JP2018060881A - Carrier pad and carrying method of wafer - Google Patents

Carrier pad and carrying method of wafer Download PDF

Info

Publication number
JP2018060881A
JP2018060881A JP2016196281A JP2016196281A JP2018060881A JP 2018060881 A JP2018060881 A JP 2018060881A JP 2016196281 A JP2016196281 A JP 2016196281A JP 2016196281 A JP2016196281 A JP 2016196281A JP 2018060881 A JP2018060881 A JP 2018060881A
Authority
JP
Japan
Prior art keywords
air
wafer
holding surface
flow rate
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016196281A
Other languages
Japanese (ja)
Other versions
JP6814009B2 (en
Inventor
敦 中塚
Atsushi Nakatsuka
敦 中塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Disco Corp
Original Assignee
Disco Abrasive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Disco Abrasive Systems Ltd filed Critical Disco Abrasive Systems Ltd
Priority to JP2016196281A priority Critical patent/JP6814009B2/en
Priority to TW106130305A priority patent/TWI723212B/en
Priority to CN201710864989.4A priority patent/CN107895708B/en
Priority to KR1020170123523A priority patent/KR102315301B1/en
Publication of JP2018060881A publication Critical patent/JP2018060881A/en
Application granted granted Critical
Publication of JP6814009B2 publication Critical patent/JP6814009B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/6773Conveying cassettes, containers or carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67784Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations using air tracks
    • H01L21/6779Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations using air tracks the workpieces being stored in a carrier, involving loading and unloading
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • H01L21/682Mask-wafer alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6838Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping with gripping and holding devices using a vacuum; Bernoulli devices

Abstract

PROBLEM TO BE SOLVED: To allow for contact holding and non-contact holding of a wafer by means of a carrier pad, without changing the carrier pad and a piping route, when carrying a wafer by means of the carrier pad.SOLUTION: A carrier pad includes an air exhaust nozzle 100 formed in a holding surface 10b and exhausting air along the holding surface 10b, and a groove 101 for flowing the air, exhausted from the air exhaust nozzle 100, in a straight line along the outer peripheral edge of the holding surface 10b. A wafer is held on the holding surface 10b by flowing air to the groove 101, and adjusting a negative pressure generated around the groove 101 by the flow rate of the air flowed to the groove 101.SELECTED DRAWING: Figure 1

Description

本発明は、ウエーハを保持する板状の搬送パッド及び搬送パッドを用いたウエーハの搬送方法に関する。   The present invention relates to a plate-shaped transport pad for holding a wafer and a wafer transport method using the transport pad.

半導体ウエーハ等を加工する切削装置や研削装置等においては、例えば、ウエーハの加工前に、加工装置の位置決め機構に載置されたウエーハを保持テーブル上に搬送したり、ウエーハの加工後に、保持テーブル上の加工が施されたウエーハをウエーハ洗浄機構のスピンナーテーブルに搬送したりしている。そして、加工装置には、ウエーハを搬送する搬送パッドが配設されており、この搬送パッドは、例えば、ウエーハに接触させて吸引保持を行う保持面を備えている。この保持面は、例えば、ポーラス部材で構成されていたり、又は複数の吸引孔が形成されていたりし、真空発生装置等から構成される吸引源とコンプレッサー等から構成されるエア供給源とにエアの流路を切り替え可能に連通している(例えば、特許文献1参照)。   In a cutting apparatus or a grinding apparatus that processes a semiconductor wafer or the like, for example, a wafer placed on a positioning mechanism of a processing apparatus is transported onto a holding table before the wafer is processed, or a holding table is processed after the wafer is processed. The wafer subjected to the above processing is transferred to a spinner table of a wafer cleaning mechanism. The processing apparatus is provided with a transport pad for transporting the wafer, and the transport pad includes, for example, a holding surface that performs suction holding while being in contact with the wafer. This holding surface is made of, for example, a porous member or formed with a plurality of suction holes, and air is supplied to a suction source constituted by a vacuum generator or the like and an air supply source constituted by a compressor or the like. These channels are communicated so as to be switchable (see, for example, Patent Document 1).

搬送パッドの保持面をウエーハに接触させた状態で、吸引源が吸引することで生み出された吸引力がエアの流路を介して保持面上に伝達されることで、搬送パッドはウエーハを吸引保持することができる。搬送パッドの保持面からウエーハを離脱させるときは、吸引源と保持面とが連通している状態をエア供給源と保持面とが連通している状態へと切り替えて、エア供給源からエアを保持面に対して供給し保持面から少量のエアを噴出させる。そして、エアの噴射圧力によって保持面とウエーハとの間の真空吸着力を破壊して、ウエーハを保持面から離脱させている。   With the holding surface of the transport pad in contact with the wafer, the suction force generated by suction by the suction source is transmitted to the holding surface via the air flow path, so that the transport pad sucks the wafer. Can be held. When detaching the wafer from the holding surface of the transfer pad, switch the state where the suction source and the holding surface are in communication to the state where the air supply source and the holding surface are in communication, and remove air from the air supply source. Supply to the holding surface and eject a small amount of air from the holding surface. Then, the vacuum suction force between the holding surface and the wafer is broken by the air injection pressure, and the wafer is separated from the holding surface.

特開2014−204089号公報JP 2014-204089 A

加工装置において、搬送パッドでウエーハを非接触状態で保持したい場合には、上記の接触式で吸引保持を行う搬送パッドを、ベルヌーイ効果を利用して負圧を生み出し非接触でウエーハを吸引保持する搬送パッドに取り替える。そして、エア供給源と非接触式の搬送パッドの保持面とを連通させて、エア供給源からエアを保持面に対して供給し、保持面から所定量のエアを吹き出させ、保持面に沿ってエアを流す。このエアの流れ(例えば、旋回流)によって保持面上に負圧が発生するため、搬送パッドがウエーハを非接触で保持する。   In a processing apparatus, when it is desired to hold a wafer in a non-contact state with a transfer pad, the transfer pad that performs suction holding by the above contact type generates negative pressure by using the Bernoulli effect and sucks and holds the wafer in a non-contact manner. Replace with transport pad. Then, the air supply source is communicated with the holding surface of the non-contact type transport pad, air is supplied from the air supply source to the holding surface, a predetermined amount of air is blown from the holding surface, and along the holding surface. Air. Since negative pressure is generated on the holding surface by this air flow (for example, swirl flow), the transport pad holds the wafer in a non-contact manner.

しかし、搬送パッドの取替えに伴って、接触式搬送パッドに供給すべきエアの流量(例えば、ウエーハ離脱時に搬送パッドに供給すべきエア流量)と非接触式搬送パッドに供給すべきエアの流量とは異なってくる、すなわち、非接触式搬送パッドに供給すべきエアの流量はより多くなる。そのため、搬送パッドにエアを供給する配管の管径も太くする、つまり、加工装置内等を通り搬送パッドに繋がる配管経路を予め複数備えておく等して、配管経路を搬送パッドの取替えと共に変更する必要が生じてくる。しかし、搬送パッドのために複数の配管経路を備える装置構成は複雑であり、また、装置構成が大きくなってしまうという問題がある。   However, as the transfer pad is replaced, the flow rate of air to be supplied to the contact-type transfer pad (for example, the flow rate of air to be supplied to the transfer pad when the wafer is detached) and the flow rate of air to be supplied to the non-contact transfer pad Are different, that is, the flow rate of air to be supplied to the non-contact type transport pad is larger. Therefore, the pipe diameter of the pipe that supplies air to the transfer pad is also increased, that is, the pipe path is changed along with the replacement of the transfer pad by, for example, preparing a plurality of pipe paths that are connected to the transfer pad through the processing device etc. It becomes necessary to do. However, the apparatus configuration including a plurality of piping paths for the transport pad is complicated, and there is a problem that the apparatus configuration becomes large.

したがって、搬送パッドでウエーハを搬送する場合においては、搬送パッド及び配管経路を変更することなく、搬送パッドによるウエーハの接触保持と非接触保持とを可能にするという課題がある。   Therefore, when the wafer is transported by the transport pad, there is a problem that the wafer can be held and non-contacted by the transport pad without changing the transport pad and the piping path.

上記課題を解決するための本発明は、保持面でウエーハを保持する板状の搬送パッドであって、該保持面に形成され該保持面に沿ってエアを噴出するエア噴出口と、該エア噴出口から噴出されたエアを該保持面の外周縁に向かって直線状に流す溝と、を備え、該溝にエアを流すことで該溝の周囲に発生させる負圧の強弱を該溝に流すエアの流量で調整して該保持面でウエーハを保持する搬送パッドである。   The present invention for solving the above-mentioned problems is a plate-shaped transport pad that holds a wafer on a holding surface, and is formed on the holding surface and ejects air along the holding surface; A groove for flowing the air ejected from the ejection port in a straight line toward the outer peripheral edge of the holding surface, and the strength of the negative pressure generated around the groove by flowing the air in the groove. It is a transport pad that adjusts the flow rate of air to flow and holds the wafer on the holding surface.

また、上記課題を解決するための本発明は、前記搬送パッドを用いたウエーハの搬送方法であって、該搬送パッドには、前記エア噴出口から噴出させ前記溝に流すエアの流量を第1のエア流量と該第1のエア流量より多い流量の第2のエア流量とに調節可能な流量調節部が接続され、該搬送パッドは、前記保持面によりウエーハを非接触で保持する時には、該第1のエア流量のエアを該溝に流し、該保持面にウエーハを接触させて該保持面によりウエーハを保持する時には、該第2のエア流量のエアを該溝に流すことで、ウエーハの非接触保持と接触保持とを選択的に行うウエーハの搬送方法である。   In addition, the present invention for solving the above-described problem is a method for transporting a wafer using the transport pad, wherein the transport pad has a first flow rate of air that is ejected from the air ejection port and flows into the groove. And a second air flow rate that is higher than the first air flow rate is connected to the second air flow rate, and the transfer pad holds the wafer in a non-contact manner by the holding surface. When the wafer is held by the holding surface by causing the air having the first air flow rate to flow into the groove and bringing the wafer into contact with the holding surface, This is a wafer conveyance method that selectively performs non-contact holding and contact holding.

本発明に係る搬送パッドは、保持面に形成され保持面に沿ってエアを噴出するエア噴出口と、エア噴出口から噴出されたエアを保持面の外周縁に向かって直線状に流す溝と、を備え、溝にエアを流すことで溝の周囲に発生させる負圧の強弱を溝に流すエアの流量で調整して保持面でウエーハを保持することができるため、エアの流量を調節するだけで、ウエーハの接触保持と非接触保持とを選択的に行うことができる。   The transport pad according to the present invention includes an air outlet that is formed on the holding surface and ejects air along the holding surface, and a groove that linearly flows the air ejected from the air outlet toward the outer periphery of the holding surface. The flow rate of air can be adjusted by adjusting the flow rate of negative pressure generated around the groove by flowing air in the groove with the flow rate of air flowing in the groove to hold the wafer on the holding surface. The wafer can be selectively held in contact and non-contact.

本発明に係るウエーハの搬送方法においては、本発明に係る搬送パッドには、エア噴出口から噴出させ溝に流すエアの流量を第1のエア流量と第1のエア流量より多い流量の第2のエア流量とに調節可能な流量調節部が接続され、搬送パッドは、保持面によりウエーハを非接触で保持する時には、第1のエア流量のエアを溝に流し、保持面にウエーハを接触させて保持面によりウエーハを保持する時には、第2のエア流量のエアを溝に流すことで、ウエーハの非接触保持と接触保持とを選択的に行うことができる。すなわち、搬送パッドでウエーハを搬送する場合において、搬送パッド及びエアの流れる配管経路を変更することなく、エアの流量を調節するだけで搬送パッドによるウエーハの接触保持と非接触保持とを選択的に行うことができる。また、搬送パッドに吸引源を接続させる必要がなくなるため、装置構成を複雑なものとしなくても済むようになる。   In the method for transporting a wafer according to the present invention, the transport pad according to the present invention has a first air flow rate and a second flow rate greater than the first air flow rate. When the wafer is held by the holding surface in a non-contact manner, the conveyance pad allows the air of the first air flow rate to flow in the groove and the wafer is brought into contact with the holding surface. When the wafer is held by the holding surface, the non-contact holding and the contact holding of the wafer can be selectively performed by flowing the air having the second air flow rate into the groove. In other words, when a wafer is transported by a transport pad, wafer contact and non-contact hold by the transport pad can be selectively controlled by adjusting the air flow rate without changing the transport pad and the piping path through which the air flows. It can be carried out. Further, since it is not necessary to connect a suction source to the transport pad, the apparatus configuration does not have to be complicated.

保持面を上側に向けた状態の搬送パッドの一例を示す斜視図である。It is a perspective view which shows an example of the conveyance pad of the state which orient | assigned the holding surface to the upper side. 搬送パッドでウエーハを搬送する状態の一例を示す斜視図である。It is a perspective view which shows an example of the state which conveys a wafer with a conveyance pad.

半導体ウエーハ等を保持する図1に示す搬送パッド1は、例えば、アクリルやポリカーボネート、PBT樹脂等のエンプラ又はステンレス鋼等からなり外形が円板状である本体部10を備えている。図1においては上側を向いている本体部10の保持面10bは、ウエーハを保持する面となり、例えば、表面が平滑に仕上げられており、また、本体部10がウエーハに接触してしまった場合に、ウエーハを傷付けないように保持面10bの端部(稜線)には面取りが施されていてもよい。本体部10の外形は、略円形状に限定されるものではなく、円形の一部を部分的に切欠いた三角十字状等に形成されていてもよい。   A transport pad 1 shown in FIG. 1 that holds a semiconductor wafer or the like includes a main body 10 that is made of, for example, an engineering plastic such as acrylic, polycarbonate, or PBT resin, stainless steel, or the like, and has an outer shape that is a disk. In FIG. 1, the holding surface 10b of the main body 10 facing upward is a surface for holding the wafer. For example, the surface is finished smooth and the main body 10 comes into contact with the wafer. In addition, the end portion (ridge line) of the holding surface 10b may be chamfered so as not to damage the wafer. The outer shape of the main body 10 is not limited to a substantially circular shape, and may be formed in a triangular cross shape in which a part of a circular shape is partially cut out.

例えば本体部10には、保持面10bに形成され保持面10bに沿ってエアを噴出するエア噴出口100と、エア噴出口10から噴出されたエアを保持面10bの外周縁に向かって直線状に流す溝101と、を備えている。   For example, the main body 10 has a linear shape toward the outer peripheral edge of the holding surface 10b, and an air outlet 100 formed on the holding surface 10b and ejecting air along the holding surface 10b. And a groove 101 to be passed through.

溝101は、例えば、保持面10bの中心から径方向外側に向かって3方向に均等な角度(例えば120度)で放射状に延びており、保持面10bから本体部10の厚さ方向(Z軸方向)の中間部に至る程度の深さを備えている。各溝101の幅および深さは同一寸法の一定断面を有している。なお、溝101の形成本数は、本実施形態における本数に限定されるものではなく、保持面10bに周方向に均等な間隔で4本以上放射状に形成されていてもよい。また、溝101の幅を一部だけ狭めることで、この狭められた部分で溝101内を通るエアが加速されるものとしてもよい。各溝101の一方の端101aは、保持部10の外周縁において開口しており、各溝101の他方の端101bは、保持面10bの中央に形成された各エア噴出口100と連通している。   For example, the grooves 101 extend radially from the center of the holding surface 10b radially outward in three directions at equal angles (for example, 120 degrees), and from the holding surface 10b in the thickness direction (Z-axis) It is deep enough to reach the middle part of the direction. The width and depth of each groove 101 have a constant cross section with the same dimensions. The number of grooves 101 formed is not limited to the number in the present embodiment, and four or more grooves 101 may be radially formed on the holding surface 10b at equal intervals in the circumferential direction. Further, by narrowing the width of the groove 101 only partially, the air passing through the groove 101 may be accelerated at the narrowed portion. One end 101a of each groove 101 opens at the outer peripheral edge of the holding portion 10, and the other end 101b of each groove 101 communicates with each air outlet 100 formed in the center of the holding surface 10b. Yes.

各エア噴出口100は、それぞれ保持面10bの径方向外側に向かって開口しており、各溝101の他方の端101bから一方の端101aに向かってエアを水平に噴出する。例えば、エア噴出口100の断面積は溝101の断面積よりも大きくなっており、エア噴出口100から溝101へとエアが移動する際に、エアが加速されるようになっていてもよい。また、各エア噴出口100は、本体部10の中央領域の内部から保持面10bの反対側の面であるアーム部接続面10aに向かって形成されアーム部接続面10a上で開口する接続口102と連通している。なお、本実施形態のようにエア噴出口100を保持面10bに形成するのではなく、例えば、本体部10の保持面10bに取り外し可能なノズルパッドを配設するものとし、このノズルパッドにエア噴出口100を形成するものとしてもよい。また、例えば、本体部10の外周縁には、ウエーハが本体部10の面方向に移動すること(すなわち、ウエーハの横滑り)を摩擦力又はウエーハを外周面から押さえる力によって制限するガイド部109を設けてもよい。このガイド部109は、例えば、ゴム又はスポンジ等から構成されており、本体部10の外周縁に、周方向に一定の間隔をおいて溝101の一方の端101aとずれるようにして複数(例えば120度間隔で3つ)固定される。   Each air outlet 100 opens toward the radially outer side of the holding surface 10b, and jets air horizontally from the other end 101b of each groove 101 toward the one end 101a. For example, the cross-sectional area of the air spout 100 may be larger than the cross-sectional area of the groove 101, and the air may be accelerated when the air moves from the air spout 100 to the groove 101. . In addition, each air spout 100 is formed from the inside of the central region of the main body 10 toward the arm connection surface 10a that is the surface opposite to the holding surface 10b, and is open on the arm connection surface 10a. Communicated with. Instead of forming the air outlet 100 on the holding surface 10b as in the present embodiment, for example, a removable nozzle pad is provided on the holding surface 10b of the main body 10 and the nozzle pad is provided with an air The spout 100 may be formed. Further, for example, a guide portion 109 that restricts movement of the wafer in the surface direction of the main body portion 10 (that is, side slip of the wafer) by a frictional force or a force pressing the wafer from the outer peripheral surface is provided on the outer peripheral edge of the main body portion 10. It may be provided. The guide portion 109 is made of, for example, rubber, sponge, or the like, and a plurality of (for example, the outer peripheral edge of the main body portion 10 is displaced from the one end 101a of the groove 101 at a constant interval in the circumferential direction (for example, 3) fixed at intervals of 120 degrees.

以下に、図1、2に示す搬送パッド1を用いて本発明に係るウエーハの搬送方法を実施する場合の、搬送パッド1の動作について説明する。   The operation of the transport pad 1 when the wafer transport method according to the present invention is carried out using the transport pad 1 shown in FIGS.

搬送パッド1が図2に示すウエーハWを搬送する場合には、図2に示すように、搬送パッド1は、アーム部20に接続された状態になる。すなわち、例えば、アーム部接続面10aの中央領域に連結部材21が固定され、この連結部材21を介して搬送パッド1はアーム部20の一端の下面側に固定された状態になる。アーム部20の他方の端には、移動手段3が接続されており、移動手段3は、アーム部20を水平面上において平行移動可能又は旋回移動可能にし、かつ、Z軸方向に上下動可能にしている。移動手段3は、例えば、アーム部20を空気圧によりZ軸方向に上下動させるエアシリンダや、モータによりボールネジを回動させることでアーム部20を平行移動させるボールネジ機構等から構成されている。   When the transport pad 1 transports the wafer W shown in FIG. 2, the transport pad 1 is connected to the arm unit 20 as shown in FIG. 2. That is, for example, the connecting member 21 is fixed to the central region of the arm portion connection surface 10 a, and the transport pad 1 is fixed to the lower surface side of one end of the arm portion 20 through the connecting member 21. The moving means 3 is connected to the other end of the arm part 20, and the moving means 3 enables the arm part 20 to be translated or swiveled on a horizontal plane and to be vertically movable in the Z-axis direction. ing. The moving means 3 includes, for example, an air cylinder that moves the arm portion 20 up and down in the Z-axis direction by air pressure, a ball screw mechanism that moves the arm portion 20 in parallel by rotating the ball screw by a motor, and the like.

連結部材21は、例えば、ロータリージョイント等から構成されており、アーム部20に接続されることで、アーム部20及び連結部材21の厚み方向(Z軸方向)に延びる流路21aが形成される。流路21aの一端は、搬送パッド1の接続口102に連通しており、流路21aのもう一端は、可撓性を有する樹脂チューブ又は金属配管等で構成されるエア供給路23の一端に連通する。なお、流路21a上に、流路21a内を通るエアを加速させるオリフィス孔等が形成されていてもよい。   The connecting member 21 is composed of, for example, a rotary joint or the like, and is connected to the arm part 20 to form a flow path 21a extending in the thickness direction (Z-axis direction) of the arm part 20 and the connecting member 21. . One end of the flow path 21a communicates with the connection port 102 of the transport pad 1, and the other end of the flow path 21a is connected to one end of an air supply path 23 formed of a flexible resin tube or metal pipe. Communicate. Note that an orifice hole or the like for accelerating the air passing through the flow path 21a may be formed on the flow path 21a.

エア供給路23のもう一端には、コンプレッサー等からなるエア供給源24が連通している。また、エア供給路23上には、例えば、エア供給源24が搬送パッド1に供給しエア噴出口100から噴出させ溝101に流すエアの流量を第1のエア流量F1と第1のエア流量F1より多い流量の第2のエア流量F2とに調節可能な流量調節部25が配設されている。流量調節部25は、例えば、絞り弁であり、弁内部のエアの通過流量を把握可能にする流量計を備えている。   An air supply source 24 composed of a compressor or the like communicates with the other end of the air supply path 23. In addition, on the air supply path 23, for example, the air flow rate of the air supplied from the air supply source 24 to the transport pad 1 and ejected from the air outlet 100 to flow in the groove 101 is the first air flow rate F1 and the first air flow rate. A flow rate adjusting unit 25 that can be adjusted to a second air flow rate F2 having a flow rate higher than F1 is provided. The flow rate adjustment unit 25 is, for example, a throttle valve, and includes a flow meter that makes it possible to grasp the flow rate of air passing through the valve.

図2に示すウエーハWは、例えば、外形が円形板状の半導体ウエーハであり、ウエーハWの表面Waには複数のデバイスが形成されており、例えば、表面Waは図示しない保護テープが貼着されて保護されている。ウエーハWの裏面Wbは、例えば研削加工等が施される被加工面となる。   The wafer W shown in FIG. 2 is, for example, a semiconductor wafer having a circular plate shape, and a plurality of devices are formed on the surface Wa of the wafer W. For example, a protective tape (not shown) is attached to the surface Wa. Protected. The back surface Wb of the wafer W is a processed surface on which, for example, grinding is performed.

まず、図2に示す移動手段3が、搬送パッド1を水平方向に移動させて、図示しないウエーハカセット等に収容されているウエーハWの裏面Wbと搬送パッド1の保持面10bとが対向し、かつ、ウエーハWの裏面Wbの中心と搬送パッド1の中心とが略合致するように、搬送パッド1をウエーハWの上方に位置付ける。   First, the moving means 3 shown in FIG. 2 moves the transport pad 1 in the horizontal direction so that the back surface Wb of the wafer W accommodated in a wafer cassette (not shown) and the holding surface 10b of the transport pad 1 face each other. In addition, the transport pad 1 is positioned above the wafer W so that the center of the back surface Wb of the wafer W substantially matches the center of the transport pad 1.

次いで、例えば、搬送パッド1の保持面10bとウエーハWの裏面Wbとが接触しない程度の高さ位置まで、移動手段3が搬送パッド1を−Z方向に向かって降下させ位置付ける。この状態で、エア供給源24が、所定圧力のエアをエア供給路23に供給する。例えば、流量調節部25は、流量調節部25を通過し搬送パッド1に到達しエア噴出口100から噴出し溝101を流れるエアの流量が、第2のエア流量F2となるように、弁内部が予め大きく開かれた状態になっており、エア供給源24からエア供給路23に供給されたエアは、大きく開かれた状態の流量調節部25を通過し、さらに、流路21a及び接続口102を通り、搬送パッド1のエア噴出口100から噴出する。   Next, for example, the moving means 3 lowers the transport pad 1 in the −Z direction to a position where the holding surface 10b of the transport pad 1 and the back surface Wb of the wafer W are not in contact with each other. In this state, the air supply source 24 supplies air of a predetermined pressure to the air supply path 23. For example, the flow rate adjusting unit 25 passes through the flow rate adjusting unit 25, reaches the transport pad 1, and flows through the ejection groove 101 from the air outlet 100 so that the flow rate of air becomes the second air flow rate F <b> 2. Has been opened in advance, and the air supplied from the air supply source 24 to the air supply path 23 passes through the flow rate adjustment unit 25 in the largely opened state, and further, the flow path 21a and the connection port It passes through 102 and is ejected from the air ejection port 100 of the conveyance pad 1.

エア噴出口100から噴射されたエアは、保持面10bに形成された各溝101内を放射方向に向かって直線状に第2のエア流量F2で流通することにより、ベルヌーイ効果によって溝101の両脇の周囲の空気が溝101内部へ引き込まれ、溝101近辺に負圧が生じ、ウエーハWに対する吸着力が生じる。ここで、各溝101の一方の端101aが保持部10の外周縁において開口しているため、エアの溝101内での流れが阻害されず、また、溝101内のエアのエア流量は、比較的大きな第2のエア流量F2となっているため、保持面10bに強力な吸着力が生じる。このようにして強力な吸着力でウエーハWを搬送パッド1の保持面10bに引きつけると、保持面10bがウエーハWに接触した状態で、搬送パッド1がウエーハWを吸着保持する。   The air injected from the air outlet 100 circulates in the grooves 101 formed on the holding surface 10b linearly in the radial direction at the second air flow rate F2, so that both of the grooves 101 are caused by the Bernoulli effect. Air around the side is drawn into the groove 101, a negative pressure is generated in the vicinity of the groove 101, and a suction force to the wafer W is generated. Here, since one end 101a of each groove 101 is open at the outer peripheral edge of the holding portion 10, the flow of air in the groove 101 is not obstructed, and the air flow rate of air in the groove 101 is Since the second air flow rate F2 is relatively large, a strong suction force is generated on the holding surface 10b. When the wafer W is attracted to the holding surface 10b of the transport pad 1 with a strong suction force in this manner, the transport pad 1 sucks and holds the wafer W while the holding surface 10b is in contact with the wafer W.

搬送パッド1が吸着保持したウエーハWを図示しない仮置きテーブルから搬出し、図2に示す保持テーブルT上まで搬送する。図2に示す保持テーブルTは、例えば、その外形が円形状であり、ポーラス部材等からなりウエーハWを吸引保持する保持部T1と、保持部T1を支持する枠体T2とを備える。ウエーハWの裏面Wbを吸引保持している搬送パッド1が、ウエーハWの裏面Wbが上側になるようにして、ウエーハWを保持テーブルT上に接触させる。保持部T1は図示しない吸引源に連通しており、吸引源が吸引することで生み出された吸引力が保持面T1aに伝達されることで、保持テーブルTは保持面T1a上でウエーハWを吸引保持する。また、エア供給源24による搬送パッド1に対するエアの供給を停止させる。または、流量を少なくして搬送パッド1の保持面10b上の吸着力を消失させ、ウエーハWを搬送パッド1の保持面10bから離脱させる。そして、搬送パッド1が、ウエーハWを吸引保持している保持テーブルT上から退避する。   The wafer W sucked and held by the transfer pad 1 is unloaded from a temporary table (not shown) and transferred to the holding table T shown in FIG. The holding table T shown in FIG. 2 has, for example, a circular outer shape, and includes a holding portion T1 made of a porous member or the like for sucking and holding the wafer W, and a frame T2 for supporting the holding portion T1. The conveyance pad 1 that sucks and holds the back surface Wb of the wafer W brings the wafer W into contact with the holding table T so that the back surface Wb of the wafer W is on the upper side. The holding part T1 communicates with a suction source (not shown), and the holding table T sucks the wafer W on the holding surface T1a by transmitting the suction force generated by the suction source to the holding surface T1a. Hold. Further, the supply of air to the transport pad 1 by the air supply source 24 is stopped. Alternatively, the suction force on the holding surface 10 b of the transport pad 1 is lost by decreasing the flow rate, and the wafer W is detached from the holding surface 10 b of the transport pad 1. Then, the transport pad 1 retreats from the holding table T that holds the wafer W by suction.

裏面Wbが上側を向いた状態で保持テーブルTにより吸引保持されたウエーハWは、例えば図示しない研削手段によって、裏面Wb側から研削され所定の厚みまで薄化される。研削加工が完了したウエーハWは、保持テーブルTから搬送パッド1によって搬出される。   The wafer W sucked and held by the holding table T with the back surface Wb facing upward is ground from the back surface Wb side and thinned to a predetermined thickness by, for example, a grinding means (not shown). The wafer W that has been ground is unloaded from the holding table T by the transfer pad 1.

ウエーハWを保持テーブルTから搬出するに際しては、図2に示す移動手段3が、搬送パッド1を水平方向に移動させて、保持テーブルTにより保持されているウエーハWの裏面Wbと搬送パッド1の保持面10bとが対向し、かつ、ウエーハWの裏面Wbの中心と搬送パッド1の中心とが略合致するように、搬送パッド1をウエーハWの上方に位置付ける。   When the wafer W is unloaded from the holding table T, the moving means 3 shown in FIG. 2 moves the conveyance pad 1 in the horizontal direction, and the back surface Wb of the wafer W held by the holding table T and the conveyance pad 1 The transport pad 1 is positioned above the wafer W so that the holding surface 10b faces and the center of the back surface Wb of the wafer W substantially matches the center of the transport pad 1.

次いで、移動手段3が、搬送パッド1の保持面10bとウエーハWの裏面Wbとが接触しない程度の高さ位置まで、搬送パッド1を−Z方向に向かって降下させる。そして、エア供給源24が、所定圧力のエアをエア供給路23に供給する。例えば、流量調節部25は、流量調節部25を通過し搬送パッド1に到達しエア噴出口100から噴出し溝101を流れるエアの流量が、第2のエア流量F2より少ない流量の第1のエア流量F1となるように、弁内部の流路が絞られた状態に切り替えられる。そのため、エア供給源24からエア供給路23に供給されたエアは、流量調節部25を通過する際に流量が絞られ、さらに、流路21a及び接続口102を通り、搬送パッド1のエア噴出口100から噴出する。   Next, the moving unit 3 lowers the transport pad 1 in the −Z direction to a height position where the holding surface 10b of the transport pad 1 and the back surface Wb of the wafer W are not in contact with each other. The air supply source 24 supplies air with a predetermined pressure to the air supply path 23. For example, the flow rate adjustment unit 25 passes through the flow rate adjustment unit 25, reaches the transport pad 1, and flows through the ejection groove 101 from the air ejection port 100 so that the flow rate of the air is smaller than the second air flow rate F2. The flow path inside the valve is switched to a narrowed state so that the air flow rate F1 is obtained. Therefore, the flow rate of the air supplied from the air supply source 24 to the air supply path 23 is reduced when passing through the flow rate adjusting unit 25, and further, the air jet of the transport pad 1 passes through the flow path 21 a and the connection port 102. It ejects from the exit 100.

エア噴出口100から噴射されたエアは、保持面10bに形成された各溝101内を放射方向に向かって直線状に第1のエア流量F1で流通することにより、ベルヌーイ効果によって溝101の両脇の周囲の空気が溝101内部へ引き込まれ、溝101近辺に負圧が生じ、ウエーハWに対する吸着力が生じる。溝101内のエアの流量は、第2のエア流量F2より少ない流量の第1のエア流量F1に調節されているため、ウエーハWと保持面10bとの間に僅かな間隙が形成された状態、すなわち、搬送パッド1が保持面10bで非接触状態でウエーハWを吸着保持する。   The air injected from the air outlet 100 circulates in the grooves 101 formed on the holding surface 10b linearly in the radial direction at the first air flow rate F1, so that both of the grooves 101 are caused by the Bernoulli effect. Air around the side is drawn into the groove 101, a negative pressure is generated in the vicinity of the groove 101, and a suction force to the wafer W is generated. Since the air flow rate in the groove 101 is adjusted to the first air flow rate F1 which is smaller than the second air flow rate F2, a slight gap is formed between the wafer W and the holding surface 10b. That is, the transport pad 1 sucks and holds the wafer W on the holding surface 10b in a non-contact state.

搬送パッド1がウエーハWを非接触で吸着保持した後、保持テーブルTによるウエーハWの吸引保持が解除される。さらに、搬送パッド1が+Z方向へと上昇することで、ウエーハWが保持テーブルTから搬出される。移動手段3によって、加工後のウエーハWを非接触で吸着保持した搬送パッド1が水平移動して、加工後のウエーハWが例えばウエーハ洗浄装置等に搬送される。   After the conveyance pad 1 sucks and holds the wafer W in a non-contact manner, the suction holding of the wafer W by the holding table T is released. Furthermore, the wafer W is unloaded from the holding table T as the transfer pad 1 is raised in the + Z direction. By the moving means 3, the transport pad 1 that sucks and holds the processed wafer W in a non-contact manner moves horizontally, and the processed wafer W is transported to, for example, a wafer cleaning device.

このように、本発明に係る搬送パッド1は、保持面10bに形成され保持面10bに沿ってエアを噴出するエア噴出口100と、エア噴出口100から噴出されたエアを保持面10bの外周縁に向かって直線状に流す溝101と、を備え、溝101にエアを流すことで溝101の周囲に発生させる負圧の強弱を溝101に流すエアの流量で調整して保持面10bでウエーハWを保持することができるため、エアの流量を調節するだけで、ウエーハWの接触保持と非接触保持とを選択的に行うことができる。   As described above, the transport pad 1 according to the present invention includes the air ejection port 100 that is formed on the retaining surface 10b and ejects air along the retaining surface 10b, and the air ejected from the air ejection port 100 is outside the retaining surface 10b. A groove 101 that flows linearly toward the periphery, and the holding surface 10b adjusts the strength of the negative pressure generated around the groove 101 by flowing air through the groove 101 by the flow rate of air flowing through the groove 101. Since the wafer W can be held, the contact holding and non-contact holding of the wafer W can be selectively performed only by adjusting the air flow rate.

また、本発明に係るウエーハの搬送方法においては、搬送パッド1に、エア噴出口100から噴出させ溝101に流すエアの流量を第1のエア流量F1と第1のエア流量F1より多い流量の第2のエア流量F2とに調節可能な流量調節部25が接続され、搬送パッド1は、保持面10bによりウエーハWを非接触で保持する時には、第1のエア流量F1のエアを溝101に流し、保持面10bにウエーハWを接触させて保持面10bによりウエーハWを保持する時には、第2のエア流量F2のエアを溝101に流すことで、ウエーハWの非接触保持と接触保持とを選択的に行うことができる。すなわち、搬送パッド及びエアが流れる配管経路を変更することなく、エアの流量を調節するだけで搬送パッド1によるウエーハWの接触保持と非接触保持とを選択的に行うことができる。また、搬送パッド1に吸引源を接続させる必要がなくなるため、装置構成を複雑なものとしなくても済むようになる。   Further, in the wafer transport method according to the present invention, the flow rate of the air that is ejected from the air ejection port 100 to the transport pad 1 and flows through the groove 101 is higher than the first air flow rate F1 and the first air flow rate F1. An adjustable flow rate adjusting unit 25 is connected to the second air flow rate F2, and when the transport pad 1 holds the wafer W in a non-contact manner by the holding surface 10b, the air of the first air flow rate F1 is supplied to the groove 101. When the wafer W is held in contact with the holding surface 10b and held by the holding surface 10b, non-contact holding and contact holding of the wafer W are performed by flowing air at the second air flow rate F2 into the groove 101. It can be done selectively. That is, it is possible to selectively perform contact holding and non-contact holding of the wafer W by the transport pad 1 only by adjusting the air flow rate without changing the transport pad and the piping path through which the air flows. Further, since it is not necessary to connect a suction source to the transport pad 1, the apparatus configuration does not have to be complicated.

なお、本発明に係るウエーハの搬送方法は上記実施形態に限定されるものではなく、また、添付図面に図示されている搬送パッド1の各構成の形状等についても、これに限定されず、本発明の効果を発揮できる範囲内で適宜変更可能である。例えば、反りが有るウエーハ又は表面に凸凹が形成されるウエーハを搬送パッド1により吸着保持する時には第2のエア流量よりも少なく保持面10bがウエーハに接触しない程度の吸着力を生み出す流量のエアを溝101に流し、非接触で吸着保持し、そのウエーハが研削された後は第1のエア流量を溝101に流し、非接触で吸着保持すると言うように、溝101に流すエア流量を変えるが非接触で保持してもよい。   The wafer transport method according to the present invention is not limited to the above embodiment, and the shape of each component of the transport pad 1 illustrated in the accompanying drawings is not limited to this, and the present invention is not limited to this. Modifications can be made as appropriate within the range where the effects of the invention can be exhibited. For example, when a wafer having warpage or a wafer having a surface with unevenness is sucked and held by the transport pad 1, the flow rate of air is less than the second air flow rate and generates a suction force that does not contact the wafer with the holding surface 10b. The flow rate of air flowing into the groove 101 is changed so that the first air flow rate is flowed into the groove 101 and is sucked and held without contact after the wafer has been ground. You may hold | maintain in non-contact.

1:搬送パッド 10:本体部 10b:保持面 10a:アーム部接続面
100:エア噴出口 101:溝 101a:一方の端 101b:溝の他方の端 102:接続口 109:ガイド部
20:アーム部 21:連結部材 21a:流路
23:エア供給路 24:エア供給源 25:流量調節部
3:移動手段
W:ウエーハ Wa:ウエーハの表面 Wb:ウエーハの裏面
T:保持テーブル T1:吸着部 T1a:保持面 T2:枠体
DESCRIPTION OF SYMBOLS 1: Transfer pad 10: Main-body part 10b: Holding surface 10a: Arm part connection surface 100: Air jet outlet 101: Groove 101a: One end 101b: The other end of a groove 102: Connection port 109: Guide part 20: Arm part 21: Connecting member 21a: Flow path
23: Air supply path 24: Air supply source 25: Flow rate adjusting unit 3: Moving means W: Wafer Wa: Wafer surface Wb: Wafer back surface T: Holding table T1: Adsorption unit T1a: Holding surface T2: Frame

Claims (2)

保持面でウエーハを保持する板状の搬送パッドであって、
該保持面に形成され該保持面に沿ってエアを噴出するエア噴出口と、該エア噴出口から噴出されたエアを該保持面の外周縁に向かって直線状に流す溝と、を備え、
該溝にエアを流すことで該溝の周囲に発生させる負圧の強弱を該溝に流すエアの流量で調整して該保持面でウエーハを保持する搬送パッド。
A plate-shaped transport pad for holding a wafer on a holding surface,
An air outlet that is formed on the holding surface and jets air along the holding surface; and a groove that linearly flows the air jetted from the air outlet toward the outer periphery of the holding surface,
A conveyance pad that holds the wafer on the holding surface by adjusting the strength of the negative pressure generated around the groove by flowing air in the groove with the flow rate of air flowing in the groove.
請求項1記載の搬送パッドを用いたウエーハの搬送方法であって、
該搬送パッドには、前記エア噴出口から噴出させ前記溝に流すエアの流量を第1のエア流量と該第1のエア流量より多い流量の第2のエア流量とに調節可能な流量調節部が接続され、
該搬送パッドは、前記保持面によりウエーハを非接触で保持する時には、該第1のエア流量のエアを該溝に流し、該保持面にウエーハを接触させて該保持面によりウエーハを保持する時には、該第2のエア流量のエアを該溝に流すことで、ウエーハの非接触保持と接触保持とを選択的に行うウエーハの搬送方法。
A wafer transport method using the transport pad according to claim 1,
The transfer pad is configured to adjust a flow rate of the air that is ejected from the air ejection port and flows through the groove to a first air flow rate and a second air flow rate that is larger than the first air flow rate. Is connected,
When the wafer is held in a non-contact manner by the holding surface, the transport pad allows the air having the first air flow rate to flow in the groove and the wafer is brought into contact with the holding surface to hold the wafer by the holding surface. A wafer transfer method for selectively performing non-contact holding and contact holding of the wafer by flowing air of the second air flow rate into the groove.
JP2016196281A 2016-10-04 2016-10-04 Transport method for transport pads and wafers Active JP6814009B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016196281A JP6814009B2 (en) 2016-10-04 2016-10-04 Transport method for transport pads and wafers
TW106130305A TWI723212B (en) 2016-10-04 2017-09-05 Transfer pad and wafer transfer method
CN201710864989.4A CN107895708B (en) 2016-10-04 2017-09-22 Wafer conveying method
KR1020170123523A KR102315301B1 (en) 2016-10-04 2017-09-25 Conveying pad and method for conveying wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016196281A JP6814009B2 (en) 2016-10-04 2016-10-04 Transport method for transport pads and wafers

Publications (2)

Publication Number Publication Date
JP2018060881A true JP2018060881A (en) 2018-04-12
JP6814009B2 JP6814009B2 (en) 2021-01-13

Family

ID=61803497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016196281A Active JP6814009B2 (en) 2016-10-04 2016-10-04 Transport method for transport pads and wafers

Country Status (4)

Country Link
JP (1) JP6814009B2 (en)
KR (1) KR102315301B1 (en)
CN (1) CN107895708B (en)
TW (1) TWI723212B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020032476A (en) * 2018-08-28 2020-03-05 リンク・パワー株式会社 Non-contact holding device, non-contact holding system, non-contact conveying system and non-contact holding method
CN111128841A (en) * 2018-10-31 2020-05-08 细美事有限公司 Die ejection apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109300832A (en) * 2018-08-28 2019-02-01 湖州景盛新能源有限公司 Suction means is used in a kind of production of solar battery sheet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005219922A (en) * 2004-02-09 2005-08-18 Koganei Corp Non-contact carrying device
JP2009032744A (en) * 2007-07-24 2009-02-12 Fluoro Mechanic Kk Bernoulli chuck
JP2013030677A (en) * 2011-07-29 2013-02-07 Dainippon Screen Mfg Co Ltd Substrate processing apparatus, substrate holding apparatus, and substrate holding method
JP2015208804A (en) * 2014-04-25 2015-11-24 トヨタ自動車株式会社 Noncontact type carrying hand

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5067762A (en) * 1985-06-18 1991-11-26 Hiroshi Akashi Non-contact conveying device
JPH08203984A (en) * 1995-01-25 1996-08-09 Oki Electric Ind Co Ltd Bernoulli chuck and conveying method of wafer using the same
JP2009032981A (en) * 2007-07-27 2009-02-12 Ihi Corp Non-contact carrier
KR100859835B1 (en) * 2008-05-13 2008-09-23 한국뉴매틱(주) Non-contact vacuum pads
JP2010253567A (en) * 2009-04-21 2010-11-11 Seiko Epson Corp Suction hold hand, suction hold method, and transfer device
KR101289973B1 (en) 2012-01-26 2013-07-26 금오공과대학교 산학협력단 Transfer uprising device using pueumatic system
JP2014204089A (en) 2013-04-09 2014-10-27 株式会社ディスコ Wafer transfer mechanism and wafer processing method
JP6250435B2 (en) * 2014-02-26 2017-12-20 光洋機械工業株式会社 Double-head surface grinding method
JP5908136B1 (en) * 2015-03-03 2016-04-26 株式会社ハーモテック Suction device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005219922A (en) * 2004-02-09 2005-08-18 Koganei Corp Non-contact carrying device
JP2009032744A (en) * 2007-07-24 2009-02-12 Fluoro Mechanic Kk Bernoulli chuck
JP2013030677A (en) * 2011-07-29 2013-02-07 Dainippon Screen Mfg Co Ltd Substrate processing apparatus, substrate holding apparatus, and substrate holding method
JP2015208804A (en) * 2014-04-25 2015-11-24 トヨタ自動車株式会社 Noncontact type carrying hand

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020032476A (en) * 2018-08-28 2020-03-05 リンク・パワー株式会社 Non-contact holding device, non-contact holding system, non-contact conveying system and non-contact holding method
CN111128841A (en) * 2018-10-31 2020-05-08 细美事有限公司 Die ejection apparatus
CN111128841B (en) * 2018-10-31 2023-08-22 细美事有限公司 Die ejection apparatus

Also Published As

Publication number Publication date
TW201816919A (en) 2018-05-01
KR20180037576A (en) 2018-04-12
CN107895708B (en) 2023-07-25
JP6814009B2 (en) 2021-01-13
CN107895708A (en) 2018-04-10
TWI723212B (en) 2021-04-01
KR102315301B1 (en) 2021-10-19

Similar Documents

Publication Publication Date Title
JP6853646B2 (en) Robot hand and transfer robot
US8506363B2 (en) Substrate holder and substrate holding method
KR102279560B1 (en) Conveyance apparatus
JP2018060881A (en) Carrier pad and carrying method of wafer
JP2009028862A (en) Non-contact carrier
JP6302758B2 (en) Chuck table
TWI669201B (en) Cutting device
JP2009032744A (en) Bernoulli chuck
JP3383739B2 (en) Work holding device
JP5989501B2 (en) Transport method
JP6317941B2 (en) Cutting equipment
CN107611070B (en) Conveying unit
JP5384305B2 (en) Work transfer device
JP6716136B2 (en) Fluid flow former and non-contact transfer device
JP6873842B2 (en) Cutting equipment
JP2014150206A (en) Conveyance device of plate-like material
JP3443375B2 (en) Transfer device
JP6207366B2 (en) Two-fluid nozzle
JP2012000706A (en) Holder
JP2017112255A (en) Transport device
JP7143024B2 (en) Chuck table and wafer processing method
JP2015170719A (en) Conveyance device and cutting device for plate-like object
JP2022163856A (en) Conveyance device
JP2020061458A (en) Conveying device for plate type workpiece and conveying method
JP2005322782A (en) Thin-sheet rotation processing apparatus and its method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190814

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201218

R150 Certificate of patent or registration of utility model

Ref document number: 6814009

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250