JP7046358B2 - Polishing equipment - Google Patents

Polishing equipment Download PDF

Info

Publication number
JP7046358B2
JP7046358B2 JP2018079177A JP2018079177A JP7046358B2 JP 7046358 B2 JP7046358 B2 JP 7046358B2 JP 2018079177 A JP2018079177 A JP 2018079177A JP 2018079177 A JP2018079177 A JP 2018079177A JP 7046358 B2 JP7046358 B2 JP 7046358B2
Authority
JP
Japan
Prior art keywords
work
shape
polishing
polished
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018079177A
Other languages
Japanese (ja)
Other versions
JP2019181657A (en
Inventor
遊 田山
陽平 岩本
秀明 吉原
裕介 井上
敬 田中
剛敏 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SpeedFam Co Ltd
Original Assignee
SpeedFam Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SpeedFam Co Ltd filed Critical SpeedFam Co Ltd
Priority to JP2018079177A priority Critical patent/JP7046358B2/en
Priority to KR1020190035254A priority patent/KR102627963B1/en
Priority to CN201910284961.2A priority patent/CN110394726B/en
Priority to TW108112580A priority patent/TWI807007B/en
Publication of JP2019181657A publication Critical patent/JP2019181657A/en
Application granted granted Critical
Publication of JP7046358B2 publication Critical patent/JP7046358B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/005Control means for lapping machines or devices
    • B24B37/013Devices or means for detecting lapping completion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/005Control means for lapping machines or devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/07Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool
    • B24B37/08Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool for double side lapping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/02Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent
    • B24B49/04Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent involving measurement of the workpiece at the place of grinding during grinding operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/12Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving optical means

Description

本発明は、例えばシリコンウェーハ等のワークの表面を研磨する研磨装置に関する発明である。 The present invention relates to a polishing device for polishing the surface of a work such as a silicon wafer.

従来から、上定盤と、下定盤と、サンギヤと、インターナルギヤと、キャリアプレートとを備え、キャリアプレートに保持されたシリコンウェーハ等のワークの表面を研磨する研磨装置が知られている(例えば、特許文献1参照)。この研磨装置は、上定盤に形成された貫通穴を介して研磨中のワークの厚さをリアルタイムで計測する計測器を有し、この計測器によるワーク厚さの計測結果に基づいて研磨加工の停止タイミングを判定する。 Conventionally, a polishing device including an upper surface plate, a lower surface plate, a sun gear, an internal gear, and a carrier plate, and polishing the surface of a work such as a silicon wafer held on the carrier plate has been known. For example, see Patent Document 1). This polishing device has a measuring instrument that measures the thickness of the work being polished in real time through the through hole formed in the upper surface plate, and the polishing process is performed based on the measurement result of the work thickness by this measuring instrument. Judge the stop timing of.

特開2015-47656号公報JP-A-2015-47656

ところで、従来の研磨装置では、ワーク厚さの測定結果に基づいて研磨加工の停止タイミングを判定している。しかし、研磨加工を継続した場合の将来的なワークの形状変化の推移は、ワーク厚さの一時的な測定結果から予測することは難しい。そのため、研磨加工を続けたときにワーク形状が所望の形状に近づくのか否かを把握できず、所望のワーク形状になったタイミングでのワークの研磨停止が困難であるという問題が生じる。また、研磨加工に関連する諸条件の違いは、研磨終了後のワーク形状にのみに影響を与えるものではなく、研磨中のワーク形状推移にも影響を与えると考えられる。しかしながら、これまでは研磨加工に伴う時系列的なワーク形状変化の推移はユーザーの技量に依存するところが大きく、プロセス改善の効率向上への障害となっていた。 By the way, in the conventional polishing apparatus, the stop timing of the polishing process is determined based on the measurement result of the work thickness. However, it is difficult to predict the future transition of the shape change of the work when the polishing process is continued from the temporary measurement result of the work thickness. Therefore, it is not possible to grasp whether or not the work shape approaches a desired shape when the polishing process is continued, and there arises a problem that it is difficult to stop polishing the work at the timing when the desired work shape is reached. Further, it is considered that the difference in various conditions related to the polishing process does not affect only the work shape after polishing, but also affects the transition of the work shape during polishing. However, until now, the transition of the work shape change over time due to the polishing process largely depends on the skill of the user, which has been an obstacle to improving the efficiency of process improvement.

本発明は、上記問題に着目してなされたもので、研磨中のワークの形状変化の推移に基づき、所望のワーク形状になったタイミング或いは所望のワーク形状になるタイミングでワークの研磨加工を停止できる研磨装置を提供することを課題としている。 The present invention has been made by paying attention to the above problem, and based on the transition of the shape change of the work during polishing, the polishing process of the work is stopped at the timing when the desired work shape is obtained or the desired work shape is obtained. The challenge is to provide a polishing device that can be used.

上記目的を達成するため、本発明の研磨装置は、回転する定盤によってワークを研磨する研磨機と、定盤に形成された測定孔を介してワークの形状を測定する形状測定器と、形状測定器によって測定されたワークの形状情報を記憶するメモリと、形状測定器によって測定されたワークの形状情報を表示する表示器と、表示器の表示内容を制御する制御部と、を備えている。
そして、制御部は、形状測定器によって測定された現在研磨中のワークである研磨中ワークの形状描画を時系列で並べた第1描画を生成し、この第1描画を表示器に表示させる。
In order to achieve the above object, the polishing apparatus of the present invention includes a polishing machine that grinds a work by a rotating surface plate, a shape measuring device that measures the shape of the work through a measuring hole formed in the surface plate, and a shape. It is equipped with a memory that stores the shape information of the work measured by the measuring instrument, a display that displays the shape information of the work measured by the shape measuring instrument, and a control unit that controls the display contents of the display. ..
Then, the control unit generates a first drawing in which the shape drawing of the work being polished, which is the work currently being polished measured by the shape measuring instrument, is arranged in chronological order, and displays this first drawing on the display.

この結果、研磨中のワークの形状変化の推移に基づき、所望のワーク形状になったタイミング或いは所望のワーク形状になるタイミングでワークの研磨加工を停止できる。 As a result, based on the transition of the shape change of the work during polishing, the polishing process of the work can be stopped at the timing when the desired work shape is obtained or the timing when the desired work shape is obtained.

実施例1の研磨装置の全体構成を概略的に示す説明図である。It is explanatory drawing which shows schematic the whole structure of the polishing apparatus of Example 1. FIG. 実施例1のサンギヤとインターナルギヤとキャリアプレートの位置関係を示す説明図である。It is explanatory drawing which shows the positional relationship of the sun gear, the internal gear, and a carrier plate of Example 1. FIG. 実施例1の研磨装置において、測定孔がワーク上を通過した際の通過軌跡を示す説明図である。It is explanatory drawing which shows the passing locus when a measuring hole passes over a work in the polishing apparatus of Example 1. FIG. 実施例1の研磨装置において、ワークの断面形状を表した断面形状線を示す説明図である。It is explanatory drawing which shows the cross-sectional shape line which showed the cross-sectional shape of the work in the polishing apparatus of Example 1. FIG. 実施例1の研磨装置で生成される第1描画を示す説明図である。It is explanatory drawing which shows the 1st drawing generated by the polishing apparatus of Example 1. FIG. 実施例1の研磨装置で生成される第2描画を示す説明図である。It is explanatory drawing which shows the 2nd drawing generated by the polishing apparatus of Example 1. FIG. 実施例1にて実行する研磨停止判定処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the polishing stop determination process which is executed in Example 1. FIG. 実施例1にて実行する第2描画生成処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the 2nd drawing generation processing which is executed in Example 1. FIG. 実施例1の研磨装置における表示器の画面を示す説明図である。It is explanatory drawing which shows the screen of the display in the polishing apparatus of Example 1. FIG. 第1ワークを研磨加工したときの形状描画を時系列で並べた説明図である。It is explanatory drawing which arranged the shape drawing when the 1st work was polished in chronological order. 第2ワークを研磨加工したときの形状描画を時系列で並べた説明図である。It is explanatory drawing which arranged the shape drawing when the 2nd work was polished in chronological order. 第3ワークを研磨加工したときの形状描画を時系列で並べた説明図である。It is explanatory drawing which arranged the shape drawing when the 3rd work was polished in chronological order. 第4ワークを研磨加工したときの形状描画を時系列で並べた説明図である。It is explanatory drawing which arranged the shape drawing at the time of polishing the 4th work in chronological order. 実施例2の研磨装置の全体構成を概略的に示す説明図である。It is explanatory drawing which shows the whole structure of the polishing apparatus of Example 2 schematicly. 実施例2にて実行する研磨停止判定処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the polishing stop determination process which is executed in Example 2. FIG. 第5ワークを研磨加工したときの形状描画を時系列で並べた説明図である。It is explanatory drawing which arranged the shape drawing when the 5th work was polished in chronological order. 第6ワークを研磨加工したときの形状描画を時系列で並べた説明図である。It is explanatory drawing which arranged the shape drawing when the 6th work was polished in chronological order. ワーク研磨時間とワーク中央部の平坦度との関係を示す説明図である。It is explanatory drawing which shows the relationship between the work polishing time and the flatness of a work central part. ワーク研磨時間とワーク外周領域の平坦度との関係を示す説明図である。It is explanatory drawing which shows the relationship between the work polishing time and the flatness of the work outer peripheral area.

以下、本発明の研磨装置を実施するための形態を、図面に示す実施例1及び実施例2に基づいて説明する。 Hereinafter, embodiments for carrying out the polishing apparatus of the present invention will be described with reference to Examples 1 and 2 shown in the drawings.

(実施例1)
以下、実施例1の研磨装置1の構成を「全体構成」、「研磨機の詳細構成」、「形状測定器の詳細構成」、「メモリの詳細構成」、「表示器の詳細構成」、「制御部の詳細構成」、「研磨停止判定処理構成」、「第2描画生成処理構成」に分けて説明する。
(Example 1)
Hereinafter, the configurations of the polishing apparatus 1 of the first embodiment are described as "overall configuration", "detailed configuration of polishing machine", "detailed configuration of shape measuring instrument", "detailed configuration of memory", "detailed configuration of display", and "detailed configuration of display". The detailed configuration of the control unit, the polishing stop determination processing configuration, and the second drawing generation processing configuration will be described separately.

[全体構成]
実施例1の研磨装置1は、半導体ウェーハ、水晶ウェーハ、サファイアウェーハ、ガラスウェーハ或いはセラミックウェーハといった、薄板状のワークWの表裏両面を研磨する両面研磨装置である。研磨装置1は、図1に示すように、研磨機10と、形状測定器20と、メモリ30と、表示器40と、制御部50と、を備えている。
[overall structure]
The polishing device 1 of the first embodiment is a double-sided polishing device that polishes both the front and back surfaces of a thin plate-shaped work W such as a semiconductor wafer, a crystal wafer, a sapphire wafer, a glass wafer, or a ceramic wafer. As shown in FIG. 1, the polishing device 1 includes a polishing machine 10, a shape measuring device 20, a memory 30, a display 40, and a control unit 50.

[研磨機の詳細構成]
研磨機10は、回転する下定盤11及び上定盤12によってワークWを研磨する。研磨機10は、軸線L1を中央とする同心に配置された円板状の下定盤11及び上定盤12と、下定盤11の中央部に回転自在に配置されたサンギヤ13と、下定盤11の外周側に配置されたインターナルギヤ14と、下定盤11及び上定盤12の間に配置され且つワーク保持穴15a(図2参照)が形成されたキャリアプレート15と、を有している。また、下定盤11の上面には研磨パッド11aが貼付され、上定盤12の下面には研磨パッド12aが貼付されている。さらに、上定盤12には、研磨スラリを供給する供給孔(図示せず)が設けられている。
[Detailed configuration of grinding machine]
The polishing machine 10 grinds the work W by the rotating lower surface plate 11 and upper surface plate 12. The polishing machine 10 includes a disk-shaped lower surface plate 11 and an upper surface plate 12 concentrically arranged with the axis L1 at the center, a sun gear 13 rotatably arranged at the center of the lower surface plate 11, and a lower surface plate 11. It has an internal gear 14 arranged on the outer peripheral side of the surface plate, and a carrier plate 15 arranged between the lower surface plate 11 and the upper surface plate 12 and having a work holding hole 15a (see FIG. 2) formed therein. .. Further, a polishing pad 11a is attached to the upper surface of the lower surface plate 11, and a polishing pad 12a is attached to the lower surface of the upper surface plate 12. Further, the upper surface plate 12 is provided with a supply hole (not shown) for supplying the polishing slurry.

ここで、キャリアプレート15は、図2に示すように、サンギヤ13及びインターナルギヤ14に噛み合う。そして、キャリアプレート15は、サンギヤ13及びインターナルギヤ14が回転することで自転しながら軸線L1の周囲を回転(公転)する。 Here, as shown in FIG. 2, the carrier plate 15 meshes with the sun gear 13 and the internal gear 14. Then, the carrier plate 15 rotates (revolves) around the axis L1 while rotating by rotating the sun gear 13 and the internal gear 14.

ワークWは、キャリアプレート15のワーク保持穴15a内に配置される。そして、回転する下定盤11に貼付された研磨パッド11aと回転する上定盤12に貼付された研磨パッド12aに挟まれた状態でキャリアプレート15が自転及び公転することで、ワークWは研磨パッド11a及び研磨パッド12aにより研磨加工される。すなわち、研磨パッド11a及び研磨パッド12aの表面がワークWを研磨する研磨面となる。 The work W is arranged in the work holding hole 15a of the carrier plate 15. Then, the carrier plate 15 rotates and revolves while being sandwiched between the polishing pad 11a attached to the rotating lower surface plate 11 and the polishing pad 12a attached to the rotating upper surface plate 12, so that the work W is a polishing pad. It is polished by the 11a and the polishing pad 12a. That is, the surfaces of the polishing pad 11a and the polishing pad 12a are the polishing surfaces for polishing the work W.

上定盤12は、上面に取り付けられた支持スタッド16a及び取付部材16bを介して、ロッド16に固定されている。ロッド16は、第5駆動装置M5によって上下方向に伸縮される。すなわち、上定盤12は、ロッド16が伸縮することで上下動する。 The upper surface plate 12 is fixed to the rod 16 via a support stud 16a and a mounting member 16b mounted on the upper surface. The rod 16 is expanded and contracted in the vertical direction by the fifth drive device M5. That is, the upper surface plate 12 moves up and down as the rod 16 expands and contracts.

研磨機10の中央には、軸線L1に沿って起立した第1駆動軸17aが配置されている。第1駆動軸17aは、第1駆動装置M1によって回転されるシャフトである。この第1駆動軸17aの上端部には、ドライバ18が固定されている。これにより、ドライバ18は、第1駆動装置M1によって第1駆動軸17aと一体的に回転される。 In the center of the polishing machine 10, a first drive shaft 17a standing up along the axis L1 is arranged. The first drive shaft 17a is a shaft rotated by the first drive device M1. A driver 18 is fixed to the upper end of the first drive shaft 17a. As a result, the driver 18 is integrally rotated with the first drive shaft 17a by the first drive device M1.

ドライバ18は、上定盤12に設けたフック12bが係合する溝部(不図示)が外周面に形成されている。そして、ロッド16が伸長して上定盤12が下方に移動し、フック12bがドライバ18の溝部に係合することで、ドライバ18と上定盤12とが一体となって回転する。すなわち、上定盤12は、第1駆動装置M1によって第1駆動軸17aと一体的に回転される。 In the driver 18, a groove portion (not shown) with which the hook 12b provided on the upper surface plate 12 is engaged is formed on the outer peripheral surface. Then, the rod 16 extends and the upper surface plate 12 moves downward, and the hook 12b engages with the groove portion of the driver 18, so that the driver 18 and the upper surface plate 12 rotate integrally. That is, the upper surface plate 12 is integrally rotated with the first drive shaft 17a by the first drive device M1.

サンギヤ13の中央部の穴13aには、第2駆動軸17bが貫通状態で固定されている。第2駆動軸17bは、両端が開放した中空管であり、第1駆動軸17aが回転自在に貫通している。また、第2駆動軸17bは、第2駆動装置M2によって回転される。これにより、サンギヤ13は、第2駆動装置M2によって第2駆動軸17bと一体的に回転される。 The second drive shaft 17b is fixed in the hole 13a at the center of the sun gear 13 in a penetrating state. The second drive shaft 17b is a hollow tube having both ends open, and the first drive shaft 17a rotatably penetrates the second drive shaft 17b. Further, the second drive shaft 17b is rotated by the second drive device M2. As a result, the sun gear 13 is integrally rotated with the second drive shaft 17b by the second drive device M2.

下定盤11の中央部の下部には、第3駆動軸17cが形成されている。第3駆動軸17cは、両端が開放した中空管であり、第2駆動軸17bが回転自在に貫通している。また、第3駆動軸17cは、第3駆動装置M3によって回転される。これにより、下定盤11は、第3駆動装置M3によって第3駆動軸17cと一体的に回転する。 A third drive shaft 17c is formed in the lower part of the central portion of the lower platen 11. The third drive shaft 17c is a hollow tube having both ends open, and the second drive shaft 17b rotatably penetrates the third drive shaft 17c. Further, the third drive shaft 17c is rotated by the third drive device M3. As a result, the lower platen 11 is integrally rotated with the third drive shaft 17c by the third drive device M3.

インターナルギヤ14には、第4駆動軸17dが形成されている。第4駆動軸17dは、両端が開放した中空管であり、第3駆動軸17cが回転自在に貫通している。また、第4駆動軸17dは、第4駆動装置M4によって回転される。これにより、インターナルギヤ14は、第4駆動装置M4によって第4駆動軸17dと一体的に回転する。 A fourth drive shaft 17d is formed on the internal gear 14. The fourth drive shaft 17d is a hollow tube having both ends open, and the third drive shaft 17c rotatably penetrates the third drive shaft 17d. Further, the fourth drive shaft 17d is rotated by the fourth drive device M4. As a result, the internal gear 14 is integrally rotated with the fourth drive shaft 17d by the fourth drive device M4.

さらに、上定盤12には、中央から径方向に沿って所定距離離れた位置に測定孔19が形成されている。この測定孔19は、上定盤12及び研磨パッド12aを貫通し、測定光であるレーザ光を透過する窓部材19aが装着されている。 Further, the upper surface plate 12 is formed with a measuring hole 19 at a position separated by a predetermined distance along the radial direction from the center. The measuring hole 19 is fitted with a window member 19a that penetrates the upper surface plate 12 and the polishing pad 12a and transmits the laser light that is the measurement light.

[形状測定器の詳細構成]
形状測定器20は、ワークWに向けて測定光を照射し、ワークWで反射した測定光を受光して研磨中のワークWの厚さを測定する。また、この形状測定器20は、計測したワークWの厚さからワークWの断面形状を求める。形状測定器20は、測定ユニット21と、厚さ測定部22と、形状演算部23と、を有している。
[Detailed configuration of shape measuring instrument]
The shape measuring instrument 20 irradiates the work W with the measurement light, receives the measurement light reflected by the work W, and measures the thickness of the work W being polished. Further, the shape measuring instrument 20 obtains the cross-sectional shape of the work W from the measured thickness of the work W. The shape measuring instrument 20 includes a measuring unit 21, a thickness measuring unit 22, and a shape calculation unit 23.

測定ユニット21は、上定盤12に取り付けられており、上定盤12と一体となって回転する。また、測定ユニット21は、上定盤12の測定孔19の窓部材19aを介してワークWに向けて測定光であるレーザ光を照射するレーザ光源(図示せず)と、ワークWで反射した反射光を受光する受光部(図示せず)とを有する。受光部が受光した受光信号は送信部21aにより、厚さ測定部22へ送信される。 The measuring unit 21 is attached to the upper surface plate 12 and rotates integrally with the upper surface plate 12. Further, the measurement unit 21 is reflected by the work W and a laser light source (not shown) that irradiates the work W with the laser light which is the measurement light through the window member 19a of the measurement hole 19 of the upper platen 12. It has a light receiving unit (not shown) that receives reflected light. The light receiving signal received by the light receiving unit is transmitted to the thickness measuring unit 22 by the transmitting unit 21a.

厚さ測定部22は、例えば光反射干渉法でワークWの厚さを測定するものである。この厚さ測定部22は、測定ユニット21から送信された受光信号を受信する受信部22aを有し、この受信部22aが受信した受光信号に基づいてワークWの厚さを求める。 The thickness measuring unit 22 measures the thickness of the work W by, for example, a light reflection interference method. The thickness measuring unit 22 has a receiving unit 22a that receives a light receiving signal transmitted from the measuring unit 21, and obtains the thickness of the work W based on the light receiving signal received by the receiving unit 22a.

ここで、上定盤12の回転により、図3Aに示すように、測定孔19がワークWの面上を通過している期間中、測定ユニット21からのレーザ光がワークWの面上に連続的に照射される。そのため、厚さ測定部22は、測定孔19の通過軌跡Na~Nc上のワークWの各面内位置の厚さを連続的に測定する。そして、この厚さ測定部22は、測定孔19が各通過軌跡Na~Ncを通過している間(ワークWの一端W1a~W3aから他端W1b~W3bまでの測定孔19の通過期間中)、連続した多数の厚さデータからなるデータ列を、その通過ごとに出力する。これにより、厚さ測定部22は、測定孔19がワークWの面上を通過するごとに、ワークWの各面内位置の厚さを測定した複数の連続したデータからなるデータ列を出力する。なお、厚さ測定部22から出力されたデータ列は、メモリ30に記憶される。 Here, due to the rotation of the upper surface plate 12, as shown in FIG. 3A, the laser beam from the measuring unit 21 continues on the surface of the work W while the measuring hole 19 passes over the surface of the work W. Is irradiated. Therefore, the thickness measuring unit 22 continuously measures the thickness of each in-plane position of the work W on the passage trajectories Na to Nc of the measuring hole 19. Then, the thickness measuring unit 22 is used while the measuring holes 19 pass through the respective passage trajectories Na to Nc (during the passing period of the measuring holes 19 from one end W1a to W3a to the other end W1b to W3b of the work W). , A data string consisting of a large number of continuous thickness data is output for each passage. As a result, the thickness measuring unit 22 outputs a data string consisting of a plurality of continuous data for measuring the thickness of each in-plane position of the work W each time the measuring hole 19 passes over the surface of the work W. .. The data string output from the thickness measuring unit 22 is stored in the memory 30.

形状演算部23は、ワークWの断面形状を求めるものである。ワークWの断面形状を求める間隔は任意に設定可能である。実施例1では、例えば15秒間に取得されたデータ列に基づいてワークWの断面形状を求め、15秒間隔で新たにワークWの断面形状を求める。また、形状演算部23によって作成されたワーク断面形状などの形状情報や、その形状情報を演算処理して得られたワーク形状パターン、ワークWを研磨加工した際の条件的属性とワークWの形状情報との間の相関度の学習結果に基づいて生成したワーク形状パターン等は、メモリ30に記憶される。 The shape calculation unit 23 obtains the cross-sectional shape of the work W. The interval for obtaining the cross-sectional shape of the work W can be arbitrarily set. In the first embodiment, for example, the cross-sectional shape of the work W is obtained based on the data string acquired in 15 seconds, and the cross-sectional shape of the work W is newly obtained at intervals of 15 seconds. Further, the shape information such as the cross-sectional shape of the work created by the shape calculation unit 23, the work shape pattern obtained by performing the calculation processing of the shape information, the conditional attributes when the work W is polished, and the shape of the work W. The work shape pattern or the like generated based on the learning result of the degree of correlation with the information is stored in the memory 30.

また、形状演算部23は、図3Bに示すような断面形状線T1を求める。この断面形状線T1は、ワークWの断面形状を示す形状描画である。断面形状線T1は、厚さ測定部22によってワークWの厚さを測定するごとに求められる。これにより、同一のワークWについて求められた断面形状線T1を時系列で並べることで、当該ワークWの形状変化の推移が示される。また、当該ワークWの研磨終了時の断面形状線T1により、ワークWの最終ワーク形状である加工結果情報が示される。なお、形状演算部23によって求められた断面形状線T1の情報(ワークWの断面形状の情報)は、メモリ30に記憶される。 Further, the shape calculation unit 23 obtains the cross-sectional shape line T1 as shown in FIG. 3B. The cross-sectional shape line T1 is a shape drawing showing the cross-sectional shape of the work W. The cross-sectional shape line T1 is obtained every time the thickness of the work W is measured by the thickness measuring unit 22. As a result, by arranging the cross-sectional shape lines T1 obtained for the same work W in chronological order, the transition of the shape change of the work W is shown. Further, the cross-sectional shape line T1 at the end of polishing of the work W indicates processing result information which is the final work shape of the work W. The information on the cross-sectional shape line T1 (information on the cross-sectional shape of the work W) obtained by the shape calculation unit 23 is stored in the memory 30.

[メモリの詳細構成]
メモリ30は、形状測定器20及び制御部50からデータの読み書きが可能な記憶装置である。このメモリ30には、厚さ測定部22によって求められたワークWの厚さの情報や、形状演算部23によって求められたワークWの断面形状の情報(以下、「ワークWの形状情報」という)等が記憶される。
[Detailed memory configuration]
The memory 30 is a storage device capable of reading and writing data from the shape measuring device 20 and the control unit 50. In this memory 30, information on the thickness of the work W obtained by the thickness measuring unit 22 and information on the cross-sectional shape of the work W obtained by the shape calculation unit 23 (hereinafter referred to as "shape information of the work W"). ) Etc. are memorized.

また、このメモリ30は、ワークWの形状情報に、当該ワークWを研磨加工した際の条件的属性を紐づけて記憶する。ここで、「条件的属性」とは、研磨条件や、研磨環境、装置特性等のワークWの研磨加工に影響を与え、ワークWの研磨状態に対して相関を持つ各種のパラメータである。「条件的属性」としては、例えば、研磨機10の運転条件、研磨スラリ条件、研磨パッド条件、キャリアプレート条件、ワーク条件、研磨プロセス条件等がある。 Further, the memory 30 stores the shape information of the work W in association with the conditional attributes when the work W is polished. Here, the "conditional attribute" is various parameters that affect the polishing process of the work W such as the polishing condition, the polishing environment, and the equipment characteristics, and have a correlation with the polishing state of the work W. The "conditional attributes" include, for example, operating conditions of the polishing machine 10, polishing slurry conditions, polishing pad conditions, carrier plate conditions, work conditions, polishing process conditions, and the like.

なお、研磨機10の運転条件とは、例えば下定盤11や上定盤12の回転速度、サンギヤ13やインターナルギヤ14の回転速度、上定盤12の加工荷重設定値及び単位圧力、荷重スロープ、下定盤11や上定盤12の冷却水温度、キャリアプレート15の自転及び公転の回転速度、研磨機10の振動状態や傾き特性等である。研磨スラリ条件とは、例えば研磨スラリの種類・温度・流量、スラリライフ、スラリpH値等である。研磨パッド条件とは、例えば研磨パッド11aや研磨パッド12aの種類・厚さ・溝形態・表面粗さ、研磨パッドライフ、変性物堆積度、シーズニング条件等である。キャリアプレート条件とは、キャリアプレート15の材質・厚さ・ワーク保持穴15aや捨て穴の形状・撓み特性、キャリアプレートライフ、摩耗発生部位等である。ワーク条件とは、ワークWの種類・研磨開始時厚さ・研磨開始時形状、バッチ内におけるワーク厚さのばらつき等である。研磨プロセス条件とは、バッチ内での形状変化の推移情報、連続研磨回数、ワーク研磨量、研磨時間、キャリアプレート15とワークWの厚さ差等である。 The operating conditions of the polishing machine 10 include, for example, the rotation speed of the lower surface plate 11 and the upper surface plate 12, the rotation speed of the sun gear 13 and the internal gear 14, the processing load set value and unit pressure of the upper surface plate 12, and the load slope. , Cooling water temperature of the lower surface plate 11 and the upper surface plate 12, rotation speed of rotation and revolution of the carrier plate 15, vibration state and tilt characteristics of the polishing machine 10. The polishing slurry conditions are, for example, the type / temperature / flow rate of the polishing slurry, the slurry life, the slurry pH value, and the like. The polishing pad conditions are, for example, the type, thickness, groove morphology, surface roughness, polishing pad life, degree of deposition of modified substances, seasoning conditions, etc. of the polishing pad 11a and the polishing pad 12a. The carrier plate conditions are the material and thickness of the carrier plate 15, the shape and bending characteristics of the work holding hole 15a and the discard hole, the carrier plate life, the wear occurrence site, and the like. The work conditions include the type of the work W, the thickness at the start of polishing, the shape at the start of polishing, the variation in the work thickness in the batch, and the like. The polishing process conditions include transition information of shape change in the batch, the number of continuous polishing, the amount of polishing the work, the polishing time, the difference in thickness between the carrier plate 15 and the work W, and the like.

[表示器の詳細構成]
表示器40は、制御部50からの表示指令に基づき、現在研磨中のワークWの形状情報や、過去に研磨加工したワークWの形状情報、ワークWの形状情報を演算処理して得られたワーク形状パターン、ワークWを研磨加工した際の条件的属性とワークWの形状情報との間の相関度の学習結果に基づいて生成したワーク形状パターン、ワークWの研磨停止判定をしたこと等任意の情報を表示する。表示器40は、例えば研磨機10に取り付けられている。この表示器40は、研磨機10のユーザーが目視可能な画面40a(図8参照)を有している。
[Detailed configuration of display]
The display 40 is obtained by arithmetically processing the shape information of the work W currently being polished, the shape information of the work W polished in the past, and the shape information of the work W based on the display command from the control unit 50. Arbitrary, such as the work shape pattern, the work shape pattern generated based on the learning result of the degree of correlation between the conditional attributes when the work W is polished and the shape information of the work W, and the judgment of stopping the polishing of the work W. Display information about. The display 40 is attached to, for example, the polishing machine 10. The display 40 has a screen 40a (see FIG. 8) that can be visually recognized by the user of the polishing machine 10.

[制御部の詳細構成]
制御部50は、CPU(Central Processing Unit)からなる制御演算部51と、サブメモリ52と、入力装置53等を備えている。この制御部50は、サブメモリ52に記憶されたプログラムや、入力装置53を介して研磨機10のユーザーによって入力されたワークWの加工目標や条件的属性等に基づき、制御演算部51から第1駆動装置M1~第5駆動装置M5に制御指令を出力し、研磨機10の動作を制御する。
[Detailed configuration of control unit]
The control unit 50 includes a control calculation unit 51 composed of a CPU (Central Processing Unit), a sub-memory 52, an input device 53, and the like. The control unit 50 is the first from the control calculation unit 51 based on the program stored in the sub memory 52, the machining target of the work W input by the user of the polishing machine 10 via the input device 53, the conditional attributes, and the like. A control command is output to the 1st drive device M1 to the 5th drive device M5 to control the operation of the polishing machine 10.

また、この制御演算部51は、研磨中のワークWの形状描画を時系列で並べた第1描画P1を表示器40に表示させると共に、形状情報に基づいてワーク形状の推移を予測し、この予測結果に応じてワークWの研磨加工を停止するか否かを判定する研磨停止判定処理を実施する。すなわち、この制御演算部51は、第1描画生成部54と、第2描画生成部55と、表示制御部56と、形状推移予測部57と、状態判定部58と、を有している。 Further, the control calculation unit 51 displays the first drawing P1 in which the shape drawing of the work W being polished is arranged in chronological order on the display 40, and predicts the transition of the work shape based on the shape information. A polishing stop determination process for determining whether or not to stop the polishing process of the work W is performed according to the prediction result. That is, the control calculation unit 51 includes a first drawing generation unit 54, a second drawing generation unit 55, a display control unit 56, a shape transition prediction unit 57, and a state determination unit 58.

第1描画生成部54では、形状測定器20によって測定された現在研磨加工しているワーク(以下、「研磨中ワークWα」という)の形状情報をメモリ30から抽出する。ここで、メモリ30から抽出する形状情報は、研磨中ワークWαの研磨開始から、形状情報の抽出直前に行った測定までの間に得られた形状情報である。そして、この第1描画生成部54では、抽出した研磨中ワークWαの形状情報に基づいて、研磨中ワークWαの形状描画(断面形状線T1)を時系列で順に並べた第1描画P1(図4参照)を生成する。
なお、研磨中ワークWαの形状情報は、研磨中ワークWαの研磨加工の進行に伴って測定回数が増えるごとに増加する。そのため、第1描画P1は、測定回数に応じて図4の左側に示す図から、図4の右側に示す図のように次第に変化していく。
The first drawing generation unit 54 extracts the shape information of the work currently being polished (hereinafter referred to as “polishing work Wα”) measured by the shape measuring device 20 from the memory 30. Here, the shape information extracted from the memory 30 is the shape information obtained from the start of polishing of the work Wα during polishing to the measurement performed immediately before the extraction of the shape information. Then, in the first drawing generation unit 54, the shape drawing (cross-sectional shape line T1) of the work being polished Wα is arranged in chronological order based on the extracted shape information of the work Wα being polished. 4) is generated.
The shape information of the work Wα being polished increases as the number of measurements increases as the polishing process of the work Wα being polished progresses. Therefore, the first drawing P1 gradually changes from the figure shown on the left side of FIG. 4 to the figure shown on the right side of FIG. 4 according to the number of measurements.

第2描画生成部55では、研磨中ワークWαの条件的属性を取得した上で、過去、つまり研磨中ワークWαの研磨以前に研磨加工したワークWのうち、研磨中ワークWαの条件的属性にマッチする条件的属性に紐づけられたワーク(以下、「形状参考ワークWβ」という)の形状情報、又は研磨中ワークWαの条件的属性にマッチする条件的属性に紐づけられた典型的な形状情報をメモリ30から抽出する。
ここで、メモリ30から抽出する形状情報は、メモリ30に記憶された形状情報のうちの所望範囲から抽出される。
The second drawing generation unit 55 acquires the conditional attribute of the work Wα being polished, and then sets it as the conditional attribute of the work Wα being polished among the work Ws that have been polished before the polishing of the work Wα being polished. The shape information of the work associated with the matching conditional attribute (hereinafter referred to as "shape reference work Wβ"), or the typical shape associated with the conditional attribute matching the conditional attribute of the work Wα being polished. Information is extracted from the memory 30.
Here, the shape information extracted from the memory 30 is extracted from a desired range of the shape information stored in the memory 30.

なお、「典型的な形状情報」とは、ワークWを研磨加工した際の典型的な形状推移として、算術的に得られた抽象的且つ代表的な形状情報であり、ワークWを研磨加工した際の条件的属性とワークWの形状情報との間の相関度の学習結果に基づいて生成したワーク形状パターンである。また、以下では、形状参考ワークWβの形状情報又は典型的な形状情報を含んで「選択マスターの形状情報」という。 The "typical shape information" is abstract and typical shape information obtained arithmetically as a typical shape transition when the work W is polished, and the work W is polished. It is a work shape pattern generated based on the learning result of the degree of correlation between the conditional attribute and the shape information of the work W. Further, in the following, the shape information of the shape reference work Wβ or the typical shape information is included and referred to as “shape information of the selected master”.

また「研磨中ワークWαの条件的属性にマッチする」とは、研磨時の条件的属性が、研磨中ワークWαの条件的属性と少なくとも一部が同一である場合、又は、研磨中ワークWαの条件的属性と少なくとも一部が類似する場合を指す。例えば、研磨中ワークWαの条件的属性として、「下定盤11の回転速度=A」、「上定盤12の回転速度=B」、「スラリ種類=C」、「キャリア材質=D」と設定されている場合には、「下定盤11の回転速度=A±x」、「上定盤12の回転速度=B±y」、「スラリ種類=C又はC´」、「キャリア材質=D又はD´」等の条件的属性が「研磨中ワークWαの条件的属性にマッチする」と判定され、これらの条件的属性に紐づけられた選択マスターの形状情報がメモリ30から抽出される。なお、条件的属性がマッチしているか否かの判定基準については、任意に設定することができる。 Further, "matching the conditional attribute of the work Wα being polished" means that the conditional attribute at the time of polishing is at least partially the same as the conditional attribute of the work Wα being polished, or the work Wα being polished. Refers to the case where at least a part of the conditional attribute is similar. For example, as the conditional attributes of the work Wα during polishing, "rotational speed of lower surface plate 11 = A", "rotational speed of upper surface plate 12 = B", "slurry type = C", and "carrier material = D" are set. If so, "rotational speed of lower surface plate 11 = A ± x", "rotational speed of upper surface plate 12 = B ± y", "slurry type = C or C'", "carrier material = D or It is determined that a conditional attribute such as "D'" matches the conditional attribute of the work Wα being polished, and the shape information of the selected master associated with these conditional attributes is extracted from the memory 30. It should be noted that the criteria for determining whether or not the conditional attributes match can be arbitrarily set.

そして、この第2描画生成部55では、研磨中ワークWαの条件的属性に基づいて抽出した選択マスターの形状情報に基づいて、この選択マスターの形状描画(断面形状線T1)を研磨開始から研磨停止までの時系列で順に並べた第2描画P2(図5参照)を生成する。なお、第2描画生成部55は、ワークWの研磨中、常に研磨中ワークWαの条件的属性を監視する。そして、例えば、スラリ流量異常発生などにより、あるバッチの進行中に、研磨中ワークWαの条件的属性が当初の設定又は想定された状態から逸脱した場合には、研磨中ワークWαの条件的属性の逸脱パターンに基づいて新たな条件的属性の組み合わせを編集する。そして、新たに編集された条件的属性の組み合わせに紐づけられた選択マスターの形状情報をメモリ30から抽出する。そして、新たに抽出した選択マスターの形状情報に基づいて、第2描画P2を再度生成する。また、この第2描画生成部55では、第2描画P2を再生成する際、学習機能により導いた形状描画の仮想パターンに基づいて生成してもよい。 Then, in the second drawing generation unit 55, the shape drawing (cross-sectional shape line T1) of the selection master is polished from the start of polishing based on the shape information of the selection master extracted based on the conditional attribute of the work Wα being polished. The second drawing P2 (see FIG. 5) arranged in order in chronological order until the stop is generated. The second drawing generation unit 55 constantly monitors the conditional attribute of the work Wα during polishing while the work W is being polished. Then, for example, when the conditional attribute of the work Wα being polished deviates from the initial setting or the assumed state during the progress of a certain batch due to the occurrence of an abnormal slurry flow rate, the conditional attribute of the work Wα being polished Edit new conditional attribute combinations based on the deviation pattern of. Then, the shape information of the selection master associated with the newly edited combination of conditional attributes is extracted from the memory 30. Then, the second drawing P2 is generated again based on the shape information of the newly extracted selection master. Further, in the second drawing generation unit 55, when the second drawing P2 is regenerated, it may be generated based on the virtual pattern of the shape drawing guided by the learning function.

表示制御部56では、第1描画生成部54によって生成された第1描画P1と、第2描画生成部55によって生成された第2描画P2とを、表示器40の画面40aに表示させる制御指令を表示器40に出力する。また、この表示制御部56は、状態判定部58が研磨機10による研磨加工を停止すると判定したとき、この研磨停止判定を行った旨を表示器40の画面40aに表示させる制御指令を表示器40に出力する。 In the display control unit 56, a control command for displaying the first drawing P1 generated by the first drawing generation unit 54 and the second drawing P2 generated by the second drawing generation unit 55 on the screen 40a of the display unit 40. Is output to the display 40. Further, when the state determination unit 58 determines that the polishing process by the polishing machine 10 is stopped, the display control unit 56 displays a control command for displaying on the screen 40a of the display 40 that the polishing stop determination has been performed. Output to 40.

形状推移予測部57では、第1描画生成部54によって抽出された研磨中ワークWαの形状情報の時系列変化と、第2描画生成部55によって抽出された選択マスターの形状情報の時系列変化とを比較演算する。そして、この形状推移予測部57は、比較演算の結果に基づいて、研磨中ワークWαの今後の形状推移を予測する。なお、この形状推移予測部57によって予測する研磨中ワークWαの形状推移とは、最終的な研磨形状を含む測定ごとに得られるワーク形状の推移である。 In the shape transition prediction unit 57, the time-series change of the shape information of the work Wα being polished extracted by the first drawing generation unit 54 and the time-series change of the shape information of the selection master extracted by the second drawing generation unit 55. Is compared. Then, the shape transition prediction unit 57 predicts the future shape transition of the work Wα being polished based on the result of the comparison calculation. The shape transition of the work Wα during polishing predicted by the shape transition prediction unit 57 is a transition of the work shape obtained for each measurement including the final polishing shape.

そして、この形状推移予測部57による形状情報の時系列変化の比較演算は、例えば以下の手順で行う。すなわち、選択マスターの断面形状線T1を条件的属性ごとに時系列で並べる。そして、条件的属性ごとの選択マスターの形状推移パターンを生成し、形状推移パターンに関するデータベースを構築する。ここで、選択マスターは、研磨時の条件的属性が研磨中ワークWαの条件的属性にマッチしている。そのため、研磨中ワークWαの形状推移は、選択マスターと同様になると考えられる。 Then, the comparison calculation of the time-series change of the shape information by the shape transition prediction unit 57 is performed by, for example, the following procedure. That is, the cross-sectional shape lines T1 of the selected master are arranged in chronological order for each conditional attribute. Then, the shape transition pattern of the selection master for each conditional attribute is generated, and a database related to the shape transition pattern is constructed. Here, in the selected master, the conditional attribute at the time of polishing matches the conditional attribute of the work Wα being polished. Therefore, it is considered that the shape transition of the work Wα during polishing is the same as that of the selected master.

そのため、形状推移予測部57は、研磨中ワークWαの断面形状線T1と、データベース化された形状推移パターンとをパターン認識することで比較する。そして、選択マスターの形状推移を参考にして、現在の研磨中ワークWαの研磨段階が、研磨開始から研磨停止までの間のどの段階であるかを推定する。さらに、形状推移予測部57は、研磨中ワークWαの現在の研磨段階と選択マスターの形状推移に基づき、研磨中ワークWαの今後の形状推移を予測する。
なお、この形状推移予測部57は、機械学習機能を備えており、形状推移パターンや経時的変動パターンを機械学習的に随時更新する。さらに、研磨加工の進行に伴って、研磨中ワークWαの研磨加工中に監視していた条件的属性が、無視できる範囲を超えて変化したときには、この形状推移予測部57は、即座に新たな条件的属性に基づいてその後の研磨中ワークWαの形状予測を行い、演算して出力する。
Therefore, the shape transition prediction unit 57 compares the cross-sectional shape line T1 of the work Wα being polished by recognizing the shape transition pattern stored in the database. Then, with reference to the shape transition of the selected master, it is estimated which stage the polishing stage of the work Wα currently being polished is from the start of polishing to the stop of polishing. Further, the shape transition prediction unit 57 predicts the future shape transition of the work Wα being polished based on the current polishing stage of the work Wα being polished and the shape transition of the selected master.
The shape transition prediction unit 57 has a machine learning function, and updates the shape transition pattern and the temporal fluctuation pattern at any time by machine learning. Further, as the polishing process progresses, when the conditional attribute monitored during the polishing process of the work Wα during polishing changes beyond a negligible range, the shape transition prediction unit 57 immediately becomes new. Based on the conditional attributes, the shape of the work Wα during subsequent polishing is predicted, calculated, and output.

状態判定部58では、形状推移予測部57にて予測した研磨中ワークWαの今後の形状推移に基づき、研磨中ワークWαの現在の研磨状態を判定する。ここで、「研磨状態」には、研磨中ワークWαのワーク形状が研磨加工を停止可能なワーク形状に達した研磨停止状態や、研磨機10による研磨加工の継続が必要な研磨継続状態、等が含まれる。 The state determination unit 58 determines the current polishing state of the polishing work Wα based on the future shape transition of the polishing work Wα predicted by the shape transition prediction unit 57. Here, the "polishing state" includes a polishing stop state in which the work shape of the work Wα during polishing reaches a work shape capable of stopping the polishing process, a polishing continuation state in which the polishing process by the polishing machine 10 needs to be continued, and the like. Is included.

[研磨停止判定処理構成
図6は、実施例1の制御部50の制御演算部51にて実行される研磨停止判定処理の流れを示すフローチャートである。以下、図6に基づいて、実施例1の研磨停止判定処理の各ステップを説明する。
[Polishing stop judgment processing configuration ]
FIG. 6 is a flowchart showing the flow of the polishing stop determination process executed by the control calculation unit 51 of the control unit 50 of the first embodiment. Hereinafter, each step of the polishing stop determination process of the first embodiment will be described with reference to FIG.

ステップS1では、研磨機10によるワークWの研磨加工が実行されているか否かを判定する。YES(ワーク研磨中)の場合にはステップS2へ進む。NO(ワーク研磨なし)の場合はステップS1を繰り返す。
ここで、研磨機10によるワーク研磨実施の判定は、制御演算部51から第1駆動装置M1~第5駆動装置M5への制御指令を伴い、研磨加工指令フラグが立っているか否かに基づいて行う。
In step S1, it is determined whether or not the work W is being polished by the polishing machine 10. If YES (work is being polished), the process proceeds to step S2. If NO (without work polishing), step S1 is repeated.
Here, the determination of the work polishing by the polishing machine 10 is accompanied by a control command from the control calculation unit 51 to the first drive device M1 to the fifth drive device M5, and is based on whether or not the polishing process command flag is set. conduct.

ステップS2では、ステップS1でのワーク研磨中との判定に続き、形状測定器20によって測定した研磨中ワークWαの形状情報をメモリ30から抽出し、ステップS3へ進む。 In step S2, following the determination that the work is being polished in step S1, the shape information of the work being polished Wα measured by the shape measuring instrument 20 is extracted from the memory 30, and the process proceeds to step S3.

ステップS3では、ステップS2での研磨中ワークWαの形状情報の抽出に続き、このステップS2にて抽出した研磨中ワークWαの形状情報に基づいて、研磨中ワークWαの形状描画を研磨機10による研磨開始から情報抽出の直前に行った測定までの時系列で順に並べた第1描画P1(図4参照)を生成し、ステップS4へ進む。 In step S3, following the extraction of the shape information of the work Wα being polished in step S2, the shape drawing of the work Wα being polished is drawn by the polishing machine 10 based on the shape information of the work Wα being polished extracted in this step S2. The first drawing P1 (see FIG. 4) arranged in order from the start of polishing to the measurement performed immediately before the information extraction is generated, and the process proceeds to step S4.

ステップS4では、ステップS3での第1描画P1の生成に続き、このステップS3にて生成した第1描画P1と、後述する第2描画生成処理にて生成された第2描画P2(図5参照)とを読み込み、ステップS5へ進む。
ここで、第2描画P2を生成する処理(第2描画生成処理)は、図6に示す研磨停止判定処理の各ステップと並行して実行されており、第2描画P2は、研磨中ワークWαの研磨中に条件的属性が変化した場合は、適宜差し替えられる。
In step S4, following the generation of the first drawing P1 in step S3, the first drawing P1 generated in this step S3 and the second drawing P2 generated by the second drawing generation process described later (see FIG. 5). ) And proceed to step S5.
Here, the process of generating the second drawing P2 (second drawing generation process) is executed in parallel with each step of the polishing stop determination process shown in FIG. 6, and the second drawing P2 is the polishing work Wα. If the conditional attributes change during polishing, they will be replaced as appropriate.

ステップS5では、ステップS4での第1描画P1及び第2描画P2の読み込みに続き、ステップS3にて生成し、ステップS4にて読み込んだ第1描画P1と、ステップS4にて読み込んだ第2描画P2とを表示器40の画面40a上に同時に表示させる制御指令を表示器40に出力し、ステップS6へ進む。
なお、実施例1では、図8に示すように、表示器40は、第1描画P1及び第2描画P2の各X軸及びZ軸の比率を同一に揃えると共に、第1描画P1と第2描画P2とを水平方向に並べて画面40aに表示する。また、表示器40は、研磨中ワークWαの条件的属性(一部又は全部)も同時に画面40aに表示する。なお、全ての条件的属性を表示するか否かは、画面40aの表示スペースや条件的属性をモニターすることの利便性等を勘案して設定すればよい。また、研磨中ワークWαの条件的属性は、画面40aに表示しなくてもよい。
In step S5, following the reading of the first drawing P1 and the second drawing P2 in step S4, the first drawing P1 generated in step S3 and read in step S4 and the second drawing read in step S4. A control command for simultaneously displaying P2 and P2 on the screen 40a of the display 40 is output to the display 40, and the process proceeds to step S6.
In the first embodiment, as shown in FIG. 8, the display 40 has the same ratio of the X-axis and the Z-axis of the first drawing P1 and the second drawing P2, and the first drawing P1 and the second drawing P1 and the second drawing P2 have the same ratio. The drawing P2 and the drawing P2 are arranged horizontally and displayed on the screen 40a. In addition, the display 40 also displays the conditional attributes (part or all) of the work Wα being polished on the screen 40a at the same time. Whether or not to display all the conditional attributes may be set in consideration of the display space of the screen 40a, the convenience of monitoring the conditional attributes, and the like. Further, the conditional attribute of the work Wα during polishing does not have to be displayed on the screen 40a.

ステップS6では、ステップS5での表示器40への制御指令の出力に続き、第2描画P2を生成する際に抽出した選択マスターの形状情報の時系列変化と、ステップS2にて抽出した研磨中ワークWαの形状情報の時系列変化とを比較演算し、この比較演算結果から研磨中ワークWαの今後の形状推移を予測し、ステップS7へ進む。
なお、第2描画P2を生成する際に抽出した選択マスターの形状情報は、第2描画P2を差し替えた場合には、差し替えた第2描画P2に応じて変化する。
In step S6, following the output of the control command to the display 40 in step S5, the time-series change of the shape information of the selection master extracted when the second drawing P2 is generated, and the polishing extracted in step S2 are being performed. A comparison calculation is performed with the time-series change of the shape information of the work Wα, the future shape transition of the work Wα being polished is predicted from the comparison calculation result, and the process proceeds to step S7.
When the second drawing P2 is replaced, the shape information of the selection master extracted when the second drawing P2 is generated changes according to the replaced second drawing P2.

ステップS7では、ステップS6での研磨中ワークWαの形状推移の予測に続き、この予測した形状推移に基づいて研磨中ワークWαの研磨状態を判定し、ステップS8へ進む。
ここで、研磨中ワークWαの研磨状態は、研磨加工を停止可能なワーク形状に達した「研磨停止状態」、研磨加工の継続が必要な「研磨継続状態」のいずれかに判定される。
In step S7, following the prediction of the shape transition of the work Wα being polished in step S6, the polishing state of the work Wα being polished is determined based on the predicted shape transition, and the process proceeds to step S8.
Here, the polishing state of the work Wα being polished is determined to be either a “polishing stopped state” in which the polishing process has reached a work shape that can stop the polishing process, or a “polishing continuation state” in which the polishing process needs to be continued.

ステップS8では、ステップS7での研磨中ワークWαの研磨状態の判定に続き、このステップS7にて実施した研磨状態の判定に基づいて、研磨機10による研磨中ワークWαの研磨加工を停止するか否かを判定する。YES(研磨停止)の場合にはステップS9へ進む。NO(研磨継続)の場合にはステップS2へ進む。
ここで、研磨中ワークWαの研磨停止との判定は、ステップS7にて「研磨停止状態」と判定されたときに行われる。
In step S8, following the determination of the polishing state of the polishing work Wα in step S7, whether to stop the polishing process of the polishing work Wα by the polishing machine 10 based on the determination of the polishing state performed in this step S7. Judge whether or not. If YES (polishing stopped), the process proceeds to step S9. If NO (continuation of polishing), the process proceeds to step S2.
Here, the determination that the polishing work Wα is stopped during polishing is performed when it is determined in step S7 that the polishing is stopped.

ステップS9では、ステップS8での研磨停止の判定に続き、表示器40の画面40a上に研磨中ワークWαの研磨停止を判定した旨を表示させる制御指令を表示器40に出力し、研磨停止判定を報知してステップS10へ進む。 In step S9, following the determination of polishing stop in step S8, a control command for displaying on the screen 40a of the display 40 that the polishing stop of the polishing work Wα has been determined is output to the display 40 to determine the polishing stop. Is notified and the process proceeds to step S10.

ステップS10では、ステップS9での研磨停止判定の報知に続き、研磨機10による研磨中ワークWαの研磨加工を停止し、エンドへ進む。
ここで、研磨機10による研磨加工の停止は、制御演算部51から第1駆動装置M1~第5駆動装置M5へ停止制御指令を出力することで行う。
In step S10, following the notification of the polishing stop determination in step S9, the polishing process of the work Wα during polishing by the polishing machine 10 is stopped, and the process proceeds to the end.
Here, the polishing process by the polishing machine 10 is stopped by outputting a stop control command from the control calculation unit 51 to the first drive device M1 to the fifth drive device M5.

[第2描画生成処理構成]
図7は、実施例1の制御部50の第2描画生成部55にて実行される第2描画生成処理の流れを示すフローチャートである。以下、図7に基づいて、実施例1の第2描画生成処理の各ステップを説明する。
[Second drawing generation processing configuration]
FIG. 7 is a flowchart showing the flow of the second drawing generation process executed by the second drawing generation unit 55 of the control unit 50 of the first embodiment. Hereinafter, each step of the second drawing generation process of the first embodiment will be described with reference to FIG. 7.

ステップS11では、研磨機10によるワークWの研磨加工が実行されているか否かを判定する。YES(ワーク研磨中)の場合にはステップS12へ進む。NO(ワーク研磨なし)の場合はステップS11を繰り返す。
ここで、研磨機10によるワーク研磨実施の判定は、研磨停止判定処理におけるステップS1と同様に行う。
In step S11, it is determined whether or not the work W is being polished by the polishing machine 10. If YES (work is being polished), the process proceeds to step S12. If NO (without work polishing), step S11 is repeated.
Here, the determination of the work polishing by the polishing machine 10 is performed in the same manner as in step S1 in the polishing stop determination process.

ステップS12では、ステップS11でのワーク研磨中との判定に続き、現在研磨加工している研磨中ワークWαの条件的属性を取得し、ステップS13へ進む。
ここで、研磨中ワークWαの条件的属性は、この研磨中ワークWαの研磨開始時に研磨機10のユーザーにより入力装置53を介して入力されたり、サブメモリ52に予め記憶されたり、CPUを介してセンサー等により変化状態を監視されたりしている。
In step S12, following the determination that the work is being polished in step S11, the conditional attribute of the work being polished Wα currently being polished is acquired, and the process proceeds to step S13.
Here, the conditional attributes of the work Wα being polished are input by the user of the polishing machine 10 via the input device 53 at the start of polishing of the work Wα being polished, stored in advance in the sub-memory 52, or via the CPU. The change state is monitored by sensors and the like.

ステップS13では、ステップS12での研磨中ワークWαの条件的属性の取得に続き、過去に研磨加工したワークWのうち、ステップS12にて取得した条件的属性にマッチする条件的属性に紐づけられた選択マスターの形状情報(形状参考ワークWβの形状情報、又は典型的な形状情報)をメモリ30から抽出し、ステップS14へ進む。 In step S13, following the acquisition of the conditional attribute of the work Wα being polished in step S12, the work W that has been polished in the past is associated with the conditional attribute that matches the conditional attribute acquired in step S12. The shape information of the selected master (shape information of the shape reference work Wβ or typical shape information) is extracted from the memory 30, and the process proceeds to step S14.

ステップS14では、ステップS13での選択マスターの形状情報の抽出に続き、このステップS13にて抽出した選択マスターの形状情報に基づいて、選択マスターの形状描画を研磨機10による研磨開始から研磨停止までの時系列で順に並べた第2描画P2(図5参照)を生成し、ステップS15へ進む。 In step S14, following the extraction of the shape information of the selection master in step S13, the shape drawing of the selection master is drawn from the start to the stop of polishing by the polishing machine 10 based on the shape information of the selection master extracted in this step S13. The second drawing P2 (see FIG. 5) arranged in order in the time series of is generated, and the process proceeds to step S15.

ステップS15では、ステップS14での第2描画P2の生成に続き、研磨中ワークWαの研磨が継続するか否かを判定する。YES(研磨継続)の場合にはステップS16へ進む。NO(研磨停止)の場合には第2描画P2の生成や差し替えは不要としてエンドへ進み、第2描画生成処理を終了する。
ここで、研磨中ワークWαの研磨継続との判定は、研磨中ワークWαの研磨状態に基づいて研磨加工の継続が必要な「研磨継続状態」と判定されたときに行われる。
In step S15, it is determined whether or not the polishing of the work Wα during polishing is continued following the generation of the second drawing P2 in step S14. If YES (continuation of polishing), the process proceeds to step S16. In the case of NO (polishing stop), it is considered unnecessary to generate or replace the second drawing P2, the process proceeds to the end, and the second drawing generation process is terminated.
Here, the determination of continuation of polishing of the work Wα during polishing is performed when it is determined that the polishing process needs to be continued based on the polishing state of the work Wα during polishing.

ステップS16では、ステップS15での研磨継続との判定に続き、研磨中ワークWαの条件的属性を再度取得し、ステップS17へ進む。 In step S16, following the determination that polishing is continued in step S15, the conditional attribute of the polishing work Wα is acquired again, and the process proceeds to step S17.

ステップS17では、ステップS16での研磨中ワークWαの条件的属性の再取得に続き、研磨中ワークWαの条件的属性の状態に変化が生じたか否かを判断する。YES(変化あり)の場合にはステップS18へ進む。NO(変化なし)の場合にはステップS15へ戻る。
ここで、研磨中ワークWαの条件的属性に状態変化が生じたか否かは、ステップS16にて取得した研磨中ワークWαの条件的属性と、それ以前に取得した研磨中ワークWαの条件的属性とを比較し、その乖離に基づいて判断する。なお、研磨中ワークWαの条件的属性に状態変化が生じた場合とは、研磨加工の進行に伴って、条件的属性が当初設定した状態から大きく逸脱した場合や、条件的属性が想定から大きく変動した場合などである。
In step S17, following the reacquisition of the conditional attribute of the polishing work Wα in step S16, it is determined whether or not the state of the conditional attribute of the polishing work Wα has changed. If YES (changed), the process proceeds to step S18. If NO (no change), the process returns to step S15.
Here, whether or not a state change has occurred in the conditional attribute of the polishing work Wα is determined by the conditional attribute of the polishing work Wα acquired in step S16 and the conditional attribute of the polishing work Wα acquired before that. And make a judgment based on the difference. When the conditional attribute of the work Wα during polishing changes, it means that the conditional attribute deviates significantly from the initially set state as the polishing process progresses, or the conditional attribute is significantly larger than expected. For example, when it fluctuates.

ステップS18では、ステップS17での条件的属性の状態変化ありとの判断に続き、ステップS16にて取得した変化した後の研磨中ワークWαの条件的属性に基づいて、選択マスターの条件的属性を編集し、ステップS19へ進む。
ここで、条件的属性の編集とは、研磨中ワークWαの条件的属性に基づいて、選択マスターの条件的属性として、ワークWの研磨加工に与える影響の高い条件的属性や、特定の条件に応じた条件的属性を選択又は置換することである。
In step S18, following the determination that the state of the conditional attribute has changed in step S17, the conditional attribute of the selected master is determined based on the conditional attribute of the work Wα being polished after the change acquired in step S16. Edit and proceed to step S19.
Here, the editing of the conditional attribute means that the conditional attribute of the selected master is based on the conditional attribute of the work Wα being polished, and the conditional attribute that has a high influence on the polishing process of the work W or a specific condition. To select or replace the corresponding conditional attributes.

ステップS19では、ステップS18での条件的属性の編集に続き、このステップS19にて編集された条件的属性に最もマッチする条件的属性に紐づけられた選択マスターの形状情報(形状参考ワークWβの形状情報、又は典型的な形状情報)をメモリ30から抽出し、ステップS20へ進む。 In step S19, following the editing of the conditional attribute in step S18, the shape information of the selection master (shape reference work Wβ) associated with the conditional attribute that best matches the conditional attribute edited in step S19. (Shape information or typical shape information) is extracted from the memory 30, and the process proceeds to step S20.

ステップS20では、ステップS19での選択マスターの形状情報の抽出に続き、このステップS19にて抽出した選択マスターの形状情報に基づいて第2描画P2を再度生成する。そして、選択マスターの形状情報を再度抽出する時点までに生成された第2描画P2を、この新たに生成した第2描画P2に差し替えて、ステップS15へ戻る。 In step S20, following the extraction of the shape information of the selected master in step S19, the second drawing P2 is generated again based on the shape information of the selected master extracted in this step S19. Then, the second drawing P2 generated by the time when the shape information of the selection master is extracted again is replaced with the newly generated second drawing P2, and the process returns to step S15.

以下、作用を説明する。
まず、「ワーク研磨停止時の課題」を説明し、続いて、実施例1の研磨装置1の作用を「研磨停止作用」、「形状推移の予測精度向上作用」に分けて説明する。
The operation will be described below.
First, the "problem when the work polishing is stopped" will be described, and then the operation of the polishing device 1 of the first embodiment will be described separately for the "polishing stopping action" and the "shape transition prediction accuracy improving action".

[ワーク研磨停止時の課題]
研磨装置1の研磨機10によってワークWの両面を研磨する際、ワークWの厚さ及び断面形状は研磨加工の進行に伴って次第に変化していく。特にワークWの断面形状は、他の条件的属性が望ましい状態で一定の場合、キャリアプレート15とワークWとの厚さ差によって決まることが一般的となるが、研磨加工が進むにつれて例えば「中央凸・外周ダレ形状」から「フラット形状」を経て「中央凹・外周タチ形状」のように推移する。なお、「中央凸形状」とは、ワークWの中央部の厚さが外周領域よりも大きい形状である。また「外周ダレ形状」とは、ワークWの外周縁に向かって次第に厚さが小さくなっていく形状である。また「フラット形状」とは、ワークWの全面がほぼ平坦な形状である。また「中央凹形状」とは、ワークWの中央部の厚さが外周領域よりも小さい形状である。また「外周タチ形状」とは、ワークWの外周縁に向かって次第に厚さが大きくなっていく形状である。
[Issues when work polishing is stopped]
When both sides of the work W are polished by the polishing machine 10 of the polishing device 1, the thickness and the cross-sectional shape of the work W gradually change as the polishing process progresses. In particular, the cross-sectional shape of the work W is generally determined by the thickness difference between the carrier plate 15 and the work W when other conditional attributes are constant in a desirable state. It changes from "convex / outer peripheral sagging shape" to "flat shape" to "center concave / outer peripheral tachi shape". The "center convex shape" is a shape in which the thickness of the central portion of the work W is larger than that of the outer peripheral region. Further, the "outer peripheral sagging shape" is a shape in which the thickness gradually decreases toward the outer peripheral edge of the work W. The "flat shape" is a shape in which the entire surface of the work W is substantially flat. The "center concave shape" is a shape in which the thickness of the central portion of the work W is smaller than that of the outer peripheral region. Further, the "outer peripheral tachi shape" is a shape in which the thickness gradually increases toward the outer peripheral edge of the work W.

そして、ワークWの厚さが狙い厚さ範囲(T1≦厚さ≦T2)に収まっているときに研磨加工を停止することで、ワークWは所望の厚さになる。一方、ワークWの断面形状は、後工程の加工プロセスにおける設定にもよるが、一般的にはワークWの全面がほぼ平坦である「フラット形状」であることが好ましいことが多い。そのため、ワークWの研磨加工は、厚さが狙い厚さ範囲に収まり、断面形状が「フラット形状」になったときに停止することが望まれている。 Then, by stopping the polishing process when the thickness of the work W is within the target thickness range (T1 ≦ thickness ≦ T2), the work W becomes a desired thickness. On the other hand, the cross-sectional shape of the work W depends on the setting in the machining process of the subsequent process, but in general, it is often preferable that the cross-sectional shape of the work W is a “flat shape” in which the entire surface of the work W is substantially flat. Therefore, it is desired that the polishing process of the work W is stopped when the thickness falls within the target thickness range and the cross-sectional shape becomes a "flat shape".

これに対し、ワークWの厚さをリアルタイムで測定し、測定するごとに測定結果に基づいて研磨中のワークWの形状描画を生成する。そして、このワークWの形状描画を研磨機10のユーザーがモニタリングし、ワークWの厚さが狙い厚さ範囲に収まり、断面形状が「フラット形状」に到達したと思われるタイミングで研磨機10を停止することが行われる。 On the other hand, the thickness of the work W is measured in real time, and the shape drawing of the work W being polished is generated based on the measurement result each time the measurement is performed. Then, the user of the grinding machine 10 monitors the shape drawing of the work W, and the grinding machine 10 is operated at the timing when the thickness of the work W falls within the target thickness range and the cross-sectional shape reaches the "flat shape". It is done to stop.

しかしながら、ワークWの研磨時の条件的属性の違い等の影響より、ワークWの断面形状の変化の過程(形状推移)が異なることがある。また、ワークWの断面形状は、ワークWの研磨時の条件的属性との相関によって「フラット形状」のような所望の形状にならない場合があり、その場合には、二次的に許容可能な断面形状で研磨加工を停止する必要が生じる。 However, the process of change in the cross-sectional shape of the work W (shape transition) may differ due to the influence of differences in conditional attributes during polishing of the work W. Further, the cross-sectional shape of the work W may not be a desired shape such as a "flat shape" due to the correlation with the conditional attribute at the time of polishing the work W, in which case it is secondarily acceptable. It becomes necessary to stop the polishing process due to the cross-sectional shape.

一方、ワークWの形状描画を一時的にモニタリングするだけでは、ワーク形状が将来的にどのように変化していくのかを予測することが難しい。すなわち、例えば、現時点で「弱中央凸形状」のワークWの場合、研磨加工を継続することで「フラット形状」になる場合と、「外周タチ形状」になる場合がある。現時点のワーク形状である「弱中央凸形状」を一時的にモニタリングしただけでは、その後のワーク形状は不明であり、適切なタイミングで研磨加工を停止できない結果、ワークWが「外周タチ形状」になってしまい、ワーク外周領域でのSFQR(Site front least squares range)が悪化するおそれがある。また、ワークWが「フラット形状」になったのに研磨停止タイミングが適時よりも遅れることも生じうる。 On the other hand, it is difficult to predict how the shape of the work will change in the future only by temporarily monitoring the shape drawing of the work W. That is, for example, in the case of the work W having a "weak center convex shape" at present, there are cases where the work W becomes a "flat shape" and a "peripheral tachi shape" by continuing the polishing process. The work shape after that is unknown only by temporarily monitoring the current work shape "weak center convex shape", and as a result of not being able to stop the polishing process at an appropriate timing, the work W becomes "outer circumference tachi shape". This may result in deterioration of SFQR (Site front last squares range) in the outer peripheral region of the work. Further, even though the work W has a "flat shape", the polishing stop timing may be delayed more than appropriate.

つまり、ワークWの形状描画を一時的にモニタリングするだけでは、研磨中のワークWの形状変化の推移を把握できない。そのため、ワークWの形状変化の推移に基づいて、所望のワーク形状になったタイミング或いは所望のワーク形状になるタイミングでワークWの研磨加工を停止できないという問題が生じる。 That is, it is not possible to grasp the transition of the shape change of the work W during polishing only by temporarily monitoring the shape drawing of the work W. Therefore, there arises a problem that the polishing process of the work W cannot be stopped at the timing when the desired work shape is obtained or the timing when the desired work shape is obtained based on the transition of the shape change of the work W.

[研磨停止作用]
実施例1の研磨装置1では、研磨機10によるワークWの研磨中に形状測定器20によりワークWの厚さ及び断面形状を測定する。そして、この研磨装置1は、形状測定器20で測定したワークWの厚さ及び断面形状の情報を、メモリ30に記憶する。
[Polishing stop action]
In the polishing apparatus 1 of the first embodiment, the thickness and the cross-sectional shape of the work W are measured by the shape measuring device 20 while the work W is being polished by the polishing machine 10. Then, the polishing device 1 stores the information on the thickness and the cross-sectional shape of the work W measured by the shape measuring device 20 in the memory 30.

一方、研磨機10によってワークWの研磨加工を実行したとき、制御部50の制御演算部51はワークWの研磨中であると判定し、図6のフローチャートに示すステップS1からステップS2、ステップS3、ステップS4の各処理を順に行う。つまり、第1描画生成部54は、研磨中ワークWαの形状情報をメモリ30から抽出し、抽出した研磨中ワークWαの形状情報に基づいて第1描画P1を生成する。また、表示制御部56は、第1描画生成部54にて生成された第1描画P1と、第2描画生成部55にて生成された第2描画P2とを読み込み、表示器40の画面40aに第1描画P1及び第2描画P2を表示させる制御指令を出力する。 On the other hand, when the work W is polished by the polishing machine 10, the control calculation unit 51 of the control unit 50 determines that the work W is being polished, and steps S1 to S2 and S3 shown in the flowchart of FIG. , Each process of step S4 is performed in order. That is, the first drawing generation unit 54 extracts the shape information of the work Wα being polished from the memory 30, and generates the first drawing P1 based on the extracted shape information of the work Wα being polished. Further, the display control unit 56 reads the first drawing P1 generated by the first drawing generation unit 54 and the second drawing P2 generated by the second drawing generation unit 55, and the screen 40a of the display 40a. Outputs a control command for displaying the first drawing P1 and the second drawing P2.

これにより、表示器40の画面40aには、第1描画P1と第2描画P2とが同時に表示される。このように、実施例1の研磨装置1では、形状測定器20によって研磨中ワークWαの形状を測定した際、第1描画P1が表示器40に表示される。 As a result, the first drawing P1 and the second drawing P2 are simultaneously displayed on the screen 40a of the display device 40. As described above, in the polishing device 1 of the first embodiment, when the shape of the work Wα being polished is measured by the shape measuring device 20, the first drawing P1 is displayed on the display device 40.

ここで、第1描画P1は、研磨中ワークWαの形状描画(断面形状線T1)を時系列で順に並べたものである。そのため、研磨機10のユーザーは、連続的に描画された研磨中ワークWαの形状描画を一覧的に認識することができる。これにより、ユーザーは、研磨開始から現在(第1描画生成時点)までの間の研磨中ワークWαの形状変化の推移を把握することができる。この結果、ユーザーは、研磨中ワークWαの形状変化の推移に基づいて、研磨中ワークWαの今後の形状推移を予測できる。そのため、ユーザーによるマニュアル操作で研磨機10を制御して研磨加工を停止する場合であっても、所望のワーク形状になったタイミング或いは、所望のワーク形状になるタイミングで研磨加工を停止しやすい。 Here, in the first drawing P1, the shape drawing (cross-sectional shape line T1) of the work Wα being polished is arranged in chronological order. Therefore, the user of the polishing machine 10 can collectively recognize the shape drawing of the continuously drawn work Wα during polishing. As a result, the user can grasp the transition of the shape change of the work Wα during polishing from the start of polishing to the present (time of generation of the first drawing). As a result, the user can predict the future shape change of the polishing work Wα based on the change in the shape of the polishing work Wα. Therefore, even when the polishing machine 10 is manually controlled by the user to stop the polishing process, it is easy to stop the polishing process at the timing when the desired work shape is obtained or the timing when the desired work shape is obtained.

また、ユーザーが研磨中ワークWαの形状描画を条件的属性に紐づいた状態で一覧的に認識できることにより、このユーザーは、研磨機10の装置設計や、スラリ等の副資材の設計、副資材選択、さらに加工条件の選択等のワーク研磨時の条件的属性の改善立案を容易に行うことができる。そして、ユーザーは、より効率的にプロセス改善立案を行うことができ、ひいては、最終ワーク形状が所望の形状となるウェーハの生産性向上を図ることができる。 In addition, since the user can collectively recognize the shape drawing of the work Wα being polished in a state linked to the conditional attribute, this user can design the equipment of the polishing machine 10, design auxiliary materials such as slurries, and auxiliary materials. It is possible to easily plan the improvement of conditional attributes at the time of work polishing such as selection and selection of processing conditions. Then, the user can more efficiently plan the process improvement, and by extension, can improve the productivity of the wafer having the desired shape of the final work.

しかも、この実施例1では、第1描画P1と第2描画P2とが表示器40の画面40aに同時に表示される。そのため、研磨機10のユーザーは、画面40aを目視することで、第1描画P1及び第2描画P2を同時にモニタリングすることができる。 Moreover, in the first embodiment, the first drawing P1 and the second drawing P2 are simultaneously displayed on the screen 40a of the display device 40. Therefore, the user of the polishing machine 10 can simultaneously monitor the first drawing P1 and the second drawing P2 by visually observing the screen 40a.

ここで、第2描画P2は、研磨中ワークWαの条件的属性に基づいて抽出した選択マスターの形状情報に基づき、この選択マスターの形状描画(断面形状線T1)を時系列で順に並べたものである。そのため、研磨機10のユーザーは、第1描画P1をモニタリングすると同時に、第2描画P2を確認することで、第2描画P2に示される選択マスターの形状推移を参考にして、研磨中ワークWαの今後の形状変化の推移をより正確に予測することができる。この結果、ユーザーがマニュアル操作で研磨機10を制御して研磨加工を停止する場合に、さらに適切なタイミングで研磨加工の停止が可能となる。さらに、場合によっては、条件的属性をあえて変更させ、最終ワーク形状や研磨終了のタイミグを調整することもできる。 Here, in the second drawing P2, the shape drawing (cross-sectional shape line T1) of the selected master is arranged in chronological order based on the shape information of the selected master extracted based on the conditional attribute of the work Wα being polished. Is. Therefore, the user of the polishing machine 10 monitors the first drawing P1 and at the same time confirms the second drawing P2, thereby referring to the shape transition of the selection master shown in the second drawing P2, and the polishing work Wα. It is possible to predict the transition of shape changes in the future more accurately. As a result, when the user manually controls the polishing machine 10 to stop the polishing process, the polishing process can be stopped at a more appropriate timing. Further, in some cases, the conditional attributes can be intentionally changed to adjust the final work shape and the timing of the end of polishing.

一方、この実施例1の研磨装置1では、第1描画P1及び第2描画P2を表示器40の画面40aに表示させた後、図6のフローチャートに示すステップS6からステップS7、ステップS8の各処理を順に行う。つまり、形状推移予測部57は、研磨中ワークWαの形状情報の時系列変化と、選択マスターの時系列変化とを比較演算し、その結果に基づいて研磨中ワークWαの今後の形状推移を予測する。また、状態判定部58は、形状推移予測部57によって予測された研磨中ワークWαの形状推移に基づいて、研磨中ワークWαの現在の研磨状態を判定し、研磨状態の判定結果に基づいて研磨加工を停止するか否かを判定する。 On the other hand, in the polishing apparatus 1 of the first embodiment, after the first drawing P1 and the second drawing P2 are displayed on the screen 40a of the display 40, steps S6 to S7 and steps S8 shown in the flowchart of FIG. Process in order. That is, the shape transition prediction unit 57 compares and calculates the time-series change of the shape information of the work Wα being polished and the time-series change of the selection master, and predicts the future shape transition of the work Wα being polished based on the result. do. Further, the state determination unit 58 determines the current polishing state of the polishing work Wα based on the shape transition of the polishing work Wα predicted by the shape transition prediction unit 57, and polishes based on the determination result of the polishing state. Determine whether to stop machining.

そして、この状態判定部58により、研磨中ワークWαの研磨加工を停止すると判定された場合には、図6のフローチャートに示すステップS9の処理を行う。つまり、表示制御部56は、研磨中ワークWαの研磨停止を判定した旨を、表示器40の画面40aに表示させる制御指令を出力する。そして、表示器40の画面40aには、研磨中ワークWαの研磨停止が判定されたことが表示され、研磨停止判定が報知される。 Then, when the state determination unit 58 determines that the polishing process of the work Wα during polishing is stopped, the process of step S9 shown in the flowchart of FIG. 6 is performed. That is, the display control unit 56 outputs a control command for displaying on the screen 40a of the display 40 that the polishing stop of the work Wα during polishing is determined. Then, on the screen 40a of the display 40, it is displayed that the polishing stop of the polishing work Wα is determined, and the polishing stop determination is notified.

この結果、研磨機10のユーザーは、画面40aを目視することで、研磨停止が判定されたことを把握することができる。これにより、ユーザーがマニュアル操作で研磨機10を制御して研磨加工を停止する場合であっても、適切なタイミングで研磨加工を停止できる。なお、後述するように制御部50からの停止制御指令によって研磨機10を停止させる場合であっても、ユーザーが研磨機10の停止動作を認識することが可能となる。 As a result, the user of the polishing machine 10 can grasp that the polishing stop is determined by visually observing the screen 40a. As a result, even when the user manually controls the polishing machine 10 to stop the polishing process, the polishing process can be stopped at an appropriate timing. As will be described later, even when the grinding machine 10 is stopped by a stop control command from the control unit 50, the user can recognize the stop operation of the grinding machine 10.

その後、図6のフローチャートに示すステップS10の処理を行う。つまり、制御部50の制御演算部51は、第1駆動装置M1~第5駆動装置M5へ停止制御指令等研磨加工終了のための諸出力を行う。この結果、研磨機10は所定のシーケンスを経て自動停止し、研磨中ワークWαの研磨加工は終了する。これにより、実施例1の研磨装置1では、研磨加工の停止タイミングが適時より遅れることを防止して、適切なタイミングで自動的に研磨加工を停止できる。 After that, the process of step S10 shown in the flowchart of FIG. 6 is performed. That is, the control calculation unit 51 of the control unit 50 outputs various outputs such as a stop control command to the first drive device M1 to the fifth drive device M5 to complete the polishing process. As a result, the polishing machine 10 automatically stops after a predetermined sequence, and the polishing process of the work Wα during polishing is completed. As a result, in the polishing apparatus 1 of the first embodiment, it is possible to prevent the polishing process from being stopped later than the appropriate time, and to automatically stop the polishing process at an appropriate timing.

そして、この実施例1の研磨装置1では、制御部50の制御演算部51が有する形状推移予測部57及び状態判定部58により、研磨中ワークWαの形状情報の時系列変化と、選択マスターの時系列変化とを比較演算する。さらに、この比較演算の結果に基づいて研磨中ワークWαの形状変化の推移を予測する。そして、この研磨中ワークWαの形状変化の推移に基づき、研磨中ワークWαの研磨状態を自動的に認識する。 Then, in the polishing device 1 of the first embodiment, the shape transition prediction unit 57 and the state determination unit 58 of the control calculation unit 51 of the control unit 50 change the shape information of the work Wα being polished in time series and the selection master. Compare with time series change. Further, based on the result of this comparison calculation, the transition of the shape change of the work Wα during polishing is predicted. Then, based on the transition of the shape change of the work Wα during polishing, the polishing state of the work Wα during polishing is automatically recognized.

ここで、選択マスターの形状情報は、研磨中ワークWαの条件的属性にマッチする条件的属性に紐づけられている。そのため、この選択マスターの時系列変化は、研磨中ワークWαの条件的属性と形状推移との相関を反映したものとなる。これにより、この研磨装置1では、研磨中ワークWαの形状推移の予測精度を向上させ、研磨中ワークWαの状態判定を適切に行うことができる。そして、研磨中ワークWαの状態判定が適切に行われることで、研磨中ワークWαが所望の形状になった、或いは研磨中ワークWαが所望の形状になる最適なタイミングで研磨加工を停止することができる。 Here, the shape information of the selected master is associated with the conditional attribute that matches the conditional attribute of the work Wα being polished. Therefore, the time-series change of this selection master reflects the correlation between the conditional attribute of the work Wα during polishing and the shape transition. As a result, in this polishing apparatus 1, the accuracy of predicting the shape transition of the work Wα during polishing can be improved, and the state of the work Wα during polishing can be appropriately determined. Then, by appropriately determining the state of the work Wα during polishing, the polishing process is stopped at the optimum timing when the work Wα during polishing has a desired shape or the work Wα during polishing has a desired shape. Can be done.

さらに、この実施例1の研磨装置1では、研磨中ワークWαの研磨状態に応じて研磨加工の停止又は研磨加工の継続を判定し、適切と判定されるタイミングで研磨機10を自動停止する。このように研磨停止を自動的に行うことで、研磨停止のタイミングが適時よりも遅れることを防止できる。また、装置制御の組み方によっては、研磨中ワークWαの条件的属性を意図的に変更し、最終ワーク形状や研磨終了のタイミグを調整することもできる。 Further, in the polishing apparatus 1 of the first embodiment, it is determined that the polishing process is stopped or the polishing process is continued according to the polishing state of the work Wα during polishing, and the polishing machine 10 is automatically stopped at the timing determined to be appropriate. By automatically stopping polishing in this way, it is possible to prevent the timing of stopping polishing from being delayed more than appropriate. Further, depending on how the device is controlled, the conditional attribute of the work Wα during polishing can be intentionally changed to adjust the shape of the final work and the timing of the end of polishing.

また、この実施例1では、第2描画生成部55において研磨停止判定処理と並行して第2描画生成処理が実施され、研磨中ワークWαの研磨が開始されてから終了するまでの間、研磨中ワークWαの条件的属性が変化するか否かを監視する。そして、研磨中ワークWαの条件的属性が変化したときには、研磨停止判定処理でのその時点でのステップの如何に拘らず、第2描画P2が差し替えられる。 Further, in the first embodiment, the second drawing generation unit 55 performs the second drawing generation process in parallel with the polishing stop determination process, and polishing is performed from the start to the end of the polishing of the work Wα during polishing. Monitor whether the conditional attribute of the medium work Wα changes. Then, when the conditional attribute of the work Wα during polishing changes, the second drawing P2 is replaced regardless of the step at that time in the polishing stop determination process.

すなわち、研磨機10によってワークWの研磨加工を実行したとき、第2描画生成部55はワークWの研磨中であると判定し、図7のフローチャートに示すステップS11からステップS12、ステップS13、ステップS14の各処理を順に行う。つまり、第2描画生成部55は、研磨中ワークWαの条件的属性を取得し、その取得された条件的属性にマッチする条件的属性に紐づけられた選択マスターの形状情報(形状参考ワークWβの形状情報又は典型的な形状情報)をメモリ30から抽出する。そして、この第2描画生成部55は、抽出した選択マスターの形状情報に基づいて第2描画P2を生成する。 That is, when the work W is polished by the polishing machine 10, the second drawing generation unit 55 determines that the work W is being polished, and steps S11 to S12, steps S13, and steps shown in the flowchart of FIG. Each process of S14 is performed in order. That is, the second drawing generation unit 55 acquires the conditional attribute of the work Wα being polished, and the shape information (shape reference work Wβ) of the selection master associated with the conditional attribute matching the acquired conditional attribute. (Shape information or typical shape information) is extracted from the memory 30. Then, the second drawing generation unit 55 generates the second drawing P2 based on the shape information of the extracted selection master.

第2描画P2を生成したら、第2描画生成部55は、ステップS15の処理を行い、研磨中ワークWαの研磨加工が継続されるか否かを判定する。そして、研磨加工が継続する場合には、ステップS16、ステップS17の各処理を順に行い、研磨中ワークWαの条件的属性を再度取得して、この条件的属性に変化が生じたか否かを判定する。 After the second drawing P2 is generated, the second drawing generation unit 55 performs the process of step S15 and determines whether or not the polishing process of the work Wα being polished is continued. Then, when the polishing process is continued, each process of step S16 and step S17 is performed in order, the conditional attribute of the work Wα being polished is acquired again, and it is determined whether or not the conditional attribute has changed. do.

そして、研磨中ワークWαの条件的属性に変化が生じたと判定した場合には、研磨加工の途中で条件的属性が変化したと判断し、図7のフローチャートに示すステップS18からステップS19、ステップS20の処理を行う。つまり、選択マスターの条件的属性を、再度取得した研磨中ワークWαの条件的属性に基づいて編集しなおし、この編集しなおした条件的属性に最もマッチする条件的属性に紐づけられた選択マスターに基づいて、新たな第2描画P2を生成する。そして、それまでの第2描画P2を新しいものに差し替える。 When it is determined that the conditional attribute of the work Wα has changed during polishing, it is determined that the conditional attribute has changed during the polishing process, and steps S18 to S19 and step S20 shown in the flowchart of FIG. 7 are determined. Process. That is, the conditional attribute of the selected master is re-edited based on the re-acquired conditional attribute of the work being polished Wα, and the selected master associated with the conditional attribute that best matches the re-edited conditional attribute. A new second drawing P2 is generated based on. Then, the second drawing P2 up to that point is replaced with a new one.

これにより、研磨加工の進行に伴って研磨中ワークWαの条件的属性が変化しても、第2描画P2を研磨中ワークWαの条件的属性の変化に応じた最新の描画とすることができ、その後の研磨中ワークWαの形状予測を適切に行うことができる。 As a result, even if the conditional attribute of the work Wα being polished changes with the progress of the polishing process, the second drawing P2 can be made the latest drawing according to the change of the conditional attribute of the work Wα being polished. After that, the shape of the work Wα during polishing can be appropriately predicted.

以下に具体例を挙げて説明する。
図9Aに示すように、研磨初期の研磨段階Aにおいて、中央部が比較的大きくへこんでいる「強凹形状」の断面形状の第1ワークW1は、研磨加工が進行し、厚さが狙い厚さ範囲(T1≦厚さ≦T2)に達した直後の研磨段階Bでは、断面形状が「弱凹形状(中央部が小さくへこんだ状態)」となる。そして、研磨加工を継続し、厚さが狙い厚さ範囲の下限(T1)に近くなった研磨段階Cで、この第1ワークW1の断面形状は「フラット形状」になる。
A specific example will be described below.
As shown in FIG. 9A, in the polishing stage A at the initial stage of polishing, the first work W1 having a “strongly concave shape” cross-sectional shape in which the central portion is relatively largely dented is polished and the thickness is aimed at. In the polishing step B immediately after reaching the range (T1 ≤ thickness ≤ T2), the cross-sectional shape becomes a "weakly concave shape (a state in which the central portion is slightly dented)". Then, in the polishing step C in which the polishing process is continued and the thickness becomes close to the lower limit (T1) of the target thickness range, the cross-sectional shape of the first work W1 becomes a “flat shape”.

一方、図9Bに示すように、研磨初期の研磨段階Aにおいて、中央部が比較的小さく突出している「弱凸形状」の断面形状の第2ワークW2は、研磨加工が進行し、厚さが狙い厚さ範囲(T1≦厚さ≦T2)に達した直後の研磨段階Bでは、断面形状が「弱凹形状(中央部が小さくへこんだ状態)」となる。しかしながら、その後研磨加工を継続し、厚さが狙い厚さ範囲の下限(T1)に近くなった研磨段階Cでは、この第2ワークW2の断面形状は「強凹形状(中央部が大きくへこんだ状態)」になってしまう。 On the other hand, as shown in FIG. 9B, in the polishing stage A at the initial stage of polishing, the second work W2 having a “weakly convex shape” cross-sectional shape in which the central portion protrudes relatively small is polished and the thickness is increased. In the polishing step B immediately after reaching the target thickness range (T1 ≤ thickness ≤ T2), the cross-sectional shape becomes a "weakly concave shape (a state in which the central portion is slightly dented)". However, in the polishing stage C in which the polishing process is continued and the thickness is close to the lower limit (T1) of the target thickness range, the cross-sectional shape of the second work W2 is "strongly concave shape (the central portion is greatly dented). State) ”.

これに対し、実施例1の研磨装置1では、第1ワークW1や第2ワークW2の形状描画を時系列で順に並べた第1描画P1を生成し、この第1描画P1を表示器40に表示させる。そのため、この第1描画P1から第1ワークW1や第2ワークW2のそれぞれの形状推移を把握し、その後の形状変化を予測することができる。 On the other hand, in the polishing apparatus 1 of the first embodiment, the first drawing P1 in which the shape drawings of the first work W1 and the second work W2 are arranged in chronological order is generated, and the first drawing P1 is displayed on the display 40. Display. Therefore, it is possible to grasp the shape transition of each of the first work W1 and the second work W2 from the first drawing P1 and predict the subsequent shape change.

つまり、実施例1の研磨装置1では、研磨段階Bのとき、第1ワークW1では「中央部のへこみが次第に浅くなってきているので、研磨段階Cまで研磨加工した方がよい」と判定できる。一方、第2ワークW2では「中央部のへこみが次第に深くなってきているので、研磨段階Cまで研磨するよりも研磨段階Bで研磨加工を停止した方がよい」と判定できる。このように、実施例1の研磨装置1は、研磨開始時のワーク形状に応じて研磨停止の最良タイミングを適切に判定し、所望のワーク形状に研磨することができる。 That is, in the polishing apparatus 1 of the first embodiment, at the time of the polishing stage B, it can be determined that "the dent in the central portion is gradually becoming shallower, so it is better to perform the polishing process up to the polishing stage C" in the first work W1. .. On the other hand, in the second work W2, it can be determined that "since the dent in the central portion is gradually deepening, it is better to stop the polishing process in the polishing step B than to polish to the polishing step C". As described above, the polishing apparatus 1 of the first embodiment can appropriately determine the best timing for stopping polishing according to the shape of the work at the start of polishing, and can polish to a desired shape of the work.

また、実施例1の研磨装置1では、研磨中ワークWαの形状情報の時系列変化と、選択マスターの時系列変化とを比較演算する。このため、現在バッチの形状推移だけでは今後のワーク形状の変化の推移を予測できない場合であっても、形状推移を適切に予測することができる。 Further, in the polishing apparatus 1 of the first embodiment, the time-series change of the shape information of the work Wα during polishing and the time-series change of the selection master are compared and calculated. Therefore, even if it is not possible to predict the future change of the work shape only by the shape change of the current batch, the shape change can be appropriately predicted.

図10Aに示すように、研磨開始時に中央部が比較的大きく突出した「強凸形状」である第3ワークW3を「ワーク周縁部が反りにくい条件的属性」の研磨機10で研磨加工を行う場合について説明する。研磨初期の研磨段階Aにおいて「強凸形状」の第3ワークW3の断面形状は、研磨加工が進行し、厚さが狙い厚さ範囲(T1≦厚さ≦T2)に達した直後の研磨段階Bでは、「弱凸形状(中央部が小さく突出した状態)」となる。さらに、研磨加工を継続し、厚さが狙い厚さ範囲の下限(T1)に近くなった研磨段階Cで、この第3ワークW3の断面形状は「フラット形状」になる。 As shown in FIG. 10A, the third work W3, which has a "strongly convex shape" in which the central portion protrudes relatively large at the start of polishing, is polished by the polishing machine 10 having "conditional attributes that prevent the peripheral portion of the work from warping". The case will be described. In the polishing step A at the initial stage of polishing, the cross-sectional shape of the third work W3 having a "strong convex shape" is the polishing step immediately after the polishing process progresses and the thickness reaches the target thickness range (T1 ≤ thickness ≤ T2). In B, it has a "weakly convex shape (a state in which the central portion protrudes small)". Further, in the polishing step C in which the polishing process is continued and the thickness becomes close to the lower limit (T1) of the target thickness range, the cross-sectional shape of the third work W3 becomes a “flat shape”.

一方、図10Bに示すように、研磨開始時に中央部が比較的大きく突出した「強凸形状」である第4ワークW4を「ワーク周縁部が反りやすい条件的属性」の研磨機10で研磨加工を行う場合を説明する。研磨初期の研磨段階Aにおいて「強凸形状」の第4ワークW4の断面形状は、研磨加工が進行し、厚さが狙い厚さ範囲(T1≦厚さ≦T2)に達した直後の研磨段階Bで、「弱凸形状(中央部が小さく突出した状態)」となる。さらに、研磨加工を継続し、厚さが狙い厚さ範囲の下限(T1)に近くなった研磨段階Cでは、この第4ワークW4の断面形状は「弱凸・弱タチ形状(中央部及び周縁部がそれぞれ小さく突出した状態)」になる。 On the other hand, as shown in FIG. 10B, the fourth work W4, which has a "strongly convex shape" in which the central portion protrudes relatively large at the start of polishing, is polished by the polishing machine 10 having a "conditional attribute in which the peripheral portion of the work is easily warped". Will be described. In the polishing step A at the initial stage of polishing, the cross-sectional shape of the fourth work W4 having a "strong convex shape" is the polishing step immediately after the polishing process progresses and the thickness reaches the target thickness range (T1 ≤ thickness ≤ T2). In B, it becomes a "weakly convex shape (a state in which the central portion protrudes small)". Further, in the polishing stage C in which the polishing process is continued and the thickness is close to the lower limit (T1) of the target thickness range, the cross-sectional shape of the fourth work W4 is "weakly convex / weakly tachi-shaped (central part and peripheral edge)". Each part is small and protruding) ”.

ここで、まだデータの蓄積が不十分で条件的属性と強い相関度を持った形状推移の予測ができない場合、例えば、研磨中ワークWαの研磨直前(例えば1バッチ前)に研磨加工したワークの形状推移から、現在バッチと同一傾向の形状推移を示す現在バッチのある時点以降の研磨中ワークWαの形状推移を予測することが可能である。すなわち、実施例1の研磨装置1では、選択マスターとして、例えば研磨中ワークWαの1バッチ前に研磨加工したワークを採用する。そして、選択マスターの時系列変化と、第3ワークW3や第4ワークW4の形状情報の時系列変化とを比較演算することで、現在バッチやその前後に行われるバッチにおいて使用された研磨機10の条件的属性を推定することができる。 Here, when the accumulation of data is still insufficient and the shape transition having a strong correlation with the conditional attribute cannot be predicted, for example, the work that has been polished immediately before polishing (for example, one batch before) of the work Wα during polishing. From the shape transition, it is possible to predict the shape transition of the work Wα being polished after a certain point in the current batch, which shows the same tendency as the shape transition of the current batch. That is, in the polishing apparatus 1 of the first embodiment, for example, a work that has been polished one batch before the work Wα being polished is adopted as the selection master. Then, by comparing and calculating the time-series change of the selected master and the time-series change of the shape information of the third work W3 and the fourth work W4, the polishing machine 10 used in the current batch and the batch performed before and after the current batch 10 Conditional attributes can be estimated.

つまり、実施例1の研磨装置1では、「ワーク周縁部が反りにくい条件的属性」の研磨機10で研磨加工を行うときには、研磨段階Bのときに「中央部の突出が浅くなっても外周領域のタチが出にくいので、研磨段階Cまで研磨加工した方がよい」と判定できる。一方、「ワーク周縁部が反りやすい条件的属性」の研磨機10で研磨加工を行うときには、研磨段階Bのときに「研磨加工の進行に伴って外周領域にタチが進んでしまうので、研磨段階Cまで研磨するよりも研磨段階Bで研磨加工を停止した方がよい」と判定できる。このように、実施例1の研磨装置1は、ユーザーによって選択された研磨機10の条件的属性、或いは与えられた研磨機10の条件的属性に応じて研磨停止の最良タイミングを適切に判定し、所望のワーク形状に研磨することができる。 That is, in the polishing apparatus 1 of the first embodiment, when the polishing process is performed by the polishing machine 10 having the "conditional attribute that the peripheral portion of the work is less likely to warp", the outer periphery is "even if the protrusion of the central portion becomes shallow" at the polishing stage B. Since it is difficult for the region to be torn, it is better to polish it up to the polishing stage C. " On the other hand, when the polishing process is performed by the polishing machine 10 having the "conditional attribute that the peripheral portion of the work is easily warped", the "tachi advances to the outer peripheral region as the polishing process progresses" at the polishing stage B, so that the polishing stage It is better to stop the polishing process at the polishing step B than to polish to C. " As described above, the polishing apparatus 1 of the first embodiment appropriately determines the best timing for stopping polishing according to the conditional attribute of the polishing machine 10 selected by the user or the conditional attribute of the given polishing machine 10. , Can be polished to a desired work shape.

[形状推移の予測精度向上作用]
実施例1の研磨装置1では、ワークWの形状情報に対して、当該ワークWの研磨時の条件的属性を紐づけてメモリ30に記憶する。そして、研磨中ワークWαの条件的属性にマッチする条件的属性に紐づけられた選択マスターの形状情報をメモリ30から抽出し、この抽出された選択マスターの形状情報に基づいて第2描画P2を生成する。
[Action to improve the prediction accuracy of shape transition]
In the polishing apparatus 1 of the first embodiment, the shape information of the work W is associated with the conditional attribute at the time of polishing of the work W and stored in the memory 30. Then, the shape information of the selected master associated with the conditional attribute matching the conditional attribute of the work Wα being polished is extracted from the memory 30, and the second drawing P2 is drawn based on the extracted shape information of the selected master. Generate.

そのため、第2描画P2によって示される選択マスターの形状推移は、研磨中ワークWαにおける条件的属性と形状推移との相関を反映したものとなる。そして、このような第2描画P2を第1描画P1と同時に表示することで、これらの描画をモニタリングしたユーザーによる研磨中ワークWαの形状推移の予測精度を向上することができる。 Therefore, the shape transition of the selection master indicated by the second drawing P2 reflects the correlation between the conditional attribute and the shape transition in the work Wα during polishing. Then, by displaying such a second drawing P2 at the same time as the first drawing P1, it is possible to improve the prediction accuracy of the shape transition of the work Wα during polishing by the user who monitors these drawings.

また、選択マスターの形状情報として、ワークWを研磨加工した際の条件的属性とワークWの形状情報との間の相関度の学習結果に基づいて生成したワーク形状パターン(典型的な形状情報)を用いた場合では、選択マスターの形状情報として、形状参考ワークWβの形状情報を用いた場合よりも、第2描画P2によって示されるワーク形状の推移精度を向上することができる。そのため、研磨中ワークWαの形状推移の予測をより正確に行い、さらに適切なタイミングで研磨停止を行うことが可能となる。 Further, as the shape information of the selection master, the work shape pattern (typical shape information) generated based on the learning result of the degree of correlation between the conditional attribute when the work W is polished and the shape information of the work W. When is used, the transition accuracy of the work shape indicated by the second drawing P2 can be improved as compared with the case where the shape information of the shape reference work Wβ is used as the shape information of the selection master. Therefore, it is possible to more accurately predict the shape transition of the work Wα during polishing and to stop polishing at an appropriate timing.

また、実施例1では、形状推移予測部57が機械学習機能を備え、データベース化された形状推移予測パターンを機械学習的に随時更新する。これにより、研磨中ワークWαの現時点以降の形状推移予測は、自動的により正確になっていく。 Further, in the first embodiment, the shape transition prediction unit 57 is provided with a machine learning function, and the shape transition prediction pattern stored in the database is updated at any time by machine learning. As a result, the shape transition prediction of the work Wα during polishing from the present time onward becomes more accurate automatically.

さらに、形状推移の予測精度が向上することで、ワーク形状の推移の予測に基づいて研磨中ワークWαの状態判定を行う際、ワーク状態の判定をより適切に行うことができる。この結果、より高精度に最適なタイミングでの研磨停止を行うことが可能となる。 Further, by improving the prediction accuracy of the shape transition, it is possible to more appropriately determine the work state when the state of the work Wα being polished is determined based on the prediction of the transition of the work shape. As a result, it becomes possible to stop polishing at the optimum timing with higher accuracy.

次に、効果を説明する。
実施例1の研磨装置1にあっては、下記に列挙する効果を得ることができる。
Next, the effect will be described.
In the polishing apparatus 1 of the first embodiment, the effects listed below can be obtained.

(1) 回転する定盤(下定盤11及び上定盤12)によってワークWを研磨する研磨機10と、
定盤(上定盤12)に形成された測定孔19を介してワークWの形状を測定する形状測定器20と、
形状測定器20によって測定されたワークWの形状情報を記憶するメモリ30と、
形状測定器20によって測定されたワークWの形状情報を表示する表示器40と、
表示器40の表示内容を制御する制御部50と、を備え、
制御部50は、形状測定器20によって測定された現在研磨中のワークである研磨中ワークWαの形状描画を時系列で並べた第1描画P1を生成し、この第1描画P1を表示器40に表示させる構成とした。
これにより、研磨中ワークWαの形状変化の推移に基づき、所望のワーク形状になったタイミング或いは所望のワーク形状になるタイミングで研磨中ワークWαの研磨加工を停止できる。
(1) A polishing machine 10 for polishing the work W with a rotating surface plate (lower surface plate 11 and upper surface plate 12), and
A shape measuring instrument 20 that measures the shape of the work W through a measuring hole 19 formed in the surface plate (upper surface plate 12), and
A memory 30 that stores the shape information of the work W measured by the shape measuring instrument 20 and
A display 40 that displays the shape information of the work W measured by the shape measuring device 20 and
A control unit 50 that controls the display content of the display 40 is provided.
The control unit 50 generates a first drawing P1 in which the shape drawing of the work being polished Wα, which is the work currently being polished measured by the shape measuring device 20, is arranged in chronological order, and the first drawing P1 is displayed on the display 40. It was configured to be displayed in.
Thereby, based on the transition of the shape change of the work Wα during polishing, the polishing process of the work Wα during polishing can be stopped at the timing when the desired work shape is obtained or the timing when the desired work shape is obtained.

(2) メモリ30は、ワークWの形状情報に、このワークWを研磨加工した際の条件的属性を紐づけて記憶し、
制御部50は、研磨中ワークWαの形状情報の時系列変化と、研磨中ワークWαの条件的属性にマッチする条件的属性に紐づけられた形状情報(選択マスターの形状情報)の時系列変化との比較演算の結果に基づいて研磨中ワークWαの形状推移を予測し、この研磨中ワークWαの形状推移の予測に基づいて研磨中ワークWαの状態判定を行う構成とした。
これにより、研磨中ワークWαの形状推移の予測精度を向上させて状態判定を適切に行うことができ、研磨中ワークWαが所望の形状になった最適なタイミング、或いは研磨中ワークWαが所望の形状になる最適なタイミングで研磨加工を停止することができる。
(2) The memory 30 stores the shape information of the work W in association with the conditional attributes when the work W is polished.
The control unit 50 changes the shape information of the work Wα during polishing in time series and the shape information (shape information of the selected master) associated with the conditional attribute matching the conditional attribute of the work Wα being polished. Based on the result of the comparison calculation with, the shape transition of the polishing work Wα is predicted, and the state of the polishing work Wα is determined based on the prediction of the shape transition of the polishing work Wα.
As a result, the accuracy of predicting the shape transition of the work Wα during polishing can be improved and the state can be appropriately determined, and the optimum timing when the work Wα during polishing becomes a desired shape or the work Wα during polishing is desired. Polishing can be stopped at the optimum timing for the shape.

(3) 回転する定盤(下定盤11及び上定盤12)によってワークWを研磨する研磨機10と、
定盤(上定盤12)に形成された測定孔19を介してワークWの形状を測定する形状測定器20と、
形状測定器20によって測定されたワークWの形状情報を記憶するメモリ30と、
形状測定器20によって測定されたワークWの形状情報を表示する表示器40と、
表示器40の表示内容を制御する制御部50と、を備え、
制御部50は、形状測定器20によって測定された現在研磨中のワークである研磨中ワークWαの形状描画を時系列で並べた第1描画P1と、研磨中ワークWαの研磨以前に研磨加工されたワーク(選択マスター)の形状描画を時系列で並べた第2描画P2と、を生成し、第1描画P1及び第2描画P2とを同時に表示器40に表示させる構成とした。
これにより、研磨中ワークWαの形状変化の推移に基づき、所望のワーク形状になったタイミング或いは研磨中ワークWαが所望の形状になるタイミングで研磨中ワークWαの研磨加工を停止できる。
(3) A polishing machine 10 for polishing the work W with a rotating surface plate (lower surface plate 11 and upper surface plate 12), and
A shape measuring instrument 20 that measures the shape of the work W through a measuring hole 19 formed in the surface plate (upper surface plate 12), and
A memory 30 that stores the shape information of the work W measured by the shape measuring instrument 20 and
A display 40 that displays the shape information of the work W measured by the shape measuring device 20 and
A control unit 50 that controls the display content of the display 40 is provided.
The control unit 50 is polished before the polishing of the first drawing P1 in which the shape drawing of the work being polished Wα, which is the work currently being polished, measured by the shape measuring instrument 20 is arranged in chronological order, and the work Wα being polished. A second drawing P2 in which the shape drawings of the work (selection master) are arranged in chronological order is generated, and the first drawing P1 and the second drawing P2 are simultaneously displayed on the display 40.
Thereby, based on the transition of the shape change of the work Wα during polishing, the polishing process of the work Wα being polished can be stopped at the timing when the desired work shape is obtained or the timing when the work Wα being polished becomes the desired shape.

(4) メモリ30は、ワークWの形状情報に、このワークWを研磨加工した際の条件的属性を紐づけて記憶し、
制御部50は、研磨中ワークWαの条件的属性にマッチする条件的属性に紐づけられたワーク(選択マスター)の形状情報に基づいて第2描画P2を生成する構成とした。
これにより、研磨中ワークWαの形状推移の予測精度の向上を図ることができる。
(4) The memory 30 stores the shape information of the work W in association with the conditional attributes when the work W is polished.
The control unit 50 is configured to generate the second drawing P2 based on the shape information of the work (selection master) associated with the conditional attribute matching the conditional attribute of the work Wα being polished.
As a result, it is possible to improve the accuracy of predicting the shape transition of the work Wα during polishing.

(5) 制御部50は、ワークWを研磨加工した際の条件的属性とワークWの形状情報との相関度に基づいて生成したワーク形状パターン(典型的な形状情報)に基づいて第2描画P2を生成する。
これにより、第2描画P2によって示されるワーク形状の推移精度を向上させ、研磨中ワークWαの形状推移の予測をより正確に行うことができる。
(5) The control unit 50 draws the second drawing based on the work shape pattern (typical shape information) generated based on the degree of correlation between the conditional attributes when the work W is polished and the shape information of the work W. Generate P2.
As a result, the transition accuracy of the work shape indicated by the second drawing P2 can be improved, and the shape transition of the work Wα during polishing can be predicted more accurately.

(6) メモリ30は、ワークWの形状情報に、このワークWを研磨加工した際の条件的属性を紐づけて記憶し、
制御部50は、研磨中ワークWαの形状情報の時系列変化と、研磨中ワークWαの条件的属性にマッチする条件的属性に紐づけられた形状情報(選択マスターの形状情報)の時系列変化との比較演算の結果に基づいて研磨中ワークWαの形状推移を予測し、この研磨中ワークWαの形状推移の予測に基づいて研磨中ワークWαの状態判定を行う構成とした。
これにより、研磨中ワークWαの形状推移の予測精度を向上させて状態判定を適切に行うことができ、研磨中ワークWαが所望の形状になった、或いは研磨中ワークWαが所望の形状になる最適なタイミングで研磨加工を停止することができる。
(6) The memory 30 stores the shape information of the work W in association with the conditional attributes when the work W is polished.
The control unit 50 changes the shape information of the work Wα during polishing in time series and the shape information (shape information of the selected master) associated with the conditional attribute matching the conditional attribute of the work Wα being polished. Based on the result of the comparison calculation with, the shape transition of the polishing work Wα is predicted, and the state of the polishing work Wα is determined based on the prediction of the shape transition of the polishing work Wα.
As a result, the accuracy of predicting the shape transition of the work Wα during polishing can be improved and the state can be appropriately determined, and the work Wα during polishing has a desired shape, or the work Wα during polishing has a desired shape. Polishing can be stopped at the optimum timing.

(7) 制御部50は、研磨中ワークWαの状態判定の結果、研磨中ワークWαの研磨加工を停止すると判定したとき、研磨中ワークWαの研磨加工を停止させると共に、研磨中ワークWαの研磨加工を停止判定したことを報知する構成とした。
これにより、研磨中ワークWαの研磨停止を適切なタイミングで自動的に行うと共に、研磨機10のユーザーに研磨加工の停止を報知することができる。
(7) When the control unit 50 determines that the polishing process of the polishing work Wα is stopped as a result of determining the state of the polishing work Wα, the control unit 50 stops the polishing process of the polishing work Wα and polishes the polishing work Wα. It is configured to notify that the processing has been stopped.
As a result, the polishing of the work Wα during polishing can be automatically stopped at an appropriate timing, and the user of the polishing machine 10 can be notified of the stop of the polishing process.

(実施例2)
実施例2の研磨装置は、研磨中ワークWαの最終的なワーク形状が二次的に許容可能なワーク形状になったときの責任パラメータを特定すると共に、当該責任パラメータを報知する例である。以下、実施例2の研磨装置を説明する。なお、実施例1の研磨装置1と同等の構成については、実施例1と同一の符号を付し、詳細な説明を省略する。
(Example 2)
The polishing apparatus of the second embodiment is an example of specifying the responsibility parameter when the final work shape of the work Wα during polishing becomes a second acceptable work shape and notifying the responsibility parameter. Hereinafter, the polishing apparatus of the second embodiment will be described. The same configurations as those of the polishing apparatus 1 of the first embodiment are designated by the same reference numerals as those of the first embodiment, and detailed description thereof will be omitted.

実施例2の研磨装置1Aでは、図11に示すように、制御部50Aの制御演算部51Aが、第1描画生成部54と、第2描画生成部55と、表示制御部56Aと、形状推移予測部57Aと、状態判定部58Aと、パラメータ特定部59と、相関度データ処理部60と、を有している。 In the polishing apparatus 1A of the second embodiment, as shown in FIG. 11, the control calculation unit 51A of the control unit 50A includes the first drawing generation unit 54, the second drawing generation unit 55, the display control unit 56A, and the shape transition. It has a prediction unit 57A, a state determination unit 58A, a parameter identification unit 59, and a correlation degree data processing unit 60.

実施例2の形状推移予測部57Aでは、研磨中ワークWαの形状情報の時系列変化と、選択マスターの形状情報の時系列変化とを比較演算し、この比較演算の結果に基づいて、研磨中ワークWαの今後の形状推移を予測する。さらに、この形状推移予測部57Aでは、研磨中ワークWαの今後の形状推移の予測に基づき、相関度データ処理部60の支援を必要に応じて受けながら、研磨中ワークWαの最終的なワーク形状(以下、「最終ワーク形状」という)が、所望のワーク形状になり得るか否かについて予測する。 The shape transition prediction unit 57A of the second embodiment compares and calculates the time-series change of the shape information of the work Wα being polished and the time-series change of the shape information of the selected master, and is polishing based on the result of this comparison calculation. Predict the future shape transition of the work Wα. Further, the shape transition prediction unit 57A receives the support of the correlation degree data processing unit 60 as necessary based on the prediction of the future shape transition of the work Wα being polished, and the final work shape of the work Wα being polished. It is predicted whether or not (hereinafter, referred to as "final work shape") can be a desired work shape.

ここで、「所望のワーク形状(以下、「所望状態」という)」とは、予め設定した第1形状条件を満足する形状である。一方、最終ワーク形状が所望状態になり得ないと予測した場合には、形状推移予測部57Aは、相関度データ処理部60の支援を必要に応じて受けながら、最終ワーク形状が二次的に許容可能なワーク形状になり得るか否かについて予測する。なお、「二次的に許容可能なワーク形状(以下、「二次的許容状態」という)」とは、最終ワーク形状が所望状態になり得ない、つまり、研磨加工を継続しても第1形状条件を満足しない、と判定したときに設定される第2形状条件を満足する形状である。 Here, the "desired work shape (hereinafter referred to as" desired state ")" is a shape that satisfies the preset first shape condition. On the other hand, when it is predicted that the final work shape cannot be in the desired state, the shape transition prediction unit 57A secondarily changes the final work shape while receiving the support of the correlation degree data processing unit 60 as necessary. Predict whether or not the work shape can be acceptable. The "secondarily acceptable work shape (hereinafter referred to as" secondary allowable state ")" means that the final work shape cannot be in the desired state, that is, the first is that the polishing process is continued. It is a shape that satisfies the second shape condition set when it is determined that the shape condition is not satisfied.

実施例2の状態判定部58Aでは、形状推移予測部57Aにて予測した研磨中ワークWαの今後の形状推移に基づき、研磨中ワークWαの現在の研磨状態を判定する。ここで、この状態判定部58Aによって判定される「研磨状態」には、研磨中ワークWαのワーク形状が所望状態に達した第1研磨停止状態や、研磨中ワークWαのワーク形状が二次的許容状態に達した第2研磨停止状態、即時の研磨停止が必要な第3研磨停止状態、研磨機10による研磨加工の継続が必要な研磨継続状態、等が含まれる。 The state determination unit 58A of the second embodiment determines the current polishing state of the polishing work Wα based on the future shape transition of the polishing work Wα predicted by the shape transition prediction unit 57A. Here, in the "polishing state" determined by the state determination unit 58A, the first polishing stop state in which the work shape of the work Wα being polished reaches a desired state and the work shape of the work Wα being polished are secondary. The second polishing stop state that has reached the permissible state, the third polishing stop state that requires immediate polishing stop, the polishing continuation state that requires continuation of the polishing process by the polishing machine 10, and the like are included.

パラメータ特定部59では、形状推移予測部57Aにて最終ワーク形状が二次的許容状態になり得ると判定されたとき、研磨中ワークWαの最終ワーク形状が二次的許容状態となってしまう(所望状態になり得ない)ことに対して相関度が高い条件的属性(以下、「責任パラメータ」という)を特定する。また、このパラメータ特定部59では、責任パラメータを相関度強度が高い順に列挙してもよい。 In the parameter specifying unit 59, when the shape transition prediction unit 57A determines that the final work shape can be in the secondary allowable state, the final work shape of the work Wα being polished becomes the secondary allowable state (). Identify conditional attributes (hereinafter referred to as "responsibility parameters") that have a high degree of correlation with respect to (which cannot be in the desired state). Further, in the parameter specifying unit 59, the responsible parameters may be listed in descending order of the strength of correlation.

このパラメータ特定部59による責任パラメータの特定は、例えば以下の手順で行う。すなわち、相関度データ処理部60によって探索され、メモリ30に記憶されたワーク形状の異常状態と相関度強度の高い条件的属性のデータと、二次的許容状態になり得ると判定された研磨中ワークWαの条件的属性とを照合する。そして、相関度強度が相対的に高い条件的属性を「責任パラメータ」として特定する。なお、この責任パラメータは、一つであってもよいし、複数であってもよい。 The responsible parameter is specified by the parameter specifying unit 59, for example, by the following procedure. That is, during polishing, which is searched by the correlation degree data processing unit 60, the abnormal state of the work shape stored in the memory 30, the data of the conditional attribute having high correlation degree strength, and the secondary allowable state can be obtained. Collate with the conditional attribute of work Wα. Then, a conditional attribute having a relatively high correlation strength is specified as a "responsibility parameter". It should be noted that this responsibility parameter may be one or a plurality.

また、パラメータ特定部59による責任パラメータの相関度強度の高さ順の列挙は、例えば以下の手順で行う。すなわち、ワーク形状の異常状態と相関度強度の高い条件的属性のデータと、二次的許容状態になり得ると判定された研磨中ワークWαの条件的属性とを照合する。そして、相関度強度が相対的に高い順に条件的属性を複数選択し、選択した順に責任パラメータを列挙する。なお、選択する条件的属性の数は二つ以上であればよい。 In addition, the parameter specifying unit 59 lists the responsible parameters in order of increasing correlation strength, for example, by the following procedure. That is, the data of the conditional attribute having a high correlation strength with the abnormal state of the work shape is collated with the conditional attribute of the work Wα being polished, which is determined to be in a secondary allowable state. Then, a plurality of conditional attributes are selected in descending order of correlation strength, and responsibility parameters are listed in the selected order. The number of conditional attributes to be selected may be two or more.

なお、研磨パッド上の温度分布のデータや、ベアリングの振動や温度のデータ等、ワークWの研磨中に監視している状態情報の異常と、ワーク形状の異常状態との相関を分析することも可能である。そのため、単一のワーク形状推移だけでなく、多数のバッチをまたぐワーク形状推移のトレンドと、条件的属性の推移トレンド間の相関を監視することで、責任パラメータや、責任パラメータの相関度強度の特定精度を向上することができる。なお、これらの相関分析とそれに基づく予測モデルの更新や、予測精度の随時更新には、多変量解析や人工知能(機械学習、ディープラーニング)等を用いることができる。 It is also possible to analyze the correlation between the abnormality of the state information monitored during polishing of the work W, such as the temperature distribution data on the polishing pad and the vibration and temperature data of the bearing, and the abnormal state of the work shape. It is possible. Therefore, by monitoring the correlation between the trend of the work shape transition across many batches and the transition trend of the conditional attribute, not only the transition of the single work shape, the responsibility parameter and the correlation strength of the responsibility parameter can be monitored. The specific accuracy can be improved. Multivariate analysis, artificial intelligence (machine learning, deep learning), etc. can be used for these correlation analyzes, updating of prediction models based on them, and updating of prediction accuracy at any time.

そして、実施例2の表示制御部56Aでは、研磨停止判定を行った旨を表示器40の画面40aに表示させる制御指令を表示器40に出力するとき、状態判定部58Aが「第1研磨停止状態」と判定した場合には、ワーク形状が所望状態である旨を表示させる制御指令を出力する。また、状態判定部58Aが「第2研磨停止状態」と判定した場合には、ワーク形状が二次的許容状態である旨と、パラメータ特定部59によって特定された責任パラメータの情報、又は相関度強度が高い順に列挙された責任パラメータの情報とを表示させる制御指令を出力する。さらに、状態判定部58Aが「第3研磨停止状態」と判定された場合には、ワーク形状が許容外形状である旨を表示させる制御指令を出力する。 Then, in the display control unit 56A of the second embodiment, when the control command for displaying the fact that the polishing stop determination has been performed is output to the display 40a, the state determination unit 58A "stops the first polishing". When it is determined as "state", a control command for displaying that the work shape is in a desired state is output. Further, when the state determination unit 58A determines that the "second polishing stop state", the work shape is in the secondary allowable state, and the information of the responsibility parameter specified by the parameter identification unit 59 or the degree of correlation. Outputs a control command that displays the responsibility parameter information listed in descending order of intensity. Further, when the state determination unit 58A determines that the "third polishing stop state" is determined, a control command for displaying that the work shape is an unacceptable shape is output.

相関度データ処理部60は、ワークWの条件的属性と、研磨時のワークWの形状推移及び最終ワーク形状との相関度強度の探索を実行する。この相関度データ処理部60による相関度強度の探索は、例えば以下の手順で行う。 The correlation degree data processing unit 60 executes a search for the degree of correlation strength between the conditional attribute of the work W, the shape transition of the work W at the time of polishing, and the final work shape. The search for the correlation degree strength by the correlation degree data processing unit 60 is performed, for example, by the following procedure.

すなわち、過去に行ったワークWの研磨結果に基づいて、所定の条件的属性についての異常(例えばスラリ流量の不連続)が生じた場合の異常の状態認識と、研磨中ワークWαのワーク形状が二次的許容状態になる場合の形状推移(以下、「ワーク形状の異常状態」という)との関係をそれぞれ演算的に求める。なお、例えばスラリ流量の不連続の状態認識は、スラリ流量が所定値を下回った時間の長さを閾値と比較することによって行う。 That is, based on the polishing result of the work W performed in the past, the state recognition of the abnormality when an abnormality (for example, discontinuity of the slurry flow rate) occurs for a predetermined conditional attribute and the work shape of the work Wα being polished The relationship with the shape transition (hereinafter referred to as "abnormal state of work shape") when the secondary allowable state is reached is calculated. For example, the state of discontinuity of the slurry flow rate is recognized by comparing the length of time during which the slurry flow rate falls below a predetermined value with the threshold value.

そして、ワーク形状の異常状態が生じたときの条件的属性ごとに、ワーク形状の異常状態との相関度強度を、例えば回帰分析によって相関係数を算出するなどして探索する。また、過去に行ったワークWの研磨結果から、所定の条件的属性と、そのときのワークWの形状推移との関係を求める。そして、この所定の条件的属性とワーク形状推移との関係に基づき、研磨加工に伴う所望の形状推移や所望の最終ワーク形状と、実際の形状推移や最終ワーク形状との乖離が生じる原因として疑わしいパラメータを特定することで、条件的属性とワーク形状推移及び最終ワーク形状との相関度強度を探索してもよい。この相関度強度データは、特定した異常の状態の認識及び条件的属性と関連付けてメモリ30に記憶される。 Then, the strength of the degree of correlation with the abnormal state of the work shape is searched for for each conditional attribute when the abnormal state of the work shape occurs, for example, by calculating the correlation coefficient by regression analysis. Further, from the polishing result of the work W performed in the past, the relationship between the predetermined conditional attribute and the shape transition of the work W at that time is obtained. Then, based on the relationship between this predetermined conditional attribute and the work shape transition, it is suspected that the cause of the discrepancy between the desired shape transition or the desired final work shape and the actual shape transition or the final work shape due to the polishing process occurs. By specifying the parameters, the strength of correlation between the conditional attribute and the work shape transition and the final work shape may be searched. This correlation degree intensity data is stored in the memory 30 in association with the recognition of the identified abnormal state and the conditional attribute.

なお、この相関度データ処理部60は、ワークWの条件的属性と、研磨時のワークWの形状推移及び最終ワーク形状との相関度強度の探索を専用に行う専用演算部である。そのため、この相関度データ処理部60は、ワークWの研磨加工中か否かを問わずに、相関度探索の演算を実行することができる。 The correlation degree data processing unit 60 is a dedicated calculation unit that exclusively searches for the conditional attribute of the work W, the shape transition of the work W during polishing, and the strength of the correlation with the final work shape. Therefore, the correlation degree data processing unit 60 can execute the calculation of the correlation degree search regardless of whether or not the work W is being polished.

次に、図12に示すフローチャートを用いて、実施例2の研磨装置1Aにて実行される研磨停止判定処理を説明する。実施例1における研磨停止判定処理と同一の処理は、実施例1と同一の符号を付し、詳細な説明を省略する。なお、実施例2の研磨装置1Aにおいても、図12に示す研磨停止判定処理と並行して第2描画P2を生成する第2描画生成処理を実行する。実施例2にて実行される研磨停止判定処理では、第2描画生成処理によって生成された第2描画P2を必要なタイミング(ステップS4)で読み込む。 Next, the polishing stop determination process executed by the polishing apparatus 1A of the second embodiment will be described with reference to the flowchart shown in FIG. The same processing as the polishing stop determination processing in the first embodiment is designated by the same reference numerals as those in the first embodiment, and detailed description thereof will be omitted. Also in the polishing apparatus 1A of the second embodiment, the second drawing generation process for generating the second drawing P2 is executed in parallel with the polishing stop determination process shown in FIG. In the polishing stop determination process executed in the second embodiment, the second drawing P2 generated by the second drawing generation process is read at a necessary timing (step S4).

実施例2にて実行される研磨停止判定処理では、ステップS6において選択マスターの形状情報の時系列変化と、研磨中ワークWαの形状情報の時系列変化とを比較演算する。そして、この比較演算結果から研磨中ワークWαの今後の形状推移を予測すると、ステップS61へと進む。 In the polishing stop determination process executed in the second embodiment, the time-series change of the shape information of the selected master and the time-series change of the shape information of the work Wα being polished are compared and calculated in step S6. Then, when the future shape transition of the work Wα being polished is predicted from the result of this comparison calculation, the process proceeds to step S61.

ステップS61では、研磨中ワークWαの今後の形状推移の予測に基づき、研磨中ワークWαの最終ワーク形状が所望のワーク形状になり得るか否かを判定する。YES(所望状態になり得る)の場合にはステップS71へ進む。NO(所望状態になり得ない)の場合にはステップS62へ進む。 In step S61, it is determined whether or not the final work shape of the work being polished Wα can be a desired work shape based on the prediction of the future shape transition of the work Wα being polished. If YES (possible to reach a desired state), the process proceeds to step S71. If NO (cannot reach the desired state), the process proceeds to step S62.

ステップS62では、ステップS61での最終ワーク形状が所望状態になり得ないとの判定に続き、研磨中ワークWαの今後の形状推移の予測に基づき、研磨中ワークWαの最終ワーク形状が二次的に許容可能なワーク形状になり得るか否かを判定する。YES(二次的許容状態になり得る)の場合には、研磨加工を続行すると共にステップS63へ進む。NO(二次的許容状態になり得ない)の場合にはステップS71へ進む。 In step S62, following the determination that the final work shape in step S61 cannot be in the desired state, the final work shape of the polishing work Wα is secondary based on the prediction of the future shape transition of the polishing work Wα. It is determined whether or not the work shape can be acceptable. If YES (possible to be in a secondary permissible state), the polishing process is continued and the process proceeds to step S63. If NO (cannot reach the secondary permissible state), the process proceeds to step S71.

ステップS63では、ステップS62での最終ワーク形状が二次的許容状態になり得るとの判定に続き、研磨中ワークWαの最終ワーク形状が二次的許容状態となってしまうことに対して相関度が高い条件的属性である責任パラメータを特定、又は相関度強度が高い順に責任パラメータを列挙し、ステップS71へ進む。 In step S63, following the determination that the final work shape in step S62 can be in the secondary allowable state, the degree of correlation with the fact that the final work shape of the work Wα being polished becomes the secondary allowable state. The responsibility parameter, which is a high conditional attribute, is specified, or the responsibility parameters are listed in descending order of the strength of correlation, and the process proceeds to step S71.

ステップS71では、ステップS61での最終ワーク形状が所望状態になり得るとの判定、ステップS62での最終ワーク形状が所望状態及び二次的許容状態のいずれにもなり得ないとの判定、ステップS63での責任パラメータの特定、又は相関度強度が高い順の責任パラメータの列挙のいずれかに続き、研磨中ワークWαの今後の形状推移の予測に基づいて研磨中ワークWαの研磨状態を判定し、ステップS81へ進む。
ここで、研磨中ワークWαの研磨状態は、研磨中ワークWαのワーク形状が所望状態に達した「第1研磨停止状態」、研磨中ワークWαのワーク形状が二次的許容状態に達した「第2研磨停止状態」、直ちに研磨加工を停止する「第3研磨停止状態」、研磨加工の継続が必要な「研磨継続状態」のいずれかに判定される。
In step S71, it is determined that the final work shape in step S61 can be in a desired state, and it is determined that the final work shape in step S62 cannot be in either a desired state or a secondary allowable state, step S63. Following either the identification of the responsibility parameters in, or the enumeration of the responsibility parameters in descending order of correlation strength, the polishing state of the work Wα being polished is determined based on the prediction of the future shape transition of the work Wα being polished. Proceed to step S81.
Here, the polishing state of the work Wα being polished is the “first polishing stop state” in which the work shape of the work Wα being polished has reached a desired state, and the work shape of the work Wα being polished has reached a secondary allowable state. It is determined to be one of a "second polishing stop state", a "third polishing stop state" in which the polishing process is immediately stopped, and a "polishing continuation state" in which the polishing process needs to be continued.

なお、「第1研磨停止状態」か否かの判定は、ステップS61にて最終ワーク形状が所望状態になり得るとの判定がなされたときに行われる。また「第2研磨停止状態」か否か判定は、ステップS63にて責任パラメータの特定、又は相関度強度が高い順に責任パラメータの列挙がなされたときに行われる。また、「第3研磨停止状態」との判定は、ステップS62にて最終ワーク形状が所望状態及び二次的許容状態のいずれにもなり得ないと判定されたときに行われる。さらに「研磨継続状態」との判定は、最終ワーク形状が所望状態又は二次的許容状態のいずれかになると判定されたものの、研磨中ワークWαの現在のワーク形状が所望状態又は二次的許容状態に達していないときに行われる。 The determination as to whether or not the "first polishing stop state" is made is performed when it is determined in step S61 that the final work shape can be in a desired state. Further, the determination as to whether or not the "second polishing stop state" is performed is performed when the responsible parameters are specified in step S63 or the responsible parameters are listed in descending order of correlation strength. Further, the determination of the "third polishing stop state" is performed when it is determined in step S62 that the final work shape cannot be in either the desired state or the secondary allowable state. Further, in the determination of "polishing continuous state", although it was determined that the final work shape is in either a desired state or a secondary allowable state, the current work shape of the work Wα being polished is in a desired state or a secondary allowable state. It is done when the state is not reached.

ステップS81では、ステップS71での研磨中ワークWαの研磨状態の判定に続き、このステップS71にて実施した研磨状態の判定に基づいて、研磨機10による研磨中ワークWαの研磨加工を停止するか否かを判定する。YES(研磨停止)の場合にはステップS91へ進む。NO(研磨継続)の場合にはステップS2へ戻る。
ここで、研磨中ワークWαの研磨停止との判定は、ステップS71にて「第1研磨停止状態」、「第2研磨停止状態」、「第3研磨停止状態」のいずれかの判定がなされたときに行われる。
In step S81, following the determination of the polishing state of the polishing work Wα in step S71, whether to stop the polishing process of the polishing work Wα by the polishing machine 10 based on the determination of the polishing state performed in this step S71. Judge whether or not. If YES (polishing stopped), the process proceeds to step S91. If NO (continuation of polishing), the process returns to step S2.
Here, as for the determination that the polishing work Wα is stopped during polishing, any one of “first polishing stopped state”, “second polishing stopped state”, and “third polishing stopped state” was made in step S71. Sometimes done.

ステップS91では、ステップS81での研磨停止の判断に続き、表示器40の画面40a上に研磨中ワークWαの研磨停止を判定した旨と共に研磨中ワークWαの状態を表示させる制御指令を表示器40に出力し、研磨停止判定を報知してステップS10へ進む。
ここで、ステップS71にて「第1研磨停止状態」との判定がなされた場合には、研磨停止を判定した旨と共に研磨中ワークWαが「所望状態」であることを表示させる制御指令を出力する。また、ステップS71にて「第2研磨停止状態」との判定がなされた場合には、研磨停止を判定した旨と共に研磨中ワークWαが「二次的許容状態」であることを表示させる制御指令を出力する。さらに、ステップS71にて「第3研磨停止状態」との判定がなされた場合には、研磨停止を判定した旨と共に研磨中ワークWαが、所望状態及び二次的許容状態のいずれでもないことを意味する「許容外形状」であることを表示させる制御指令を出力する。
In step S91, following the determination of polishing stop in step S81, a control command for displaying the state of the polishing work Wα along with the determination that the polishing stop of the polishing work Wα is determined on the screen 40a of the display 40 is displayed on the display 40a. Is output to, the polishing stop determination is notified, and the process proceeds to step S10.
Here, when the determination of the "first polishing stop state" is made in step S71, a control command for indicating that the polishing work Wα is in the "desired state" is output together with the fact that the polishing stop is determined. do. Further, when the determination of the "second polishing stop state" is made in step S71, a control command for indicating that the polishing work Wα is in the "secondary allowable state" as well as the determination of the polishing stop state is made. Is output. Further, when the determination of the "third polishing stop state" is made in step S71, it is determined that the polishing stop is determined and that the work Wα being polished is neither a desired state nor a secondary allowable state. Outputs a control command to indicate that the shape is "unacceptable shape".

次に、実施例2の研磨装置1Aの作用を説明する。
実施例2の研磨装置1Aでは、研磨機10によってワークWの研磨加工を実行したとき、実施例1と同様に第1描画P1及び第2描画P2を表示器40の画面40aに表示させる。その後、図12のフローチャートに示すステップS6、ステップS61の各処理を順に行う。つまり、形状推移予測部57Aは、研磨中ワークWαの形状情報の時系列変化と、選択マスターの形状情報の時系列変化とを比較演算し、その結果に基づいて研磨中ワークWαの今後の形状推移を予測する。そして、この形状推移の予測に基づき、最終ワーク形状が所望状態になり得るか否かを判定する。
Next, the operation of the polishing device 1A of the second embodiment will be described.
In the polishing apparatus 1A of the second embodiment, when the work W is polished by the polishing machine 10, the first drawing P1 and the second drawing P2 are displayed on the screen 40a of the display 40 as in the first embodiment. After that, each process of step S6 and step S61 shown in the flowchart of FIG. 12 is performed in order. That is, the shape transition prediction unit 57A compares and calculates the time-series change of the shape information of the work Wα being polished and the time-series change of the shape information of the selected master, and based on the result, the future shape of the work Wα being polished Predict the transition. Then, based on the prediction of this shape transition, it is determined whether or not the final work shape can be in a desired state.

最終ワーク形状が所望状態になり得ると判定されたときには、図12のフローチャートに示すステップS71からステップS81の処理を順に行う。つまり、状態判定部58Aは、形状推移予測部57Aによって予測された研磨中ワークWαの形状推移に基づいて、研磨中ワークWαの現在の研磨状態を判定し、研磨状態の判定結果に基づいて研磨加工を停止するか否かを判定する。 When it is determined that the final work shape can be in a desired state, the processes of steps S71 to S81 shown in the flowchart of FIG. 12 are sequentially performed. That is, the state determination unit 58A determines the current polishing state of the polishing work Wα based on the shape transition of the polishing work Wα predicted by the shape transition prediction unit 57A, and polishes based on the determination result of the polishing state. Determine whether to stop machining.

そして、この状態判定部58Aにより、研磨中ワークWαの研磨状態が「第1研磨停止状態」であると判定された場合には、図12のフローチャートに示すステップS91の処理を行う。つまり、表示制御部56は、研磨中ワークWαの研磨停止を判定した旨と共に研磨中ワークWαが「所望状態」であることを表示器40の画面40aに表示させる制御指令を出力する。そして、表示器40の画面40aには、研磨中ワークWαの研磨加工が停止判定されたことに加え、研磨中ワークWαが「所望状態」であることが表示され、研磨停止判定が報知される。 When the state determination unit 58A determines that the polishing state of the work Wα during polishing is the “first polishing stop state”, the process of step S91 shown in the flowchart of FIG. 12 is performed. That is, the display control unit 56A outputs a control command for displaying on the screen 40a of the display 40 that the polishing work is in the “desired state” as well as determining that the polishing work Wα has stopped polishing. Then, on the screen 40a of the display 40a, in addition to the fact that the polishing process of the polishing work Wα is determined to be stopped, it is displayed that the polishing work Wα is in the “desired state”, and the polishing stop determination is notified. ..

この結果、研磨機10のユーザーは、画面40aを目視することで、研磨停止が判定されたことと、研磨中ワークWαのワーク形状を把握することができる。これにより、ユーザーがマニュアル操作で研磨機10を制御して研磨加工を停止する場合であっても、適切なタイミングで研磨加工を停止できる。また、制御部50からの停止制御指令によって研磨機10を停止させる場合であっても、ユーザーは研磨機10の停止動作を認識することが可能となる。 As a result, the user of the polishing machine 10 can visually check the screen 40a to know that the polishing stop is determined and the work shape of the work Wα being polished. As a result, even when the user manually controls the polishing machine 10 to stop the polishing process, the polishing process can be stopped at an appropriate timing. Further, even when the grinding machine 10 is stopped by the stop control command from the control unit 50A , the user can recognize the stop operation of the grinding machine 10.

その後、ステップS10の処理を行い、制御部50の制御演算部51は、第1駆動装置M1~第5駆動装置M5へ停止制御指令等研磨加工終了のための諸出力を行う。この結果、研磨機10は所定のシーケンスを経て自動停止し、研磨中ワークWαの研磨加工は終了する。 After that, the process of step S10 is performed, and the control calculation unit 51A of the control unit 50A outputs various outputs such as a stop control command to the first drive device M1 to the fifth drive device M5 to complete the polishing process. As a result, the polishing machine 10 automatically stops after a predetermined sequence, and the polishing process of the work Wα during polishing is completed.

一方、研磨中ワークWαの今後の形状推移の予測に基づいて、最終ワーク形状が所望状態になり得ないと判定されたときには、図12のフローチャートに示すステップS62の処理を行う。つまり、形状推移予測部57Aは、研磨中ワークWαの今後の形状推移の予測に基づき、最終ワーク形状が二次的許容状態になり得るか否かを判定する。 On the other hand, when it is determined that the final work shape cannot be in a desired state based on the prediction of the future shape transition of the work Wα being polished, the process of step S62 shown in the flowchart of FIG. 12 is performed. That is, the shape transition prediction unit 57A determines whether or not the final work shape can be in a secondary allowable state based on the prediction of the future shape transition of the work Wα being polished.

最終ワーク形状が二次的許容状態になり得ると判定されたときには、図12のフローチャートに示すステップS63の処理を行う。つまり、パラメータ特定部59は、研磨中ワークWαの最終ワーク形状が二次的許容状態になること(最終ワーク形状が所望状態になり得ないこと)に対して相関度が高い責任パラメータを特定、又は相関度強度が高い順に責任パラメータを列挙する。 When it is determined that the final work shape can be in the secondary allowable state, the process of step S63 shown in the flowchart of FIG. 12 is performed. That is, the parameter specifying unit 59 identifies a responsible parameter having a high degree of correlation with respect to the fact that the final work shape of the work Wα during polishing becomes a secondary allowable state (the final work shape cannot be in a desired state). Or, list the responsibility parameters in descending order of correlation strength.

そして、責任パラメータが特定又は列挙されたら、図12のフローチャートに示すステップS71からステップS81、ステップS91の処理を順に行う。つまり、状態判定部58Aは、研磨中ワークWαの形状推移に基づき、この研磨中ワークWαの現在の研磨状態を判定し、研磨状態の判定結果に基づいて研磨加工を停止するか否かを判定する。そして、状態判定部58Aにより、研磨中ワークWαの研磨状態が「第2研磨停止状態」であると判定されると、表示制御部56は、研磨中ワークWαの研磨停止を判定した旨に加え、研磨中ワークWαが「二次的許容状態」であることと、パラメータ特定部59により特定された責任パラメータ又は相関度強度が高い順に列挙された責任パラメータと、を表示器40の画面40aに表示させる制御指令を出力する。そして、表示器40の画面40aには、研磨中ワークWαの研磨停止が判定されたこと、研磨中ワークWαが「二次的許容状態」であること、責任パラメータ又は相関度強度が高い順に列挙された責任パラメータがそれぞれ表示され、研磨停止判定が報知される。 Then, when the responsibility parameters are specified or listed, the processes of step S71 to step S81 and step S91 shown in the flowchart of FIG. 12 are performed in order. That is, the state determination unit 58A determines the current polishing state of the polishing work Wα based on the shape transition of the polishing work Wα, and determines whether or not to stop the polishing process based on the determination result of the polishing state. do. Then, when the state determination unit 58A determines that the polishing state of the polishing work Wα is the “second polishing stop state”, the display control unit 56A determines that the polishing of the polishing work has stopped. In addition, the screen 40a of the display 40 shows that the work Wα being polished is in the “secondary allowable state” and that the responsible parameters specified by the parameter specifying unit 59 or the responsible parameters listed in descending order of the degree of correlation strength. Outputs the control command to be displayed on. Then, on the screen 40a of the display 40, the polishing stop of the polishing work Wα is determined, the polishing work Wα is in the “secondary allowable state”, and the responsibility parameters or the correlation strengths are listed in descending order. The responsible parameters that have been set are displayed, and the polishing stop determination is notified.

その後、ステップS10の処理を行い、制御部50の制御演算部51は、第1駆動装置M1~第5駆動装置M5へ停止制御指令等研磨加工終了のための諸出力を行う。この結果、研磨機10は所定のシーケンスを経て自動停止し、研磨中ワークWαの研磨加工は終了する。 After that, the process of step S10 is performed, and the control calculation unit 51A of the control unit 50A outputs various outputs such as a stop control command to the first drive device M1 to the fifth drive device M5 to complete the polishing process. As a result, the polishing machine 10 automatically stops after a predetermined sequence, and the polishing process of the work Wα during polishing is completed.

この結果、研磨機10のユーザーは、画面40aを目視することで、研磨停止が判定されたこと及び研磨中ワークWαのワーク形状に加え、研磨中ワークWαが二次的許容状態になったことに対して相関度が高い責任パラメータを把握することができる。これにより、ユーザーがマニュアル操作で研磨機10を制御して研磨加工を停止する場合であっても、適切なタイミングで研磨加工を停止できる。また、制御部50からの停止制御指令によって研磨機10を停止させる場合であっても、ユーザーは研磨機10の停止動作を認識することが可能となる。 As a result, the user of the polishing machine 10 determined that the polishing was stopped by visually observing the screen 40a, and in addition to the work shape of the working work Wα being polished, the work Wα being polished was in a secondary allowable state. It is possible to grasp the responsibility parameter with a high degree of correlation. As a result, even when the user manually controls the polishing machine 10 to stop the polishing process, the polishing process can be stopped at an appropriate timing. Further, even when the grinding machine 10 is stopped by the stop control command from the control unit 50A , the user can recognize the stop operation of the grinding machine 10.

さらに、責任パラメータ又はその候補を把握できることで、最終ワーク形状を所望状態にするための必要な対策(条件的属性の改善や研磨機10の改善等)を合理的に立案することができる。そして、所望状態のワークWを効率的に得ることが可能になる。そして、所望の最終ワーク形状と実際のワーク形状との乖離度に応じた経験データや、その乖離を解消するための研磨装置1の改善提案の積み増しを促すことができる。 Further, by grasping the responsibility parameter or its candidate, it is possible to rationally formulate necessary measures (improvement of conditional attributes, improvement of the polishing machine 10, etc.) for making the final work shape into a desired state. Then, the work W in a desired state can be efficiently obtained. Then, it is possible to promote the accumulation of empirical data according to the degree of deviation between the desired final work shape and the actual work shape, and improvement proposals for the polishing apparatus 1 for eliminating the deviation.

なお、図12のフローチャートに示すステップS62の処理において、最終ワーク形状が二次的許容状態にもなり得ないと判定されたときには、ステップS62からステップS71、ステップS81、ステップS91の処理を順に行う。つまり、状態判定部58Aは、研磨中ワークWαの現在の研磨状態を判定し、研磨中ワークWαの研磨状態が「第3研磨停止状態」で研磨加工を停止すると判定する。そして、表示制御部56は、研磨中ワークWαの研磨停止を判定した旨に加え、研磨中ワークWαが「許容外形状」であることを表示器40の画面40aに表示させる制御指令を出力する。そして、表示器40の画面40aには、研磨中ワークWαの研磨停止が判定されたこと及び研磨中ワークWαが「許容外形状」であることが表示され、研磨停止判定が報知される。 In the process of step S62 shown in the flowchart of FIG. 12, when it is determined that the final work shape cannot be in the secondary allowable state, the processes of step S62, step S71, step S81, and step S91 are performed in order. .. That is, the state determination unit 58A determines the current polishing state of the work Wα being polished, and determines that the polishing process is stopped when the polishing state of the work Wα being polished is the “third polishing stop state”. Then, the display control unit 56A outputs a control command for displaying on the screen 40a of the display 40 that the polishing work has an “unacceptable shape” in addition to the fact that the polishing stop of the polishing work Wα is determined. do. Then, on the screen 40a of the display 40a, it is displayed that the polishing stop of the polishing work Wα is determined and that the polishing work Wα has an “unacceptable shape”, and the polishing stop determination is notified.

その後、ステップS10の処理を行い、制御部50の制御演算部51は、第1駆動装置M1~第5駆動装置M5へ停止制御指令等研磨加工終了のための諸出力を行う。この結果、研磨機10は所定のシーケンスを経て自動停止し、研磨中ワークWαの研磨加工は終了する。 After that, the process of step S10 is performed, and the control calculation unit 51A of the control unit 50A outputs various outputs such as a stop control command to the first drive device M1 to the fifth drive device M5 to complete the polishing process. As a result, the polishing machine 10 automatically stops after a predetermined sequence, and the polishing process of the work Wα during polishing is completed.

この結果、研磨機10のユーザーは、画面40aを目視することで、研磨停止が判定されたことと、研磨中ワークWαのワーク形状とを把握することができる。これにより、ユーザーがマニュアル操作で研磨機10を制御して研磨加工を停止する場合であっても、直ちに研磨加工を停止できる。また、制御部50からの停止制御指令によって研磨機10を停止させる場合であっても、ユーザーは研磨機10の停止動作の認識をすることが可能となる。 As a result, the user of the polishing machine 10 can grasp that the polishing stop is determined and the work shape of the work Wα being polished by visually observing the screen 40a. As a result, even when the user manually controls the polishing machine 10 to stop the polishing process, the polishing process can be stopped immediately. Further, even when the polishing machine 10 is stopped by the stop control command from the control unit 50A , the user can recognize the stopping operation of the polishing machine 10.

また、パラメータ特定部59により複数の責任パラメータが特定され、これらの責任パラメータを相関度強度が高い順に表示器40の画面40aに表示させる場合では、研磨中ワークWαが二次的許容状態になったことに対して最も影響が大きい条件的属性を把握しやすくなる。これにより、最終ワーク形状を所望状態にするための必要な対策(条件的属性の改善や研磨機10の改善等)をさらに合理的に立案することが可能となる。 Further, when a plurality of responsible parameters are specified by the parameter specifying unit 59 and these responsible parameters are displayed on the screen 40a of the display 40 in descending order of correlation strength, the work Wα being polished is in a secondary allowable state. It makes it easier to understand the conditional attributes that have the greatest impact on things. This makes it possible to more rationally formulate necessary measures (improvement of conditional attributes, improvement of the polishing machine 10, etc.) for making the final work shape into a desired state.

以下に具体例を挙げて説明する。
図13Aに示すように、研磨加工の開始時に外周領域が比較的研磨された「凸ダレ形状」である第5ワークW5を「ドレッシング後1バッチ目」の研磨機10で研磨する場合を説明する。研磨初期の研磨段階Aで「凸ダレ形状」の第5ワークW5の断面形状は、研磨加工が進行し、厚さが狙い厚さ範囲(T1≦厚さ≦T2)に達した直後の研磨段階Bでは、「フラット・ダレ形状(中央部は平坦で外周領域が過剰に研磨加工された状態)」となる。その後研磨加工を継続し、厚さが狙い厚さ範囲の下限(T1)に近くなった研磨段階Cでは、この第5ワークW5の断面形状は所望状態である「フラット形状」になる。
A specific example will be described below.
As shown in FIG. 13A, a case where the fifth work W5, which has a “convex sagging shape” in which the outer peripheral region is relatively polished at the start of the polishing process, is polished by the polishing machine 10 “first batch after dressing” will be described. .. In the polishing step A at the initial stage of polishing, the cross-sectional shape of the fifth work W5 having the "convex sagging shape" is the polishing step immediately after the polishing process progresses and the thickness reaches the target thickness range (T1 ≤ thickness ≤ T2). In B, it has a "flat sagging shape (a state in which the central portion is flat and the outer peripheral region is excessively polished)". After that, in the polishing step C where the polishing process is continued and the thickness becomes close to the lower limit (T1) of the target thickness range, the cross-sectional shape of the fifth work W5 becomes a “flat shape” which is a desired state.

次に、図13Bに示すように、研磨加工の開始時に外周領域が比較的研磨された「凸ダレ形状」である第6ワークW6を「ドレッシング後10バッチ目」の研磨機10で研磨する場合を説明する。研磨初期の研磨段階Aで「凸ダレ形状」の第6ワークW6の断面形状は、研磨加工が進行し、厚さが狙い厚さ範囲(T1≦厚さ≦T2)に達した直後の研磨段階Bでは、「フラット・ダレ形状(中央部は平坦で外周領域が過剰に研磨加工された状態)」となる。しかし、さらに研磨加工を継続し、厚さが狙い厚さ範囲の下限(T1)に近くなった研磨段階Cでは、この第6ワークW6の断面形状は「凹ダレ形状(中央部が大きくへこむと共に周縁部が過剰に研磨加工された状態)」になる。 Next, as shown in FIG. 13B, when the sixth work W6, which has a "convex sagging shape" in which the outer peripheral region is relatively polished at the start of the polishing process, is polished by the polishing machine 10 "10th batch after dressing". To explain. In the polishing step A at the initial stage of polishing, the cross-sectional shape of the sixth work W6 having the "convex sagging shape" is the polishing step immediately after the polishing process progresses and the thickness reaches the target thickness range (T1 ≤ thickness ≤ T2). In B, it has a "flat sagging shape (a state in which the central portion is flat and the outer peripheral region is excessively polished)". However, in the polishing stage C where the polishing process was continued and the thickness became close to the lower limit (T1) of the target thickness range, the cross-sectional shape of the sixth work W6 was "concave sagging shape (with a large dent in the central part). The peripheral part is excessively polished) ”.

ここで、「ドレッシング後1バッチ目」の研磨機10で研磨加工を行うときには、研磨段階Cでは、この第5ワークW5の断面形状は「フラット形状」になるので、最終ワーク形状は所望状態になり得ると予測される。これに対し、「ドレッシング後10バッチ目」の研磨機10で研磨加工を行うときには、いずれの研磨段階であってもワーク断面形状が「フラット形状」にならない。そのため、第6ワークW6の研磨時には、最終ワーク形状は所望状態になり得ないと予測される。しかしながら、研磨段階Bにおける「フラット・ダレ形状」は二次的許容状態に該当するため、この第6ワークW6の最終ワーク形状は二次的許容状態になり得ると予測される。 Here, when polishing is performed by the polishing machine 10 of the "first batch after dressing", the cross-sectional shape of the fifth work W5 becomes a "flat shape" in the polishing stage C, so that the final work shape is in a desired state. It is predicted that it can be. On the other hand, when the polishing process is performed by the polishing machine 10 "10th batch after dressing", the cross-sectional shape of the work does not become "flat shape" at any polishing stage. Therefore, it is predicted that the final work shape cannot be in a desired state when the sixth work W6 is polished. However, since the "flat sagging shape" in the polishing step B corresponds to the secondary allowable state, it is predicted that the final work shape of the sixth work W6 may be in the secondary allowable state.

また、この第6ワークW6の研磨時に最終ワーク形状が所望状態である「フラット形状」にならない事象を現出させることに対して相関度が高い条件的属性(責任パラメータ)は、例えばバッチ数の増加に伴って生じた研磨パッド表面の変質であると特定される。 Further, the conditional attribute (responsibility parameter) having a high degree of correlation with causing an event that the final work shape does not become the desired "flat shape" during polishing of the sixth work W6 is, for example, the number of batches. It is identified as a deterioration of the surface of the polishing pad caused by the increase.

そのため、実施例2の研磨装置1Aでは、第6ワークW6の研磨中、第6ワークW6の形状推移を予測した際、この予測に基づいて最終ワーク形状が所望状態(フラット形状)になり得ず、二次的許容状態(フラット・ダレ形状)になり得ると判定する。そして、研磨加工の進行に伴って第6ワークW6のワーク形状が二次的許容状態(フラット・ダレ形状)に達したタイミングで研磨停止判定を報知すると共に、第6ワークW6が二次的許容状態(フラット・ダレ形状)であることと、二次的許容状態になることに対する責任度が重いパラメータとして「研磨パッドの表面変質」を報知する。 Therefore, in the polishing apparatus 1A of the second embodiment, when the shape transition of the sixth work W6 is predicted during the polishing of the sixth work W6, the final work shape cannot be in the desired state (flat shape) based on this prediction. , It is determined that a secondary permissible state (flat sagging shape) can be achieved. Then, as the polishing process progresses, the polishing stop determination is notified at the timing when the work shape of the sixth work W6 reaches the secondary allowable state (flat sagging shape), and the sixth work W6 is secondarily allowed. "Surface deterioration of the polishing pad" is notified as a parameter with a heavy responsibility for being in a state (flat sagging shape) and becoming a secondary allowable state.

これにより、研磨停止の最良タイミングを適切に判定し、最終ワーク形状が所望状態ではないものの第2形状条件を満足する二次的許容状態に収めることができる。また、責任パラメータ又はその候補を把握することができるので、ワーク研磨時の条件的属性の改善に寄与し、より効率的なプロセス立案をユーザーができるようになる。また、研磨装置1自体が改善提案をできるようになる。 As a result, the best timing for stopping polishing can be appropriately determined, and the final work shape is not in a desired state, but can be contained in a secondary allowable state that satisfies the second shape condition. In addition, since the responsibility parameter or its candidate can be grasped, it contributes to the improvement of the conditional attribute at the time of polishing the work, and the user can plan a more efficient process. In addition, the polishing device 1 itself can make improvement proposals.

次に、効果を説明する。
実施例2の研磨装置1Aにあっては、下記に列挙する効果を得ることができる。
Next, the effect will be described.
In the polishing apparatus 1A of the second embodiment, the effects listed below can be obtained.

(8) 制御部50Aは、研磨中ワークWαの形状推移の予測に基づいて、この研磨中ワークWαが所望のワーク状態になり得ないと判定したとき、研磨中ワークWαが二次的許容状態のときに研磨中ワークWαの研磨加工を停止させると共に、研磨加工の停止判定を報知する構成とした。
これにより、最終ワーク形状が所望状態になり得ない場合であっても、適切なタイミングで研磨加工を停止させ、研磨加工の停止遅れが生じることを防止できる。また、研磨加工の停止タイミングが適時より遅れることを防止して、適切なタイミングで自動的に研磨加工を停止できる。
(8) When the control unit 50A determines that the polishing work Wα cannot be in the desired work state based on the prediction of the shape transition of the polishing work Wα, the polishing work Wα is in a secondary allowable state. At this time, the polishing process of the work Wα during polishing is stopped, and the stop determination of the polishing process is notified.
As a result, even when the final work shape cannot be in the desired state, the polishing process can be stopped at an appropriate timing, and it is possible to prevent the polishing process from being delayed. In addition, it is possible to prevent the polishing process from being stopped later than the appropriate time, and to automatically stop the polishing process at an appropriate timing.

(9) 制御部50Aは、研磨中ワークWαの二次的許容状態の現出に対して相関度が高い条件的属性(責任パラメータ)を特定、又は研磨中ワークWαの二次的許容状態の現出に対して相関度が高い順に条件的属性を列挙し、特定又は列挙された相関度が高い条件的属性(責任パラメータ又はその候補)を報知する構成とした。
これにより、ユーザーが責任パラメータ又はその候補を把握でき、最終ワーク形状を所望状態にするための必要な対策を合理的に立案することができる。
(9) The control unit 50A identifies a conditional attribute (responsibility parameter) having a high degree of correlation with the appearance of the secondary allowable state of the work Wα being polished, or the secondary allowable state of the work Wα being polished. Conditional attributes are listed in descending order of correlation with the appearance, and the specified or listed conditional attributes with high correlation (responsibility parameters or their candidates) are notified.
As a result, the user can grasp the responsibility parameter or its candidate, and can rationally formulate the necessary measures for making the final work shape into a desired state.

以上、本発明の研磨装置を実施例1及び実施例2に基づいて説明してきたが、具体的な構成については、これらの実施例に限られるものではなく、特許請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。 Although the polishing apparatus of the present invention has been described above based on the first and second embodiments, the specific configuration is not limited to these examples, and the claims are included in the claims. Design changes and additions are permitted as long as they do not deviate from the gist of the invention.

実施例1の研磨装置1では、メモリ30が、ワークWの形状情報に、当該ワークWを研磨加工した際の条件的属性を紐づけて記憶する例を示した。しかしながら、これに限らない。例えば、メモリ30にワークWの形状情報を記憶する際、このワークWの形状情報に対して学習的に生成した条件的属性を紐づけて記憶してもよい。ここで、「学習的に生成した条件的属性」とは、過去に実施された研磨加工時に取得した形状情報と条件的属性との関係(傾向)を学習し、演算した結果得られた条件的属性である。この「学習的に生成した条件的属性」は、例えば、過去に実施された研磨加工において蓄積されたワークWの形状情報に紐づけられた条件的属性に基づき、ワークWの形状情報に応じた条件的属性の傾向を学習し、条件的属性の各々のパラメータの研磨結果における影響度の大小を所与の複雑な条件系の中で自動演算し、その結果を用いて影響度予測を重み付けするなどの演算をして出力された条件的属性等が考えられる。 In the polishing apparatus 1 of the first embodiment, an example is shown in which the memory 30 stores the shape information of the work W in association with the conditional attributes when the work W is polished. However, it is not limited to this. For example, when the shape information of the work W is stored in the memory 30, the conditional attributes generated by learning may be associated with the shape information of the work W and stored. Here, the "learningly generated conditional attribute" is a conditional attribute obtained as a result of learning and calculating the relationship (tendency) between the shape information acquired during the polishing process performed in the past and the conditional attribute. It is an attribute. This "learningly generated conditional attribute" corresponds to the shape information of the work W, for example, based on the conditional attribute associated with the shape information of the work W accumulated in the polishing process performed in the past. The tendency of the conditional attribute is learned, the magnitude of the influence on the polishing result of each parameter of the conditional attribute is automatically calculated in a given complicated conditional system, and the result is used to weight the influence prediction. Conditional attributes, etc. that are output after performing operations such as are conceivable.

そして、研磨中ワークWαの条件的属性と、学習的に生成した条件的属性とをマッチングして選択マスターの形状情報を抽出し、研磨中ワークWαの形状推移の予測を行う場合では、ユーザーが従来とりがちであった予測パターンや傾向を超えて、より最適に予測するようにできる。 Then, in the case where the conditional attribute of the work Wα being polished and the conditional attribute generated by learning are matched to extract the shape information of the selected master and the shape transition of the work Wα being polished is predicted, the user It is possible to make more optimal predictions beyond the prediction patterns and trends that have tended to be taken in the past.

すなわち、学習的に生成した条件的属性に紐づけられたワークWの形状情報に基づいて選択マスターの形状情報を抽出することで、ある条件下での特定のパラメータの影響重度を自発的に見出して提示することや、影響重度の調合を行うことができる。また、影響重度を調合するように組まれた学習的アルゴリズムの組み方次第では、ユーザーによる予測の範囲を超えて、純粋に演算結果としての出力が研磨中ワークWαの形状推移の予測範囲を広げることができる。 That is, by extracting the shape information of the selection master based on the shape information of the work W associated with the conditional attributes generated by learning, the influence severity of a specific parameter under a certain condition is spontaneously found. Can be presented or compounded with severe influence. In addition, depending on how the learning algorithm is constructed so as to formulate the severity of influence, the output as a pure calculation result expands the prediction range of the shape transition of the work Wα being polished, beyond the range of prediction by the user. Can be done.

この結果、従来見落としがちであった研磨中ワークWαの形状予測の精度が、ユーザーによる予測精度よりも格段に向上する。また、特定条件下における条件的属性とワーク形状精度の相関を、客観的に高精度に予測することが可能となり、研磨中ワークWαの研磨加工前ないし研磨加工の初期段階において、条件的属性の事前変更を必要に応じて促すことができ、良品収率の向上及び安定に寄与することができる。 As a result, the accuracy of shape prediction of the work Wα during polishing, which has been often overlooked in the past, is significantly improved compared to the prediction accuracy by the user. In addition, it is possible to objectively predict the correlation between the conditional attribute and the work shape accuracy under specific conditions with high accuracy, and the conditional attribute of the conditional attribute before polishing or at the initial stage of polishing of the work Wα during polishing. Preliminary changes can be encouraged as needed, which can contribute to the improvement and stability of non-defective product yields.

また、実施例1の研磨装置1では、メモリ30が、ワークWの形状情報に、当該ワークWを研磨加工した際の条件的属性を紐づけて記憶する。そして、形状推移予測部57において、研磨中ワークWαの条件的属性を基準に抽出した選択マスターの形状情報の時系列変化と、研磨中ワークWαの形状情報の時系列変化とを比較演算し、研磨中ワークWαの形状推移を予測する例を示した。つまり、実施例1では、形状参考ワークWβの形状情報、又はワークWを研磨加工した際の条件的属性とワークWの形状情報との間の相関度の学習結果に基づいて生成したワーク形状パターンである典型的な形状情報に基づいて研磨中ワークWαの形状推移を推定する。しかしながら、これに限らない。 Further, in the polishing apparatus 1 of the first embodiment, the memory 30 stores the shape information of the work W in association with the conditional attributes when the work W is polished. Then, the shape transition prediction unit 57 compares and calculates the time-series change of the shape information of the selected master extracted based on the conditional attribute of the work Wα being polished and the time-series change of the shape information of the work Wα being polished. An example of predicting the shape transition of the work Wα during polishing is shown. That is, in Example 1, the work shape pattern generated based on the shape information of the shape reference work Wβ or the learning result of the degree of correlation between the conditional attribute when the work W is polished and the shape information of the work W. The shape transition of the work Wα during polishing is estimated based on the typical shape information. However, it is not limited to this.

ワークWの形状情報を演算処理して得られたワーク形状パターンとして、相関度データ処理部60の支援を必要に応じて受け、ワークWの形状的特徴を有する情報を演算処理して得られた所望のワーク形状パターンを用いてもよい。この場合、メモリ30には、ワークWの形状的特徴を有するワーク形状パターンに、このワークWを研磨加工した際の条件的属性を全て紐づけ、条件的属性を必要に応じてグループ化したり、学習の進行に伴って細分化して記憶する。そして、形状推移予測部57は、研磨中ワークWαの形状推移を、この研磨中ワークWαの条件的属性にマッチする条件的属性に紐づけられたワーク形状パターンに基づいて予測してもよい。 As a work shape pattern obtained by arithmetically processing the shape information of the work W, it was obtained by arithmetically processing the information having the shape characteristics of the work W with the support of the correlation degree data processing unit 60 as necessary. A desired work shape pattern may be used. In this case, in the memory 30, all the conditional attributes when the work W is polished are associated with the work shape pattern having the shape characteristics of the work W, and the conditional attributes are grouped as necessary. It is subdivided and memorized as the learning progresses. Then, the shape transition prediction unit 57 may predict the shape transition of the polishing work Wα based on the work shape pattern associated with the conditional attribute matching the conditional attribute of the polishing work Wα.

すなわち、ワークWの形状情報及びワークWの形状情報を演算処理して得られたワーク形状パターンの少なくとも一方を含む情報を「予測情報」といい、メモリ30は、この予測情報に、ワークWを研磨加工した際の条件的属性や、学習的に生成した条件的属性を紐づけて記憶する。そして、制御部50の形状推移予測部57は、研磨中ワークWαの予測情報の時系列変化と、この研磨中ワークWαの条件的属性にマッチする条件的属性に紐づけられてメモリ30に記憶された予測情報の時系列変化との比較演算の結果に基づいて、研磨中ワークWαの形状推移を予測する。 That is, the information including at least one of the shape information of the work W and the shape information of the work W obtained by arithmetic processing is called "prediction information", and the memory 30 uses the work W as the prediction information. The conditional attributes at the time of polishing and the conditional attributes generated by learning are linked and stored. Then, the shape transition prediction unit 57 of the control unit 50 stores in the memory 30 in association with the time-series change of the prediction information of the work Wα being polished and the conditional attribute matching the conditional attribute of the work Wα being polished. Based on the result of the comparison calculation with the time-series change of the predicted information, the shape transition of the work Wα during polishing is predicted.

ここで、「演算処理」とは、例えば条件的属性ごとに選択された複数のワークWの断面形状線を平均化し、条件的属性ごとの平均的な断面形状線を求めることや、所定の断面形状線における厚さの最大値最小値の差から平坦度を算出すること、複数の断面形状線の最頻値や中央値を用いて所望の断面形状線を求めること、条件的属性とワーク形状との相関度という視点において、ワークWの形状的特徴のグループ又は新たに統計的・演算的に生成されたグループと紐づくワーク形状を、当該グループにおける典型的な形状として算出すること等である。 Here, the "calculation process" is, for example, averaging the cross-sectional shape lines of a plurality of works W selected for each conditional attribute to obtain an average cross-sectional shape line for each conditional attribute, or a predetermined cross-section. To calculate the flatness from the difference between the maximum and minimum thicknesses in the shape line, to obtain the desired cross-section shape line using the most frequent and median values of multiple cross-section shape lines, conditional attributes and work. From the viewpoint of the degree of correlation with the shape, by calculating the work shape associated with the group of the shape features of the work W or the newly generated statistically and computationally group as a typical shape in the group, etc. be.

すなわち、例えば過去に研磨加工したワークWの形状情報から得られたワーク形状パターンであるワークWの中央部の平坦度をワーク研磨時間ごとに算出する。続いて回帰分析などを行い、図14Aに示すように、ワーク研磨時間とワーク中央部の平坦度との関係を第1平坦度予測線Laとして生成する。そして、この第1平坦度予測線Laと研磨中ワークWαの中央部の平坦度の推移とを比較し、研磨中ワークWαの形状予測を行ってもよい。 That is, for example, the flatness of the central portion of the work W, which is a work shape pattern obtained from the shape information of the work W that has been polished in the past, is calculated for each work polishing time. Subsequently, regression analysis or the like is performed, and as shown in FIG. 14A, the relationship between the work polishing time and the flatness of the central portion of the work is generated as the first flatness prediction line La. Then, the shape of the work Wα being polished may be predicted by comparing the first flatness prediction line La with the transition of the flatness of the central portion of the work Wα being polished.

また、過去に研磨加工したワークWの形状情報から得られたワーク形状パターンであるワークWの外周領域の平坦度をワーク研磨時間ごとに算出する。続いて回帰分析などを行い、図14Bに示すように、ワーク研磨時間とワーク外周領域の平坦度との関係を第2平坦度予測線Lbとして生成する。そして、この第2平坦度予測線Lbと研磨中ワークWαの外周領域の平坦度の推移とを比較し、研磨中ワークWαの形状予測を行ってもよい。 Further, the flatness of the outer peripheral region of the work W, which is the work shape pattern obtained from the shape information of the work W polished in the past, is calculated for each work polishing time. Subsequently, regression analysis or the like is performed, and as shown in FIG. 14B, the relationship between the work polishing time and the flatness of the work outer peripheral region is generated as the second flatness prediction line Lb. Then, the shape of the work Wα being polished may be predicted by comparing the second flatness prediction line Lb with the transition of the flatness of the outer peripheral region of the work Wα being polished.

なお、第1平坦度予測線Laから、ワーク中央部の平坦度は、ワーク研磨時間に応じて次第に低下し、所定時間Taを超えると悪化することがわかる。そのため、ワーク研磨時間が所定時間Taに達したタイミングで研磨中ワークWαの研磨加工を停止することで、中央部の平坦度が良好なワークを得ることができると考えられる。また、第2平坦度予測線Lbから、ワーク外周領域の平坦度は、ワーク研磨時間が所定時間Tbに達するまではマイナス側のほぼ一定値を維持し、ワーク研磨時間が所定時間Tbを超えるとプラス側になり次第に大きくなることがわかる。そのため、ワーク研磨時間が所定時間Tbに達したタイミングで研磨中ワークWαの研磨加工を停止することで、外周領域の平坦度が良好なワークを得ることができると考えられる。 From the first flatness prediction line La, it can be seen that the flatness of the central portion of the work gradually decreases according to the work polishing time, and deteriorates when the predetermined time Ta is exceeded. Therefore, it is considered that a work having a good flatness in the central portion can be obtained by stopping the polishing process of the work Wα during polishing at the timing when the work polishing time reaches Ta for a predetermined time. Further, from the second flatness prediction line Lb, the flatness of the work outer peripheral region is maintained at a substantially constant value on the minus side until the work polishing time reaches the predetermined time Tb, and when the work polishing time exceeds the predetermined time Tb. It can be seen that it gradually increases on the plus side. Therefore , it is considered that a work having a good flatness in the outer peripheral region can be obtained by stopping the polishing process of the work Wα during polishing at the timing when the work polishing time reaches Tb for a predetermined time.

また、実施例1では、第2描画生成部55が、研磨中ワークWαの条件的属性にマッチする条件的属性に紐づけられた選択マスターの形状情報に基づいて第2描画P2を生成する例を示した。しかしながら、第2描画P2を生成する際に用いるワークWの形状情報はこれに限らない。例えば、研磨中ワークWαの条件的属性に拘らず、研磨中ワークWαを研磨加工した研磨機によって研磨中ワークWαの直前に研磨加工したワークWの形状情報に基づいて第2描画P2を生成してもよい。また、研磨中ワークWαの条件的属性に拘らず、研磨中ワークWαを研磨加工した研磨機によって研磨中ワークWαの直前よりも以前に研磨加工したワークWの形状情報に基づいて第2描画P2を生成してもよい。 Further, in the first embodiment, the second drawing generation unit 55 generates the second drawing P2 based on the shape information of the selection master associated with the conditional attribute matching the conditional attribute of the work Wα being polished. showed that. However, the shape information of the work W used when generating the second drawing P2 is not limited to this. For example, regardless of the conditional attributes of the work Wα being polished, the second drawing P2 is generated based on the shape information of the work W that has been polished immediately before the work Wα being polished by the polishing machine that has polished the work Wα being polished. May be. Further, regardless of the conditional attributes of the work Wα being polished, the second drawing P2 is based on the shape information of the work W that has been polished before the work Wα being polished by the polishing machine that has been polished the work Wα being polished. May be generated.

また、実施例1及び実施例2では、第2描画生成部55にて、研磨中ワークWαの条件的属性に基づいて抽出した選択マスターの形状情報に基づいて第2描画P2を生成する例を示したが、これに限らず、選択マスターの形状情報に基づいた第2の第2描画、第3の第2描画等、研磨中ワークWαの条件的属性に基づいて複数の選択マスターを抽出し、それらの選択マスターの形状情報に基づいて第2描画を複数生成し、複数の第2描画を表示器40の画面40aに表示したり、複数の第2描画を参考にして研磨中ワークWαの今後の形状変化の推移を予測してもよい。 Further, in the first and second embodiments, the second drawing generation unit 55 generates the second drawing P2 based on the shape information of the selection master extracted based on the conditional attribute of the work Wα being polished. Although shown, not limited to this, a plurality of selected masters are extracted based on the conditional attributes of the work Wα being polished, such as the second second drawing and the third second drawing based on the shape information of the selected master. , A plurality of second drawings are generated based on the shape information of those selection masters, and the plurality of second drawings are displayed on the screen 40a of the display 40, or the polishing work Wα is being polished with reference to the plurality of second drawings. You may predict the transition of the shape change in the future.

さらに、メモリ30に記憶されたワークWの形状情報を所望範囲から複数抽出し、抽出したワークWの形状情報を平均化したり、抽出したワークWの形状情報から特異データを取得して所望の形状情報を生成する等の演算処理を行って得られた形状的特徴を有するワーク形状パターンに基づいて第2描画P2を生成してもよい。
この場合であっても、第2描画P2によって示されるワーク形状の推移の精度は、選択マスターの形状情報を用いて第2描画P2を生成した場合よりも向上させることができる。そのため、研磨中ワークWαの形状推移の予測をより正確に行い、さらに適切なタイミングで研磨停止を行うことが可能となる。
Further, a plurality of shape information of the work W stored in the memory 30 is extracted from a desired range, the shape information of the extracted work W is averaged, and specific data is acquired from the shape information of the extracted work W to obtain a desired shape. The second drawing P2 may be generated based on the work shape pattern having the shape characteristics obtained by performing arithmetic processing such as generating information.
Even in this case, the accuracy of the transition of the work shape indicated by the second drawing P2 can be improved as compared with the case where the second drawing P2 is generated by using the shape information of the selection master. Therefore, it is possible to more accurately predict the shape transition of the work Wα during polishing and to stop polishing at an appropriate timing.

そして、このワークWの形状情報は、研磨機10とは別に設けられた形状測定専用器(例えば、別個の平坦度測定専用器等)によるワーク形状の測定値データと比較した結果を受けて得られた測定値データを必要に応じて補正し、調整を行ってもよい。 Then, the shape information of the work W is obtained by comparing with the measured value data of the work shape by the shape measurement dedicated device (for example, a separate flatness measurement dedicated device) provided separately from the grinding machine 10. The measured value data may be corrected and adjusted as necessary.

また、実施例1の研磨装置1では、第1描画P1及び第2描画P2をそれぞれ生成し、表示器40に第1描画P1と第2描画P2とを同時に表示する例を示した。しかしながら、これに限らない。研磨中ワークWαの形状描画を時系列で並べた第1描画P1のみを表示器40に表示させてもよい。この場合であっても、ユーザーは研磨中ワークWαの形状変化の推移を把握することができる。そして、この研磨中ワークWαの形状変化の推移に基づき、所望のワーク形状になったタイミングで研磨中ワークWαの研磨加工を停止できる。 Further, in the polishing apparatus 1 of the first embodiment, an example is shown in which the first drawing P1 and the second drawing P2 are generated, respectively, and the first drawing P1 and the second drawing P2 are simultaneously displayed on the display 40. However, it is not limited to this. Only the first drawing P1 in which the shape drawing of the work Wα being polished is arranged in chronological order may be displayed on the display 40. Even in this case, the user can grasp the transition of the shape change of the work Wα during polishing. Then, based on the transition of the shape change of the work Wα during polishing, the polishing process of the work during polishing can be stopped at the timing when the desired work shape is obtained.

また、実施例1の研磨装置1では、研磨中ワークWαの研磨停止を判定したとき、この研磨加工の停止判定を表示器40に表示して報知すると共に、研磨機10を停止する例を示した。しかしながら、例えば研磨加工の停止判定を行ったことを報知するだけでもよいし、停止判定を報知することなく研磨機10を停止制御して研磨中ワークWαの研磨加工を停止させるだけでもよい。 Further, in the polishing apparatus 1 of the first embodiment, when it is determined that the polishing work Wα is stopped during polishing, the stop determination of the polishing process is displayed on the display 40 to notify the display, and an example of stopping the polishing machine 10 is shown. rice field. However, for example, it may be possible to simply notify that the stop determination of the polishing process has been performed, or it may be possible to simply stop the polishing machine 10 to stop the polishing process of the work Wα during polishing without notifying the stop determination.

また、実施例2では、研磨中ワークWαの形状推移の予測に基づいて、最終ワーク形状が所望状態になり得ないと判定したとき、研磨中ワークWαが二次的許容状態のときに、この研磨加工の停止判定を表示器40に表示して報知すると共に、研磨機10を停止する例を示した。しかしながら、研磨中ワークWαが二次的許容状態のとき、例えば研磨加工の停止判定を行ったことを報知するだけでもよいし、停止判定を報知することなく研磨機10を停止制御して研磨中ワークWαの研磨加工を停止させるだけでもよい。 Further, in the second embodiment, when it is determined that the final work shape cannot be in the desired state based on the prediction of the shape transition of the work Wα during polishing, and when the work Wα being polished is in the secondary allowable state, this is performed. An example of stopping the polishing machine 10 is shown while displaying the stop determination of the polishing process on the display 40 to notify the display. However, when the work Wα during polishing is in the secondary permissible state, for example, it may only be notified that the stop determination of the polishing process has been performed, or the polishing machine 10 may be stopped and controlled without notifying the stop determination during polishing. It may be sufficient to simply stop the polishing process of the work Wα.

そして、実施例1では、測定ユニット21が上定盤12に取り付けられた例を示したが、これに限らない。例えば、上定盤12の上方に設置された光学ヘッドから測定光であるレーザ光を照射してもよい。この場合では、上定盤12の周方向に沿って複数の測定孔を形成し、上定盤12の回転によってそれぞれの測定孔が光学ヘッドの真下にくるごとにレーザ光が照射され、ワークの厚さを測定する。なお、下定盤11に測定孔を設けて、下定盤11の下方からワークWの下面にレーザ光を照射して厚さを測定するようにしてもよい。 Then, in Example 1, an example in which the measuring unit 21 is attached to the upper surface plate 12 is shown, but the present invention is not limited to this. For example, a laser beam which is a measurement light may be irradiated from an optical head installed above the upper surface plate 12. In this case, a plurality of measurement holes are formed along the circumferential direction of the upper surface plate 12, and the rotation of the upper surface plate 12 causes laser light to be irradiated every time each measurement hole is directly under the optical head of the work. Measure the thickness. A measuring hole may be provided in the lower platen 11, and the lower surface of the work W may be irradiated with a laser beam from below the lower platen 11 to measure the thickness.

また、実施例1において、ワークWの断面形状を求める際、得られたデータ列を移動平均処理や多項式近似曲線描画処理などで厚さデータを平均化するが、これに限らずワークWの断面形状を可視化できればどのような方法であってもよい。 Further, in the first embodiment, when the cross-sectional shape of the work W is obtained, the thickness data of the obtained data string is averaged by a moving average process, a polynomial approximation curve drawing process, or the like, but the cross section of the work W is not limited to this. Any method may be used as long as the shape can be visualized.

また、実施例1及び実施例2では、研磨停止判定処理に並行して第2描画生成処理を実行し、研磨中ワークWαの条件的属性の変化を監視して、適宜第2描画P2を差し替える例を示した。しかしながら、これに限らず、例えば、研磨中と判定した後に取得した研磨中ワークWαの条件的属性に基づいて一度生成した第2描画P2を研磨終了まで維持してもよい。さらに、この場合では、研磨停止判定処理に並行して第2描画生成処理を実行しなくてもよく、研磨停止判定処理の途中(例えば、ステップS1とステップS2の間や、ステップS3とステップS4の間等)に、第2描画生成処理におけるステップS12、ステップS13、ステップS14の各処理を実行してもよい。 Further, in the first and second embodiments, the second drawing generation process is executed in parallel with the polishing stop determination process, the change in the conditional attribute of the work Wα during polishing is monitored, and the second drawing P2 is replaced as appropriate. An example is shown. However, the present invention is not limited to this, and for example, the second drawing P2 once generated based on the conditional attribute of the work Wα during polishing acquired after determining that it is being polished may be maintained until the end of polishing. Further, in this case, it is not necessary to execute the second drawing generation process in parallel with the polishing stop determination process, and during the polishing stop determination process (for example, between steps S1 and S2, or between steps S3 and S4). In the meantime, etc.), each process of step S12, step S13, and step S14 in the second drawing generation process may be executed.

また、実施例1及び実施例2では、下定盤11と上定盤12を有し、ワークWの両面を同時に研磨可能な両面研磨装置を示したが、ワークWの片面のみを研磨する片面研磨装置であっても、本発明を適用することができる。 Further, in Examples 1 and 2, a double-sided polishing apparatus having a lower surface plate 11 and an upper surface plate 12 and capable of simultaneously polishing both sides of the work W is shown, but single-sided polishing for polishing only one side of the work W. The present invention can be applied even to an apparatus.

1,1A 研磨装置
10 研磨機
11 下定盤
12 上定盤
20 形状測定器
19 測定孔
30 メモリ
40 表示器
40a 画面
50,50A 制御部
51,51A 制御演算部
54 第1描画生成部
55 第2描画生成部
56,56A 表示制御部
57,57A 形状推移予測部
58,58A 状態判定部
59 パラメータ特定部
60 相関度データ処理部
1,1A Polishing device 10 Polishing machine 11 Lower surface plate 12 Upper surface plate 20 Shape measuring instrument 19 Measuring hole 30 Memory 40 Display 40a Screen 50, 50A Control unit 51, 51A Control calculation unit 54 First drawing generation unit 55 Second drawing Generation unit 56, 56A Display control unit 57, 57A Shape transition prediction unit 58, 58A Status determination unit 59 Parameter specification unit 60 Correlation degree data processing unit

Claims (9)

回転する定盤によってワークを研磨する研磨機と、
前記定盤に形成された測定孔を介して前記ワークの形状を測定する形状測定器と、
前記形状測定器によって測定された前記ワークの形状情報を記憶するメモリと、
前記形状測定器によって測定された前記ワークの形状情報を表示する表示器と、
前記表示器の表示内容を制御する制御部と、を備え、
前記制御部は、前記形状測定器によって測定された現在研磨中のワークである研磨中ワークの形状描画を時系列で並べた第1描画を生成し、前記第1描画を前記表示器に表示させる
ことを特徴とする研磨装置。
A grinding machine that grinds the work with a rotating surface plate,
A shape measuring instrument that measures the shape of the work through the measuring holes formed in the surface plate, and
A memory that stores the shape information of the work measured by the shape measuring instrument, and
A display that displays the shape information of the work measured by the shape measuring device, and
A control unit that controls the display contents of the display is provided.
The control unit generates a first drawing in which the shape drawings of the work being polished, which is the work currently being polished measured by the shape measuring instrument, are arranged in chronological order, and displays the first drawing on the display. A polishing device characterized by that.
請求項1に記載された研磨装置において、
前記メモリは、前記ワークの形状情報及び前記ワークの形状情報を演算処理して得られたワーク形状パターンの少なくとも一方を含む予測情報に、このワークを研磨加工した際の条件的属性又は学習的に生成した条件的属性を紐づけて記憶し、
前記制御部は、前記研磨中ワークの予測情報の時系列変化と、前記研磨中ワークの条件的属性にマッチする条件的属性に紐づけられた予測情報の時系列変化との比較演算の結果に基づいて前記研磨中ワークの形状推移を予測し、前記研磨中ワークの形状推移の予測に基づいて前記研磨中ワークの状態判定を行う
ことを特徴とする研磨装置。
In the polishing apparatus according to claim 1,
The memory is used for predictive information including at least one of the work shape information and the work shape pattern obtained by arithmetically processing the work shape information, as a conditional attribute or learning when the work is polished. Associate and memorize the generated conditional attributes,
The control unit determines the result of a comparison calculation between the time-series change of the prediction information of the work being polished and the time-series change of the prediction information associated with the conditional attribute matching the conditional attribute of the work being polished. A polishing apparatus characterized in that the shape transition of the work being polished is predicted based on the prediction of the shape transition of the work being polished, and the state of the work being polished is determined based on the prediction of the shape transition of the work being polished.
回転する定盤によってワークを研磨する研磨機と、
前記定盤に形成された測定孔を介して前記ワークの形状を測定する形状測定器と、
前記形状測定器によって測定された前記ワークの形状情報を記憶するメモリと、
前記形状測定器によって測定された前記ワークの形状情報を表示する表示器と、
前記表示器の表示内容を制御する制御部と、を備え、
前記制御部は、前記形状測定器によって測定された現在研磨中のワークである研磨中ワークの形状描画を時系列で並べた第1描画と、前記研磨中ワークの研磨以前に研磨加工されたワークの形状描画を時系列で並べた第2描画と、を生成し、前記第1描画及び前記第2描画を同時に前記表示器に表示させる
ことを特徴とする研磨装置。
A grinding machine that grinds the work with a rotating surface plate,
A shape measuring instrument that measures the shape of the work through the measuring holes formed in the surface plate, and
A memory that stores the shape information of the work measured by the shape measuring instrument, and
A display that displays the shape information of the work measured by the shape measuring device, and
A control unit that controls the display contents of the display is provided.
The control unit has a first drawing in which the shape drawing of the work being polished, which is the work currently being polished measured by the shape measuring instrument, is arranged in chronological order, and a work that has been polished before polishing the work being polished. A polishing apparatus characterized by generating a second drawing in which the shape drawings of the above are arranged in chronological order, and displaying the first drawing and the second drawing on the display at the same time.
請求項3に記載された研磨装置において、
前記メモリは、前記ワークの形状情報に、このワークを研磨加工した際の条件的属性又は学習的に生成した条件的属性を紐づけて記憶し、
前記制御部は、前記研磨中ワークの条件的属性にマッチする条件的属性に紐づけられたワークの形状情報に基づいて前記第2描画を生成する
ことを特徴とする研磨装置。
In the polishing apparatus according to claim 3,
The memory stores the shape information of the work in association with the conditional attributes when the work is polished or the conditional attributes generated by learning.
The control unit is a polishing apparatus characterized in that the second drawing is generated based on the shape information of the work associated with the conditional attribute matching the conditional attribute of the work being polished.
請求項3又は請求項4に記載された研磨装置において、
前記制御部は、前記メモリに記憶された前記ワークの形状情報を演算処理して得られたワーク形状パターン、又は前記ワークを研磨加工した際の条件的属性と前記ワークの形状情報との間の相関度の学習結果に基づいて生成したワーク形状パターンに基づいて前記第2描画を生成する
ことを特徴とする研磨装置。
In the polishing apparatus according to claim 3 or 4.
The control unit is between the work shape pattern obtained by arithmetically processing the shape information of the work stored in the memory, or the conditional attribute when the work is polished and the shape information of the work. A polishing apparatus characterized in that the second drawing is generated based on a work shape pattern generated based on a learning result of a degree of correlation.
請求項3から請求項5のいずれか一項に記載された研磨装置において、
前記メモリは、前記ワークの形状情報及び前記ワークの形状情報を演算処理して得られたワーク形状パターンの少なくとも一方を含む予測情報に、このワークを研磨加工した際の条件的属性又は学習的に生成した条件的属性を紐づけて記憶し、
前記制御部は、前記研磨中ワークの予測情報の時系列変化と、前記研磨中ワークの条件的属性にマッチする条件的属性に紐づけられた予測情報の時系列変化との比較演算の結果に基づいて前記研磨中ワークの形状推移を予測し、前記形状推移の予測に基づいて前記研磨中ワークの状態判定を行う
ことを特徴とする研磨装置。
In the polishing apparatus according to any one of claims 3 to 5.
The memory is used for predictive information including at least one of the work shape information and the work shape pattern obtained by arithmetically processing the work shape information, as a conditional attribute or learning when the work is polished. Associate and memorize the generated conditional attributes,
The control unit determines the result of a comparison calculation between the time-series change of the prediction information of the work being polished and the time-series change of the prediction information associated with the conditional attribute matching the conditional attribute of the work being polished. A polishing apparatus characterized in that the shape transition of the work being polished is predicted based on the prediction, and the state of the work being polished is determined based on the prediction of the shape transition.
請求項2又は請求項6に記載された研磨装置において、
前記制御部は、前記研磨中ワークの状態判定の結果、前記研磨中ワークの研磨加工を停止すると判定したとき、前記研磨中ワークの研磨加工の停止及び前記研磨中ワークの研磨加工の停止判定の報知のうち、少なくとも一方を行う
ことを特徴とする研磨装置。
In the polishing apparatus according to claim 2 or 6.
When the control unit determines as a result of determining the state of the work being polished that the polishing process of the workpiece being polished is stopped, the control unit determines that the polishing process of the workpiece being polished is stopped and the polishing process of the workpiece being polished is stopped. A polishing device characterized in performing at least one of the notifications.
請求項2又は請求項6に記載された研磨装置において、
前記制御部は、前記研磨中ワークの形状推移の予測に基づいて前記研磨中ワークが所望のワーク状態になり得ないと判定したとき、前記研磨中ワークが二次的許容状態のときに前記研磨中ワークの研磨加工の停止及び前記研磨中ワークの研磨加工の停止判定の報知のうち、少なくとも一方を行う
ことを特徴とする研磨装置。
In the polishing apparatus according to claim 2 or 6.
When the control unit determines that the work being polished cannot be in a desired work state based on the prediction of the shape transition of the work being polished, the polishing unit is in a secondary allowable state when the work being polished is in a secondary allowable state. A polishing apparatus characterized in that at least one of the notification of the stop of the polishing process of the medium work and the determination of the stop determination of the polishing process of the work being polished is performed.
請求項8に記載された研磨装置において、
前記制御部は、前記研磨中ワークの二次的許容状態の現出に対して相関度が高い条件的属性を特定、又は前記研磨中ワークの二次的許容状態の現出に対して相関度が高い順に条件的属性を列挙し、特定或いは列挙された条件的属性を報知する
ことを特徴とする研磨装置。
In the polishing apparatus according to claim 8,
The control unit identifies a conditional attribute having a high degree of correlation with the appearance of the secondary allowable state of the work being polished, or the degree of correlation with the appearance of the secondary allowable state of the work being polished. A polishing device characterized in that the conditional attributes are listed in descending order and the specific or listed conditional attributes are notified.
JP2018079177A 2018-04-17 2018-04-17 Polishing equipment Active JP7046358B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018079177A JP7046358B2 (en) 2018-04-17 2018-04-17 Polishing equipment
KR1020190035254A KR102627963B1 (en) 2018-04-17 2019-03-27 Polishing device
CN201910284961.2A CN110394726B (en) 2018-04-17 2019-04-10 Grinding device
TW108112580A TWI807007B (en) 2018-04-17 2019-04-11 Polishing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018079177A JP7046358B2 (en) 2018-04-17 2018-04-17 Polishing equipment

Publications (2)

Publication Number Publication Date
JP2019181657A JP2019181657A (en) 2019-10-24
JP7046358B2 true JP7046358B2 (en) 2022-04-04

Family

ID=68322485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018079177A Active JP7046358B2 (en) 2018-04-17 2018-04-17 Polishing equipment

Country Status (4)

Country Link
JP (1) JP7046358B2 (en)
KR (1) KR102627963B1 (en)
CN (1) CN110394726B (en)
TW (1) TWI807007B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115697631A (en) * 2020-12-18 2023-02-03 应用材料公司 Adaptive slurry dispensing system
JP7218830B1 (en) 2022-04-14 2023-02-07 信越半導体株式会社 Double-sided polishing device and double-sided polishing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130210173A1 (en) 2012-02-14 2013-08-15 Taiwan Semiconductor Manufacturing Co., Ltd. Multiple Zone Temperature Control for CMP
JP2015023113A (en) 2013-07-18 2015-02-02 株式会社岡本工作機械製作所 Flattening and grinding method of semiconductor substrate
JP2017207455A (en) 2016-05-20 2017-11-24 スピードファム株式会社 Cross-section shape measurement method

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW374050B (en) * 1997-10-31 1999-11-11 Applied Materials Inc Method and apparatus for modeling substrate reflectivity during chemical mechanical polishing
US6375540B1 (en) * 2000-06-30 2002-04-23 Lam Research Corporation End-point detection system for chemical mechanical posing applications
US7160739B2 (en) * 2001-06-19 2007-01-09 Applied Materials, Inc. Feedback control of a chemical mechanical polishing device providing manipulation of removal rate profiles
JP3932836B2 (en) * 2001-07-27 2007-06-20 株式会社日立製作所 Thin film thickness measuring method and apparatus, and device manufacturing method using the same
JP2005026453A (en) * 2003-07-02 2005-01-27 Ebara Corp Substrate polishing apparatus and method therefor
DE102007035833B3 (en) * 2007-07-31 2009-03-12 Advanced Micro Devices, Inc., Sunnyvale Advanced automatic deposition profile targeting and control through the use of advanced polishing endpoint feedback
JP6146213B2 (en) * 2013-08-30 2017-06-14 株式会社Sumco Double-side polishing apparatus and double-side polishing method for work
JP2015126179A (en) * 2013-12-27 2015-07-06 株式会社荏原製作所 Polishing end point detection method, and polishing end point detector
CN105458908A (en) * 2015-12-30 2016-04-06 天通吉成机器技术有限公司 Workpiece fixed-size compensation type double-sided grinding device and method
JP6622117B2 (en) * 2016-03-08 2019-12-18 スピードファム株式会社 Planar polishing apparatus and carrier
JP6760638B2 (en) * 2016-04-14 2020-09-23 スピードファム株式会社 Flat surface polishing device
JP6765887B2 (en) * 2016-07-21 2020-10-07 スピードファム株式会社 Polishing equipment
DE102016116012A1 (en) * 2016-08-29 2018-03-01 Lapmaster Wolters Gmbh Method for measuring the thickness of flat workpieces
JP6771216B2 (en) * 2016-10-07 2020-10-21 スピードファム株式会社 Flat surface polishing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130210173A1 (en) 2012-02-14 2013-08-15 Taiwan Semiconductor Manufacturing Co., Ltd. Multiple Zone Temperature Control for CMP
JP2015023113A (en) 2013-07-18 2015-02-02 株式会社岡本工作機械製作所 Flattening and grinding method of semiconductor substrate
JP2017207455A (en) 2016-05-20 2017-11-24 スピードファム株式会社 Cross-section shape measurement method

Also Published As

Publication number Publication date
CN110394726A (en) 2019-11-01
JP2019181657A (en) 2019-10-24
KR102627963B1 (en) 2024-01-19
KR20190121239A (en) 2019-10-25
TWI807007B (en) 2023-07-01
CN110394726B (en) 2022-06-24
TW201943497A (en) 2019-11-16

Similar Documents

Publication Publication Date Title
CN108500736B (en) Tool state estimation device and machine tool
Ertunc et al. A decision fusion algorithm for tool wear condition monitoring in drilling
JP7046358B2 (en) Polishing equipment
US20200033842A1 (en) Grinding quality estimation model generating device, grinding quality estimating device, poor quality factor estimating device, grinding machine operation command data adjustment model generating device, and grinding machine operation command data updating device
JP7230555B2 (en) Grinding machine operation command data update device
TW201415003A (en) Optical metrology for in-situ measurements
CN110355462A (en) Processing conditions adjusts device and machine learning device
US11378492B2 (en) System for estimating the state of wear of a cutting tool during machining
JP2017205821A (en) Information processor, information processing method, information processing program, and information processing system
Jemielniak Contemporary challenges in tool condition monitoring
Tiwari et al. Tool wear prediction in end milling of Ti-6Al-4V through Kalman filter based fusion of texture features and cutting forces
US20200030939A1 (en) Estimation model creating device for grinding wheel surface condition estimation, grinding wheel surface condition estimating device, adjustment model creating device for grinding machine operation command data adjustment, and updating device for grinding machine operation command data update
KR20130083842A (en) Method and apparatus for optically measuring by interferometry the thickness of an object
JP2009004442A (en) Polishing method for semiconductor wafer
JP2020123191A (en) Numeric control system
JP4615242B2 (en) Rotating blade replacement time determination method and cutting device
Danai Machine tool monitoring and control
EP3736648B1 (en) Method for autonomous optimization of a grinding process
CN114007800B (en) Laser processing system, processing condition search device, and processing condition search method
JP2003162309A (en) Manufacturing method of worked products, manufacturing equipment and program for manufacture
WO2023031984A1 (en) Machining dimension estimating apparatus, machining dimension estimating system, machining dimension estimating method, and program
JP6879057B2 (en) Monitoring system
JP7332077B1 (en) Abnormal Vibration Prediction Method for Roll Grinding Machine, Roll Grinding Method, Metal Strip Rolling Method, Abnormal Vibration Prediction Device for Roll Grinding Machine, and Roll Grinding Equipment
JP2005252036A (en) Method and system of chemicalmechanical polishing and manufacturing method of semiconductor device
Weldgbrel et al. Experimental Investigation and Optimization of Cutting Parameters of Dry Turning EN-8 Steel for Enhanced Surface Finishing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211020

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220315

R150 Certificate of patent or registration of utility model

Ref document number: 7046358

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150