の電位は1.55V±0.01Vと変わらなかった。
 本実施形態のように、リチウム充填量に対して電位が安定な材料を参照極計測部204とすれば、電池の充放電時に参照極202内のリチウム充填量が増減しても参照極202の電位計測に影響が小さいため、精度良く電位を計測することができる。また、このような材料を選択すれば、リチウム供給源としてリチウムイオンを放出しても電位が変わらないため、リチウムイオン放出前後でも参照極の電位補正をすることなく参照極計測部204として使用することができる。
 本実施例では、参照極測定部204としてチタン酸リチウムを用いたが、リン酸遷移金属リチウムや、金属リチウムのようなリチウム充填量に対して電位が安定している材料であれば特に制限はない。ポリエチレンやポリプロピレンなどの絶縁性多孔質材は201吸湿しやすいので、吸湿していても反応しにくい、すなわち、電位が比較的高いリン酸遷移金属またはチタン酸リチウムを参照極測定部204として用いることが望ましい。
 また、金属部203としては、導電性を有することと、電池環境内で反応しなければ、材料の種類に特に制限はない。金属部203の材料として、銅以外に白金、金、ニッケル、アルミと、これらの材料のうちの一つまたは複数で構成された合金などが用いられる。
 図3は、本実施例のセパレータ200の正面図である。絶縁性多孔質材201と参照極202は一体化した状態で1つの部品として構成しているため、参照極202の位置を固定することができ、単セル組立時の参照極202の位置決めが容易になる。
 図4は、本実施例のセパレータ200を組み込んだ単セル(リチウムイオン二次電池)300の構成の一例である。図4を参照して、単セル300の構成について説明する。図4において、単セル300は、正極100、負極103およびセパレータ200を備える。正極100は、正極箔101および正極材102を備え、負極103は、負極箔104および負極材105を備える。正極100、セパレータ200、負極103の構成を備える単セル300に参照極202を追加すると、正極100、セパレータ200、参照極202、セパレータ200、負極103となり、セパレータ200の部品が増えます。本実施例では、参照極202とセパレータ200とが一体化されているため、単セル300の構成は、正極100、参照極202が一体化されたセパレータ200、負極103となり、電池を構成する部品の点数を低減できる。
 本実施例では、正極活物質としてLiCoO2、導電剤としてアセチレンブラックを7wt%、結着剤としてポリフッ化ビニリデン(PVDF)を5wt%添加して、これにN-メチル-2-ピロリドンを加え混合して正極合剤のスラリーを調製した。正極合剤のスラリーが正極材102を形成する材料となる。この正極合剤スラリーを厚み25μmのアルミニウム箔である正極箔101に塗布乾燥後、プレス、裁断することで、正極箔101に正極材102を結着させ、正極100とした。
 上記のように、正極101は、リチウムイオンを可逆的に挿入脱離可能なリチウム含有酸化物からなる正極活物質を含んでいる。正極活物質として、置換元素ありまたは置換元素無しの層状遷移金属酸化物、リン酸遷移金属リチウム、スピネル型遷移金属酸化物などが挙げられる。例えば、層状遷移金属酸化物としては、上記のLiCoO2以外に、ニッケル酸リチウムLiNiO2、リン酸遷移金属リチウムとしてはリン酸鉄リチウムLiFePO4、リン酸マンガンリチウムLiMnPO4、スピネル型遷移金属酸化物としては、マンガン酸リチウムLiMn2O4などが挙げられる。正極活物質として上記の材料が一種単独または二種以上含まれていてもよい。正極101中の正極活物質は、充電過程においてリチウムイオンが脱離し、放電過程において、負極103中の負極活物質から脱離したリチウムイオンが挿入される。
 次に、負極活物質として難黒鉛化炭素を使用し、結着剤としてPVDFを8wt%添加して、これにN-メチル-2-ピロリドンを加え混合して負極合剤のスラリーを調製した。負極合剤のスラリーが負極材105を形成する材料となる。この負極合剤スラリーを厚み10μmの銅箔である負極箔104に塗布し、プレス,裁断することで、負極箔に負極材105を結着させ、負極103とした。
 上記のように、負極102は、リチウムイオンを可逆的に挿入脱離可能な負極活物質を含んでいる。負極活物質として、炭素材料、シリコン系材料Si、SiO、置換元素ありまたは置換元素無しのチタン酸リチウム、リチウムバナジウム複合酸化物、リチウムと金属、例えば、スズ、アルミニウム、アンチモンなどとの合金などが挙げられる。炭素材料として、上記の難黒鉛化炭素以外に、天然黒鉛や、天然黒鉛に乾式のCVD法もしくは湿式のスプレイ法によって被膜を形成した複合炭素質材料、エポキシやフェノール等の樹脂材料もしくは石油や石炭から得られるピッチ系材料を原料として焼成により製造される人造黒鉛などが挙げられる。負極活物質として上記の材料が一種単独または二種以上含まれていてもよい。負極102中の負極活物質は、充放電過程において、リチウムイオンが挿入脱離反応、もしくは、コンバージョン反応が進行する。
 セパレータ200の参照極202には、リチウムイオンを70%充填したものを用いた。
 単セル300は、正極100、セパレータ200、負極103を順に積層し、これらを図示していない外装部材へ収納後、溶媒及びリチウム塩を含む電解液を充填することで構成している。外装部材はラミネートフィルムを用い、熱融着によって封止した。
 溶媒としては、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、プロピレンカーボネート等の非プロトン性有機系溶媒、あるいはこれらの2種以上の混合有機化合物の溶媒が用いられている。リチウムイオン二次電池は、充放電サイクル中の放電特性、低温時および大電流放電時の放電特性が良好であること、長期保存、あるいは長期高温保存したときの容量保存特性が良好であること等が望まれ、これらを満足する有機電解液が要求されている。上記の諸要求を満たすためには、1種類の化合物のみからなる溶媒を用いるのでは難しく、2種以上の化合物を混合して溶媒として用いることが望ましい。
 具体的には、リチウム塩の解離度を向上し、イオン伝導性を向上させる、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)など、その他に、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、メチルプロピルカーボネート(MPC)、エチルプロピルカーボネート(EPC)など、が挙げられる。本実施例では、電解質として電解液を用いているが、固体電解質を用いても良い。
 上記の単セル300により、正極100に接続されている正極端子とセパレータ200に接続されている参照極端子とを接続することにより、正極100の電位を計測できる。また、負極103に接続されている正極端子とセパレータ200に接続されている参照極端子とを接続することにより、負極103の電位を計測できる。
 本実施例では、リチウムイオン二次電池の形状としてラミネート型を採用しているが、正極100、負極103およびセパレータ200を含む電極群が捲回された形状である、円筒型、偏平長円形型、角型のいずれかを選択してもよい。
 本実施例は、セパレータの構成を除いて、実施例1と同様である。
 図5は、本実施例におけるセパレータの構成例を示した図である。本実施例では、参照極202の金属部203を銅メッシュにして構成されている。参照極202がセパレータ200の芯材としても機能し、形状安定性が増したため、電池組立性を向上できる。
 本実施例は、セパレータの構成を除いて、実施例1と同様である。
 図6は、本実施例におけるセパレータの構成例を示した図である。参照極202の金属部203を枠状にして構成されている。参照極202を加工することにより構成できるので、参照極202の形状自由度が高いセパレータ200を構成できる。
 本実施例は、実施例3の別の形態の例である。セパレータ構成以外は実施例1と同様である。
 図7は、本実施例におけるセパレータの構成例を示した図である。参照極202の金属部203をサーペンタイン状にして構成しされている。サーペンタインとは、蛇のように曲がりくねっていることを意味する。本実施例のような構成を使用することにより、電極中央付近等、電極上の所望の位置に取り回すことができる。
 本実施例では、これまでの実施例で説明した単セルを複数積層した組電池での構成例について図8を参照して説明する。本実施例では、リチウムイオン二次電池の容量維持率がある程度減少した段階で、正極100あるいは負極103と参照極202とを電気的に接続し、参照極202のリチウムイオンが電解液中に放出する。これにより、リチウムイオン二次電池の容量維持率を回復できる。
 炭素材料を負極活物質として用いるリチウムイオン二次電池は、電池を製造した後の初回充電時に、負極充電反応に伴う副反応により負極表面に皮膜ができることが知られている。また、近年高容量な負極活物質として盛んに研究されているシリコン、スズを含む合金負極活物質などは、炭素材料と比較して、より副反応の量が多いことが知られている。これらの副反応によって、一旦充電されたリチウムイオンが負極中に固定され、全て放電できなくなるという不可逆な容量が発生し、電池全体の容量を低下させる原因となることが知られている。
 副反応は、比較的高温環境下での保存時や、多数の回数の充放電サイクルに伴い進行することが知られており、それによりリチウムイオンが負極中に固定される現象が新たに発生してしまう。その結果、正極や負極の電位が高電位側にシフトすることによる容量劣化が発生する。
 図8は、本実施例におけるリチウムイオン二次電池モジュールの構成例を示した図である。本実施例では、正極箔100および負極箔104の両面にそれぞれ正極材102および負極材105を塗布して正極100および負極103を作製した。リチウムイオン二次電池モジュール301は、負極103、セパレータ200、正極100、セパレータ200をそれぞれ順に複数積層し、図示していない外装部材に収納し、電解液を充填した後熱融着することで封止して構成した。セパレータ200に内蔵している参照極202は、電気的に並列接続し、正極100および負極103の電位を計測できるように構成した。
 リチウムイオン二次電池モジュール301を作製後、サイクル充放電を行った。図9にリチウムイオン二次電池モジュール301の容量維持率の充放電サイクル変化を示す。組電池301の容量維持率は、充放電を繰り返すことで単調に減少し、充放電サイクル数が399回の時の容量維持率は83%であった。ここで、サイクル充放電を一時中断し、参照極202の端子と正極100の端子を接続し、所定の電流となるように制御したところ、容量維持率は約3%回復した。サイクル充放電は1000サイクルまで実施し、試験終了後、リチウムイオン二次電池モジュールを解体してセパレータ200内の参照極202のリチウム充填量を測定したところ、初期の70%から50%に低下していることを確認した。
 本実施例では、参照極202の端子と正極100の端子を接続することで、参照極202中のリチウムイオンが電解液中に放出されているが、参照極202の端子と負極103の端子を接続することで、参照極202中のリチウムイオンが電解液中に放出されていてもよい。リチウムイオン二次電池モジュールに含まれるセパレータ200全てに参照極202が含まれている必要はなく、一部に参照極202が含まれていればよい。
100 正極
101 正極箔
102 正極材
103 負極
104 負極箔
105 負極材
200 セパレータ
201 絶縁性多孔質材
202 参照極
203 金属部
204 参照極測定部
300 単セル
301 リチウムイオン二次電池モジュール

Claims (8)

  1.  参照極および絶縁性多孔質材を有し、
     前記参照極は前記絶縁性多孔質材で挟持され、
     前記参照極と前記絶縁性多孔質材とは一体化しているリチウムイオン二次電池用セパレータ。
  2.  請求項1において、
     前記参照極は、金属部および参照極測定部を有し、
     前記参照極測定部は、前記金属部の一部を覆うリチウムイオン二次電池用セパレータ。
  3.  請求項2において、
     前記参照極測定部にリン酸遷移金属またはチタン酸リチウムが用いられるリチウムイオン二次電池用セパレータ。
  4.  請求項2乃至3のいずれかにおいて、
     前記金属部は、メッシュで構成されているリチウムイオン二次電池用セパレータ。
  5.  請求項2乃至3のいずれかにおいて、
     前記金属部は、枠状に構成されているリチウムイオン二次電池用セパレータ。
  6.  請求項2乃至3のいずれかにおいて、
     前記金属部は、サーペンタイン状に構成されているリチウムイオン二次電池用セパレータ。
  7.  請求項1乃至6のいずれかのリチウムイオン二次電池用セパレータを有するリチウムイオン二次電池。
  8.  請求項1乃至6のいずれかのリチウムイオン二次電池用セパレータを有するリチウムイオン二次電池モジュールであって、
     前記リチウムイオン二次電池モジュールは、正極、負極、及び電解質を備え、
     前記正極あるいは前記負極と前記参照極とが電気的に接続されることで、前記参照極中のリチウムイオンが前記電解質中に放出されるリチウムイオン二次電池モジュール。
PCT/JP2013/075067 2013-09-18 2013-09-18 リチウムイオン二次電池用セパレータ、リチウムイオン二次電池用セパレータを用いたリチウムイオン二次電池、および、リチウムイオン二次電池モジュール WO2015040685A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/075067 WO2015040685A1 (ja) 2013-09-18 2013-09-18 リチウムイオン二次電池用セパレータ、リチウムイオン二次電池用セパレータを用いたリチウムイオン二次電池、および、リチウムイオン二次電池モジュール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/075067 WO2015040685A1 (ja) 2013-09-18 2013-09-18 リチウムイオン二次電池用セパレータ、リチウムイオン二次電池用セパレータを用いたリチウムイオン二次電池、および、リチウムイオン二次電池モジュール

Publications (1)

Publication Number Publication Date
WO2015040685A1 true WO2015040685A1 (ja) 2015-03-26

Family

ID=52688372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075067 WO2015040685A1 (ja) 2013-09-18 2013-09-18 リチウムイオン二次電池用セパレータ、リチウムイオン二次電池用セパレータを用いたリチウムイオン二次電池、および、リチウムイオン二次電池モジュール

Country Status (1)

Country Link
WO (1) WO2015040685A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018519647A (ja) * 2015-08-24 2018-07-19 エルジー・ケム・リミテッド 相対電極電位の測定のための基準電極を含む電池セルの製造方法およびこれによって製造された電池セル
JP2019053990A (ja) * 2017-09-18 2019-04-04 ストアドット リミテッド SoH監視による動作中のリチウム化

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005100706A (ja) * 2003-09-22 2005-04-14 Fdk Corp 非水電解質二次電池
JP2010073558A (ja) * 2008-09-19 2010-04-02 Nissan Motor Co Ltd 電気化学セル、組電池、および車両
JP2013140690A (ja) * 2011-12-28 2013-07-18 Gs Yuasa Corp 非水電解質二次電池の負極充電リザーブ量推定装置、負極充電リザーブ量推定方法、蓄電システム及び組電池
JP2013175417A (ja) * 2012-02-27 2013-09-05 Nippon Soken Inc リチウムイオン二次電池及びその充電制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005100706A (ja) * 2003-09-22 2005-04-14 Fdk Corp 非水電解質二次電池
JP2010073558A (ja) * 2008-09-19 2010-04-02 Nissan Motor Co Ltd 電気化学セル、組電池、および車両
JP2013140690A (ja) * 2011-12-28 2013-07-18 Gs Yuasa Corp 非水電解質二次電池の負極充電リザーブ量推定装置、負極充電リザーブ量推定方法、蓄電システム及び組電池
JP2013175417A (ja) * 2012-02-27 2013-09-05 Nippon Soken Inc リチウムイオン二次電池及びその充電制御方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018519647A (ja) * 2015-08-24 2018-07-19 エルジー・ケム・リミテッド 相対電極電位の測定のための基準電極を含む電池セルの製造方法およびこれによって製造された電池セル
JP2019053990A (ja) * 2017-09-18 2019-04-04 ストアドット リミテッド SoH監視による動作中のリチウム化

Similar Documents

Publication Publication Date Title
KR101514586B1 (ko) 리튬 이온 2차 전지용 부극 활물질
JP2022538377A (ja) 再充電可能なバッテリーセル
JP5797993B2 (ja) 非水電解質二次電池
KR20160110380A (ko) 비수전해질 이차 전지용 부극재 및 부극 활물질 입자의 제조 방법
JP6305112B2 (ja) 非水電解質電池及び電池パック
KR20150139780A (ko) 비수 전해액 이차 전지 및 당해 전지의 제조 방법
KR101603635B1 (ko) 면적이 서로 다른 전극들을 포함하고 있는 전극 적층체 및 이를 포함하는 이차전지
US11527745B2 (en) Methods of pre-lithiating electrodes
KR20150014185A (ko) 이차전지용 액체 전해질 및 이를 포함하는 리튬 이차전지
US20150263334A1 (en) Non-aqueous electrolyte secondary battery
CA2901234A1 (en) Lithium secondary battery
KR20150033854A (ko) 하이브리드 스택-폴딩형 전극조립체 및 이를 포함하는 이차전지
CN109119629B (zh) 非水电解液二次电池
JP5432746B2 (ja) リチウムイオン二次電池
US9356312B2 (en) Method for preparing secondary battery and the secondary battery prepared by using the same
JP2012252951A (ja) 非水電解質二次電池
JP7228113B2 (ja) 非水電解液二次電池
JP2013197052A (ja) リチウムイオン蓄電デバイス
WO2015040685A1 (ja) リチウムイオン二次電池用セパレータ、リチウムイオン二次電池用セパレータを用いたリチウムイオン二次電池、および、リチウムイオン二次電池モジュール
JP2015032383A (ja) 非水電解質二次電池用正極および非水電解質二次電池
US10468726B2 (en) Negative electrode for preventing deposition of manganese and battery cell including the same
WO2016171276A1 (ja) リチウムイオン電池
KR20130008780A (ko) 이종 전극 활물질층이 코팅된 복합 전극 및 이를 포함하는 리튬 이차전지
JP2013197051A (ja) リチウムイオン蓄電デバイス
WO2022163061A1 (ja) 蓄電素子及び蓄電素子の使用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13893942

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13893942

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP