JP2018012166A - Polishing device - Google Patents

Polishing device Download PDF

Info

Publication number
JP2018012166A
JP2018012166A JP2016143436A JP2016143436A JP2018012166A JP 2018012166 A JP2018012166 A JP 2018012166A JP 2016143436 A JP2016143436 A JP 2016143436A JP 2016143436 A JP2016143436 A JP 2016143436A JP 2018012166 A JP2018012166 A JP 2018012166A
Authority
JP
Japan
Prior art keywords
wafer
cross
sectional shape
polishing
surface plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016143436A
Other languages
Japanese (ja)
Other versions
JP6765887B2 (en
Inventor
英信 前原
Eishin Maehara
英信 前原
井上 裕介
Yusuke Inoue
裕介 井上
秀明 吉原
Hideaki Yoshihara
秀明 吉原
徹 山浦
Toru Yamaura
徹 山浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SpeedFam Co Ltd
Original Assignee
SpeedFam Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SpeedFam Co Ltd filed Critical SpeedFam Co Ltd
Priority to JP2016143436A priority Critical patent/JP6765887B2/en
Priority to TW106120827A priority patent/TWI752045B/en
Priority to KR1020170081242A priority patent/KR102395405B1/en
Priority to CN201710576177.XA priority patent/CN107639528B/en
Publication of JP2018012166A publication Critical patent/JP2018012166A/en
Application granted granted Critical
Publication of JP6765887B2 publication Critical patent/JP6765887B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/02Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent
    • B24B49/04Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent involving measurement of the workpiece at the place of grinding during grinding operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/005Control means for lapping machines or devices
    • B24B37/013Devices or means for detecting lapping completion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/12Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving optical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polishing device which can polish a wafer so that a cross section shape of the wafer becomes a targeted cross section shape according to the cross section shape of the wafer in polishing.SOLUTION: A polishing device 10 includes: an upper surface plate 21; a lower surface plate 22; a sun gear 23; an internal gear 24; and a carrier plate 30. The carrier plate 30 is autorotated or revolved by the sun gear 23 and the internal gear 24, and both surfaces of a wafer W placed within a workpiece holding hole 30A of the carrier plate 30 are polished. The polishing device 10 includes: a shape measuring device 100 which measures a cross section shape of the wafer W in polishing; and a control device 300 which controls the polishing according to the cross section shape measured by the shape measuring device 100.SELECTED DRAWING: Figure 1

Description

この発明は、例えばシリコンウエーハなどのワークの表面を研磨する研磨装置に関する。   The present invention relates to a polishing apparatus that polishes the surface of a workpiece such as a silicon wafer.

従来から、ウエーハを保持したキャリアプレートを自転及び公転をさせてウエーハの両面を研磨する両面研磨装置が知られている(特許文献1参照)。   2. Description of the Related Art Conventionally, there is known a double-side polishing apparatus that polishes both sides of a wafer by rotating and revolving a carrier plate holding a wafer (see Patent Document 1).

係る両面研磨装置は、研磨加工中のウエーハの厚みが計測可能な厚み計測器と、計測用の貫通した穴を有する上定盤と、下定盤と、サンギアと、インターナルギアと、キャリアプレートなどを備え、上定盤と下定盤とでキャリアプレートを挟み込むとともにこのキャリアプレートをサンギア及びインターナルギアに噛合させ、このサンギア及びインターナルギアを回転させることによってキャリアプレートを自転及び公転させていき、さらに上定盤及び下定盤を回転させていくことにより、キャリアプレートに保持されたウエーハの両面を研磨していくものである。   Such a double-side polishing apparatus includes a thickness measuring instrument capable of measuring the thickness of a wafer being polished, an upper surface plate having a through hole for measurement, a lower surface plate, a sun gear, an internal gear, a carrier plate, and the like. The carrier plate is sandwiched between the upper surface plate and the lower surface plate, and the carrier plate is engaged with the sun gear and the internal gear, and the carrier plate is rotated and revolved by rotating the sun gear and the internal gear. By rotating the plate and the lower surface plate, both surfaces of the wafer held by the carrier plate are polished.

また、この両面研磨装置は、キャリアプレートを自転のみさせながらウエーハの両面を研磨する研磨工程を有し、この研磨工程中にウエーハの所定の位置における厚みを計測する計測工程と、この計測工程の計測結果に基づいて研磨終了時期を判断する判定工程とを有している。   Further, the double-side polishing apparatus has a polishing step of polishing both surfaces of the wafer while only rotating the carrier plate, a measurement step of measuring the thickness at a predetermined position of the wafer during the polishing step, And a determination step of determining the polishing end time based on the measurement result.

特開2015−47656号公報JP 2015-47656 A

しかしながら、このような研磨装置にあっては、研磨工程中にウエーハの所定の位置における厚みを計測して研磨終了時期を判断するだけであるから、研磨加工中のウエーハの断面形状に応じて、目標とする断面形状となるようにウエーハを研磨していくことができないという問題がある。   However, in such a polishing apparatus, it is only necessary to determine the polishing end timing by measuring the thickness of the wafer at a predetermined position during the polishing process, so according to the cross-sectional shape of the wafer being polished, There is a problem that the wafer cannot be polished so as to have a target cross-sectional shape.

研磨加工においては、ウエーハを所望の厚さに仕上げるだけではなく、目標とする所望の断面形状に仕上げることも求められている。ウエーハの断面形状はSFQRやGBIR等の指標で評価されるが、これらの指標による条件を満たした所望の断面形状を有するウエーハを得ることにより、その後の半導体デバイス製造工程で製造される半導体デバイスの歩留まりを向上させることができる。
しかしながら、ウエーハの厚さを計測するだけではウエーハの断面形状が所望の断面形状に加工されたか否かを判断することができない。そこで、所望の断面形状を有するウエーハを得るため、研磨加工中にウエーハの断面形状を測定し、測定されたウエーハの断面形状に応じて所望の断面形状となるように加工条件を設定し、ウエーハを研磨加工していくことができる研磨装置が求められていた。
In the polishing process, it is required not only to finish the wafer to a desired thickness, but also to finish the wafer to a desired desired cross-sectional shape. The cross-sectional shape of a wafer is evaluated by an index such as SFQR or GBIR. By obtaining a wafer having a desired cross-sectional shape that satisfies the conditions of these indexes, a semiconductor device manufactured in a subsequent semiconductor device manufacturing process is obtained. Yield can be improved.
However, it is impossible to determine whether or not the cross-sectional shape of the wafer has been processed into a desired cross-sectional shape only by measuring the thickness of the wafer. Therefore, in order to obtain a wafer having a desired cross-sectional shape, the cross-sectional shape of the wafer is measured during polishing, and processing conditions are set so as to obtain a desired cross-sectional shape according to the measured cross-sectional shape of the wafer. There has been a demand for a polishing apparatus capable of polishing the substrate.

また、ウエーハの断面形状は、上定盤、下定盤、サンギア及びインターナルギアの回転速度、加工荷重、研磨スラリーの供給量や温度等の任意に設定可能な加工条件と、上定盤及び下定盤等の加工面の状態(温度変化や摩耗による形状変化)、研磨スラリーの実温度、ウエーハの自転状態等の研磨進行に伴い随時変動する加工状態とによって変化する。このため、同一の加工条件でウエーハを研磨加工したとしても、加工状態が同一になるとは限らない。つまり、同一の加工条件でウエーハを研磨加工したとしても加工状態は変動するため、所望の断面形状を有するウエーハを定常的に得ることができない。そのため、研磨加工中にウエーハの断面形状を測定し、所望の断面形状でないときは加工条件を変更する必要がある。   In addition, the cross-sectional shape of the wafer is determined by the upper and lower surface plates, the lower surface plate, the rotation speed of the sun gear and the internal gear, the processing load, the supply amount and temperature of the polishing slurry, and the like. It changes depending on the state of the processing surface such as temperature change (shape change due to temperature change or wear), the actual temperature of the polishing slurry, and the processing state that changes as the polishing progresses, such as the rotation of the wafer. For this reason, even if the wafer is polished under the same processing conditions, the processing state is not always the same. That is, even if the wafer is polished under the same processing conditions, the processing state fluctuates, so that a wafer having a desired cross-sectional shape cannot be constantly obtained. Therefore, it is necessary to measure the cross-sectional shape of the wafer during the polishing process, and to change the processing conditions when the cross-sectional shape is not a desired one.

そこで、所望の断面形状を有するウエーハを得るため、研磨加工中にウエーハの断面形状を測定し、測定されたウエーハの断面形状に応じて所望の断面形状となるように加工条件を設定しウエーハを研磨していくことができる研磨装置が求められていた。   Therefore, in order to obtain a wafer having a desired cross-sectional shape, the cross-sectional shape of the wafer is measured during the polishing process, and processing conditions are set so as to obtain a desired cross-sectional shape according to the measured cross-sectional shape of the wafer. There has been a demand for a polishing apparatus capable of polishing.

この発明の目的は、研磨加工中にウエーハの断面形状を測定し、測定されたウエーハの断面形状に応じて、目標とする断面形状となるようにウエーハを研磨加工していくことができる研磨装置を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a polishing apparatus capable of measuring the cross-sectional shape of a wafer during polishing and polishing the wafer so as to obtain a target cross-sectional shape according to the measured cross-sectional shape of the wafer. Is to provide.

本発明は、回転可能な定盤を有する研磨機によりワークを研磨する研磨装置であって、研磨加工中の前記ワークの断面形状を測定する形状測定装置と、該形状測定装置が測定したワークの断面形状に基づいて、該断面形状が目標断面形状となるように研磨加工を制御する制御装置とを備えていることを特徴とする。   The present invention is a polishing apparatus for polishing a workpiece by a polishing machine having a rotatable surface plate, a shape measuring device for measuring a cross-sectional shape of the workpiece during polishing, and a workpiece measured by the shape measuring device. And a control device for controlling polishing so that the cross-sectional shape becomes a target cross-sectional shape based on the cross-sectional shape.

この発明によれば、研磨加工中にワークの断面形状を測定し、測定されたワークの断面形状に応じて、目標とする断面形状となるようにワークを研磨していくことができる。そのため、ワークの断面形状が目標とする断面形状に加工されているか否かを把握しながら研磨加工を進めることができ、目標とする断面形状でないときは加工条件を研磨加工中に変更することができる。これにより、定常的に目標とする断面形状を有するワークを得ることが可能となる。   According to this invention, the cross-sectional shape of the workpiece can be measured during the polishing process, and the workpiece can be polished so as to have a target cross-sectional shape according to the measured cross-sectional shape of the workpiece. Therefore, it is possible to proceed with polishing while grasping whether or not the cross-sectional shape of the workpiece has been processed into the target cross-sectional shape. If the cross-sectional shape is not the target cross-sectional shape, the processing conditions can be changed during polishing. it can. As a result, it is possible to obtain a workpiece having a target cross-sectional shape on a regular basis.

この発明に係る研磨装置の実施例の構成を示した説明図である。It is explanatory drawing which showed the structure of the Example of the grinding | polishing apparatus based on this invention. 図1に示すサンギアとインターナルギアとキャリアプレートの位置関係を示した説明図である。It is explanatory drawing which showed the positional relationship of the sun gear shown in FIG. 1, an internal gear, and a carrier plate. 測定されたウエーハの断面形状と目標とするウエーハの断面形状を比較した結果に応じた最適なレシピを表示したテーブルの説明図である。It is explanatory drawing of the table which displayed the optimal recipe according to the result of having compared the cross-sectional shape of the measured wafer, and the cross-sectional shape of the target wafer. 各レシピの加工条件を表示したテーブルの説明図である。It is explanatory drawing of the table which displayed the process conditions of each recipe. ウエーハの断面形状及び断面形状に基づく判断形状とP−V値を示した説明図である。It is explanatory drawing which showed the judgment shape and PV value based on the cross-sectional shape and cross-sectional shape of a wafer. 第1実施例の動作を示すフロー図である。It is a flowchart which shows operation | movement of 1st Example. 図6のメイン加工ステップ処理を示すフロー図である。It is a flowchart which shows the main process step process of FIG. 第2実施例の動作を示すフロー図である。It is a flowchart which shows operation | movement of 2nd Example.

以下、この発明に係る研磨装置の実施の形態である実施例を図面に基づいて説明する。
[第1実施例]
Hereinafter, an example which is an embodiment of a polisher concerning this invention is described based on a drawing.
[First embodiment]

図1に示す研磨装置10は、ワークの1つであるウエーハ(シリコンウエーハ)Wの両面を研磨する研磨機20と、研磨加工中のウエーハWの径方向の断面形状を測定する形状測定装置100と、この形状測定装置100が測定したウエーハWの径方向の断面形状に基づいて、該断面形状が目標とする断面形状となるように後述する駆動装置M1〜M5などを制御する制御装置300などとを備えている。200は、ウエーハWの径方向の断面形状に応じて、この断面形状を目標とする断面形状にするための適正な加工条件を示すレシピを記憶した記憶部である。
[研磨機]
A polishing apparatus 10 shown in FIG. 1 includes a polishing machine 20 that polishes both surfaces of a wafer (silicon wafer) W that is one of workpieces, and a shape measuring apparatus 100 that measures a cross-sectional shape in the radial direction of the wafer W being polished. Based on the radial cross-sectional shape of the wafer W measured by the shape measuring device 100, a control device 300 for controlling driving devices M1 to M5 and the like which will be described later so that the cross-sectional shape becomes a target cross-sectional shape. And. Reference numeral 200 denotes a storage unit that stores a recipe indicating appropriate processing conditions for making the cross-sectional shape a target cross-sectional shape according to the cross-sectional shape in the radial direction of the wafer W.
[Polishing machine]

研磨機20は、上定盤21及び下定盤22と、この上定盤21及び下定盤22の中心部に回転自在に配置されたサンギア23と、上定盤21及び下定盤22の外周側に配置されたインターナルギア24と、上定盤21と下定盤22との間に配置され且つワーク保持孔30A(図2参照)が設けられたキャリアプレート30とを有している。また、上定盤21の下面には研磨部材25が設けられており、下定盤22の上面には研磨部材26が設けられている。   The polishing machine 20 includes an upper surface plate 21 and a lower surface plate 22, a sun gear 23 rotatably disposed at the center of the upper surface plate 21 and the lower surface plate 22, and an outer peripheral side of the upper surface plate 21 and the lower surface plate 22. The internal gear 24 is disposed, and the carrier plate 30 is disposed between the upper surface plate 21 and the lower surface plate 22 and provided with a work holding hole 30A (see FIG. 2). A polishing member 25 is provided on the lower surface of the upper surface plate 21, and a polishing member 26 is provided on the upper surface of the lower surface plate 22.

キャリアプレート30は、図2に示すようにサンギア23及びインターナルギア24に噛合し、このサンギア23及びインターナルギア24の回転により自転及び公転していくようになっている。このキャリアプレート30の自転及び公転により、キャリアプレート30のワーク保持孔30A内に配置されたウエーハWの両面が研磨部材25,26により研磨されていくようになっている。   As shown in FIG. 2, the carrier plate 30 meshes with the sun gear 23 and the internal gear 24, and rotates and revolves as the sun gear 23 and the internal gear 24 rotate. Due to the rotation and revolution of the carrier plate 30, both surfaces of the wafer W disposed in the work holding hole 30 </ b> A of the carrier plate 30 are polished by the polishing members 25 and 26.

上定盤21は、図1に示すように、支持スタッド40及び取付部材41を介してロッド42に固定されている。ロッド42は駆動装置M1によって上下動し、ロッド42の上下動により上定盤21が一体となって上下動するようになっている。   As shown in FIG. 1, the upper surface plate 21 is fixed to a rod 42 via a support stud 40 and a mounting member 41. The rod 42 is moved up and down by the driving device M1, and the upper surface plate 21 is moved up and down integrally by the vertical movement of the rod 42.

一方、サンギア23の中心部の穴23Aには駆動軸43の上部43Aが貫通するとともに、この上部43Aにサンギア23が固定されており、駆動軸43と一体となってサンギア23が回転していくようになっている。駆動軸43は駆動装置M4によって回転され、サンギア23は駆動装置M4によって駆動軸43と一体となって回転される。   On the other hand, the upper portion 43A of the drive shaft 43 passes through the hole 23A in the center of the sun gear 23, and the sun gear 23 is fixed to the upper portion 43A, and the sun gear 23 rotates integrally with the drive shaft 43. It is like that. The drive shaft 43 is rotated by the drive device M4, and the sun gear 23 is rotated integrally with the drive shaft 43 by the drive device M4.

駆動軸43の穴内には、駆動装置M2によって回転される駆動軸44が貫挿され、この駆動軸44の上端部44Aが駆動軸43の上端から突出している。この上端部44Aにはドライバ45が固定されており、ドライバ45は駆動軸44と一体となって回転していく。ドライバ45の外周面には、上定盤21に設けたフック46が係合してドライバ45の回転によって一体となって上定盤21が回転していくようになっている。また、フック46はドライバ45の外周面に対して上下方向に移動可能となっており、これによって、上定盤21はドライバ45に対して上下動可能となっている。   A drive shaft 44 rotated by the drive device M <b> 2 is inserted into the hole of the drive shaft 43, and an upper end portion 44 </ b> A of the drive shaft 44 projects from the upper end of the drive shaft 43. A driver 45 is fixed to the upper end portion 44A, and the driver 45 rotates integrally with the drive shaft 44. A hook 46 provided on the upper surface plate 21 is engaged with the outer peripheral surface of the driver 45, and the upper surface plate 21 is rotated integrally with the rotation of the driver 45. Further, the hook 46 can move in the vertical direction with respect to the outer peripheral surface of the driver 45, and thus the upper surface plate 21 can move up and down with respect to the driver 45.

すなわち、上定盤21は、ロッド42の上下動により上下動し、駆動軸44の回転により回転していく。つまり、上定盤21は駆動装置M2によって駆動軸44と一体となって回転される。   That is, the upper surface plate 21 moves up and down by the vertical movement of the rod 42 and rotates by the rotation of the drive shaft 44. That is, the upper surface plate 21 is rotated integrally with the drive shaft 44 by the drive device M2.

下定盤22の中心部の下部には、駆動軸49が形成され、この駆動軸49の中に駆動軸43が回転自在に配置されている。駆動軸49は駆動装置M3によって回転され、下定盤22は駆動装置M3によって駆動軸49と一体となって回転される。   A drive shaft 49 is formed in the lower part of the center portion of the lower surface plate 22, and the drive shaft 43 is rotatably disposed in the drive shaft 49. The drive shaft 49 is rotated by the drive device M3, and the lower surface plate 22 is rotated integrally with the drive shaft 49 by the drive device M3.

インターナルギア24には、駆動軸47が形成されており、この駆動軸47の中に駆動軸49が回転自在に配置されている。駆動軸47は駆動装置M5によって回転され、インターナルギア24は駆動装置M5によって駆動軸47と一体となって回転される。   A drive shaft 47 is formed in the internal gear 24, and a drive shaft 49 is rotatably disposed in the drive shaft 47. The drive shaft 47 is rotated by the drive device M5, and the internal gear 24 is rotated integrally with the drive shaft 47 by the drive device M5.

上定盤21には、上定盤21の中心から径方向に所定距離離間した位置に計測孔50が形成されている。計測孔50は、上定盤21及び研磨部材25を貫通して形成され、測定光である赤外レーザ光を透過する窓部材51が装着されている。また、上定盤21には研磨スラリーを供給する供給孔(図示せず)が設けられている。
[形状測定装置]
A measurement hole 50 is formed in the upper surface plate 21 at a position spaced a predetermined distance in the radial direction from the center of the upper surface plate 21. The measurement hole 50 is formed through the upper surface plate 21 and the polishing member 25, and is fitted with a window member 51 that transmits infrared laser light as measurement light. The upper surface plate 21 is provided with a supply hole (not shown) for supplying polishing slurry.
[Shape measuring device]

形状測定装置100は、図1に示すように、上定盤21の計測孔50に装着された窓部材51を介してウエーハWに向けて測定光である赤外レーザ光を照射するとともにウエーハWで反射した反射光を受光する光学ヘッド101と、光学ヘッド101から赤外レーザ光を照射させるためのレーザ発振器102と、ウエーハWの径方向の断面形状を求める演算装置110とを有している。なお、光学ヘッド101は上定盤21に設けられており、上定盤21とともに回転するようになっている。
[演算装置]
As shown in FIG. 1, the shape measuring apparatus 100 irradiates the wafer W with infrared laser light as measurement light through a window member 51 mounted in the measurement hole 50 of the upper surface plate 21 and the wafer W. The optical head 101 that receives the reflected light reflected by the optical head 101, the laser oscillator 102 for irradiating the infrared laser light from the optical head 101, and the arithmetic unit 110 for obtaining the cross-sectional shape in the radial direction of the wafer W are provided. . The optical head 101 is provided on the upper surface plate 21 and rotates together with the upper surface plate 21.
[Calculator]

演算装置110は、光学ヘッド101の反射光の受光に基づいてウエーハWの計測厚さを求める厚さ演算部111と、ウエーハWの計測厚さが求められた面内位置をサンギア23及びインターナルギア24の回転位置から求める位置演算部112と、厚さ演算部111が求めたウエーハWの計測厚さと位置演算部112が求めた面内位置とからウエーハWの径方向の断面形状を求める断面形状演算部113とを有している。
[厚さ演算部]
The computing device 110 includes a thickness computing unit 111 that obtains the measured thickness of the wafer W based on the reception of reflected light from the optical head 101, and sets the in-plane position from which the measured thickness of the wafer W is obtained to the sun gear 23 and the internal gear. The cross-sectional shape for obtaining the cross-sectional shape in the radial direction of the wafer W from the position calculation unit 112 obtained from the 24 rotational positions, the measured thickness of the wafer W obtained by the thickness calculation unit 111 and the in-plane position obtained by the position calculation unit 112 And an arithmetic unit 113.
[Thickness calculator]

厚さ演算部111は、例えば光反射干渉法で測定するものであり、光学ヘッド101の反射光の受光に基づいて、高速に波長掃引する波長可変レーザ光のウエーハWの面での反射強度を求め、この反射強度から反射の波長分散(ウエーハWの表面と裏面で反射する光の干渉の様子)を再構築して周波数解析することにより、ウエーハWの計測厚さを求めるものである。
[位置演算部]
The thickness calculation unit 111 measures, for example, by light reflection interferometry. Based on the reception of the reflected light of the optical head 101, the thickness calculation unit 111 calculates the reflection intensity on the surface of the wafer W of the wavelength tunable laser beam that sweeps the wavelength at high speed. The measured thickness of the wafer W is obtained by reconstructing the wavelength dispersion of reflection (state of interference of light reflected on the front and back surfaces of the wafer W) from this reflection intensity and analyzing the frequency.
[Position calculation unit]

位置演算部112は、サンギア23及びインターナルギア24の回転位置に基づいて、キャリアプレート30の位置と回転数を求める。すなわち、キャリアプレート30の公転位置と自転位置とを求め、この公転位置と自転位置とに基づいてウエーハWの面内位置を求める。これにより、厚さ演算部111により求められたウエーハWの計測厚さが測定された面内位置が求められる。
[断面形状演算部]
The position calculation unit 112 obtains the position and rotation speed of the carrier plate 30 based on the rotation positions of the sun gear 23 and the internal gear 24. That is, the revolution position and the rotation position of the carrier plate 30 are obtained, and the in-plane position of the wafer W is obtained based on the revolution position and the rotation position. Thereby, the in-plane position where the measured thickness of the wafer W obtained by the thickness calculator 111 is measured is obtained.
[Cross-section shape calculation unit]

断面形状演算部113は、厚さ演算部111が求めたウエーハWの計測厚さと、位置演算部112が求めたウエーハWの面内位置とに基づいてウエーハWの径方向の断面形状を求めていく。   The cross-sectional shape calculation unit 113 obtains the radial cross-sectional shape of the wafer W based on the measured thickness of the wafer W obtained by the thickness calculation unit 111 and the in-plane position of the wafer W obtained by the position calculation unit 112. Go.

ウエーハWの径方向の断面形状は任意の方法で求めることができる。ここでは、例えば図5に示すように、ウエーハWの直径が300mmの場合、0〜150mmの区間(ウエーハWの半径分)の形状を求め、この区間の形状を150mmの地点を中心にミラー反転させて、ウエーハWの径方向の断面形状を求める。また、ミラー反転させず、0〜300mmの区間(ウエーハWの直径分)の形状を求め、ウエーハWの径方向の断面形状とすることもできる。次に、求めたウエーハWの径方向の断面形状からウエーハWの判断形状及びP−V値を求める。ウエーハWの「判断形状」とは、ウエーハWの径方向の断面形状の傾向に基づいて分類された類型のことである。求めたウエーハWの径方向の断面形状のうちウエーハWの半径分の断面形状を任意の区間に分割し、分割した区間の断面形状の傾向に基づいて、図5に示すように、凹凸、並びに逆V字形、W字形、M字形、U字形などを組み合わせた類型から該当する類型を選択し、この類型をウエーハWの「判断形状」とする。P−V値とは、図5に示すようにウエーハWの最大計測厚さPと最小計測厚さVとの差である。なお、P−V値は制御装置300が求めてもよい。
[制御装置]
The cross-sectional shape of the wafer W in the radial direction can be obtained by an arbitrary method. Here, for example, as shown in FIG. 5, when the diameter of the wafer W is 300 mm, the shape of the section of 0 to 150 mm (for the radius of the wafer W) is obtained, and the shape of this section is mirror-inverted around the point of 150 mm. Thus, the cross-sectional shape in the radial direction of the wafer W is obtained. Further, the shape of the section of 0 to 300 mm (for the diameter of the wafer W) can be obtained without reversing the mirror, and the sectional shape in the radial direction of the wafer W can be obtained. Next, the determination shape and PV value of the wafer W are obtained from the radial cross-sectional shape of the wafer W obtained. The “judgment shape” of the wafer W is a type classified based on the tendency of the cross-sectional shape in the radial direction of the wafer W. Of the obtained cross-sectional shape in the radial direction of the wafer W, the cross-sectional shape corresponding to the radius of the wafer W is divided into arbitrary sections. Based on the tendency of the cross-sectional shape of the divided sections, as shown in FIG. A corresponding type is selected from types obtained by combining inverted V-shaped, W-shaped, M-shaped, U-shaped, etc., and this type is used as the “judgment shape” of the wafer W. The PV value is a difference between the maximum measured thickness P and the minimum measured thickness V of the wafer W as shown in FIG. Note that the control device 300 may obtain the PV value.
[Control device]

制御装置300は、求められたウエーハWの径方向の断面形状と目標とするウエーハWの断面形状を比較する。すなわち、求められたウエーハWの判断形状及びP−V値と目標とするウエーハWの判断形状及びP−V値とを比較し、その比較した結果に応じたレシピを記憶部200に記憶された図3に示すテーブル1から読み出し、さらに、読み出したレシピに応じた加工条件を図4に示すテーブル2から読み出し、この読み出した加工条件に基づいて各駆動装置M1〜M5の駆動の制御などの研磨加工の制御を行う。また、制御装置300は、演算装置110を制御するようにもなっている。
[記憶部]
The control device 300 compares the obtained cross-sectional shape in the radial direction of the wafer W with the target cross-sectional shape of the wafer W. That is, the determined shape and PV value of the wafer W is compared with the determined shape and PV value of the target wafer W, and a recipe corresponding to the comparison result is stored in the storage unit 200. 3 is read from the table 1 shown in FIG. 3, and the processing conditions corresponding to the read recipe are read from the table 2 shown in FIG. 4, and polishing such as control of driving of each of the driving devices M1 to M5 is performed based on the read processing conditions. Control processing. The control device 300 is also configured to control the arithmetic device 110.
[Storage unit]

記憶部200は、図3に示すように、求められたウエーハWの径方向の断面形状と、目標とする断面形状とを比較した結果に応じた最適なレシピを表示したテーブル1が記憶されている。   As shown in FIG. 3, the storage unit 200 stores a table 1 that displays an optimum recipe according to a result of comparing the obtained cross-sectional shape in the radial direction of the wafer W with a target cross-sectional shape. Yes.

また、記憶部200には、図4に示すように各レシピの加工条件を表示したテーブル2が記憶されている。   Further, the storage unit 200 stores a table 2 displaying the processing conditions of each recipe as shown in FIG.

加工条件は、上定盤21及び下定盤22の回転速度、サンギア23及びインターナルギア24の回転速度、上定盤21の加工荷重及び単位圧力、荷重スロープ、上定盤21及び下定盤22の加速時間、上定盤21及び下定盤22の減速時間、キャリアプレート30の自転及び公転の回転速度などである。   The machining conditions are the rotational speed of the upper surface plate 21 and the lower surface plate 22, the rotational speed of the sun gear 23 and the internal gear 24, the processing load and unit pressure of the upper surface plate 21, the load slope, and the acceleration of the upper surface plate 21 and the lower surface plate 22. These are the time, the deceleration time of the upper surface plate 21 and the lower surface plate 22, the rotational speed of rotation and revolution of the carrier plate 30, and the like.

最適な加工条件は、求められたウエーハWの径方向の断面形状を、効率よく目標の断面形状となるように研磨加工することができる加工条件を実験により予め求めておくものである。また、加工条件には研磨スラリーの種類、供給量及び温度等を入れてもよい。これらの加工条件を研磨加工中に変更することにより、研磨加工を制御することができる。
[動 作]
The optimum processing condition is obtained in advance by experiment to determine a processing condition capable of polishing the obtained cross-sectional shape in the radial direction of the wafer W so as to efficiently achieve the target cross-sectional shape. The processing conditions may include the type of polishing slurry, the supply amount, the temperature, and the like. By changing these processing conditions during the polishing process, the polishing process can be controlled.
[Operation]

次に、上記のように構成される研磨装置10の動作について、図6〜図8に示すフロー図に基づいて説明する。
ステップS1では、基本加工条件を選択する。基本加工条件とは、ウエーハWの研磨加工開始から後述する測定結果に基づくフィードバック処理が実施されるまでの間の研磨加工をするためのベースとなる加工条件を指す。まずは、予め設定されたベースとなる基本加工条件により、ウエーハWの研磨加工が開始されることになる。
Next, operation | movement of the grinding | polishing apparatus 10 comprised as mentioned above is demonstrated based on the flowchart shown in FIGS.
In step S1, basic processing conditions are selected. The basic processing conditions refer to processing conditions serving as a base for performing polishing processing from the start of polishing processing of the wafer W until feedback processing based on measurement results described later is performed. First, the polishing process of the wafer W is started according to a basic processing condition that is a preset base.

ステップS2では、ウエーハWをキャリアプレート30のワーク保持孔30A(図2参照)に装填する。そして、待避位置にある上定盤21を下降させて、ウエーハWを下定盤22と上定盤21とで挟み込む。   In step S2, the wafer W is loaded into the workpiece holding hole 30A (see FIG. 2) of the carrier plate 30. Then, the upper surface plate 21 in the retracted position is lowered, and the wafer W is sandwiched between the lower surface plate 22 and the upper surface plate 21.

ステップS3では、基本加工条件による両面研磨加工を開始させる。
ステップS4では、初期加工ステップ動作が行われる。すなわち、制御装置300による駆動装置M2,M3の制御により上定盤21及び下定盤22が低速回転されていくとともに、駆動装置M1の制御により低荷重で上定盤21が下方へ押圧される。これにより、上定盤21は低荷重でウエーハWを押圧していく。また、制御装置300による駆動装置M4,M5の制御により、サンギア23及びインターナルギア24が低速回転されていき、キャリアプレート30が低速で自転及び公転していく。
In step S3, double-side polishing is started under basic processing conditions.
In step S4, an initial machining step operation is performed. That is, the upper surface plate 21 and the lower surface plate 22 are rotated at a low speed by the control of the driving devices M2 and M3 by the control device 300, and the upper surface plate 21 is pressed downward with a low load by the control of the driving device M1. Thereby, the upper surface plate 21 presses the wafer W with a low load. Further, the sun gear 23 and the internal gear 24 are rotated at a low speed by the control of the driving devices M4 and M5 by the control device 300, and the carrier plate 30 rotates and revolves at a low speed.

上定盤21及び下定盤22の低速回転と上定盤21の低荷重とによりウエーハWの両面が研磨されていく。また、キャリアプレート30の低速による自転及び公転によりウエーハWの両面が研磨されていく。
なお、研磨が行われている期間は、研磨スラリーが上定盤21に設けられた供給孔(図示せず)から所定のタイミングで供給されていく。
Both surfaces of the wafer W are polished by the low speed rotation of the upper surface plate 21 and the lower surface plate 22 and the low load of the upper surface plate 21. Further, both surfaces of the wafer W are polished by the rotation and revolution at a low speed of the carrier plate 30.
During the polishing period, the polishing slurry is supplied at a predetermined timing from a supply hole (not shown) provided in the upper surface plate 21.

ステップS4の処理動作が所定時間行われると、ステップS5へ進む。
ステップS5では、低速回転されている上定盤21及び下定盤22が除々に回転速度を上昇されて中速回転される。また、上定盤21が中荷重でさらに下方へ押圧される。これにより、上定盤21は中荷重でウエーハWを押圧していく。また、低速回転されているサンギア23及びインターナルギア24の回転速度が徐々に上昇されて中速回転されていき、キャリアプレート30が中速で自転及び公転していく。そして、上定盤21及び下定盤22の中速回転と上定盤21の中荷重とによりウエーハWの両面が研磨される。また、キャリアプレート30の中速による自転及び公転によりウエーハWの両面が研磨される。そして、ステップS4と同様にステップS5の処理動作が所定時間行われるとステップS20へと進む。
When the processing operation in step S4 is performed for a predetermined time, the process proceeds to step S5.
In step S5, the upper surface plate 21 and the lower surface plate 22 that are rotated at a low speed are gradually rotated at a medium speed by gradually increasing the rotation speed. Further, the upper surface plate 21 is further pressed downward with a medium load. Thereby, the upper surface plate 21 presses the wafer W with a medium load. Further, the rotational speeds of the sun gear 23 and the internal gear 24 that are rotated at a low speed are gradually increased to be rotated at a medium speed, and the carrier plate 30 rotates and revolves at a medium speed. Then, both surfaces of the wafer W are polished by the medium speed rotation of the upper surface plate 21 and the lower surface plate 22 and the medium load of the upper surface plate 21. Further, both surfaces of the wafer W are polished by the rotation and revolution at the medium speed of the carrier plate 30. Then, when the processing operation of step S5 is performed for a predetermined time as in step S4, the process proceeds to step S20.

ステップS20は、メイン加工ステップ処理を行うものであり、このメイン加工ステップ処理は、図7に示すように、ステップS21ないしステップS26の処理動作、すなわちフィードバック処理によって行われる。以下に各ステップS21〜ステップS26の処理動作について説明する。   Step S20 performs a main machining step process, and this main machining step process is performed by the processing operation of steps S21 to S26, that is, a feedback process, as shown in FIG. Hereinafter, the processing operations of steps S21 to S26 will be described.

ステップS21では、中速回転されている上定盤21及び下定盤22は除々に回転速度が上昇されて高速回転されていく。また、上定盤21が高荷重で下方へ押圧される。これにより、上定盤21が高荷重でウエーハWを押圧していく。また、中速回転されているサンギア23及びインターナルギア24の回転速度が徐々に上昇されて高速回転されていき、キャリアプレート30が高速で自転及び公転していく。そして、上定盤21及び下定盤22の高速回転と上定盤21の高荷重とによりウエーハWの両面が研磨されていく。また、キャリアプレート30の高速による自転及び公転によりウエーハWの両面が研磨されていく。   In step S21, the upper surface plate 21 and the lower surface plate 22 rotated at medium speed are gradually rotated at a high speed with the rotational speed gradually increased. Further, the upper surface plate 21 is pressed downward with a high load. Thereby, the upper surface plate 21 presses the wafer W with a high load. Further, the rotational speeds of the sun gear 23 and the internal gear 24 that are rotating at medium speed are gradually increased and rotated at high speed, and the carrier plate 30 rotates and revolves at high speed. Then, both surfaces of the wafer W are polished by the high-speed rotation of the upper surface plate 21 and the lower surface plate 22 and the high load of the upper surface plate 21. Further, both surfaces of the wafer W are polished by the high speed rotation and revolution of the carrier plate 30.

一方、レーザ発振器102によって光学ヘッド101から赤外レーザ光が下方へ照射され、計測孔50の窓部材51を介してウエーハWを照射し、このウエーハWの表面と裏面とで反射した反射光が計測孔50の窓部材51を介して光学ヘッド101へ入射する。   On the other hand, infrared laser light is irradiated downward from the optical head 101 by the laser oscillator 102, and the wafer W is irradiated through the window member 51 of the measurement hole 50, and reflected light reflected by the front and back surfaces of the wafer W is reflected. The light enters the optical head 101 through the window member 51 of the measurement hole 50.

ステップS22では、光学ヘッド101が反射光を受光するごとに、受光したウエーハWの表面と裏面の反射光との干渉光に基づいて厚さ演算部111がウエーハWの計測厚さを求めていく。他方、演算装置110の位置演算部112は、その計測厚さが求められたウエーハWの面内位置をそれぞれ求めていく。   In step S22, every time the optical head 101 receives reflected light, the thickness calculation unit 111 obtains the measured thickness of the wafer W based on the received interference light between the reflected light on the front surface and the back surface of the wafer W. . On the other hand, the position calculation unit 112 of the calculation device 110 calculates the in-plane position of the wafer W from which the measured thickness is calculated.

演算装置110の断面形状演算部113は、厚さ演算部111が求めたウエーハWのそれぞれの計測厚さと、これら計測厚さが求められたウエーハWのそれぞれの面内位置とに基づいて、ウエーハWの径方向の断面形状を求めていく。すなわち、ウエーハWの径方向の断面形状は、ウエーハWのそれぞれの面内位置の計測厚さから求めていく。また、求められたウエーハWの径方向の断面形状に基づき、P−V値を求める。さらに、求められたウエーハWの計測厚さに基づきウエーハWの厚さを求める。ここで、「ウエーハWの計測厚さ」は、測定された厚さひとつひとつを指し、データ数は複数で断面形状の描画に使用される。また、「ウエーハWの厚さ」は、測定されたウエーハWの計測厚さを基に求められた現時点でのウエーハ計測厚さの代表値(移動平均値など)を指し、データ数は単数で目標厚さとの比較に使用される。   The cross-sectional shape calculation unit 113 of the calculation device 110 is based on each measured thickness of the wafer W obtained by the thickness calculation unit 111 and each in-plane position of the wafer W from which the measured thickness is obtained. The cross-sectional shape in the radial direction of W is obtained. That is, the radial cross-sectional shape of the wafer W is obtained from the measured thickness at each in-plane position of the wafer W. Further, the PV value is obtained based on the obtained radial cross-sectional shape of the wafer W. Further, the thickness of the wafer W is obtained based on the measured thickness of the wafer W obtained. Here, the “measured thickness of the wafer W” refers to each measured thickness, and a plurality of data are used for drawing a cross-sectional shape. “Wafer W thickness” refers to the representative value (moving average value, etc.) of the current wafer thickness measured based on the measured thickness of the wafer W. The number of data is single. Used for comparison with target thickness.

すなわち、ステップS22では、ウエーハWの径方向の断面形状、図5に示すP−V値、ウエーハWの厚さなどをウエーハWの両面研磨加工中にリアルタイムで求めていく。   That is, in step S22, the cross-sectional shape of the wafer W in the radial direction, the PV value shown in FIG. 5, the thickness of the wafer W, and the like are obtained in real time during the double-side polishing of the wafer W.

ステップS221では、求められたウエーハWの径方向の断面形状と、予め定めた基準となる判断形状とを比較し、求められたウエーハWの径方向の断面形状がどの判断形状に該当するかを決定する。すなわち、求められたウエーハWの半径分の断面形状を任意の区間に分割し、例えばウエーハWの外周部、内周部、外周部と内周部との間の中間周部などに分割し、これら分割した区間における断面形状の傾向に基づいて、図5に示すように、凹凸、並びに逆V字形、W字形、M字形、U字形などを組み合わせた類型から該当する類型をウエーハWの判断形状と決定する。   In step S221, the obtained sectional shape in the radial direction of the wafer W is compared with a predetermined reference shape to determine which judgment shape corresponds to the obtained sectional shape in the radial direction of the wafer W. decide. That is, the cross-sectional shape for the radius of the obtained wafer W is divided into arbitrary sections, for example, the outer periphery of the wafer W, the inner periphery, the intermediate periphery between the outer periphery and the inner periphery, etc. Based on the tendency of the cross-sectional shape in these divided sections, as shown in FIG. 5, the corresponding type from the combination of unevenness and inverted V-shaped, W-shaped, M-shaped, U-shaped, etc. And decide.

ステップS23では、ステップS22及びステップS221で求めたウエーハWの径方向の断面形状が目標断面形状に到達したか否かが判断される。すなわち、ステップS22及びステップS221で求めたウエーハWの判断形状が目標判断形状に到達し、且つ、P−V値が目標P−V値に到達したか否かが判断され、ノーであればステップS24へ進む。   In step S23, it is determined whether or not the radial cross-sectional shape of the wafer W obtained in steps S22 and S221 has reached the target cross-sectional shape. That is, it is determined whether or not the determination shape of the wafer W obtained in step S22 and step S221 has reached the target determination shape and the PV value has reached the target PV value. Proceed to S24.

ステップS24では、ステップS22で求めたウエーハWの厚さが目標厚さの下限以下であるか否かが判断され、目標厚さの下限以下のとき、ウエーハWは破損する虞があるので、ステップS24ではイエスと判断してステップS6へ進ませ、研磨加工を終了させる処理工程へ進ませる。
ウエーハWの厚さが目標厚さの下限以下でない場合、ステップS24ではノーと判断してステップS25へ進む。
In step S24, it is determined whether or not the thickness of the wafer W obtained in step S22 is less than or equal to the lower limit of the target thickness. If the wafer W is less than or equal to the lower limit of the target thickness, the wafer W may be damaged. In S24, it is determined as YES, and the process proceeds to step S6, and the process proceeds to the process step of finishing the polishing process.
If the thickness of the wafer W is not less than or equal to the lower limit of the target thickness, it is determined NO in step S24 and the process proceeds to step S25.

ステップS25では、制御装置300は、ステップS22及びステップS221で求めたウエーハWの径方向の断面形状と、目標とするウエーハWの断面形状とを比較し、その比較した結果に基づいたレシピを記憶部200に記憶されているテーブル1(図3参照)から読み出し、この読み出したレシピが示す加工条件をテーブル2(図4参照)から読み出し、この読み出した加工条件に基づいて各駆動装置M1〜M5の駆動などを制御する。そして、ステップS22へ戻る。   In step S25, the control device 300 compares the radial cross-sectional shape of the wafer W obtained in steps S22 and S221 with the target cross-sectional shape of the wafer W, and stores a recipe based on the comparison result. Read from the table 1 (see FIG. 3) stored in the unit 200, read the processing conditions indicated by the read recipe from the table 2 (see FIG. 4), and based on the read processing conditions, each of the driving devices M1 to M5. Control the drive of the. Then, the process returns to step S22.

ステップS22では、再度、上述のようにウエーハWの径方向の断面形状、すなわちウエーハWの判断形状やP−V値などを求めていく。この求めたウエーハWの径方向の断面形状が目標断面形状に到達するまで、ステップS22ないしステップS25の処理動作が繰り返し行われ、ウエーハWの両面が研磨されていくとともに、そのウエーハWの径方向の断面形状に応じて、加工条件(レシピ)も変更されていくので、ウエーハWの径方向の断面形状を目標断面形状となるように確実に研磨していくことができる。   In step S22, the cross-sectional shape of the wafer W in the radial direction, that is, the determination shape of the wafer W, the PV value, and the like are obtained again as described above. Until the cross-sectional shape in the radial direction of the obtained wafer W reaches the target cross-sectional shape, the processing operations of Step S22 to Step S25 are repeated, and both surfaces of the wafer W are polished, and the radial direction of the wafer W Since the processing conditions (recipe) are also changed according to the cross-sectional shape of the wafer W, it is possible to reliably polish the radial cross-sectional shape of the wafer W so as to become the target cross-sectional shape.

ウエーハWの径方向の断面形状が目標断面形状に到達すると、ステップS23でイエスと判断されてステップS26へ進む。
ステップS26では、ウエーハWの厚さが目標厚さの上限以下か否かが判断され、ノーであればステップS21へ戻り、ウエーハWの厚さが目標厚さの上限以下になるまでステップS21ないしステップS26の処理動作が繰り返し行われる。ウエーハWの厚さが目標厚さの上限以下になると、イエスと判断されてステップS6へ進む。
When the radial cross-sectional shape of the wafer W reaches the target cross-sectional shape, it is determined as YES in step S23, and the process proceeds to step S26.
In step S26, it is determined whether or not the thickness of the wafer W is equal to or less than the upper limit of the target thickness. If no, the process returns to step S21, and steps S21 to S21 are performed until the thickness of the wafer W is equal to or less than the upper limit of the target thickness. The processing operation in step S26 is repeated. If the thickness of the wafer W is less than or equal to the upper limit of the target thickness, it is determined as YES and the process proceeds to step S6.

ステップS6では、減速加工ステップ動作が行われる。すなわち、制御装置300による駆動装置M1〜M5の制御により高速回転されている上定盤21及び下定盤22、サンギア23、インターナルギア24が減速されて中速回転されるとともに、上定盤21による下方への荷重が中荷重に減少される。このステップS6の処理動作が所定時間行われるとステップS7へ進む。   In step S6, a deceleration processing step operation is performed. That is, the upper surface plate 21, the lower surface plate 22, the sun gear 23, and the internal gear 24 that are rotated at high speed by the control of the driving devices M1 to M5 by the control device 300 are decelerated and rotated at medium speed, and the upper surface plate 21 is rotated. The downward load is reduced to a medium load. When the processing operation in step S6 is performed for a predetermined time, the process proceeds to step S7.

ステップS7では、純水洗浄ステップ動作が行われる。すなわち、上定盤21に設けられた供給孔から純水が供給されるとともに、上定盤21及び下定盤22、サンギア23、インターナルギア24が減速されて低速回転される。また、上定盤21による下方への荷重が低荷重に減少される。そして、ウエーハWの両面が純水により洗浄されていくことになる。このステップS7の処理動作が所定時間行われるとステップS8へ進み、加工運転が終了される。   In step S7, a pure water cleaning step operation is performed. That is, pure water is supplied from the supply hole provided in the upper surface plate 21, and the upper surface plate 21, the lower surface plate 22, the sun gear 23, and the internal gear 24 are decelerated and rotated at a low speed. Moreover, the downward load by the upper surface plate 21 is reduced to a low load. Then, both surfaces of the wafer W are cleaned with pure water. When the processing operation in step S7 is performed for a predetermined time, the process proceeds to step S8, and the machining operation is terminated.

ステップS9では、上定盤21を上昇させて研磨されたウエーハWを回収し、ステップS10では、外部測定器によってウエーハWの断面形状を測定する。   In step S9, the upper surface plate 21 is raised to recover the polished wafer W, and in step S10, the cross-sectional shape of the wafer W is measured by an external measuring instrument.

上述のように、研磨加工中にウエーハWの断面形状を測定し、この断面形状が目標の断面形状となるように加工条件(レシピ)を変更していくものであるから、ウエーハWを効率よく目標の断面形状に研磨加工していくことができる。また、上述したようにステップS24で目標厚さとの比較を行うことができるので、ウエーハWの研磨しすぎによる不良品の発生を確実に防止することができる。   As described above, the cross-sectional shape of the wafer W is measured during polishing, and the processing conditions (recipe) are changed so that this cross-sectional shape becomes the target cross-sectional shape. Polishing to the target cross-sectional shape can be performed. Further, as described above, since the comparison with the target thickness can be performed in step S24, it is possible to reliably prevent the generation of defective products due to excessive polishing of the wafer W.

さらに、ウエーハWの断面形状を測定し、断面形状に応じて加工条件を変更しているので、ウエーハWの一部分だけが薄くなりすぎたり、厚くなりすぎたりしてしまうことを防止することができる。さらに、研磨加工中にウエーハWの断面形状が目標の断面形状に加工されているか否かを把握しながら研磨加工を進めることができ、目標の断面形状でないときは加工条件を研磨加工中に変更できるため、定常的に目標の断面形状を有するウエーハWを得ることが可能となる。
[第2実施例]
Furthermore, since the cross-sectional shape of the wafer W is measured and the processing conditions are changed according to the cross-sectional shape, it is possible to prevent only a part of the wafer W from becoming too thin or too thick. . Furthermore, during the polishing process, the polishing process can proceed while grasping whether the cross-sectional shape of the wafer W is processed into the target cross-sectional shape. If the cross-sectional shape is not the target cross-sectional shape, the processing conditions are changed during the polishing process. Therefore, the wafer W having a target cross-sectional shape can be obtained constantly.
[Second Embodiment]

図8は、第2実施例のフロー図を示す。この第2実施例では、ステップS5の後にメイン加工ステップ処理1を行うステップS20′とメイン加工ステップ処理2を行うステップS30とを設けたものである。   FIG. 8 shows a flowchart of the second embodiment. In the second embodiment, step S20 ′ for performing the main machining step process 1 and step S30 for performing the main machining step process 2 are provided after step S5.

ステップS20′のメイン加工ステップ処理1は、図7に示すステップS21ないしステップS26の処理を行うものであるが、ステップS23の「目標断面形状到達」を「第1目標断面形状到達」に変更する。この第1目標断面形状は、目標断面形状に到達する前段階の断面形状を示す。他は、第1実施例と同様なのでその説明は省略する。   The main machining step process 1 in step S20 ′ is performed in steps S21 to S26 shown in FIG. 7, but the “target cross section shape arrival” in step S23 is changed to “first target cross section shape arrival”. . The first target cross-sectional shape indicates a cross-sectional shape at a stage before reaching the target cross-sectional shape. Others are the same as in the first embodiment, and a description thereof will be omitted.

ステップS30のメイン加工ステップ処理2は、図7に示すステップS21ないしステップS26と同じ処理動作を行うのでその説明は省略する。   The main processing step process 2 in step S30 performs the same processing operation as that in steps S21 to S26 shown in FIG.

この第2実施例によれば、ステップS20′,S30を設けたことにより、複数段階に分けて目標の断面形状に研磨加工していくことができるため、ウエーハWの断面形状を目標の断面形状となるようにより確実に研磨していくことができる。すなわち、ウエーハWの研磨しすぎによる不良品の発生をより確実に防止することができ、ウエーハWの一部分だけが薄くなりすぎたり、厚くなりすぎたりしてしまうことを確実に防止することができる。さらに、研磨加工中にウエーハWの断面形状が目標の断面形状に加工されているか否かを把握しながら研磨加工を進めることができ、目標の断面形状でないときは加工条件を研磨加工中に変更できるため、定常的に目標の断面形状を有するウエーハWを得ることが可能となる。   According to the second embodiment, since the steps S20 ′ and S30 are provided, the wafer W can be polished into a target cross-sectional shape in a plurality of stages. Thus, it can be polished more reliably. That is, it is possible to more reliably prevent generation of defective products due to excessive polishing of the wafer W, and it is possible to reliably prevent only a part of the wafer W from becoming too thin or too thick. . Furthermore, during the polishing process, the polishing process can proceed while grasping whether the cross-sectional shape of the wafer W is processed into the target cross-sectional shape. If the cross-sectional shape is not the target cross-sectional shape, the processing conditions are changed during the polishing process. Therefore, the wafer W having a target cross-sectional shape can be obtained constantly.

上記実施例では、上定盤21に計測孔50を設けているが、下定盤22に計測孔を設けて、下からウエーハWの下面に赤外レーザ光を照射してウエーハWの断面形状を測定するようにしてもよい。   In the above embodiment, the upper surface plate 21 is provided with the measurement hole 50. However, the lower surface plate 22 is provided with the measurement hole, and the lower surface of the wafer W is irradiated with infrared laser light from below to change the cross-sectional shape of the wafer W. You may make it measure.

また、1つのキャリアプレート30を使用して1つのウエーハWを研磨する場合について説明したが、複数のキャリアプレート30を上定盤21と下定盤22との間に配置して複数のウエーハWを同時に研磨していく場合や、1つのキャリアプレートに複数のウエーハWを配置する場合にも適用できる。   Moreover, although the case where 1 wafer W was grind | polished using one carrier plate 30 was demonstrated, the several wafer W is arrange | positioned between the upper surface plate 21 and the lower surface plate 22, and several wafer W is arrange | positioned. The present invention can also be applied to the case where polishing is performed simultaneously or a plurality of wafers W are arranged on one carrier plate.

さらに、上記実施例では、光学ヘッド101は上定盤21に設けられているが、上定盤21の中心から径方向へ所定距離離間した位置の上方に光学ヘッドを設け、上定盤21の回転によって計測孔50が光学ヘッドの真下に来るごとに光学ヘッドから照射される赤外レーザ光が窓部材51を介してウエーハWを照射し、ウエーハWの断面形状を測定するようにしてもよい。計測孔50は少なくとも一つあればよいが、上記の所定距離離間した位置の周方向に沿って等間隔に複数形成してもよい。計測孔50を複数形成する場合は、各計測孔50に窓部材51が装着されている。   Further, in the above embodiment, the optical head 101 is provided on the upper surface plate 21, but the optical head is provided above a position spaced from the center of the upper surface plate 21 in the radial direction by a predetermined distance. Each time the measurement hole 50 comes under the optical head by rotation, the infrared laser light emitted from the optical head irradiates the wafer W through the window member 51, and the cross-sectional shape of the wafer W may be measured. . At least one measuring hole 50 may be provided, but a plurality of measuring holes 50 may be formed at equal intervals along the circumferential direction of the positions separated by the predetermined distance. When a plurality of measurement holes 50 are formed, a window member 51 is attached to each measurement hole 50.

上記実施例はいずれもウエーハWの両面を研磨する研磨装置について説明したが、ウエーハWの片面だけを研磨する研磨装置にも適用可能である。   In the above embodiments, the polishing apparatus for polishing both surfaces of the wafer W has been described. However, the present invention can also be applied to a polishing apparatus for polishing only one surface of the wafer W.

また、上記実施例では、ステップS20,S20′,S30のとき、ステップS21ないしステップS26の処理動作を行っているが、これに限らず、他の加工ステップ動作のときにも、ステップS21ないしステップS26と同様な処理動作を行ってもよい。また、上記実施例では、シリコンウエーハを研磨する場合について説明したが、これに限らず、ガラス、セラミックス、水晶等の薄板状のワークであればよい。   In the above-described embodiment, the processing operations of Steps S21 to S26 are performed at Steps S20, S20 ′, and S30. However, the present invention is not limited to this. A processing operation similar to S26 may be performed. Moreover, although the said Example demonstrated the case where a silicon wafer was grind | polished, it is not restricted to this, What is necessary is just thin plate-like workpieces, such as glass, ceramics, and quartz.

この発明は、上記実施例に限られるものではなく、特許請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。   The present invention is not limited to the above-described embodiments, and design changes and additions are permitted without departing from the spirit of the invention according to each claim of the claims.

10 研磨装置
20 研磨機
21 上定盤(定盤)
22 下定盤(定盤)
50 計測孔
100 形状測定装置
101 光学ヘッド
111 厚さ演算部
112 位置演算部
113 断面形状演算部
200 記憶部
300 制御装置
W ウエーハ(ワーク)
10 Polishing device 20 Polishing machine 21 Upper surface plate (surface plate)
22 Lower surface plate (surface plate)
DESCRIPTION OF SYMBOLS 50 Measurement hole 100 Shape measuring apparatus 101 Optical head 111 Thickness calculating part 112 Position calculating part 113 Section shape calculating part 200 Memory | storage part 300 Control apparatus W Wafer (workpiece)

Claims (3)

回転可能な定盤を有する研磨機によりワークを研磨する研磨装置であって、
研磨加工中の前記ワークの断面形状を測定する形状測定装置と、
該形状測定装置が測定したワークの断面形状に基づいて、該断面形状が目標断面形状となるように研磨加工を制御する制御装置とを備えていることを特徴とする研磨装置。
A polishing apparatus for polishing a workpiece by a polishing machine having a rotatable surface plate,
A shape measuring device for measuring the cross-sectional shape of the workpiece during polishing;
A polishing apparatus comprising: a control device that controls polishing processing so that the cross-sectional shape becomes a target cross-sectional shape based on the cross-sectional shape of the workpiece measured by the shape measuring device.
前記ワークの断面形状に応じて、目標断面形状にするための適正な加工条件を示すレシピが記憶された記憶部を備え、
前記制御装置は、前記形状測定装置が測定したワークの断面形状に応じて、前記記憶部からレシピを読み出すとともに、この読み出したレシピの加工条件に基づいて研磨加工を制御することを特徴とする請求項1に記載の研磨装置。
According to the cross-sectional shape of the workpiece, comprising a storage unit that stores a recipe indicating an appropriate processing condition for a target cross-sectional shape,
The said control apparatus reads a recipe from the said memory | storage part according to the cross-sectional shape of the workpiece | work measured by the said shape measuring apparatus, and controls grinding | polishing processing based on the processing conditions of this read recipe. Item 2. The polishing apparatus according to Item 1.
前記形状測定装置は、前記定盤に設けられた計測孔を介して前記ワークに向けて測定光が照射されるとともに該ワークで反射した反射光を受光する光学ヘッドと、
該光学ヘッドの反射光の受光に基づいて前記ワークの計測厚さを求める厚さ演算装置と、
前記ワークの計測厚さが求められた面内位置を求める位置演算装置と、
前記厚さ演算装置が求めた前記ワークの計測厚さと前記位置演算装置が求めた面内位置とに基づいて、前記ワークの断面形状を求める断面形状演算装置とを有することを特徴とする請求項1または請求項2に記載の研磨装置。
The shape measuring device is an optical head that receives the reflected light reflected by the workpiece while being irradiated with the measuring beam through the measurement hole provided in the surface plate,
A thickness calculating device for obtaining a measured thickness of the workpiece based on reception of reflected light of the optical head;
A position calculation device for obtaining an in-plane position from which the measured thickness of the workpiece is obtained;
The cross-sectional shape computing device for obtaining a cross-sectional shape of the workpiece based on the measured thickness of the workpiece obtained by the thickness computing device and the in-plane position obtained by the position computing device. The polishing apparatus according to claim 1 or 2.
JP2016143436A 2016-07-21 2016-07-21 Polishing equipment Active JP6765887B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016143436A JP6765887B2 (en) 2016-07-21 2016-07-21 Polishing equipment
TW106120827A TWI752045B (en) 2016-07-21 2017-06-22 Polishing device
KR1020170081242A KR102395405B1 (en) 2016-07-21 2017-06-27 Polishing apparatus
CN201710576177.XA CN107639528B (en) 2016-07-21 2017-07-14 Grinding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016143436A JP6765887B2 (en) 2016-07-21 2016-07-21 Polishing equipment

Publications (2)

Publication Number Publication Date
JP2018012166A true JP2018012166A (en) 2018-01-25
JP6765887B2 JP6765887B2 (en) 2020-10-07

Family

ID=61019872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016143436A Active JP6765887B2 (en) 2016-07-21 2016-07-21 Polishing equipment

Country Status (4)

Country Link
JP (1) JP6765887B2 (en)
KR (1) KR102395405B1 (en)
CN (1) CN107639528B (en)
TW (1) TWI752045B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020015122A (en) * 2018-07-24 2020-01-30 株式会社Sumco Double-side polishing device and double-side polishing method for work-piece
JP2021032840A (en) * 2019-08-29 2021-03-01 スピードファム株式会社 Workpiece shape measuring method
JPWO2022054605A1 (en) * 2020-09-10 2022-03-17
JP7464088B2 (en) 2022-08-31 2024-04-09 株式会社Sumco Double-sided polishing method for semiconductor wafers, manufacturing method for polished wafers, and double-sided polishing apparatus for semiconductor wafers

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7046358B2 (en) * 2018-04-17 2022-04-04 スピードファム株式会社 Polishing equipment
CN109141324A (en) * 2018-08-30 2019-01-04 杭州中芯晶圆半导体股份有限公司 A kind of method of precise measurement silicon wafer top and bottom removal amount
CN113245973B (en) * 2021-06-08 2022-07-22 唐山国芯晶源电子有限公司 Method for detecting grinding thickness of quartz wafer polishing loose pulley

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10146751A (en) * 1996-11-15 1998-06-02 Canon Inc Chemical machine polishing device
JP2001060572A (en) * 1999-07-09 2001-03-06 Applied Materials Inc Closed loop control for polishing wafer by chemical- mechanical polisher
JP2004047876A (en) * 2002-07-15 2004-02-12 Tokyo Seimitsu Co Ltd Polishing device and polishing process
JP2006082169A (en) * 2004-09-15 2006-03-30 Toshiba Corp Polishing method and device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5679055A (en) * 1996-05-31 1997-10-21 Memc Electronic Materials, Inc. Automated wafer lapping system
JPH1114305A (en) * 1997-06-26 1999-01-22 Mitsutoyo Corp In-process light interference type measuring apparatus for working and working device equipped with the same, and working tool suitable for in-process light measurement
US6301009B1 (en) * 1997-12-01 2001-10-09 Zygo Corporation In-situ metrology system and method
SG86415A1 (en) * 1999-07-09 2002-02-19 Applied Materials Inc Closed-loop control of wafer polishing in a chemical mechanical polishing system
JP3506114B2 (en) * 2000-01-25 2004-03-15 株式会社ニコン MONITOR DEVICE, POLISHING APPARATUS HAVING THE MONITOR DEVICE, AND POLISHING METHOD
US7118451B2 (en) * 2004-02-27 2006-10-10 Taiwan Semiconductor Manufacturing Co., Ltd. CMP apparatus and process sequence method
US8129279B2 (en) * 2008-10-13 2012-03-06 Taiwan Semiconductor Manufacturing Co., Ltd. Chemical mechanical polish process control for improvement in within-wafer thickness uniformity
TWI467645B (en) * 2010-08-25 2015-01-01 Macronix Int Co Ltd Chemical mechanical polishing method and system
JP5917994B2 (en) * 2012-04-23 2016-05-18 スピードファム株式会社 Measuring window structure for polishing equipment
JP5896884B2 (en) * 2012-11-13 2016-03-30 信越半導体株式会社 Double-side polishing method
KR20150047656A (en) 2013-10-23 2015-05-06 오성우 Wireless Safety Management System and method using RFID
CN105081957A (en) * 2014-05-14 2015-11-25 和舰科技(苏州)有限公司 Chemical mechanical polishing method for wafer planarization production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10146751A (en) * 1996-11-15 1998-06-02 Canon Inc Chemical machine polishing device
JP2001060572A (en) * 1999-07-09 2001-03-06 Applied Materials Inc Closed loop control for polishing wafer by chemical- mechanical polisher
JP2004047876A (en) * 2002-07-15 2004-02-12 Tokyo Seimitsu Co Ltd Polishing device and polishing process
JP2006082169A (en) * 2004-09-15 2006-03-30 Toshiba Corp Polishing method and device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020015122A (en) * 2018-07-24 2020-01-30 株式会社Sumco Double-side polishing device and double-side polishing method for work-piece
WO2020021871A1 (en) * 2018-07-24 2020-01-30 株式会社Sumco Workpiece double-side polishing device and workpiece double-side polishing method
TWI718542B (en) * 2018-07-24 2021-02-11 日商Sumco股份有限公司 Double-side polishing apparatus and double-side polishing method for workpiece
JP7010166B2 (en) 2018-07-24 2022-01-26 株式会社Sumco Work double-sided polishing device and double-sided polishing method
US11826870B2 (en) 2018-07-24 2023-11-28 Sumco Corporation Apparatus and method for double-side polishing work
JP2021032840A (en) * 2019-08-29 2021-03-01 スピードファム株式会社 Workpiece shape measuring method
JPWO2022054605A1 (en) * 2020-09-10 2022-03-17
JP7464088B2 (en) 2022-08-31 2024-04-09 株式会社Sumco Double-sided polishing method for semiconductor wafers, manufacturing method for polished wafers, and double-sided polishing apparatus for semiconductor wafers

Also Published As

Publication number Publication date
TWI752045B (en) 2022-01-11
CN107639528B (en) 2021-01-12
KR20180010977A (en) 2018-01-31
KR102395405B1 (en) 2022-05-10
TW201803690A (en) 2018-02-01
CN107639528A (en) 2018-01-30
JP6765887B2 (en) 2020-10-07

Similar Documents

Publication Publication Date Title
JP2018012166A (en) Polishing device
JP6605395B2 (en) Sectional shape measurement method
KR101669491B1 (en) Apparatus and method for double-side polishing of work
JP6650341B2 (en) Sectional shape measurement method
KR101587226B1 (en) Wafer polishing method and double side polishing apparatus
TWI496659B (en) Processing methods for synthetic quartz glass substrates for semiconductors
WO2010062910A2 (en) Using optical metrology for feed back and feed forward process control
JP6406238B2 (en) Wafer polishing method and polishing apparatus
WO2014185008A1 (en) Method for double-sided polishing of wafer, and double-sided-polishing system
JP2018074086A (en) Semiconductor wafer both-sided polishing method
JP5028354B2 (en) Wafer polishing method
JP4955624B2 (en) Double-side polishing equipment
JPWO2014049844A1 (en) Plate body polishing method and plate body polishing apparatus
KR102102719B1 (en) Silicon wafer single side polishing method
JP2002100594A (en) Method and device for grinding plane
JP2018037517A (en) Wrapping method of semiconductor wafer and semiconductor wafer
KR20150053049A (en) Double Side Polishing Method for Wafer
JP6539467B2 (en) Grinding machine
JP6712841B2 (en) Grinding method
JP5428214B2 (en) Semiconductor wafer manufacturing method, semiconductor wafer, and semiconductor wafer crystal evaluation method
JP2002254298A (en) Polishing method and polishing device
JP2024024162A (en) Wafer single-side polishing method, wafer manufacturing method, and wafer single-side polishing device
JP5218892B2 (en) Consumable evaluation method
JP2024024161A (en) Wafer single-side polishing method, wafer manufacturing method, and wafer single-side polishing device
TW202407790A (en) Single-sided polishing methof for wafer, method for manufacturing wafer, and single-sided polishing device for wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200916

R150 Certificate of patent or registration of utility model

Ref document number: 6765887

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250