JP2019181657A - Polishing apparatus - Google Patents

Polishing apparatus Download PDF

Info

Publication number
JP2019181657A
JP2019181657A JP2018079177A JP2018079177A JP2019181657A JP 2019181657 A JP2019181657 A JP 2019181657A JP 2018079177 A JP2018079177 A JP 2018079177A JP 2018079177 A JP2018079177 A JP 2018079177A JP 2019181657 A JP2019181657 A JP 2019181657A
Authority
JP
Japan
Prior art keywords
workpiece
shape
polishing
polished
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018079177A
Other languages
Japanese (ja)
Other versions
JP7046358B2 (en
Inventor
遊 田山
Yu Tayama
遊 田山
陽平 岩本
Yohei Iwamoto
陽平 岩本
秀明 吉原
Hideaki Yoshihara
秀明 吉原
井上裕介
Yusuke Inoue
裕介 井上
田中 敬
Takashi Tanaka
敬 田中
剛敏 加藤
Taketoshi Kato
剛敏 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SpeedFam Co Ltd
Original Assignee
SpeedFam Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SpeedFam Co Ltd filed Critical SpeedFam Co Ltd
Priority to JP2018079177A priority Critical patent/JP7046358B2/en
Priority to KR1020190035254A priority patent/KR102627963B1/en
Priority to CN201910284961.2A priority patent/CN110394726B/en
Priority to TW108112580A priority patent/TWI807007B/en
Publication of JP2019181657A publication Critical patent/JP2019181657A/en
Application granted granted Critical
Publication of JP7046358B2 publication Critical patent/JP7046358B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/005Control means for lapping machines or devices
    • B24B37/013Devices or means for detecting lapping completion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/005Control means for lapping machines or devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/07Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool
    • B24B37/08Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool for double side lapping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/02Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent
    • B24B49/04Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent involving measurement of the workpiece at the place of grinding during grinding operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/12Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving optical means

Abstract

To provide a polishing apparatus that, based on transition of shape changes of a workpiece during polishing, can stop a polishing work of the workpiece at timing when the workpiece became a desired workpiece shape or at timing when the workpiece is becoming a desired workpiece shape.SOLUTION: A polishing apparatus comprises: a polishing machine 10 which polishes a workpiece W by rotating a lower surface plate 11 and an upper surface plate 12; a shape measuring device 20 which measures the shape of the workpiece W via a measurement hole 19 formed on the upper surface plate 12; a memory 30 which stores shape information of the workpiece W measured by the shape measuring device 20; a display 40 which displays the shape information of the workpiece W measured by the shape measuring device 20; a control part 50 which controls the display content of the display 40. The control part 50 creates a first drawing P1 in which shape drawings of a workpiece being polished Wα, which is a workpiece currently being polished and measured by the shape measuring device 20, are arrayed in time series, and displays the first drawing P1 on the display 40.SELECTED DRAWING: Figure 1

Description

本発明は、例えばシリコンウェーハ等のワークの表面を研磨する研磨装置に関する発明である。   The present invention relates to a polishing apparatus that polishes the surface of a workpiece such as a silicon wafer.

従来から、上定盤と、下定盤と、サンギヤと、インターナルギヤと、キャリアプレートとを備え、キャリアプレートに保持されたシリコンウェーハ等のワークの表面を研磨する研磨装置が知られている(例えば、特許文献1参照)。この研磨装置は、上定盤に形成された貫通穴を介して研磨中のワークの厚さをリアルタイムで計測する計測器を有し、この計測器によるワーク厚さの計測結果に基づいて研磨加工の停止タイミングを判定する。   Conventionally, a polishing apparatus that includes an upper surface plate, a lower surface plate, a sun gear, an internal gear, and a carrier plate and that polishes the surface of a workpiece such as a silicon wafer held on the carrier plate is known ( For example, see Patent Document 1). This polishing apparatus has a measuring instrument that measures the thickness of the workpiece being polished in real time through a through hole formed in the upper surface plate, and polishing processing is performed based on the measurement result of the workpiece thickness by this measuring instrument. The stop timing is determined.

特開2015−47656号公報JP 2015-47656 A

ところで、従来の研磨装置では、ワーク厚さの測定結果に基づいて研磨加工の停止タイミングを判定している。しかし、研磨加工を継続した場合の将来的なワークの形状変化の推移は、ワーク厚さの一時的な測定結果から予測することは難しい。そのため、研磨加工を続けたときにワーク形状が所望の形状に近づくのか否かを把握できず、所望のワーク形状になったタイミングでのワークの研磨停止が困難であるという問題が生じる。また、研磨加工に関連する諸条件の違いは、研磨終了後のワーク形状にのみに影響を与えるものではなく、研磨中のワーク形状推移にも影響を与えると考えられる。しかしながら、これまでは研磨加工に伴う時系列的なワーク形状変化の推移はユーザーの技量に依存するところが大きく、プロセス改善の効率向上への障害となっていた。   By the way, in the conventional polishing apparatus, the stop timing of the polishing process is determined based on the measurement result of the workpiece thickness. However, it is difficult to predict the future change in the shape of the workpiece when polishing is continued from the temporary measurement result of the workpiece thickness. Therefore, it is difficult to determine whether the workpiece shape approaches the desired shape when the polishing process is continued, and there is a problem that it is difficult to stop polishing the workpiece at the timing when the desired workpiece shape is reached. In addition, it is considered that the difference in various conditions related to the polishing process does not affect only the workpiece shape after the polishing, but also affects the workpiece shape transition during polishing. However, until now, the time-series transition of workpiece shape changes due to polishing has largely depended on the skill of the user, which has been an obstacle to improving the efficiency of process improvement.

本発明は、上記問題に着目してなされたもので、研磨中のワークの形状変化の推移に基づき、所望のワーク形状になったタイミング或いは所望のワーク形状になるタイミングでワークの研磨加工を停止できる研磨装置を提供することを課題としている。   The present invention has been made paying attention to the above problems, and based on the transition of the change in the shape of the workpiece being polished, the workpiece polishing process is stopped when the desired workpiece shape is reached or when the desired workpiece shape is reached. It is an object of the present invention to provide a polishing apparatus that can be used.

上記目的を達成するため、本発明の研磨装置は、回転する定盤によってワークを研磨する研磨機と、定盤に形成された測定孔を介してワークの形状を測定する形状測定器と、形状測定器によって測定されたワークの形状情報を記憶するメモリと、形状測定器によって測定されたワークの形状情報を表示する表示器と、表示器の表示内容を制御する制御部と、を備えている。
そして、制御部は、形状測定器によって測定された現在研磨中のワークである研磨中ワークの形状描画を時系列で並べた第1描画を生成し、この第1描画を表示器に表示させる。
In order to achieve the above object, a polishing apparatus of the present invention includes a polishing machine that polishes a workpiece with a rotating platen, a shape measuring instrument that measures the shape of a workpiece through a measurement hole formed in the platen, and a shape A memory for storing the shape information of the workpiece measured by the measuring instrument, a display for displaying the shape information of the workpiece measured by the shape measuring instrument, and a control unit for controlling the display content of the display. .
And a control part produces | generates the 1st drawing which arranged in a time series the shape drawing of the workpiece | work in grinding | polishing which is the workpiece | work under grinding measured by the shape measuring device, and displays this 1st drawing on a display.

この結果、研磨中のワークの形状変化の推移に基づき、所望のワーク形状になったタイミング或いは所望のワーク形状になるタイミングでワークの研磨加工を停止できる。   As a result, based on the transition of the change in the shape of the workpiece during polishing, the workpiece polishing process can be stopped at the timing when the desired workpiece shape is reached or when the desired workpiece shape is reached.

実施例1の研磨装置の全体構成を概略的に示す説明図である。It is explanatory drawing which shows roughly the whole structure of the grinding | polishing apparatus of Example 1. FIG. 実施例1のサンギヤとインターナルギヤとキャリアプレートの位置関係を示す説明図である。It is explanatory drawing which shows the positional relationship of the sun gear of Example 1, an internal gear, and a carrier plate. 実施例1の研磨装置において、測定孔がワーク上を通過した際の通過軌跡を示す説明図である。In the polishing apparatus of Example 1, it is explanatory drawing which shows the passage locus when a measurement hole passes on a workpiece | work. 実施例1の研磨装置において、ワークの断面形状を表した断面形状線を示す説明図である。In the polishing apparatus of Example 1, it is explanatory drawing which shows the cross-sectional shape line showing the cross-sectional shape of the workpiece | work. 実施例1の研磨装置で生成される第1描画を示す説明図である。FIG. 3 is an explanatory diagram illustrating a first drawing generated by the polishing apparatus according to the first embodiment. 実施例1の研磨装置で生成される第2描画を示す説明図である。It is explanatory drawing which shows the 2nd drawing produced | generated with the grinding | polishing apparatus of Example 1. FIG. 実施例1にて実行する研磨停止判定処理の流れを示すフローチャートである。3 is a flowchart showing a flow of polishing stop determination processing executed in Example 1; 実施例1にて実行する第2描画生成処理の流れを示すフローチャートである。6 is a flowchart illustrating a flow of second drawing generation processing executed in the first embodiment. 実施例1の研磨装置における表示器の画面を示す説明図である。It is explanatory drawing which shows the screen of the indicator in the grinding | polishing apparatus of Example 1. FIG. 第1ワークを研磨加工したときの形状描画を時系列で並べた説明図である。It is explanatory drawing which arranged the shape drawing when the 1st workpiece | work was grind | polished in time series. 第2ワークを研磨加工したときの形状描画を時系列で並べた説明図である。It is explanatory drawing which arranged the shape drawing when the 2nd workpiece | work was grind | polished in time series. 第3ワークを研磨加工したときの形状描画を時系列で並べた説明図である。It is explanatory drawing which arranged the shape drawing when the 3rd workpiece | work was grind | polished in time series. 第4ワークを研磨加工したときの形状描画を時系列で並べた説明図である。It is explanatory drawing which arranged the shape drawing when the 4th workpiece | work was grind | polished in time series. 実施例2の研磨装置の全体構成を概略的に示す説明図である。It is explanatory drawing which shows roughly the whole structure of the grinding | polishing apparatus of Example 2. FIG. 実施例2にて実行する研磨停止判定処理の流れを示すフローチャートである。10 is a flowchart showing a flow of polishing stop determination processing executed in Example 2; 第5ワークを研磨加工したときの形状描画を時系列で並べた説明図である。It is explanatory drawing which arranged the shape drawing when the 5th workpiece | work was grind | polished in time series. 第6ワークを研磨加工したときの形状描画を時系列で並べた説明図である。It is explanatory drawing which arranged the shape drawing when the 6th workpiece | work was grind | polished in time series. ワーク研磨時間とワーク中央部の平坦度との関係を示す説明図である。It is explanatory drawing which shows the relationship between workpiece | work grinding | polishing time and the flatness of a workpiece | work center part. ワーク研磨時間とワーク外周領域の平坦度との関係を示す説明図である。It is explanatory drawing which shows the relationship between workpiece | work grinding | polishing time and the flatness of a workpiece | work outer peripheral area | region.

以下、本発明の研磨装置を実施するための形態を、図面に示す実施例1及び実施例2に基づいて説明する。   Hereinafter, the form for implementing the polish device of the present invention is explained based on Example 1 and Example 2 shown in a drawing.

(実施例1)
以下、実施例1の研磨装置1の構成を「全体構成」、「研磨機の詳細構成」、「形状測定器の詳細構成」、「メモリの詳細構成」、「表示器の詳細構成」、「制御部の詳細構成」、「研磨停止判定処理構成」、「第2描画生成処理構成」に分けて説明する。
Example 1
In the following, the configuration of the polishing apparatus 1 of Example 1 is referred to as “overall configuration”, “detailed configuration of polishing machine”, “detailed configuration of shape measuring device”, “detailed configuration of memory”, “detailed configuration of display device”, “ The description will be divided into “detailed configuration of control unit”, “polishing stop determination processing configuration”, and “second drawing generation processing configuration”.

[全体構成]
実施例1の研磨装置1は、半導体ウェーハ、水晶ウェーハ、サファイアウェーハ、ガラスウェーハ或いはセラミックウェーハといった、薄板状のワークWの表裏両面を研磨する両面研磨装置である。研磨装置1は、図1に示すように、研磨機10と、形状測定器20と、メモリ30と、表示器40と、制御部50と、を備えている。
[overall structure]
The polishing apparatus 1 according to the first embodiment is a double-side polishing apparatus that polishes both the front and back surfaces of a thin workpiece W such as a semiconductor wafer, a crystal wafer, a sapphire wafer, a glass wafer, or a ceramic wafer. As shown in FIG. 1, the polishing apparatus 1 includes a polishing machine 10, a shape measuring device 20, a memory 30, a display device 40, and a control unit 50.

[研磨機の詳細構成]
研磨機10は、回転する下定盤11及び上定盤12によってワークWを研磨する。研磨機10は、軸線L1を中央とする同心に配置された円板状の下定盤11及び上定盤12と、下定盤11の中央部に回転自在に配置されたサンギヤ13と、下定盤11の外周側に配置されたインターナルギヤ14と、下定盤11及び上定盤12の間に配置され且つワーク保持穴15a(図2参照)が形成されたキャリアプレート15と、を有している。また、下定盤11の上面には研磨パッド11aが貼付され、上定盤12の下面には研磨パッド12aが貼付されている。さらに、上定盤12には、研磨スラリを供給する供給孔(図示せず)が設けられている。
[Detailed configuration of polishing machine]
The polishing machine 10 polishes the workpiece W by the rotating lower surface plate 11 and upper surface plate 12. The polishing machine 10 includes a disk-shaped lower surface plate 11 and an upper surface plate 12 that are concentrically arranged with the axis L1 as a center, a sun gear 13 that is rotatably disposed at the center of the lower surface plate 11, and a lower surface plate 11 And an internal gear 14 disposed on the outer peripheral side, and a carrier plate 15 disposed between the lower surface plate 11 and the upper surface plate 12 and having a work holding hole 15a (see FIG. 2) formed therein. . A polishing pad 11 a is attached to the upper surface of the lower surface plate 11, and a polishing pad 12 a is attached to the lower surface of the upper surface plate 12. Further, the upper surface plate 12 is provided with a supply hole (not shown) for supplying a polishing slurry.

ここで、キャリアプレート15は、図2に示すように、サンギヤ13及びインターナルギヤ14に噛み合う。そして、キャリアプレート15は、サンギヤ13及びインターナルギヤ14が回転することで自転しながら軸線L1の周囲を回転(公転)する。   Here, the carrier plate 15 meshes with the sun gear 13 and the internal gear 14 as shown in FIG. The carrier plate 15 rotates (revolves) around the axis L1 while rotating as the sun gear 13 and the internal gear 14 rotate.

ワークWは、キャリアプレート15のワーク保持穴15a内に配置される。そして、回転する下定盤11に貼付された研磨パッド11aと回転する上定盤12に貼付された研磨パッド12aに挟まれた状態でキャリアプレート15が自転及び公転することで、ワークWは研磨パッド11a及び研磨パッド12aにより研磨加工される。すなわち、研磨パッド11a及び研磨パッド12aの表面がワークWを研磨する研磨面となる。   The workpiece W is disposed in the workpiece holding hole 15 a of the carrier plate 15. Then, the carrier W 15 rotates and revolves while being sandwiched between the polishing pad 11a attached to the rotating lower surface plate 11 and the polishing pad 12a attached to the rotating upper surface plate 12, so that the workpiece W becomes the polishing pad. Polishing is performed by 11a and the polishing pad 12a. That is, the surfaces of the polishing pad 11a and the polishing pad 12a become polishing surfaces for polishing the workpiece W.

上定盤12は、上面に取り付けられた支持スタッド16a及び取付部材16bを介して、ロッド16に固定されている。ロッド16は、第5駆動装置M5によって上下方向に伸縮される。すなわち、上定盤12は、ロッド16が伸縮することで上下動する。   The upper surface plate 12 is fixed to the rod 16 via a support stud 16a and an attachment member 16b attached to the upper surface. The rod 16 is expanded and contracted in the vertical direction by the fifth driving device M5. That is, the upper surface plate 12 moves up and down as the rod 16 expands and contracts.

研磨機10の中央には、軸線L1に沿って起立した第1駆動軸17aが配置されている。第1駆動軸17aは、第1駆動装置M1によって回転されるシャフトである。この第1駆動軸17aの上端部には、ドライバ18が固定されている。これにより、ドライバ18は、第1駆動装置M1によって第1駆動軸17aと一体的に回転される。   In the center of the polishing machine 10, a first drive shaft 17a standing along the axis L1 is disposed. The first drive shaft 17a is a shaft rotated by the first drive device M1. A driver 18 is fixed to the upper end portion of the first drive shaft 17a. Accordingly, the driver 18 is rotated integrally with the first drive shaft 17a by the first drive device M1.

ドライバ18は、上定盤12に設けたフック12bが係合する溝部(不図示)が外周面に形成されている。そして、ロッド16が伸長して上定盤12が下方に移動し、フック12bがドライバ18の溝部に係合することで、ドライバ18と上定盤12とが一体となって回転する。すなわち、上定盤12は、第1駆動装置M1によって第1駆動軸17aと一体的に回転される。   The driver 18 has a groove portion (not shown) that engages with a hook 12 b provided on the upper surface plate 12 on the outer peripheral surface. Then, the rod 16 extends, the upper surface plate 12 moves downward, and the hook 12b engages with the groove portion of the driver 18, whereby the driver 18 and the upper surface plate 12 rotate together. That is, the upper surface plate 12 is rotated integrally with the first drive shaft 17a by the first drive device M1.

サンギヤ13の中央部の穴13aには、第2駆動軸17bが貫通状態で固定されている。第2駆動軸17bは、両端が開放した中空管であり、第1駆動軸17aが回転自在に貫通している。また、第2駆動軸17bは、第2駆動装置M2によって回転される。これにより、サンギヤ13は、第2駆動装置M2によって第2駆動軸17bと一体的に回転される。   The second drive shaft 17b is fixed in a through state in the hole 13a at the center of the sun gear 13. The second drive shaft 17b is a hollow tube whose both ends are open, and the first drive shaft 17a penetrates rotatably. The second drive shaft 17b is rotated by the second drive device M2. Thereby, the sun gear 13 is rotated integrally with the second drive shaft 17b by the second drive device M2.

下定盤11の中央部の下部には、第3駆動軸17cが形成されている。第3駆動軸17cは、両端が開放した中空管であり、第2駆動軸17bが回転自在に貫通している。また、第3駆動軸17cは、第3駆動装置M3によって回転される。これにより、下定盤11は、第3駆動装置M3によって第3駆動軸17cと一体的に回転する。   A third drive shaft 17 c is formed in the lower part of the center portion of the lower surface plate 11. The third drive shaft 17c is a hollow tube whose both ends are open, and the second drive shaft 17b penetrates rotatably. The third drive shaft 17c is rotated by the third drive device M3. Thereby, the lower surface plate 11 rotates integrally with the 3rd drive shaft 17c by the 3rd drive device M3.

インターナルギヤ14には、第4駆動軸17dが形成されている。第4駆動軸17dは、両端が開放した中空管であり、第3駆動軸17cが回転自在に貫通している。また、第4駆動軸17dは、第4駆動装置M4によって回転される。これにより、インターナルギヤ14は、第4駆動装置M4によって第4駆動軸17dと一体的に回転する。   The internal gear 14 is formed with a fourth drive shaft 17d. The fourth drive shaft 17d is a hollow tube whose both ends are open, and the third drive shaft 17c penetrates rotatably. The fourth drive shaft 17d is rotated by the fourth drive device M4. Thereby, the internal gear 14 rotates integrally with the fourth drive shaft 17d by the fourth drive device M4.

さらに、上定盤12には、中央から径方向に沿って所定距離離れた位置に測定孔19が形成されている。この測定孔19は、上定盤12及び研磨パッド12aを貫通し、測定光であるレーザ光を透過する窓部材19aが装着されている。   Furthermore, a measurement hole 19 is formed in the upper surface plate 12 at a position away from the center by a predetermined distance along the radial direction. The measurement hole 19 is provided with a window member 19a that penetrates the upper surface plate 12 and the polishing pad 12a and transmits laser light as measurement light.

[形状測定器の詳細構成]
形状測定器20は、ワークWに向けて測定光を照射し、ワークWで反射した測定光を受光して研磨中のワークWの厚さを測定する。また、この形状測定器20は、計測したワークWの厚さからワークWの断面形状を求める。形状測定器20は、測定ユニット21と、厚さ測定部22と、形状演算部23と、を有している。
[Detailed configuration of shape measuring instrument]
The shape measuring instrument 20 irradiates measurement light toward the workpiece W, receives the measurement light reflected by the workpiece W, and measures the thickness of the workpiece W being polished. Further, the shape measuring instrument 20 obtains the cross-sectional shape of the workpiece W from the measured thickness of the workpiece W. The shape measuring instrument 20 includes a measuring unit 21, a thickness measuring unit 22, and a shape calculating unit 23.

測定ユニット21は、上定盤12に取り付けられており、上定盤12と一体となって回転する。また、測定ユニット21は、上定盤12の測定孔19の窓部材19aを介してワークWに向けて測定光であるレーザ光を照射するレーザ光源(図示せず)と、ワークWで反射した反射光を受光する受光部(図示せず)とを有する。受光部が受光した受光信号は送信部21aにより、厚さ測定部22へ送信される。   The measurement unit 21 is attached to the upper surface plate 12 and rotates together with the upper surface plate 12. Further, the measurement unit 21 is reflected by the work W with a laser light source (not shown) that irradiates the work W with laser light as measurement light via the window member 19 a of the measurement hole 19 of the upper surface plate 12. A light receiving portion (not shown) for receiving the reflected light. The light receiving signal received by the light receiving unit is transmitted to the thickness measuring unit 22 by the transmitting unit 21a.

厚さ測定部22は、例えば光反射干渉法でワークWの厚さを測定するものである。この厚さ測定部22は、測定ユニット21から送信された受光信号を受信する受信部22aを有し、この受信部22aが受信した受光信号に基づいてワークWの厚さを求める。   The thickness measuring unit 22 measures the thickness of the workpiece W by, for example, a light reflection interference method. The thickness measurement unit 22 includes a reception unit 22a that receives the light reception signal transmitted from the measurement unit 21, and obtains the thickness of the workpiece W based on the light reception signal received by the reception unit 22a.

ここで、上定盤12の回転により、図3Aに示すように、測定孔19がワークWの面上を通過している期間中、測定ユニット21からのレーザ光がワークWの面上に連続的に照射される。そのため、厚さ測定部22は、測定孔19の通過軌跡Na〜Nc上のワークWの各面内位置の厚さを連続的に測定する。そして、この厚さ測定部22は、測定孔19が各通過軌跡Na〜Ncを通過している間(ワークWの一端W1a〜W3aから他端W1b〜W3bまでの測定孔19の通過期間中)、連続した多数の厚さデータからなるデータ列を、その通過ごとに出力する。これにより、厚さ測定部22は、測定孔19がワークWの面上を通過するごとに、ワークWの各面内位置の厚さを測定した複数の連続したデータからなるデータ列を出力する。なお、厚さ測定部22から出力されたデータ列は、メモリ30に記憶される。   Here, as shown in FIG. 3A, the laser light from the measurement unit 21 continues on the surface of the workpiece W while the measurement hole 19 passes over the surface of the workpiece W by the rotation of the upper surface plate 12. Is irradiated. Therefore, the thickness measurement unit 22 continuously measures the thickness of each in-plane position of the workpiece W on the passage trajectories Na to Nc of the measurement hole 19. And this thickness measurement part 22 is during the passage of the measurement hole 19 from the one end W1a-W3a of the workpiece | work W to the other end W1b-W3b, while the measurement hole 19 has passed each passage locus Na-Nc. A data string composed of a large number of continuous thickness data is output for each passage. Thereby, the thickness measuring unit 22 outputs a data string composed of a plurality of continuous data obtained by measuring the thickness of each in-plane position of the workpiece W every time the measurement hole 19 passes over the surface of the workpiece W. . The data string output from the thickness measuring unit 22 is stored in the memory 30.

形状演算部23は、ワークWの断面形状を求めるものである。ワークWの断面形状を求める間隔は任意に設定可能である。実施例1では、例えば15秒間に取得されたデータ列に基づいてワークWの断面形状を求め、15秒間隔で新たにワークWの断面形状を求める。また、形状演算部23によって作成されたワーク断面形状などの形状情報や、その形状情報を演算処理して得られたワーク形状パターン、ワークWを研磨加工した際の条件的属性とワークWの形状情報との間の相関度の学習結果に基づいて生成したワーク形状パターン等は、メモリ30に記憶される。   The shape calculation unit 23 obtains the cross-sectional shape of the workpiece W. The interval for obtaining the cross-sectional shape of the workpiece W can be arbitrarily set. In the first embodiment, for example, the cross-sectional shape of the work W is obtained based on a data string acquired for 15 seconds, and a new cross-sectional shape of the work W is obtained at intervals of 15 seconds. Further, shape information such as a workpiece cross-sectional shape created by the shape calculation unit 23, a workpiece shape pattern obtained by calculating the shape information, a conditional attribute when the workpiece W is polished, and the shape of the workpiece W A workpiece shape pattern or the like generated based on the learning result of the degree of correlation with information is stored in the memory 30.

また、形状演算部23は、図3Bに示すような断面形状線T1を求める。この断面形状線T1は、ワークWの断面形状を示す形状描画である。断面形状線T1は、厚さ測定部22によってワークWの厚さを測定するごとに求められる。これにより、同一のワークWについて求められた断面形状線T1を時系列で並べることで、当該ワークWの形状変化の推移が示される。また、当該ワークWの研磨終了時の断面形状線T1により、ワークWの最終ワーク形状である加工結果情報が示される。なお、形状演算部23によって求められた断面形状線T1の情報(ワークWの断面形状の情報)は、メモリ30に記憶される。   Further, the shape calculation unit 23 obtains a cross-sectional shape line T1 as shown in FIG. 3B. This cross-sectional shape line T1 is a shape drawing showing the cross-sectional shape of the workpiece W. The cross-sectional shape line T1 is obtained every time the thickness of the workpiece W is measured by the thickness measuring unit 22. Thereby, the transition of the shape change of the workpiece W is shown by arranging the cross-sectional shape lines T1 obtained for the same workpiece W in time series. Further, the processing result information which is the final workpiece shape of the workpiece W is indicated by the cross-sectional shape line T1 at the end of the polishing of the workpiece W. Information on the cross-sectional shape line T1 obtained by the shape calculating unit 23 (information on the cross-sectional shape of the workpiece W) is stored in the memory 30.

[メモリの詳細構成]
メモリ30は、形状測定器20及び制御部50からデータの読み書きが可能な記憶装置である。このメモリ30には、厚さ測定部22によって求められたワークWの厚さの情報や、形状演算部23によって求められたワークWの断面形状の情報(以下、「ワークWの形状情報」という)等が記憶される。
[Detailed memory configuration]
The memory 30 is a storage device that can read and write data from the shape measuring instrument 20 and the control unit 50. The memory 30 stores information on the thickness of the workpiece W obtained by the thickness measuring unit 22 and information on the cross-sectional shape of the workpiece W obtained by the shape calculating unit 23 (hereinafter referred to as “shape information of the workpiece W”). ) Etc. are stored.

また、このメモリ30は、ワークWの形状情報に、当該ワークWを研磨加工した際の条件的属性を紐づけて記憶する。ここで、「条件的属性」とは、研磨条件や、研磨環境、装置特性等のワークWの研磨加工に影響を与え、ワークWの研磨状態に対して相関を持つ各種のパラメータである。「条件的属性」としては、例えば、研磨機10の運転条件、研磨スラリ条件、研磨パッド条件、キャリアプレート条件、ワーク条件、研磨プロセス条件等がある。   Further, the memory 30 stores the shape information of the workpiece W in association with the conditional attributes when the workpiece W is polished. Here, the “conditional attributes” are various parameters that affect the polishing process of the workpiece W such as polishing conditions, polishing environment, and apparatus characteristics and have a correlation with the polishing state of the workpiece W. “Conditional attributes” include, for example, operating conditions of the polishing machine 10, polishing slurry conditions, polishing pad conditions, carrier plate conditions, workpiece conditions, polishing process conditions, and the like.

なお、研磨機10の運転条件とは、例えば下定盤11や上定盤12の回転速度、サンギヤ13やインターナルギヤ14の回転速度、上定盤12の加工荷重設定値及び単位圧力、荷重スロープ、下定盤11や上定盤12の冷却水温度、キャリアプレート15の自転及び公転の回転速度、研磨機10の振動状態や傾き特性等である。研磨スラリ条件とは、例えば研磨スラリの種類・温度・流量、スラリライフ、スラリpH値等である。研磨パッド条件とは、例えば研磨パッド11aや研磨パッド12aの種類・厚さ・溝形態・表面粗さ、研磨パッドライフ、変性物堆積度、シーズニング条件等である。キャリアプレート条件とは、キャリアプレート15の材質・厚さ・ワーク保持穴15aや捨て穴の形状・撓み特性、キャリアプレートライフ、摩耗発生部位等である。ワーク条件とは、ワークWの種類・研磨開始時厚さ・研磨開始時形状、バッチ内におけるワーク厚さのばらつき等である。研磨プロセス条件とは、バッチ内での形状変化の推移情報、連続研磨回数、ワーク研磨量、研磨時間、キャリアプレート15とワークWの厚さ差等である。   The operating conditions of the polishing machine 10 include, for example, the rotational speed of the lower surface plate 11 and the upper surface plate 12, the rotational speed of the sun gear 13 and the internal gear 14, the processing load setting value and unit pressure of the upper surface plate 12, and the load slope. The cooling water temperature of the lower surface plate 11 and the upper surface plate 12, the rotational speed of rotation and revolution of the carrier plate 15, the vibration state and tilt characteristics of the polishing machine 10, and the like. The polishing slurry conditions include, for example, the type / temperature / flow rate of the polishing slurry, the slurry life, the slurry pH value, and the like. The polishing pad conditions include, for example, the type / thickness / groove shape / surface roughness of the polishing pad 11a and the polishing pad 12a, the polishing pad life, the degree of deposit of the modified material, and seasoning conditions. The carrier plate conditions are the material / thickness of the carrier plate 15, the shape / deflection characteristics of the workpiece holding hole 15 a and the disposal hole, the carrier plate life, the wear generation site, and the like. The workpiece conditions include the type of workpiece W, the thickness at the start of polishing, the shape at the start of polishing, the variation of the workpiece thickness within the batch, and the like. The polishing process conditions are the transition information of the shape change within the batch, the number of continuous polishing, the workpiece polishing amount, the polishing time, the thickness difference between the carrier plate 15 and the workpiece W, and the like.

[表示器の詳細構成]
表示器40は、制御部50からの表示指令に基づき、現在研磨中のワークWの形状情報や、過去に研磨加工したワークWの形状情報、ワークWの形状情報を演算処理して得られたワーク形状パターン、ワークWを研磨加工した際の条件的属性とワークWの形状情報との間の相関度の学習結果に基づいて生成したワーク形状パターン、ワークWの研磨停止判定をしたこと等任意の情報を表示する。表示器40は、例えば研磨機10に取り付けられている。この表示器40は、研磨機10のユーザーが目視可能な画面40a(図8参照)を有している。
[Detailed configuration of display unit]
The display device 40 is obtained by arithmetically processing the shape information of the workpiece W currently being polished, the shape information of the workpiece W polished in the past, and the shape information of the workpiece W based on a display command from the control unit 50. Work shape pattern, workpiece shape pattern generated based on the learning result of the degree of correlation between the condition attribute when the workpiece W is polished and the shape information of the workpiece W, the polishing stop determination of the workpiece W being arbitrary, etc. Display information of. The indicator 40 is attached to the polishing machine 10, for example. The display 40 has a screen 40a (see FIG. 8) that can be viewed by the user of the polishing machine 10.

[制御部の詳細構成]
制御部50は、CPU(Central Processing Unit)からなる制御演算部51と、サブメモリ52と、入力装置53等を備えている。この制御部50は、サブメモリ52に記憶されたプログラムや、入力装置53を介して研磨機10のユーザーによって入力されたワークWの加工目標や条件的属性等に基づき、制御演算部51から第1駆動装置M1〜第5駆動装置M5に制御指令を出力し、研磨機10の動作を制御する。
[Detailed configuration of control unit]
The control unit 50 includes a control calculation unit 51 including a CPU (Central Processing Unit), a sub memory 52, an input device 53, and the like. This control unit 50 is controlled by the control calculation unit 51 based on a program stored in the sub-memory 52, a processing target of the workpiece W input by the user of the polishing machine 10 via the input device 53, a conditional attribute, and the like. A control command is output to the first driving device M1 to the fifth driving device M5, and the operation of the polishing machine 10 is controlled.

また、この制御演算部51は、研磨中のワークWの形状描画を時系列で並べた第1描画P1を表示器40に表示させると共に、形状情報に基づいてワーク形状の推移を予測し、この予測結果に応じてワークWの研磨加工を停止するか否かを判定する研磨停止判定処理を実施する。すなわち、この制御演算部51は、第1描画生成部54と、第2描画生成部55と、表示制御部56と、形状推移予測部57と、状態判定部58と、を有している。   In addition, the control calculation unit 51 displays the first drawing P1 in which the shape drawing of the workpiece W being polished is arranged in time series on the display 40, and predicts the transition of the workpiece shape based on the shape information. A polishing stop determination process is performed to determine whether or not to stop the polishing of the workpiece W according to the prediction result. That is, the control calculation unit 51 includes a first drawing generation unit 54, a second drawing generation unit 55, a display control unit 56, a shape transition prediction unit 57, and a state determination unit 58.

第1描画生成部54では、形状測定器20によって測定された現在研磨加工しているワーク(以下、「研磨中ワークWα」という)の形状情報をメモリ30から抽出する。ここで、メモリ30から抽出する形状情報は、研磨中ワークWαの研磨開始から、形状情報の抽出直前に行った測定までの間に得られた形状情報である。そして、この第1描画生成部54では、抽出した研磨中ワークWαの形状情報に基づいて、研磨中ワークWαの形状描画(断面形状線T1)を時系列で順に並べた第1描画P1(図4参照)を生成する。
なお、研磨中ワークWαの形状情報は、研磨中ワークWαの研磨加工の進行に伴って測定回数が増えるごとに増加する。そのため、第1描画P1は、測定回数に応じて図4の左側に示す図から、図4の右側に示す図のように次第に変化していく。
The first drawing generation unit 54 extracts the shape information of the workpiece that is currently being polished (hereinafter referred to as “the workpiece Wα being polished”) measured by the shape measuring instrument 20 from the memory 30. Here, the shape information extracted from the memory 30 is shape information obtained between the start of polishing of the workpiece Wα being polished and the measurement performed immediately before the extraction of the shape information. Then, in the first drawing generation unit 54, a first drawing P1 (FIG. 5) in which the shape drawing (cross-sectional shape line T1) of the workpiece Wα being polished is arranged in time series based on the extracted shape information of the workpiece Wα being polished. 4).
The shape information of the workpiece Wα being polished increases as the number of measurements increases with the progress of polishing of the workpiece Wα being polished. Therefore, the first drawing P1 gradually changes from the diagram shown on the left side of FIG. 4 to the diagram shown on the right side of FIG. 4 according to the number of measurements.

第2描画生成部55では、研磨中ワークWαの条件的属性を取得した上で、過去、つまり研磨中ワークWαの研磨以前に研磨加工したワークWのうち、研磨中ワークWαの条件的属性にマッチする条件的属性に紐づけられたワーク(以下、「形状参考ワークWβ」という)の形状情報、又は研磨中ワークWαの条件的属性にマッチする条件的属性に紐づけられた典型的な形状情報をメモリ30から抽出する。
ここで、メモリ30から抽出する形状情報は、メモリ30に記憶された形状情報のうちの所望範囲から抽出される。
The second drawing generation unit 55 acquires the conditional attribute of the workpiece Wα being polished, and sets the conditional attribute of the workpiece Wα being polished out of the workpiece W polished in the past, that is, before polishing the workpiece Wα being polished. Shape information of a workpiece linked to a matching conditional attribute (hereinafter referred to as “shape reference workpiece Wβ”) or a typical shape linked to a conditional attribute matching the conditional attribute of the workpiece Wα being polished Information is extracted from the memory 30.
Here, the shape information extracted from the memory 30 is extracted from a desired range of the shape information stored in the memory 30.

なお、「典型的な形状情報」とは、ワークWを研磨加工した際の典型的な形状推移として、算術的に得られた抽象的且つ代表的な形状情報であり、ワークWを研磨加工した際の条件的属性とワークWの形状情報との間の相関度の学習結果に基づいて生成したワーク形状パターンである。また、以下では、形状参考ワークWβの形状情報又は典型的な形状情報を含んで「選択マスターの形状情報」という。   The “typical shape information” is an abstract and representative shape information obtained mathematically as a typical shape transition when the workpiece W is polished, and the workpiece W is polished. It is the workpiece | work shape pattern produced | generated based on the learning result of the correlation degree between the conditional attribute at the time and the shape information of the workpiece | work W. FIG. In the following, the shape information of the shape reference workpiece Wβ or typical shape information is referred to as “shape information of the selected master”.

また「研磨中ワークWαの条件的属性にマッチする」とは、研磨時の条件的属性が、研磨中ワークWαの条件的属性と少なくとも一部が同一である場合、又は、研磨中ワークWαの条件的属性と少なくとも一部が類似する場合を指す。例えば、研磨中ワークWαの条件的属性として、「下定盤11の回転速度=A」、「上定盤12の回転速度=B」、「スラリ種類=C」、「キャリア材質=D」と設定されている場合には、「下定盤11の回転速度=A±x」、「上定盤12の回転速度=B±y」、「スラリ種類=C又はC´」、「キャリア材質=D又はD´」等の条件的属性が「研磨中ワークWαの条件的属性にマッチする」と判定され、これらの条件的属性に紐づけられた選択マスターの形状情報がメモリ30から抽出される。なお、条件的属性がマッチしているか否かの判定基準については、任意に設定することができる。   Further, “matches the conditional attribute of the workpiece Wα being polished” means that the conditional attribute at the time of polishing is at least partially the same as the conditional attribute of the workpiece Wα being polished, This refers to a case where at least a part of the conditional attribute is similar. For example, as the conditional attributes of the workpiece Wα being polished, “rotational speed of lower surface plate 11 = A”, “rotational speed of upper surface plate 12 = B”, “slurry type = C”, “carrier material = D” are set. In this case, “rotational speed of lower surface plate 11 = A ± x”, “rotational speed of upper surface plate 12 = B ± y”, “slurry type = C or C ′”, “carrier material = D or It is determined that a conditional attribute such as “D ′” “matches the conditional attributes of the workpiece Wα being polished”, and the shape information of the selected master associated with these conditional attributes is extracted from the memory 30. Note that the criterion for determining whether or not the conditional attribute matches can be arbitrarily set.

そして、この第2描画生成部55では、研磨中ワークWαの条件的属性に基づいて抽出した選択マスターの形状情報に基づいて、この選択マスターの形状描画(断面形状線T1)を研磨開始から研磨停止までの時系列で順に並べた第2描画P2(図5参照)を生成する。なお、第2描画生成部55は、ワークWの研磨中、常に研磨中ワークWαの条件的属性を監視する。そして、例えば、スラリ流量異常発生などにより、あるバッチの進行中に、研磨中ワークWαの条件的属性が当初の設定又は想定された状態から逸脱した場合には、研磨中ワークWαの条件的属性の逸脱パターンに基づいて新たな条件的属性の組み合わせを編集する。そして、新たに編集された条件的属性の組み合わせに紐づけられた選択マスターの形状情報をメモリ30から抽出する。そして、新たに抽出した選択マスターの形状情報に基づいて、第2描画P2を再度生成する。また、この第2描画生成部55では、第2描画P2を再生成する際、学習機能により導いた形状描画の仮想パターンに基づいて生成してもよい。   The second drawing generation unit 55 polishes the shape drawing (cross-sectional shape line T1) of the selected master from the start of polishing based on the shape information of the selected master extracted based on the conditional attribute of the workpiece Wα being polished. A second drawing P2 (see FIG. 5) arranged in order of time series until the stop is generated. Note that the second drawing generation unit 55 always monitors the conditional attribute of the workpiece Wα being polished while the workpiece W is being polished. And, for example, when the conditional attribute of the workpiece Wα during polishing deviates from the initial setting or assumed state during the progress of a certain batch due to the occurrence of an abnormal slurry flow rate, the conditional attribute of the workpiece Wα being polished Edit a new combination of conditional attributes based on the deviation pattern. Then, the shape information of the selected master associated with the newly edited combination of conditional attributes is extracted from the memory 30. Then, based on the newly extracted shape information of the selected master, the second drawing P2 is generated again. Further, the second drawing generation unit 55 may generate the second drawing P2 based on a virtual pattern of shape drawing derived by the learning function when the second drawing P2 is regenerated.

表示制御部56では、第1描画生成部54によって生成された第1描画P1と、第2描画生成部55によって生成された第2描画P2とを、表示器40の画面40aに表示させる制御指令を表示器40に出力する。また、この表示制御部56は、状態判定部58が研磨機10による研磨加工を停止すると判定したとき、この研磨停止判定を行った旨を表示器40の画面40aに表示させる制御指令を表示器40に出力する。   In the display control unit 56, a control command for displaying the first drawing P1 generated by the first drawing generation unit 54 and the second drawing P2 generated by the second drawing generation unit 55 on the screen 40a of the display 40. Is output to the display 40. In addition, when the state determination unit 58 determines that the polishing process by the polishing machine 10 is to be stopped, the display control unit 56 displays a control command for displaying on the screen 40a of the display unit 40 that the polishing stop determination has been performed. Output to 40.

形状推移予測部57では、第1描画生成部54によって抽出された研磨中ワークWαの形状情報の時系列変化と、第2描画生成部55によって抽出された選択マスターの形状情報の時系列変化とを比較演算する。そして、この形状推移予測部57は、比較演算の結果に基づいて、研磨中ワークWαの今後の形状推移を予測する。なお、この形状推移予測部57によって予測する研磨中ワークWαの形状推移とは、最終的な研磨形状を含む測定ごとに得られるワーク形状の推移である。   In the shape transition prediction unit 57, the time series change of the shape information of the workpiece Wα being polished extracted by the first drawing generation unit 54, and the time series change of the shape information of the selected master extracted by the second drawing generation unit 55 Are compared. Then, the shape transition prediction unit 57 predicts a future shape transition of the workpiece Wα being polished based on the result of the comparison calculation. The shape transition of the workpiece Wα being polished predicted by the shape transition prediction unit 57 is a change in the workpiece shape obtained for each measurement including the final polished shape.

そして、この形状推移予測部57による形状情報の時系列変化の比較演算は、例えば以下の手順で行う。すなわち、選択マスターの断面形状線T1を条件的属性ごとに時系列で並べる。そして、条件的属性ごとの選択マスターの形状推移パターンを生成し、形状推移パターンに関するデータベースを構築する。ここで、選択マスターは、研磨時の条件的属性が研磨中ワークWαの条件的属性にマッチしている。そのため、研磨中ワークWαの形状推移は、選択マスターと同様になると考えられる。   And the comparison calculation of the time-sequential change of shape information by this shape transition prediction part 57 is performed in the following procedures, for example. That is, the cross-sectional shape line T1 of the selected master is arranged in time series for each conditional attribute. And the shape transition pattern of the selection master for every conditional attribute is produced | generated, and the database regarding a shape transition pattern is constructed | assembled. Here, in the selected master, the conditional attribute at the time of polishing matches the conditional attribute of the workpiece Wα being polished. Therefore, it is considered that the shape transition of the workpiece Wα during polishing is the same as that of the selected master.

そのため、形状推移予測部57は、研磨中ワークWαの断面形状線T1と、データベース化された形状推移パターンとをパターン認識することで比較する。そして、選択マスターの形状推移を参考にして、現在の研磨中ワークWαの研磨段階が、研磨開始から研磨停止までの間のどの段階であるかを推定する。さらに、形状推移予測部57は、研磨中ワークWαの現在の研磨段階と選択マスターの形状推移に基づき、研磨中ワークWαの今後の形状推移を予測する。
なお、この形状推移予測部57は、機械学習機能を備えており、形状推移パターンや経時的変動パターンを機械学習的に随時更新する。さらに、研磨加工の進行に伴って、研磨中ワークWαの研磨加工中に監視していた条件的属性が、無視できる範囲を超えて変化したときには、この形状推移予測部57は、即座に新たな条件的属性に基づいてその後の研磨中ワークWαの形状予測を行い、演算して出力する。
Therefore, the shape transition prediction unit 57 compares the cross-sectional shape line T1 of the workpiece Wα being polished with the shape transition pattern stored in the database by pattern recognition. Then, referring to the shape transition of the selected master, it is estimated which stage the current polishing stage of the workpiece Wα is from the start of polishing to the stop of polishing. Further, the shape transition prediction unit 57 predicts the future shape transition of the workpiece Wα being polished based on the current polishing stage of the workpiece Wα being polished and the shape transition of the selected master.
The shape transition predicting unit 57 has a machine learning function, and updates the shape transition pattern and the temporal variation pattern as needed by machine learning. Further, when the conditional attribute monitored during polishing of the workpiece Wα being polished changes with a progress of the polishing process beyond the negligible range, the shape transition prediction unit 57 immediately adds a new one. Based on the conditional attribute, the shape of the subsequent workpiece Wα during polishing is predicted, calculated and output.

状態判定部58では、形状推移予測部57にて予測した研磨中ワークWαの今後の形状推移に基づき、研磨中ワークWαの現在の研磨状態を判定する。ここで、「研磨状態」には、研磨中ワークWαのワーク形状が研磨加工を停止可能なワーク形状に達した研磨停止状態や、研磨機10による研磨加工の継続が必要な研磨継続状態、等が含まれる。   The state determination unit 58 determines the current polishing state of the workpiece Wα being polished based on the future shape transition of the workpiece Wα being polished predicted by the shape transition prediction unit 57. Here, the “polishing state” includes a polishing stop state in which the workpiece shape of the workpiece Wα being polished has reached a workpiece shape capable of stopping the polishing process, a polishing continuation state in which the polishing process by the polishing machine 10 needs to be continued, and the like. Is included.

[研磨停止判定処理]
図6は、実施例1の制御部50の制御演算部51にて実行される研磨停止判定処理の流れを示すフローチャートである。以下、図6に基づいて、実施例1の研磨停止判定処理の各ステップを説明する。
[Polishing stop judgment process]
FIG. 6 is a flowchart illustrating the flow of the polishing stop determination process executed by the control calculation unit 51 of the control unit 50 according to the first embodiment. Hereinafter, each step of the polishing stop determination process of the first embodiment will be described with reference to FIG.

ステップS1では、研磨機10によるワークWの研磨加工が実行されているか否かを判定する。YES(ワーク研磨中)の場合にはステップS2へ進む。NO(ワーク研磨なし)の場合はステップS1を繰り返す。
ここで、研磨機10によるワーク研磨実施の判定は、制御演算部51から第1駆動装置M1〜第5駆動装置M5への制御指令を伴い、研磨加工指令フラグが立っているか否かに基づいて行う。
In step S1, it is determined whether or not the workpiece W is being polished by the polishing machine 10. If YES (work polishing), the process proceeds to step S2. If NO (no workpiece polishing), step S1 is repeated.
Here, the determination of the workpiece polishing performed by the polishing machine 10 is accompanied by a control command from the control calculation unit 51 to the first driving device M1 to the fifth driving device M5, and is based on whether or not the polishing command flag is set. Do.

ステップS2では、ステップS1でのワーク研磨中との判定に続き、形状測定器20によって測定した研磨中ワークWαの形状情報をメモリ30から抽出し、ステップS3へ進む。   In step S2, following the determination that the workpiece is being polished in step S1, the shape information of the workpiece Wα being polished measured by the shape measuring instrument 20 is extracted from the memory 30, and the process proceeds to step S3.

ステップS3では、ステップS2での研磨中ワークWαの形状情報の抽出に続き、このステップS2にて抽出した研磨中ワークWαの形状情報に基づいて、研磨中ワークWαの形状描画を研磨機10による研磨開始から情報抽出の直前に行った測定までの時系列で順に並べた第1描画P1(図4参照)を生成し、ステップS4へ進む。   In step S3, following the extraction of the shape information of the workpiece Wα being polished in step S2, the polishing machine 10 draws the shape of the workpiece Wα being polished based on the shape information of the workpiece Wα being polished extracted in step S2. A first drawing P1 (see FIG. 4) arranged in chronological order from the start of polishing to the measurement performed immediately before information extraction is generated, and the process proceeds to step S4.

ステップS4では、ステップS3での第1描画P1の生成に続き、このステップS3にて生成した第1描画P1と、後述する第2描画生成処理にて生成された第2描画P2(図5参照)とを読み込み、ステップS5へ進む。
ここで、第2描画P2を生成する処理(第2描画生成処理)は、図6に示す研磨停止判定処理の各ステップと並行して実行されており、第2描画P2は、研磨中ワークWαの研磨中に条件的属性が変化した場合は、適宜差し替えられる。
In step S4, following the generation of the first drawing P1 in step S3, the first drawing P1 generated in step S3 and the second drawing P2 generated in the second drawing generation process described later (see FIG. 5). ) And the process proceeds to step S5.
Here, the process of generating the second drawing P2 (second drawing generation process) is performed in parallel with each step of the polishing stop determination process shown in FIG. 6, and the second drawing P2 is the workpiece Wα being polished. If the conditional attributes change during the polishing, the replacement is made as appropriate.

ステップS5では、ステップS4での第1描画P1及び第2描画P2の読み込みに続き、ステップS3にて生成し、ステップS4にて読み込んだ第1描画P1と、ステップS4にて読み込んだ第2描画P2とを表示器40の画面40a上に同時に表示させる制御指令を表示器40に出力し、ステップS6へ進む。
なお、実施例1では、図8に示すように、表示器40は、第1描画P1及び第2描画P2の各X軸及びZ軸の比率を同一に揃えると共に、第1描画P1と第2描画P2とを水平方向に並べて画面40aに表示する。また、表示器40は、研磨中ワークWαの条件的属性(一部又は全部)も同時に画面40aに表示する。なお、全ての条件的属性を表示するか否かは、画面40aの表示スペースや条件的属性をモニターすることの利便性等を勘案して設定すればよい。また、研磨中ワークWαの条件的属性は、画面40aに表示しなくてもよい。
In step S5, following the reading of the first drawing P1 and the second drawing P2 in step S4, the first drawing P1 generated in step S3 and read in step S4 and the second drawing read in step S4 A control command for simultaneously displaying P2 on the screen 40a of the display 40 is output to the display 40, and the process proceeds to step S6.
In Example 1, as shown in FIG. 8, the display device 40 aligns the ratios of the X axis and the Z axis of the first drawing P1 and the second drawing P2 to be the same, and the first drawing P1 and the second drawing P1. The drawing P2 is arranged in the horizontal direction and displayed on the screen 40a. The display 40 also displays the conditional attributes (part or all) of the workpiece Wα being polished on the screen 40a at the same time. Whether to display all the conditional attributes may be set in consideration of the display space of the screen 40a, the convenience of monitoring the conditional attributes, and the like. Further, the conditional attribute of the workpiece Wα being polished may not be displayed on the screen 40a.

ステップS6では、ステップS5での表示器40への制御指令の出力に続き、第2描画P2を生成する際に抽出した選択マスターの形状情報の時系列変化と、ステップS2にて抽出した研磨中ワークWαの形状情報の時系列変化とを比較演算し、この比較演算結果から研磨中ワークWαの今後の形状推移を予測し、ステップS7へ進む。
なお、第2描画P2を生成する際に抽出した選択マスターの形状情報は、第2描画P2を差し替えた場合には、差し替えた第2描画P2に応じて変化する。
In step S6, following the output of the control command to the display 40 in step S5, the time series change of the shape information of the selected master extracted when generating the second drawing P2, and the polishing in progress extracted in step S2 The time series change of the shape information of the workpiece Wα is compared and calculated, and the future shape transition of the workpiece Wα being polished is predicted from the comparison calculation result, and the process proceeds to step S7.
Note that, when the second drawing P2 is replaced, the shape information of the selected master extracted when the second drawing P2 is generated changes in accordance with the replaced second drawing P2.

ステップS7では、ステップS6での研磨中ワークWαの形状推移の予測に続き、この予測した形状推移に基づいて研磨中ワークWαの研磨状態を判定し、ステップS8へ進む。
ここで、研磨中ワークWαの研磨状態は、研磨加工を停止可能なワーク形状に達した「研磨停止状態」、研磨加工の継続が必要な「研磨継続状態」のいずれかに判定される。
In step S7, following the prediction of the shape transition of the workpiece Wα being polished in step S6, the polishing state of the workpiece Wα being polished is determined based on the predicted shape transition, and the process proceeds to step S8.
Here, the polishing state of the workpiece Wα being polished is determined to be either a “polishing stop state” that has reached a workpiece shape capable of stopping the polishing process or a “polishing continuation state” that requires continuation of the polishing process.

ステップS8では、ステップS7での研磨中ワークWαの研磨状態の判定に続き、このステップS7にて実施した研磨状態の判定に基づいて、研磨機10による研磨中ワークWαの研磨加工を停止するか否かを判定する。YES(研磨停止)の場合にはステップS9へ進む。NO(研磨継続)の場合にはステップS2へ進む。
ここで、研磨中ワークWαの研磨停止との判定は、ステップS7にて「研磨停止状態」と判定されたときに行われる。
In step S8, following the determination of the polishing state of the workpiece Wα being polished in step S7, whether the polishing of the workpiece Wα being polished by the polishing machine 10 is stopped based on the determination of the polishing state performed in step S7. Determine whether or not. If YES (stop polishing), the process proceeds to step S9. If NO (continuous polishing), the process proceeds to step S2.
Here, the determination of the polishing stop of the workpiece Wα being polished is made when it is determined as “polishing stopped state” in step S7.

ステップS9では、ステップS8での研磨停止の判定に続き、表示器40の画面40a上に研磨中ワークWαの研磨停止を判定した旨を表示させる制御指令を表示器40に出力し、研磨停止判定を報知してステップS10へ進む。   In step S9, following the determination of polishing stop in step S8, a control command for displaying on the screen 40a of the display 40 that the polishing stop of the workpiece Wα being polished is determined is output to the display 40, and the polishing stop determination is made. Is advanced to step S10.

ステップS10では、ステップS9での研磨停止判定の報知に続き、研磨機10による研磨中ワークWαの研磨加工を停止し、エンドへ進む。
ここで、研磨機10による研磨加工の停止は、制御演算部51から第1駆動装置M1〜第5駆動装置M5へ停止制御指令を出力することで行う。
In step S10, following the notification of the polishing stop determination in step S9, the polishing of the workpiece Wα being polished by the polishing machine 10 is stopped and the process proceeds to the end.
Here, the polishing process by the polishing machine 10 is stopped by outputting a stop control command from the control calculation unit 51 to the first driving device M1 to the fifth driving device M5.

[第2描画生成処理構成]
図7は、実施例1の制御部50の第2描画生成部55にて実行される第2描画生成処理の流れを示すフローチャートである。以下、図7に基づいて、実施例1の第2描画生成処理の各ステップを説明する。
[Second drawing generation processing configuration]
FIG. 7 is a flowchart illustrating the flow of the second drawing generation process executed by the second drawing generation unit 55 of the control unit 50 according to the first embodiment. Hereinafter, based on FIG. 7, each step of the 2nd drawing production | generation process of Example 1 is demonstrated.

ステップS11では、研磨機10によるワークWの研磨加工が実行されているか否かを判定する。YES(ワーク研磨中)の場合にはステップS12へ進む。NO(ワーク研磨なし)の場合はステップS11を繰り返す。
ここで、研磨機10によるワーク研磨実施の判定は、研磨停止判定処理におけるステップS1と同様に行う。
In step S <b> 11, it is determined whether or not the workpiece W is being polished by the polishing machine 10. If YES (work polishing), the process proceeds to step S12. If NO (no workpiece polishing), step S11 is repeated.
Here, the determination of the workpiece polishing by the polishing machine 10 is performed in the same manner as Step S1 in the polishing stop determination process.

ステップS12では、ステップS11でのワーク研磨中との判定に続き、現在研磨加工している研磨中ワークWαの条件的属性を取得し、ステップS13へ進む。
ここで、研磨中ワークWαの条件的属性は、この研磨中ワークWαの研磨開始時に研磨機10のユーザーにより入力装置53を介して入力されたり、サブメモリ52に予め記憶されたり、CPUを介してセンサー等により変化状態を監視されたりしている。
In step S12, following the determination that the workpiece is being polished in step S11, the conditional attribute of the workpiece Wα that is currently being polished is acquired, and the process proceeds to step S13.
Here, the conditional attributes of the workpiece Wα being polished are input by the user of the polishing machine 10 via the input device 53 at the start of polishing of the workpiece Wα being polished, stored in advance in the sub-memory 52, or via the CPU. The state of change is monitored by sensors.

ステップS13では、ステップS12での研磨中ワークWαの条件的属性の取得に続き、過去に研磨加工したワークWのうち、ステップS12にて取得した条件的属性にマッチする条件的属性に紐づけられた選択マスターの形状情報(形状参考ワークWβの形状情報、又は典型的な形状情報)をメモリ30から抽出し、ステップS14へ進む。   In step S13, following the acquisition of the conditional attribute of the workpiece Wα being polished in step S12, the workpiece W that has been polished in the past is linked to the conditional attribute that matches the conditional attribute acquired in step S12. The selected master shape information (shape reference workpiece Wβ shape information or typical shape information) is extracted from the memory 30, and the process proceeds to step S14.

ステップS14では、ステップS13での選択マスターの形状情報の抽出に続き、このステップS13にて抽出した選択マスターの形状情報に基づいて、選択マスターの形状描画を研磨機10による研磨開始から研磨停止までの時系列で順に並べた第2描画P2(図5参照)を生成し、ステップS15へ進む。   In step S14, following the extraction of the shape information of the selected master in step S13, the shape drawing of the selected master is performed from the start of polishing by the polishing machine 10 to the stop of polishing based on the shape information of the selected master extracted in step S13. The second drawing P2 (see FIG. 5) arranged in order of time series is generated, and the process proceeds to step S15.

ステップS15では、ステップS14での第2描画P2の生成に続き、研磨中ワークWαの研磨が継続するか否かを判定する。YES(研磨継続)の場合にはステップS16へ進む。NO(研磨停止)の場合には第2描画P2の生成や差し替えは不要としてエンドへ進み、第2描画生成処理を終了する。
ここで、研磨中ワークWαの研磨継続との判定は、研磨中ワークWαの研磨状態に基づいて研磨加工の継続が必要な「研磨継続状態」と判定されたときに行われる。
In step S15, following the generation of the second drawing P2 in step S14, it is determined whether or not polishing of the workpiece Wα being polished is continued. If YES (polishing continued), the process proceeds to step S16. In the case of NO (polishing stop), the generation and replacement of the second drawing P2 are unnecessary and the process proceeds to the end, and the second drawing generation process is terminated.
Here, the determination that the polishing of the workpiece Wα being polished is continued is performed when it is determined that the “polishing continuation state” in which the polishing process needs to be continued based on the polishing state of the workpiece Wα being polished.

ステップS16では、ステップS15での研磨継続との判定に続き、研磨中ワークWαの条件的属性を再度取得し、ステップS17へ進む。   In step S16, following the determination that polishing is continued in step S15, the conditional attribute of the workpiece Wα being polished is acquired again, and the process proceeds to step S17.

ステップS17では、ステップS16での研磨中ワークWαの条件的属性の再取得に続き、研磨中ワークWαの条件的属性の状態に変化が生じたか否かを判断する。YES(変化あり)の場合にはステップS18へ進む。NO(変化なし)の場合にはステップS15へ戻る。
ここで、研磨中ワークWαの条件的属性に状態変化が生じたか否かは、ステップS16にて取得した研磨中ワークWαの条件的属性と、それ以前に取得した研磨中ワークWαの条件的属性とを比較し、その乖離に基づいて判断する。なお、研磨中ワークWαの条件的属性に状態変化が生じた場合とは、研磨加工の進行に伴って、条件的属性が当初設定した状態から大きく逸脱した場合や、条件的属性が想定から大きく変動した場合などである。
In step S17, following the re-acquisition of the conditional attribute of the workpiece Wα being polished in step S16, it is determined whether or not the state of the conditional attribute of the workpiece Wα being polished has changed. If YES (changed), the process proceeds to step S18. If NO (no change), the process returns to step S15.
Here, whether or not a state change has occurred in the conditional attribute of the workpiece Wα being polished is determined based on the conditional attribute of the workpiece Wα being polished acquired in step S16 and the conditional attribute of the workpiece Wα being polished acquired before that. And judge based on the difference. Note that the case where the state change occurs in the conditional attribute of the workpiece Wα during polishing means that the conditional attribute greatly deviates from the initially set state as the polishing process proceeds, or the conditional attribute is large from the assumption. For example, when it fluctuates.

ステップS18では、ステップS17での条件的属性の状態変化ありとの判断に続き、ステップS16にて取得した変化した後の研磨中ワークWαの条件的属性に基づいて、選択マスターの条件的属性を編集し、ステップS19へ進む。
ここで、条件的属性の編集とは、研磨中ワークWαの条件的属性に基づいて、選択マスターの条件的属性として、ワークWの研磨加工に与える影響の高い条件的属性や、特定の条件に応じた条件的属性を選択又は置換することである。
In step S18, following the determination that there is a change in the state of the conditional attribute in step S17, the conditional attribute of the selected master is determined based on the changed conditional attribute of the workpiece Wα being polished acquired in step S16. Edit and proceed to step S19.
Here, the editing of the conditional attribute is based on the conditional attribute of the workpiece Wα being polished, as a conditional attribute of the selected master having a high influence on the polishing process of the workpiece W or a specific condition. Select or replace the corresponding conditional attribute.

ステップS19では、ステップS18での条件的属性の編集に続き、このステップS19にて編集された条件的属性に最もマッチする条件的属性に紐づけられた選択マスターの形状情報(形状参考ワークWβの形状情報、又は典型的な形状情報)をメモリ30から抽出し、ステップS20へ進む。   In step S19, following the editing of the conditional attribute in step S18, the shape information (the shape reference work Wβ of the shape reference work Wβ) linked to the conditional attribute that most closely matches the conditional attribute edited in step S19. Shape information or typical shape information) is extracted from the memory 30, and the process proceeds to step S20.

ステップS20では、ステップS19での選択マスターの形状情報の抽出に続き、このステップS19にて抽出した選択マスターの形状情報に基づいて第2描画P2を再度生成する。そして、選択マスターの形状情報を再度抽出する時点までに生成された第2描画P2を、この新たに生成した第2描画P2に差し替えて、ステップS15へ戻る。   In step S20, following the extraction of the shape information of the selected master in step S19, the second drawing P2 is generated again based on the shape information of the selected master extracted in step S19. Then, the second drawing P2 generated up to the time when the shape information of the selected master is extracted again is replaced with the newly generated second drawing P2, and the process returns to step S15.

以下、作用を説明する。
まず、「ワーク研磨停止時の課題」を説明し、続いて、実施例1の研磨装置1の作用を「研磨停止作用」、「形状推移の予測精度向上作用」に分けて説明する。
The operation will be described below.
First, the “problem when the workpiece polishing is stopped” will be described, and then the operation of the polishing apparatus 1 according to the first embodiment will be described separately as “the polishing stopping operation” and “the shape transition prediction accuracy improving operation”.

[ワーク研磨停止時の課題]
研磨装置1の研磨機10によってワークWの両面を研磨する際、ワークWの厚さ及び断面形状は研磨加工の進行に伴って次第に変化していく。特にワークWの断面形状は、他の条件的属性が望ましい状態で一定の場合、キャリアプレート15とワークWとの厚さ差によって決まることが一般的となるが、研磨加工が進むにつれて例えば「中央凸・外周ダレ形状」から「フラット形状」を経て「中央凹・外周タチ形状」のように推移する。なお、「中央凸形状」とは、ワークWの中央部の厚さが外周領域よりも大きい形状である。また「外周ダレ形状」とは、ワークWの外周縁に向かって次第に厚さが小さくなっていく形状である。また「フラット形状」とは、ワークWの全面がほぼ平坦な形状である。また「中央凹形状」とは、ワークWの中央部の厚さが外周領域よりも小さい形状である。また「外周タチ形状」とは、ワークWの外周縁に向かって次第に厚さが大きくなっていく形状である。
[Problems when stopping workpiece polishing]
When both surfaces of the workpiece W are polished by the polishing machine 10 of the polishing apparatus 1, the thickness and cross-sectional shape of the workpiece W gradually change as the polishing process proceeds. In particular, the cross-sectional shape of the workpiece W is generally determined by a difference in thickness between the carrier plate 15 and the workpiece W when other conditional attributes are desirable and is constant. It changes from “convex / periphery sag shape” to “flat shape” to “center concave / periphery tactile shape”. The “central convex shape” is a shape in which the thickness of the central portion of the workpiece W is larger than that of the outer peripheral region. The “peripheral sag shape” is a shape in which the thickness gradually decreases toward the outer peripheral edge of the workpiece W. The “flat shape” is a shape in which the entire surface of the workpiece W is substantially flat. The “center concave shape” is a shape in which the thickness of the central portion of the work W is smaller than that of the outer peripheral region. Further, the “peripheral tapping shape” is a shape in which the thickness gradually increases toward the outer peripheral edge of the workpiece W.

そして、ワークWの厚さが狙い厚さ範囲(T1≦厚さ≦T2)に収まっているときに研磨加工を停止することで、ワークWは所望の厚さになる。一方、ワークWの断面形状は、後工程の加工プロセスにおける設定にもよるが、一般的にはワークWの全面がほぼ平坦である「フラット形状」であることが好ましいことが多い。そのため、ワークWの研磨加工は、厚さが狙い厚さ範囲に収まり、断面形状が「フラット形状」になったときに停止することが望まれている。   Then, by stopping the polishing process when the thickness of the workpiece W is within the target thickness range (T1 ≦ thickness ≦ T2), the workpiece W has a desired thickness. On the other hand, although the cross-sectional shape of the workpiece W depends on the setting in the subsequent machining process, it is often preferable that the workpiece W is generally a “flat shape” in which the entire surface of the workpiece W is substantially flat. Therefore, it is desired that the polishing process of the workpiece W be stopped when the thickness is within the target thickness range and the cross-sectional shape becomes a “flat shape”.

これに対し、ワークWの厚さをリアルタイムで測定し、測定するごとに測定結果に基づいて研磨中のワークWの形状描画を生成する。そして、このワークWの形状描画を研磨機10のユーザーがモニタリングし、ワークWの厚さが狙い厚さ範囲に収まり、断面形状が「フラット形状」に到達したと思われるタイミングで研磨機10を停止することが行われる。   On the other hand, the thickness of the workpiece W is measured in real time, and each time the measurement is performed, a shape drawing of the workpiece W being polished is generated based on the measurement result. The user of the polishing machine 10 monitors the drawing of the shape of the workpiece W, and the polishing machine 10 is moved at a timing when the thickness of the workpiece W is within the target thickness range and the cross-sectional shape seems to have reached the “flat shape”. It is done to stop.

しかしながら、ワークWの研磨時の条件的属性の違い等の影響より、ワークWの断面形状の変化の過程(形状推移)が異なることがある。また、ワークWの断面形状は、ワークWの研磨時の条件的属性との相関によって「フラット形状」のような所望の形状にならない場合があり、その場合には、二次的に許容可能な断面形状で研磨加工を停止する必要が生じる。   However, the cross-sectional shape change process (shape transition) of the workpiece W may be different due to the influence of the difference in the conditional attributes at the time of polishing the workpiece W. Further, the cross-sectional shape of the workpiece W may not be a desired shape such as a “flat shape” due to the correlation with the conditional attribute at the time of polishing the workpiece W, and in that case, it is secondarily acceptable. The polishing process needs to be stopped at the cross-sectional shape.

一方、ワークWの形状描画を一時的にモニタリングするだけでは、ワーク形状が将来的にどのように変化していくのかを予測することが難しい。すなわち、例えば、現時点で「弱中央凸形状」のワークWの場合、研磨加工を継続することで「フラット形状」になる場合と、「外周タチ形状」になる場合がある。現時点のワーク形状である「弱中央凸形状」を一時的にモニタリングしただけでは、その後のワーク形状は不明であり、適切なタイミングで研磨加工を停止できない結果、ワークWが「外周タチ形状」になってしまい、ワーク外周領域でのSFQR(Site front least squares range)が悪化するおそれがある。また、ワークWが「フラット形状」になったのに研磨停止タイミングが適時よりも遅れることも生じうる。   On the other hand, it is difficult to predict how the workpiece shape will change in the future only by temporarily monitoring the shape drawing of the workpiece W. That is, for example, in the case of the workpiece W having a “weak central convex shape” at the present time, there are a case where a “flat shape” and a “periphery shape” are obtained by continuing the polishing process. Only by temporarily monitoring the “weak central convex shape” that is the current workpiece shape, the workpiece shape after that is unknown, and the polishing process cannot be stopped at an appropriate timing. Therefore, SFQR (Site front least squares range) in the work outer peripheral area may be deteriorated. In addition, although the workpiece W has a “flat shape”, the polishing stop timing may be delayed from the appropriate time.

つまり、ワークWの形状描画を一時的にモニタリングするだけでは、研磨中のワークWの形状変化の推移を把握できない。そのため、ワークWの形状変化の推移に基づいて、所望のワーク形状になったタイミング或いは所望のワーク形状になるタイミングでワークWの研磨加工を停止できないという問題が生じる。   That is, the transition of the shape change of the workpiece W during polishing cannot be grasped only by temporarily monitoring the shape drawing of the workpiece W. For this reason, there arises a problem that the polishing of the workpiece W cannot be stopped at the timing when the desired workpiece shape is achieved or when the desired workpiece shape is achieved based on the transition of the shape change of the workpiece W.

[研磨停止作用]
実施例1の研磨装置1では、研磨機10によるワークWの研磨中に形状測定器20によりワークWの厚さ及び断面形状を測定する。そして、この研磨装置1は、形状測定器20で測定したワークWの厚さ及び断面形状の情報を、メモリ30に記憶する。
[Polishing stop action]
In the polishing apparatus 1 according to the first embodiment, the thickness and cross-sectional shape of the workpiece W are measured by the shape measuring device 20 while the workpiece W is being polished by the polishing machine 10. The polishing apparatus 1 stores information on the thickness and cross-sectional shape of the workpiece W measured by the shape measuring instrument 20 in the memory 30.

一方、研磨機10によってワークWの研磨加工を実行したとき、制御部50の制御演算部51はワークWの研磨中であると判定し、図6のフローチャートに示すステップS1からステップS2、ステップS3、ステップS4の各処理を順に行う。つまり、第1描画生成部54は、研磨中ワークWαの形状情報をメモリ30から抽出し、抽出した研磨中ワークWαの形状情報に基づいて第1描画P1を生成する。また、表示制御部56は、第1描画生成部54にて生成された第1描画P1と、第2描画生成部55にて生成された第2描画P2とを読み込み、表示器40の画面40aに第1描画P1及び第2描画P2を表示させる制御指令を出力する。   On the other hand, when the polishing of the workpiece W is executed by the polishing machine 10, the control calculation unit 51 of the control unit 50 determines that the workpiece W is being polished, and steps S1 to S2 and S3 shown in the flowchart of FIG. Each process of step S4 is performed in order. That is, the first drawing generation unit 54 extracts the shape information of the workpiece Wα being polished from the memory 30, and generates the first drawing P1 based on the extracted shape information of the workpiece Wα being polished. Further, the display control unit 56 reads the first drawing P1 generated by the first drawing generation unit 54 and the second drawing P2 generated by the second drawing generation unit 55, and the screen 40a of the display device 40 is read. Outputs a control command to display the first drawing P1 and the second drawing P2.

これにより、表示器40の画面40aには、第1描画P1と第2描画P2とが同時に表示される。このように、実施例1の研磨装置1では、形状測定器20によって研磨中ワークWαの形状を測定した際、第1描画P1が表示器40に表示される。   As a result, the first drawing P1 and the second drawing P2 are simultaneously displayed on the screen 40a of the display device 40. Thus, in the polishing apparatus 1 according to the first embodiment, when the shape of the workpiece Wα being polished is measured by the shape measuring instrument 20, the first drawing P1 is displayed on the display 40.

ここで、第1描画P1は、研磨中ワークWαの形状描画(断面形状線T1)を時系列で順に並べたものである。そのため、研磨機10のユーザーは、連続的に描画された研磨中ワークWαの形状描画を一覧的に認識することができる。これにより、ユーザーは、研磨開始から現在(第1描画生成時点)までの間の研磨中ワークWαの形状変化の推移を把握することができる。この結果、ユーザーは、研磨中ワークWαの形状変化の推移に基づいて、研磨中ワークWαの今後の形状推移を予測できる。そのため、ユーザーによるマニュアル操作で研磨機10を制御して研磨加工を停止する場合であっても、所望のワーク形状になったタイミング或いは、所望のワーク形状になるタイミングで研磨加工を停止しやすい。   Here, the first drawing P1 is obtained by arranging the shape drawing (cross-sectional shape line T1) of the workpiece Wα being polished in order in time series. Therefore, the user of the polishing machine 10 can recognize a list of the shape drawing of the workpiece Wα that is being continuously drawn. Thereby, the user can grasp the transition of the shape change of the workpiece Wα during polishing from the start of polishing to the present (first drawing generation time). As a result, the user can predict the future shape transition of the workpiece Wα being polished based on the transition of the shape change of the workpiece Wα being polished. Therefore, even when the polishing machine 10 is controlled by a manual operation by the user and the polishing process is stopped, the polishing process is easily stopped at the timing when the desired workpiece shape is reached or when the desired workpiece shape is reached.

また、ユーザーが研磨中ワークWαの形状描画を条件的属性に紐づいた状態で一覧的に認識できることにより、このユーザーは、研磨機10の装置設計や、スラリ等の副資材の設計、副資材選択、さらに加工条件の選択等のワーク研磨時の条件的属性の改善立案を容易に行うことができる。そして、ユーザーは、より効率的にプロセス改善立案を行うことができ、ひいては、最終ワーク形状が所望の形状となるウェーハの生産性向上を図ることができる。   Further, since the user can recognize the shape drawing of the workpiece Wα being polished in a list associated with the conditional attributes, the user can design the apparatus of the polishing machine 10, the design of the auxiliary material such as the slurry, the auxiliary material. It is possible to easily plan improvement of the conditional attributes at the time of workpiece polishing such as selection and further selection of processing conditions. Then, the user can plan the process improvement more efficiently, and as a result, it is possible to improve the productivity of the wafer whose final work shape becomes a desired shape.

しかも、この実施例1では、第1描画P1と第2描画P2とが表示器40の画面40aに同時に表示される。そのため、研磨機10のユーザーは、画面40aを目視することで、第1描画P1及び第2描画P2を同時にモニタリングすることができる。   Moreover, in the first embodiment, the first drawing P1 and the second drawing P2 are simultaneously displayed on the screen 40a of the display device 40. Therefore, the user of the polishing machine 10 can simultaneously monitor the first drawing P1 and the second drawing P2 by viewing the screen 40a.

ここで、第2描画P2は、研磨中ワークWαの条件的属性に基づいて抽出した選択マスターの形状情報に基づき、この選択マスターの形状描画(断面形状線T1)を時系列で順に並べたものである。そのため、研磨機10のユーザーは、第1描画P1をモニタリングすると同時に、第2描画P2を確認することで、第2描画P2に示される選択マスターの形状推移を参考にして、研磨中ワークWαの今後の形状変化の推移をより正確に予測することができる。この結果、ユーザーがマニュアル操作で研磨機10を制御して研磨加工を停止する場合に、さらに適切なタイミングで研磨加工の停止が可能となる。さらに、場合によっては、条件的属性をあえて変更させ、最終ワーク形状や研磨終了のタイミグを調整することもできる。   Here, the second drawing P2 is obtained by sequentially arranging the shape drawing (cross-sectional shape line T1) of the selected master in time series based on the shape information of the selected master extracted based on the conditional attribute of the workpiece Wα being polished. It is. Therefore, the user of the polishing machine 10 monitors the first drawing P1 and at the same time confirms the second drawing P2, so that the shape transition of the selected master indicated in the second drawing P2 is referred to and the workpiece Wα is being polished. Future changes in shape can be predicted more accurately. As a result, when the user controls the polishing machine 10 by manual operation to stop the polishing process, the polishing process can be stopped at a more appropriate timing. Furthermore, depending on the case, conditional attributes can be changed intentionally to adjust the final workpiece shape and the timing of completion of polishing.

一方、この実施例1の研磨装置1では、第1描画P1及び第2描画P2を表示器40の画面40aに表示させた後、図6のフローチャートに示すステップS6からステップS7、ステップS8の各処理を順に行う。つまり、形状推移予測部57は、研磨中ワークWαの形状情報の時系列変化と、選択マスターの時系列変化とを比較演算し、その結果に基づいて研磨中ワークWαの今後の形状推移を予測する。また、状態判定部58は、形状推移予測部57によって予測された研磨中ワークWαの形状推移に基づいて、研磨中ワークWαの現在の研磨状態を判定し、研磨状態の判定結果に基づいて研磨加工を停止するか否かを判定する。   On the other hand, in the polishing apparatus 1 of the first embodiment, after the first drawing P1 and the second drawing P2 are displayed on the screen 40a of the display device 40, each of steps S6 to S7 and step S8 shown in the flowchart of FIG. Process in order. That is, the shape transition prediction unit 57 compares the time series change of the shape information of the workpiece Wα being polished and the time series change of the selected master, and predicts the future shape change of the workpiece Wα being polished based on the result. To do. Further, the state determination unit 58 determines the current polishing state of the workpiece Wα being polished based on the shape transition of the workpiece Wα being polished predicted by the shape transition prediction unit 57, and polishes based on the determination result of the polishing state. It is determined whether or not machining is stopped.

そして、この状態判定部58により、研磨中ワークWαの研磨加工を停止すると判定された場合には、図6のフローチャートに示すステップS9の処理を行う。つまり、表示制御部56は、研磨中ワークWαの研磨停止を判定した旨を、表示器40の画面40aに表示させる制御指令を出力する。そして、表示器40の画面40aには、研磨中ワークWαの研磨停止が判定されたことが表示され、研磨停止判定が報知される。   When the state determination unit 58 determines that the polishing process of the workpiece Wα being polished is to be stopped, the process of step S9 shown in the flowchart of FIG. 6 is performed. That is, the display control unit 56 outputs a control command to display on the screen 40a of the display 40 that the polishing stop of the workpiece Wα being polished has been determined. Then, the screen 40a of the display 40 displays that the polishing stop of the workpiece Wα being polished has been determined, and notifies the determination of the polishing stop.

この結果、研磨機10のユーザーは、画面40aを目視することで、研磨停止が判定されたことを把握することができる。これにより、ユーザーがマニュアル操作で研磨機10を制御して研磨加工を停止する場合であっても、適切なタイミングで研磨加工を停止できる。なお、後述するように制御部50からの停止制御指令によって研磨機10を停止させる場合であっても、ユーザーが研磨機10の停止動作を認識することが可能となる。   As a result, the user of the polishing machine 10 can grasp that the polishing stop has been determined by viewing the screen 40a. Thereby, even if it is a case where a user controls polisher 10 by manual operation and stops polish processing, polish processing can be stopped at an appropriate timing. As will be described later, even when the polishing machine 10 is stopped by a stop control command from the control unit 50, the user can recognize the stop operation of the polishing machine 10.

その後、図6のフローチャートに示すステップS10の処理を行う。つまり、制御部50の制御演算部51は、第1駆動装置M1〜第5駆動装置M5へ停止制御指令等研磨加工終了のための諸出力を行う。この結果、研磨機10は所定のシーケンスを経て自動停止し、研磨中ワークWαの研磨加工は終了する。これにより、実施例1の研磨装置1では、研磨加工の停止タイミングが適時より遅れることを防止して、適切なタイミングで自動的に研磨加工を停止できる。   Then, the process of step S10 shown in the flowchart of FIG. 6 is performed. That is, the control calculation unit 51 of the control unit 50 outputs various outputs for finishing the polishing process such as a stop control command to the first driving device M1 to the fifth driving device M5. As a result, the polishing machine 10 automatically stops after a predetermined sequence, and the polishing of the workpiece Wα being polished is completed. As a result, in the polishing apparatus 1 according to the first embodiment, it is possible to prevent the polishing process stop timing from being delayed from the appropriate time and automatically stop the polishing process at an appropriate timing.

そして、この実施例1の研磨装置1では、制御部50の制御演算部51が有する形状推移予測部57及び状態判定部58により、研磨中ワークWαの形状情報の時系列変化と、選択マスターの時系列変化とを比較演算する。さらに、この比較演算の結果に基づいて研磨中ワークWαの形状変化の推移を予測する。そして、この研磨中ワークWαの形状変化の推移に基づき、研磨中ワークWαの研磨状態を自動的に認識する。   In the polishing apparatus 1 according to the first embodiment, the shape transition prediction unit 57 and the state determination unit 58 included in the control calculation unit 51 of the control unit 50 allow the time series change of the shape information of the workpiece Wα being polished and the selection master. Comparing with time series change. Furthermore, based on the result of this comparison calculation, the transition of the shape change of the workpiece Wα during polishing is predicted. Based on the transition of the shape change of the workpiece Wα being polished, the polishing state of the workpiece Wα being polished is automatically recognized.

ここで、選択マスターの形状情報は、研磨中ワークWαの条件的属性にマッチする条件的属性に紐づけられている。そのため、この選択マスターの時系列変化は、研磨中ワークWαの条件的属性と形状推移との相関を反映したものとなる。これにより、この研磨装置1では、研磨中ワークWαの形状推移の予測精度を向上させ、研磨中ワークWαの状態判定を適切に行うことができる。そして、研磨中ワークWαの状態判定が適切に行われることで、研磨中ワークWαが所望の形状になった、或いは研磨中ワークWαが所望の形状になる最適なタイミングで研磨加工を停止することができる。   Here, the shape information of the selected master is linked to a conditional attribute that matches the conditional attribute of the workpiece Wα being polished. Therefore, the time-series change of the selected master reflects the correlation between the conditional attribute of the workpiece Wα being polished and the shape transition. Thereby, in this polishing apparatus 1, the prediction accuracy of the shape transition of the workpiece Wα being polished can be improved, and the state determination of the workpiece Wα being polished can be appropriately performed. Then, by appropriately determining the state of the workpiece Wα being polished, the polishing process is stopped at an optimal timing when the workpiece Wα being polished has a desired shape or the workpiece Wα being polished becomes a desired shape. Can do.

さらに、この実施例1の研磨装置1では、研磨中ワークWαの研磨状態に応じて研磨加工の停止又は研磨加工の継続を判定し、適切と判定されるタイミングで研磨機10を自動停止する。このように研磨停止を自動的に行うことで、研磨停止のタイミングが適時よりも遅れることを防止できる。また、装置制御の組み方によっては、研磨中ワークWαの条件的属性を意図的に変更し、最終ワーク形状や研磨終了のタイミグを調整することもできる。   Further, in the polishing apparatus 1 of the first embodiment, the stop of the polishing process or the continuation of the polishing process is determined according to the polishing state of the workpiece Wα being polished, and the polishing machine 10 is automatically stopped at a timing determined to be appropriate. By automatically performing the polishing stop in this way, it is possible to prevent the polishing stop timing from being delayed from the appropriate time. Further, depending on how to control the apparatus, it is possible to intentionally change the conditional attributes of the workpiece Wα being polished, and to adjust the final workpiece shape and the polishing end timing.

また、この実施例1では、第2描画生成部55において研磨停止判定処理と並行して第2描画生成処理が実施され、研磨中ワークWαの研磨が開始されてから終了するまでの間、研磨中ワークWαの条件的属性が変化するか否かを監視する。そして、研磨中ワークWαの条件的属性が変化したときには、研磨停止判定処理でのその時点でのステップの如何に拘らず、第2描画P2が差し替えられる。   Further, in the first embodiment, the second drawing generation unit 55 performs the second drawing generation process in parallel with the polishing stop determination process, and the polishing from the start to the end of the polishing of the workpiece Wα being polished is performed. It is monitored whether or not the conditional attribute of the medium work Wα is changed. When the conditional attribute of the workpiece Wα during polishing changes, the second drawing P2 is replaced regardless of the step at that point in the polishing stop determination process.

すなわち、研磨機10によってワークWの研磨加工を実行したとき、第2描画生成部55はワークWの研磨中であると判定し、図7のフローチャートに示すステップS11からステップS12、ステップS13、ステップS14の各処理を順に行う。つまり、第2描画生成部55は、研磨中ワークWαの条件的属性を取得し、その取得された条件的属性にマッチする条件的属性に紐づけられた選択マスターの形状情報(形状参考ワークWβの形状情報又は典型的な形状情報)をメモリ30から抽出する。そして、この第2描画生成部55は、抽出した選択マスターの形状情報に基づいて第2描画P2を生成する。   That is, when the polishing process of the workpiece W is executed by the polishing machine 10, the second drawing generation unit 55 determines that the workpiece W is being polished, and steps S11 to S12, step S13, and step S13 shown in the flowchart of FIG. Each process of S14 is performed in order. That is, the second drawing generation unit 55 acquires the conditional attribute of the workpiece Wα being polished, and the shape information (shape reference workpiece Wβ) associated with the conditional attribute that matches the acquired conditional attribute. The shape information or typical shape information) is extracted from the memory 30. And this 2nd drawing production | generation part 55 produces | generates 2nd drawing P2 based on the shape information of the extracted selection master.

第2描画P2を生成したら、第2描画生成部55は、ステップS15の処理を行い、研磨中ワークWαの研磨加工が継続されるか否かを判定する。そして、研磨加工が継続する場合には、ステップS16、ステップS17の各処理を順に行い、研磨中ワークWαの条件的属性を再度取得して、この条件的属性に変化が生じたか否かを判定する。   If the 2nd drawing P2 is produced | generated, the 2nd drawing production | generation part 55 will perform the process of step S15, and will determine whether the grinding | polishing process of the workpiece | work Wα in grinding | polishing is continued. When the polishing process is continued, the processes of step S16 and step S17 are performed in order, the conditional attribute of the workpiece Wα being polished is obtained again, and it is determined whether or not the conditional attribute has changed. To do.

そして、研磨中ワークWαの条件的属性に変化が生じたと判定した場合には、研磨加工の途中で条件的属性が変化したと判断し、図7のフローチャートに示すステップS18からステップS19、ステップS20の処理を行う。つまり、選択マスターの条件的属性を、再度取得した研磨中ワークWαの条件的属性に基づいて編集しなおし、この編集しなおした条件的属性に最もマッチする条件的属性に紐づけられた選択マスターに基づいて、新たな第2描画P2を生成する。そして、それまでの第2描画P2を新しいものに差し替える。   When it is determined that the conditional attribute of the workpiece Wα being polished has changed, it is determined that the conditional attribute has changed during the polishing process, and steps S18 to S19 and S20 shown in the flowchart of FIG. 7 are performed. Perform the process. In other words, the conditional attribute of the selected master is re-edited based on the re-acquired conditional attribute of the workpiece Wα being polished, and the selected master associated with the conditional attribute that best matches the re-edited conditional attribute. Based on the above, a new second drawing P2 is generated. Then, the previous second drawing P2 is replaced with a new one.

これにより、研磨加工の進行に伴って研磨中ワークWαの条件的属性が変化しても、第2描画P2を研磨中ワークWαの条件的属性の変化に応じた最新の描画とすることができ、その後の研磨中ワークWαの形状予測を適切に行うことができる。   Thereby, even if the conditional attribute of the workpiece Wα being polished changes with the progress of the polishing process, the second drawing P2 can be the latest drawing according to the change of the conditional attribute of the workpiece Wα being polished. Then, it is possible to appropriately perform the shape prediction of the workpiece Wα during polishing thereafter.

以下に具体例を挙げて説明する。
図9Aに示すように、研磨初期の研磨段階Aにおいて、中央部が比較的大きくへこんでいる「強凹形状」の断面形状の第1ワークW1は、研磨加工が進行し、厚さが狙い厚さ範囲(T1≦厚さ≦T2)に達した直後の研磨段階Bでは、断面形状が「弱凹形状(中央部が小さくへこんだ状態)」となる。そして、研磨加工を継続し、厚さが狙い厚さ範囲の下限(T1)に近くなった研磨段階Cで、この第1ワークW1の断面形状は「フラット形状」になる。
A specific example will be described below.
As shown in FIG. 9A, in the polishing stage A at the initial stage of polishing, the first work W1 having a cross-sectional shape of “strongly concave shape” having a relatively large indent at the center is subjected to polishing and is targeted for thickness. In the polishing stage B immediately after reaching the thickness range (T1 ≦ thickness ≦ T2), the cross-sectional shape becomes “weakly concave shape (a state where the central portion is small and recessed)”. Then, the polishing process is continued, and the cross-sectional shape of the first workpiece W1 becomes a “flat shape” at the polishing stage C when the thickness is close to the target lower limit (T1) of the thickness range.

一方、図9Bに示すように、研磨初期の研磨段階Aにおいて、中央部が比較的小さく突出している「弱凸形状」の断面形状の第2ワークW2は、研磨加工が進行し、厚さが狙い厚さ範囲(T1≦厚さ≦T2)に達した直後の研磨段階Bでは、断面形状が「弱凹形状(中央部が小さくへこんだ状態)」となる。しかしながら、その後研磨加工を継続し、厚さが狙い厚さ範囲の下限(T1)に近くなった研磨段階Cでは、この第2ワークW2の断面形状は「強凹形状(中央部が大きくへこんだ状態)」になってしまう。   On the other hand, as shown in FIG. 9B, in the polishing stage A at the initial stage of polishing, the second work W2 having a cross-sectional shape of “weakly convex shape” whose central portion protrudes relatively small is subjected to polishing and has a thickness of In the polishing stage B immediately after reaching the target thickness range (T1 ≦ thickness ≦ T2), the cross-sectional shape becomes “weakly concave shape (a state where the central portion is small and recessed)”. However, the polishing process is continued thereafter, and in the polishing stage C when the thickness is close to the lower limit (T1) of the target thickness range, the cross-sectional shape of the second workpiece W2 is “a strongly concave shape (the central portion is greatly depressed). State) ”.

これに対し、実施例1の研磨装置1では、第1ワークW1や第2ワークW2の形状描画を時系列で順に並べた第1描画P1を生成し、この第1描画P1を表示器40に表示させる。そのため、この第1描画P1から第1ワークW1や第2ワークW2のそれぞれの形状推移を把握し、その後の形状変化を予測することができる。   On the other hand, in the polishing apparatus 1 according to the first embodiment, the first drawing P1 in which the shape drawing of the first workpiece W1 and the second workpiece W2 is arranged in time series is generated, and the first drawing P1 is displayed on the display 40. Display. Therefore, the shape transition of each of the first workpiece W1 and the second workpiece W2 can be grasped from the first drawing P1, and the subsequent shape change can be predicted.

つまり、実施例1の研磨装置1では、研磨段階Bのとき、第1ワークW1では「中央部のへこみが次第に浅くなってきているので、研磨段階Cまで研磨加工した方がよい」と判定できる。一方、第2ワークW2では「中央部のへこみが次第に深くなってきているので、研磨段階Cまで研磨するよりも研磨段階Bで研磨加工を停止した方がよい」と判定できる。このように、実施例1の研磨装置1は、研磨開始時のワーク形状に応じて研磨停止の最良タイミングを適切に判定し、所望のワーク形状に研磨することができる。   That is, in the polishing apparatus 1 of the first embodiment, at the polishing stage B, it can be determined that the first work W1 is “the dent at the central portion is gradually becoming shallower, and it is better to perform polishing until the polishing stage C”. . On the other hand, in the second workpiece W2, it can be determined that “the dent in the central portion becomes gradually deeper, so it is better to stop the polishing process in the polishing stage B than in the polishing stage C”. As described above, the polishing apparatus 1 according to the first embodiment can appropriately determine the best timing for stopping polishing in accordance with the workpiece shape at the start of polishing and can polish the workpiece into a desired workpiece shape.

また、実施例1の研磨装置1では、研磨中ワークWαの形状情報の時系列変化と、選択マスターの時系列変化とを比較演算する。このため、現在バッチの形状推移だけでは今後のワーク形状の変化の推移を予測できない場合であっても、形状推移を適切に予測することができる。   Further, in the polishing apparatus 1 according to the first embodiment, the time series change of the shape information of the workpiece Wα being polished is compared with the time series change of the selected master. For this reason, even if it is a case where the transition of the future work shape change cannot be predicted only by the shape transition of the current batch, the shape transition can be appropriately predicted.

図10Aに示すように、研磨開始時に中央部が比較的大きく突出した「強凸形状」である第3ワークW3を「ワーク周縁部が反りにくい条件的属性」の研磨機10で研磨加工を行う場合について説明する。研磨初期の研磨段階Aにおいて「強凸形状」の第3ワークW3の断面形状は、研磨加工が進行し、厚さが狙い厚さ範囲(T1≦厚さ≦T2)に達した直後の研磨段階Bでは、「弱凸形状(中央部が小さく突出した状態)」となる。さらに、研磨加工を継続し、厚さが狙い厚さ範囲の下限(T1)に近くなった研磨段階Cで、この第3ワークW3の断面形状は「フラット形状」になる。   As shown in FIG. 10A, the third work W3 having a “strongly convex shape” whose central portion protrudes relatively large at the start of polishing is polished by the polishing machine 10 having a “conditional attribute in which the peripheral edge of the work is difficult to warp”. The case will be described. In the polishing stage A at the initial stage of polishing, the cross-sectional shape of the “strongly convex” third workpiece W3 is the polishing stage immediately after the polishing process proceeds and the thickness reaches the target thickness range (T1 ≦ thickness ≦ T2). In B, a “weakly convex shape (a state in which the central portion protrudes small)” is obtained. Further, the polishing process is continued, and the cross-sectional shape of the third workpiece W3 becomes a “flat shape” at the polishing stage C when the thickness is close to the lower limit (T1) of the target thickness range.

一方、図10Bに示すように、研磨開始時に中央部が比較的大きく突出した「強凸形状」である第4ワークW4を「ワーク周縁部が反りやすい条件的属性」の研磨機10で研磨加工を行う場合を説明する。研磨初期の研磨段階Aにおいて「強凸形状」の第4ワークW4の断面形状は、研磨加工が進行し、厚さが狙い厚さ範囲(T1≦厚さ≦T2)に達した直後の研磨段階Bで、「弱凸形状(中央部が小さく突出した状態)」となる。さらに、研磨加工を継続し、厚さが狙い厚さ範囲の下限(T1)に近くなった研磨段階Cでは、この第4ワークW4の断面形状は「弱凸・弱タチ形状(中央部及び周縁部がそれぞれ小さく突出した状態)」になる。   On the other hand, as shown in FIG. 10B, the fourth work W4 having a “strongly convex shape” whose central portion protrudes relatively large at the start of polishing is polished by the polishing machine 10 having “conditional attributes in which the peripheral edge of the workpiece is easily warped” The case of performing will be described. In the polishing stage A at the initial stage of polishing, the cross-sectional shape of the “strongly convex” fourth workpiece W4 is the polishing stage immediately after the polishing process proceeds and the thickness reaches the target thickness range (T1 ≦ thickness ≦ T2). In B, a “weakly convex shape (a state in which the central portion protrudes small)” is obtained. Further, in the polishing stage C where the polishing process is continued and the thickness is close to the lower limit (T1) of the target thickness range, the cross-sectional shape of the fourth workpiece W4 is “weakly convex / weakly tactile shape (central portion and peripheral edge). The state where each part protrudes small).

ここで、まだデータの蓄積が不十分で条件的属性と強い相関度を持った形状推移の予測ができない場合、例えば、研磨中ワークWαの研磨直前(例えば1バッチ前)に研磨加工したワークの形状推移から、現在バッチと同一傾向の形状推移を示す現在バッチのある時点以降の研磨中ワークWαの形状推移を予測することが可能である。すなわち、実施例1の研磨装置1では、選択マスターとして、例えば研磨中ワークWαの1バッチ前に研磨加工したワークを採用する。そして、選択マスターの時系列変化と、第3ワークW3や第4ワークW4の形状情報の時系列変化とを比較演算することで、現在バッチやその前後に行われるバッチにおいて使用された研磨機10の条件的属性を推定することができる。   Here, when the accumulation of data is still insufficient and it is not possible to predict a shape transition having a strong correlation with the conditional attribute, for example, the workpiece polished immediately before polishing of the workpiece Wα being polished (for example, one batch before) From the shape transition, it is possible to predict the shape transition of the workpiece Wα being polished after a certain point in the current batch showing the shape transition having the same tendency as the current batch. That is, in the polishing apparatus 1 according to the first embodiment, for example, a workpiece that is polished one batch before the workpiece Wα being polished is employed as the selected master. Then, by comparing the time series change of the selected master with the time series change of the shape information of the third work W3 and the fourth work W4, the polishing machine 10 used in the current batch or a batch performed before and after the batch. Can be estimated.

つまり、実施例1の研磨装置1では、「ワーク周縁部が反りにくい条件的属性」の研磨機10で研磨加工を行うときには、研磨段階Bのときに「中央部の突出が浅くなっても外周領域のタチが出にくいので、研磨段階Cまで研磨加工した方がよい」と判定できる。一方、「ワーク周縁部が反りやすい条件的属性」の研磨機10で研磨加工を行うときには、研磨段階Bのときに「研磨加工の進行に伴って外周領域にタチが進んでしまうので、研磨段階Cまで研磨するよりも研磨段階Bで研磨加工を停止した方がよい」と判定できる。このように、実施例1の研磨装置1は、ユーザーによって選択された研磨機10の条件的属性、或いは与えられた研磨機10の条件的属性に応じて研磨停止の最良タイミングを適切に判定し、所望のワーク形状に研磨することができる。   That is, in the polishing apparatus 1 according to the first embodiment, when polishing is performed with the polishing machine 10 having the “conditional attribute that the peripheral edge of the workpiece is less likely to warp”, the “periphery even when the protrusion at the center portion becomes shallower” at the polishing stage B. Since it is difficult for the region to come out, it is better to perform polishing until the polishing stage C ”. On the other hand, when performing the polishing process with the polishing machine 10 having the “conditional attribute that the peripheral edge of the workpiece is likely to warp”, the polishing process proceeds to the outer peripheral region as the polishing process progresses. It is better to stop the polishing process at the polishing stage B than to polish to C ”. As described above, the polishing apparatus 1 according to the first embodiment appropriately determines the best timing of polishing stop according to the conditional attribute of the polishing machine 10 selected by the user or the given conditional attribute of the polishing machine 10. , And can be polished into a desired workpiece shape.

[形状推移の予測精度向上作用]
実施例1の研磨装置1では、ワークWの形状情報に対して、当該ワークWの研磨時の条件的属性を紐づけてメモリ30に記憶する。そして、研磨中ワークWαの条件的属性にマッチする条件的属性に紐づけられた選択マスターの形状情報をメモリ30から抽出し、この抽出された選択マスターの形状情報に基づいて第2描画P2を生成する。
[Prediction accuracy improvement effect of shape transition]
In the polishing apparatus 1 according to the first embodiment, the condition information at the time of polishing the workpiece W is associated with the shape information of the workpiece W and stored in the memory 30. Then, the shape information of the selected master associated with the conditional attribute that matches the conditional attribute of the workpiece Wα being polished is extracted from the memory 30, and the second drawing P2 is drawn based on the extracted shape information of the selected master. Generate.

そのため、第2描画P2によって示される選択マスターの形状推移は、研磨中ワークWαにおける条件的属性と形状推移との相関を反映したものとなる。そして、このような第2描画P2を第1描画P1と同時に表示することで、これらの描画をモニタリングしたユーザーによる研磨中ワークWαの形状推移の予測精度を向上することができる。   Therefore, the shape transition of the selected master indicated by the second drawing P2 reflects the correlation between the conditional attribute and the shape transition in the workpiece Wα being polished. And by displaying such 2nd drawing P2 simultaneously with 1st drawing P1, the prediction precision of the shape transition of workpiece | work Wα in grinding | polishing by the user who monitored these drawing can be improved.

また、選択マスターの形状情報として、ワークWを研磨加工した際の条件的属性とワークWの形状情報との間の相関度の学習結果に基づいて生成したワーク形状パターン(典型的な形状情報)を用いた場合では、選択マスターの形状情報として、形状参考ワークWβの形状情報を用いた場合よりも、第2描画P2によって示されるワーク形状の推移精度を向上することができる。そのため、研磨中ワークWαの形状推移の予測をより正確に行い、さらに適切なタイミングで研磨停止を行うことが可能となる。   In addition, as shape information of the selected master, a workpiece shape pattern (typical shape information) generated based on the learning result of the degree of correlation between the conditional attribute when the workpiece W is polished and the shape information of the workpiece W Can be used to improve the transition accuracy of the workpiece shape indicated by the second drawing P2 as compared with the case where the shape information of the shape reference workpiece Wβ is used as the shape information of the selected master. Therefore, it is possible to more accurately predict the shape transition of the workpiece Wα being polished, and to stop polishing at an appropriate timing.

また、実施例1では、形状推移予測部57が機械学習機能を備え、データベース化された形状推移予測パターンを機械学習的に随時更新する。これにより、研磨中ワークWαの現時点以降の形状推移予測は、自動的により正確になっていく。   In the first embodiment, the shape transition prediction unit 57 has a machine learning function, and updates the shape transition prediction pattern stored in the database as needed by machine learning. As a result, the shape transition prediction of the workpiece Wα being polished after the current time becomes automatically more accurate.

さらに、形状推移の予測精度が向上することで、ワーク形状の推移の予測に基づいて研磨中ワークWαの状態判定を行う際、ワーク状態の判定をより適切に行うことができる。この結果、より高精度に最適なタイミングでの研磨停止を行うことが可能となる。   Furthermore, by improving the prediction accuracy of the shape transition, when the state determination of the workpiece Wα being polished is performed based on the prediction of the workpiece shape transition, it is possible to more appropriately determine the workpiece state. As a result, it is possible to stop polishing at an optimal timing with higher accuracy.

次に、効果を説明する。
実施例1の研磨装置1にあっては、下記に列挙する効果を得ることができる。
Next, the effect will be described.
In the polishing apparatus 1 of Example 1, the effects listed below can be obtained.

(1) 回転する定盤(下定盤11及び上定盤12)によってワークWを研磨する研磨機10と、
定盤(上定盤12)に形成された測定孔19を介してワークWの形状を測定する形状測定器20と、
形状測定器20によって測定されたワークWの形状情報を記憶するメモリ30と、
形状測定器20によって測定されたワークWの形状情報を表示する表示器40と、
表示器40の表示内容を制御する制御部50と、を備え、
制御部50は、形状測定器20によって測定された現在研磨中のワークである研磨中ワークWαの形状描画を時系列で並べた第1描画P1を生成し、この第1描画P1を表示器40に表示させる構成とした。
これにより、研磨中ワークWαの形状変化の推移に基づき、所望のワーク形状になったタイミング或いは所望のワーク形状になるタイミングで研磨中ワークWαの研磨加工を停止できる。
(1) a polishing machine 10 for polishing a workpiece W by rotating surface plates (lower surface plate 11 and upper surface plate 12);
A shape measuring instrument 20 for measuring the shape of the workpiece W through a measurement hole 19 formed in the surface plate (upper surface plate 12);
A memory 30 for storing shape information of the workpiece W measured by the shape measuring instrument 20;
A display 40 for displaying the shape information of the workpiece W measured by the shape measuring instrument 20;
A control unit 50 for controlling the display content of the display 40,
The control unit 50 generates a first drawing P1 in which the shape drawing of the workpiece Wα being polished, which is the workpiece currently being polished, measured by the shape measuring instrument 20 is arranged in time series, and the display unit 40 displays the first drawing P1. It was set as the structure displayed on.
Thereby, based on the transition of the shape change of the workpiece Wα being polished, the polishing process of the workpiece Wα being polished can be stopped at the timing when the desired workpiece shape is reached or when the desired workpiece shape is reached.

(2) メモリ30は、ワークWの形状情報に、このワークWを研磨加工した際の条件的属性を紐づけて記憶し、
制御部50は、研磨中ワークWαの形状情報の時系列変化と、研磨中ワークWαの条件的属性にマッチする条件的属性に紐づけられた形状情報(選択マスターの形状情報)の時系列変化との比較演算の結果に基づいて研磨中ワークWαの形状推移を予測し、この研磨中ワークWαの形状推移の予測に基づいて研磨中ワークWαの状態判定を行う構成とした。
これにより、研磨中ワークWαの形状推移の予測精度を向上させて状態判定を適切に行うことができ、研磨中ワークWαが所望の形状になった最適なタイミング、或いは研磨中ワークWαが所望の形状になる最適なタイミングで研磨加工を停止することができる。
(2) The memory 30 stores the shape information of the workpiece W in association with the conditional attributes when the workpiece W is polished,
The control unit 50 changes the time series of the shape information of the workpiece Wα being polished and the time series change of the shape information (the shape information of the selected master) associated with the conditional attribute that matches the conditional attribute of the workpiece Wα being polished. The shape transition of the workpiece Wα being polished is predicted on the basis of the result of the comparison calculation, and the state determination of the workpiece Wα being polished is performed based on the prediction of the shape transition of the workpiece Wα being polished.
As a result, it is possible to improve the prediction accuracy of the shape transition of the workpiece Wα being polished and to appropriately perform the state determination. The optimum timing at which the workpiece Wα is in a desired shape or the workpiece Wα being polished is desired. The polishing process can be stopped at the optimal timing for forming the shape.

(3) 回転する定盤(下定盤11及び上定盤12)によってワークWを研磨する研磨機10と、
定盤(上定盤12)に形成された測定孔19を介してワークWの形状を測定する形状測定器20と、
形状測定器20によって測定されたワークWの形状情報を記憶するメモリ30と、
形状測定器20によって測定されたワークWの形状情報を表示する表示器40と、
表示器40の表示内容を制御する制御部50と、を備え、
制御部50は、形状測定器20によって測定された現在研磨中のワークである研磨中ワークWαの形状描画を時系列で並べた第1描画P1と、研磨中ワークWαの研磨以前に研磨加工されたワーク(選択マスター)の形状描画を時系列で並べた第2描画P2と、を生成し、第1描画P1及び第2描画P2とを同時に表示器40に表示させる構成とした。
これにより、研磨中ワークWαの形状変化の推移に基づき、所望のワーク形状になったタイミング或いは研磨中ワークWαが所望の形状になるタイミングで研磨中ワークWαの研磨加工を停止できる。
(3) a polishing machine 10 for polishing the workpiece W by rotating surface plates (lower surface plate 11 and upper surface plate 12);
A shape measuring instrument 20 for measuring the shape of the workpiece W through a measurement hole 19 formed in the surface plate (upper surface plate 12);
A memory 30 for storing shape information of the workpiece W measured by the shape measuring instrument 20;
A display 40 for displaying the shape information of the workpiece W measured by the shape measuring instrument 20;
A control unit 50 for controlling the display content of the display 40,
The control unit 50 performs the polishing process before the polishing of the workpiece Wα being polished, and the first drawing P1 in which the shape drawing of the workpiece Wα being polished, which is the workpiece currently being polished, measured by the shape measuring instrument 20 is arranged in time series. The second drawing P2 in which the shape drawing of the workpiece (selected master) is arranged in time series is generated, and the first drawing P1 and the second drawing P2 are simultaneously displayed on the display 40.
Thereby, based on the transition of the shape change of the workpiece Wα being polished, the polishing process of the workpiece Wα being polished can be stopped at the timing when the workpiece shape becomes a desired shape or the timing when the workpiece Wα being polished becomes a desired shape.

(4) メモリ30は、ワークWの形状情報に、このワークWを研磨加工した際の条件的属性を紐づけて記憶し、
制御部50は、研磨中ワークWαの条件的属性にマッチする条件的属性に紐づけられたワーク(選択マスター)の形状情報に基づいて第2描画P2を生成する構成とした。
これにより、研磨中ワークWαの形状推移の予測精度の向上を図ることができる。
(4) The memory 30 stores the shape information of the workpiece W in association with the conditional attributes when the workpiece W is polished,
The control unit 50 is configured to generate the second drawing P2 based on the shape information of the workpiece (selected master) associated with the conditional attribute that matches the conditional attribute of the workpiece Wα being polished.
Thereby, the prediction accuracy of the shape transition of the workpiece Wα being polished can be improved.

(5) 制御部50は、ワークWを研磨加工した際の条件的属性とワークWの形状情報との相関度に基づいて生成したワーク形状パターン(典型的な形状情報)に基づいて第2描画P2を生成する。
これにより、第2描画P2によって示されるワーク形状の推移精度を向上させ、研磨中ワークWαの形状推移の予測をより正確に行うことができる。
(5) The control unit 50 performs the second drawing based on the workpiece shape pattern (typical shape information) generated based on the degree of correlation between the conditional attribute when the workpiece W is polished and the shape information of the workpiece W. P2 is generated.
Thereby, the transition accuracy of the workpiece shape indicated by the second drawing P2 can be improved, and the shape transition of the workpiece Wα being polished can be predicted more accurately.

(6) メモリ30は、ワークWの形状情報に、このワークWを研磨加工した際の条件的属性を紐づけて記憶し、
制御部50は、研磨中ワークWαの形状情報の時系列変化と、研磨中ワークWαの条件的属性にマッチする条件的属性に紐づけられた形状情報(選択マスターの形状情報)の時系列変化との比較演算の結果に基づいて研磨中ワークWαの形状推移を予測し、この研磨中ワークWαの形状推移の予測に基づいて研磨中ワークWαの状態判定を行う構成とした。
これにより、研磨中ワークWαの形状推移の予測精度を向上させて状態判定を適切に行うことができ、研磨中ワークWαが所望の形状になった、或いは研磨中ワークWαが所望の形状になる最適なタイミングで研磨加工を停止することができる。
(6) The memory 30 stores the shape information of the workpiece W in association with the conditional attributes when the workpiece W is polished,
The control unit 50 changes the time series of the shape information of the workpiece Wα being polished and the time series change of the shape information (the shape information of the selected master) associated with the conditional attribute that matches the conditional attribute of the workpiece Wα being polished. The shape transition of the workpiece Wα being polished is predicted on the basis of the result of the comparison calculation, and the state determination of the workpiece Wα being polished is performed based on the prediction of the shape transition of the workpiece Wα being polished.
Thereby, the prediction accuracy of the shape transition of the workpiece Wα being polished can be improved and the state determination can be appropriately performed, and the workpiece Wα being polished has a desired shape, or the workpiece Wα being polished has a desired shape. The polishing process can be stopped at an optimal timing.

(7) 制御部50は、研磨中ワークWαの状態判定の結果、研磨中ワークWαの研磨加工を停止すると判定したとき、研磨中ワークWαの研磨加工を停止させると共に、研磨中ワークWαの研磨加工を停止判定したことを報知する構成とした。
これにより、研磨中ワークWαの研磨停止を適切なタイミングで自動的に行うと共に、研磨機10のユーザーに研磨加工の停止を報知することができる。
(7) As a result of determining the state of the workpiece Wα being polished, the control unit 50 stops the polishing process of the workpiece Wα being polished and also polishes the workpiece Wα being polished. It was set as the structure which alert | reports that the process stop determination was carried out.
Accordingly, it is possible to automatically stop the polishing of the workpiece Wα during polishing at an appropriate timing and notify the user of the polishing machine 10 of the stop of the polishing process.

(実施例2)
実施例2の研磨装置は、研磨中ワークWαの最終的なワーク形状が二次的に許容可能なワーク形状になったときの責任パラメータを特定すると共に、当該責任パラメータを報知する例である。以下、実施例2の研磨装置を説明する。なお、実施例1の研磨装置1と同等の構成については、実施例1と同一の符号を付し、詳細な説明を省略する。
(Example 2)
The polishing apparatus according to the second embodiment is an example in which a responsibility parameter is specified when the final workpiece shape of the workpiece Wα being polished becomes a second acceptable workpiece shape, and the responsibility parameter is notified. Hereinafter, the polishing apparatus of Example 2 will be described. In addition, about the structure equivalent to the grinding | polishing apparatus 1 of Example 1, the code | symbol same as Example 1 is attached | subjected and detailed description is abbreviate | omitted.

実施例2の研磨装置1Aでは、図11に示すように、制御部50Aの制御演算部51Aが、第1描画生成部54と、第2描画生成部55と、表示制御部56Aと、形状推移予測部57Aと、状態判定部58Aと、パラメータ特定部59と、相関度データ処理部60と、を有している。   In the polishing apparatus 1A according to the second embodiment, as illustrated in FIG. 11, the control calculation unit 51A of the control unit 50A includes a first drawing generation unit 54, a second drawing generation unit 55, a display control unit 56A, and a shape transition. A prediction unit 57A, a state determination unit 58A, a parameter specifying unit 59, and a correlation data processing unit 60 are included.

実施例2の形状推移予測部57Aでは、研磨中ワークWαの形状情報の時系列変化と、選択マスターの形状情報の時系列変化とを比較演算し、この比較演算の結果に基づいて、研磨中ワークWαの今後の形状推移を予測する。さらに、この形状推移予測部57Aでは、研磨中ワークWαの今後の形状推移の予測に基づき、相関度データ処理部60の支援を必要に応じて受けながら、研磨中ワークWαの最終的なワーク形状(以下、「最終ワーク形状」という)が、所望のワーク形状になり得るか否かについて予測する。   In the shape transition prediction unit 57A of the second embodiment, the time series change of the shape information of the workpiece Wα being polished is compared with the time series change of the shape information of the selected master, and based on the result of this comparison calculation, the polishing is in progress. Predict the future shape transition of the workpiece Wα. Further, in this shape transition prediction unit 57A, the final workpiece shape of the workpiece Wα being polished is received based on the prediction of the future shape transition of the workpiece Wα being polished as needed with the support of the correlation data processing unit 60. (Hereinafter referred to as “final workpiece shape”) predicts whether or not the desired workpiece shape can be obtained.

ここで、「所望のワーク形状(以下、「所望状態」という)」とは、予め設定した第1形状条件を満足する形状である。一方、最終ワーク形状が所望状態になり得ないと予測した場合には、形状推移予測部57Aは、相関度データ処理部60の支援を必要に応じて受けながら、最終ワーク形状が二次的に許容可能なワーク形状になり得るか否かについて予測する。なお、「二次的に許容可能なワーク形状(以下、「二次的許容状態」という)」とは、最終ワーク形状が所望状態になり得ない、つまり、研磨加工を継続しても第1形状条件を満足しない、と判定したときに設定される第2形状条件を満足する形状である。   Here, the “desired workpiece shape (hereinafter referred to as“ desired state ”)” is a shape that satisfies a preset first shape condition. On the other hand, when it is predicted that the final workpiece shape cannot be in the desired state, the shape transition prediction unit 57A receives the support of the correlation degree data processing unit 60 as necessary, and the final workpiece shape is secondarily. Predict whether an acceptable workpiece shape can be achieved. The “secondarily acceptable work shape (hereinafter referred to as“ secondary acceptable state ”)” means that the final work shape cannot be in a desired state, that is, the first work shape is continued even if polishing is continued. The shape satisfies the second shape condition set when it is determined that the shape condition is not satisfied.

実施例2の状態判定部58Aでは、形状推移予測部57Aにて予測した研磨中ワークWαの今後の形状推移に基づき、研磨中ワークWαの現在の研磨状態を判定する。ここで、この状態判定部58Aによって判定される「研磨状態」には、研磨中ワークWαのワーク形状が所望状態に達した第1研磨停止状態や、研磨中ワークWαのワーク形状が二次的許容状態に達した第2研磨停止状態、即時の研磨停止が必要な第3研磨停止状態、研磨機10による研磨加工の継続が必要な研磨継続状態、等が含まれる。   The state determination unit 58A according to the second embodiment determines the current polishing state of the workpiece Wα being polished based on the future shape transition of the workpiece Wα being polished predicted by the shape transition prediction unit 57A. Here, in the “polishing state” determined by the state determining unit 58A, the first polishing stopped state in which the workpiece shape of the workpiece Wα being polished has reached a desired state, or the workpiece shape of the workpiece Wα being polished is secondary. The second polishing stopped state that has reached the allowable state, the third polishing stopped state that requires immediate polishing stop, the polishing continued state that requires continuation of polishing by the polishing machine 10, and the like are included.

パラメータ特定部59では、形状推移予測部57Aにて最終ワーク形状が二次的許容状態になり得ると判定されたとき、研磨中ワークWαの最終ワーク形状が二次的許容状態となってしまう(所望状態になり得ない)ことに対して相関度が高い条件的属性(以下、「責任パラメータ」という)を特定する。また、このパラメータ特定部59では、責任パラメータを相関度強度が高い順に列挙してもよい。   In the parameter specifying unit 59, when the shape transition predicting unit 57A determines that the final workpiece shape can be in the secondary allowable state, the final workpiece shape of the workpiece Wα being polished is in the secondary allowable state ( A conditional attribute (hereinafter referred to as “responsibility parameter”) having a high degree of correlation is specified. The parameter specifying unit 59 may enumerate responsibility parameters in descending order of correlation strength.

このパラメータ特定部59による責任パラメータの特定は、例えば以下の手順で行う。すなわち、相関度データ処理部60によって探索され、メモリ30に記憶されたワーク形状の異常状態と相関度強度の高い条件的属性のデータと、二次的許容状態になり得ると判定された研磨中ワークWαの条件的属性とを照合する。そして、相関度強度が相対的に高い条件的属性を「責任パラメータ」として特定する。なお、この責任パラメータは、一つであってもよいし、複数であってもよい。   The responsibility parameter is specified by the parameter specifying unit 59, for example, in the following procedure. That is, the correlation data processing unit 60 searches for the abnormal state of the workpiece shape stored in the memory 30 and the condition attribute data having a high correlation strength, and is determined to be in the secondary allowable state. The condition attribute of the work Wα is checked. Then, a conditional attribute having a relatively high correlation strength is specified as a “responsibility parameter”. The responsibility parameter may be one or plural.

また、パラメータ特定部59による責任パラメータの相関度強度の高さ順の列挙は、例えば以下の手順で行う。すなわち、ワーク形状の異常状態と相関度強度の高い条件的属性のデータと、二次的許容状態になり得ると判定された研磨中ワークWαの条件的属性とを照合する。そして、相関度強度が相対的に高い順に条件的属性を複数選択し、選択した順に責任パラメータを列挙する。なお、選択する条件的属性の数は二つ以上であればよい。   In addition, the parameter specification unit 59 enumerates the responsibility parameters in the order of the degree of correlation degree strength, for example, in the following procedure. That is, the abnormal state of the workpiece shape and the data of the conditional attribute having a high correlation strength are collated with the conditional attribute of the workpiece Wα being polished that has been determined to be in the secondary allowable state. Then, a plurality of conditional attributes are selected in descending order of correlation strength, and responsibility parameters are listed in the selected order. Note that the number of conditional attributes to be selected may be two or more.

なお、研磨パッド上の温度分布のデータや、ベアリングの振動や温度のデータ等、ワークWの研磨中に監視している状態情報の異常と、ワーク形状の異常状態との相関を分析することも可能である。そのため、単一のワーク形状推移だけでなく、多数のバッチをまたぐワーク形状推移のトレンドと、条件的属性の推移トレンド間の相関を監視することで、責任パラメータや、責任パラメータの相関度強度の特定精度を向上することができる。なお、これらの相関分析とそれに基づく予測モデルの更新や、予測精度の随時更新には、多変量解析や人工知能(機械学習、ディープラーニング)等を用いることができる。   It is also possible to analyze the correlation between the abnormal state information monitored during polishing of the workpiece W, such as temperature distribution data on the polishing pad, bearing vibration and temperature data, and the abnormal state of the workpiece shape. Is possible. Therefore, by monitoring the correlation between not only a single workpiece shape transition but also a workpiece shape transition trend across multiple batches and a conditional attribute transition trend, the responsibility parameters and the correlation strength of the responsibility parameters Specific accuracy can be improved. Note that multivariate analysis, artificial intelligence (machine learning, deep learning), or the like can be used to update these correlation analyzes, prediction models based on the correlation analysis, and update prediction accuracy as needed.

そして、実施例2の表示制御部56Aでは、研磨停止判定を行った旨を表示器40の画面40aに表示させる制御指令を表示器40に出力するとき、状態判定部58Aが「第1研磨停止状態」と判定した場合には、ワーク形状が所望状態である旨を表示させる制御指令を出力する。また、状態判定部58Aが「第2研磨停止状態」と判定した場合には、ワーク形状が二次的許容状態である旨と、パラメータ特定部59によって特定された責任パラメータの情報、又は相関度強度が高い順に列挙された責任パラメータの情報とを表示させる制御指令を出力する。さらに、状態判定部58Aが「第3研磨停止状態」と判定された場合には、ワーク形状が許容外形状である旨を表示させる制御指令を出力する。   Then, in the display control unit 56A of the second embodiment, when the control command to display on the screen 40a of the display 40 that the polishing stop determination has been performed is output to the display 40, the state determination unit 58A causes the “first polishing stop” to be displayed. When it is determined as “state”, a control command for displaying that the workpiece shape is in a desired state is output. When the state determination unit 58A determines that the state is the “second polishing stop state”, the fact that the workpiece shape is a secondary allowable state, information on the responsibility parameter specified by the parameter specification unit 59, or the degree of correlation A control command for displaying information on responsibility parameters listed in descending order of strength is output. Furthermore, when the state determination unit 58A determines that the state is the “third polishing stopped state”, a control command for displaying that the workpiece shape is an unacceptable shape is output.

相関度データ処理部60は、ワークWの条件的属性と、研磨時のワークWの形状推移及び最終ワーク形状との相関度強度の探索を実行する。この相関度データ処理部60による相関度強度の探索は、例えば以下の手順で行う。   The correlation data processing unit 60 searches for the correlation strength between the conditional attribute of the workpiece W, the shape transition of the workpiece W during polishing, and the final workpiece shape. The search for the correlation strength by the correlation data processing unit 60 is performed by the following procedure, for example.

すなわち、過去に行ったワークWの研磨結果に基づいて、所定の条件的属性についての異常(例えばスラリ流量の不連続)が生じた場合の異常の状態認識と、研磨中ワークWαのワーク形状が二次的許容状態になる場合の形状推移(以下、「ワーク形状の異常状態」という)との関係をそれぞれ演算的に求める。なお、例えばスラリ流量の不連続の状態認識は、スラリ流量が所定値を下回った時間の長さを閾値と比較することによって行う。   That is, based on the polishing result of the workpiece W performed in the past, the abnormality state recognition when an abnormality (for example, discontinuity of the slurry flow rate) occurs with respect to a predetermined conditional attribute, and the workpiece shape of the workpiece Wα being polished is determined. The relationship with the shape transition in the secondary allowable state (hereinafter referred to as “work shape abnormal state”) is calculated computationally. For example, the discontinuity of the slurry flow rate is recognized by comparing the length of time that the slurry flow rate is below a predetermined value with a threshold value.

そして、ワーク形状の異常状態が生じたときの条件的属性ごとに、ワーク形状の異常状態との相関度強度を、例えば回帰分析によって相関係数を算出するなどして探索する。また、過去に行ったワークWの研磨結果から、所定の条件的属性と、そのときのワークWの形状推移との関係を求める。そして、この所定の条件的属性とワーク形状推移との関係に基づき、研磨加工に伴う所望の形状推移や所望の最終ワーク形状と、実際の形状推移や最終ワーク形状との乖離が生じる原因として疑わしいパラメータを特定することで、条件的属性とワーク形状推移及び最終ワーク形状との相関度強度を探索してもよい。この相関度強度データは、特定した異常の状態の認識及び条件的属性と関連付けてメモリ30に記憶される。   Then, for each conditional attribute when an abnormal state of the workpiece shape occurs, a search is made for the strength of correlation with the abnormal state of the workpiece shape, for example, by calculating a correlation coefficient by regression analysis. Further, the relationship between a predetermined conditional attribute and the shape transition of the workpiece W at that time is obtained from the polishing result of the workpiece W performed in the past. And based on the relationship between this predetermined conditional attribute and the workpiece shape transition, it is doubtful that the desired shape transition and the desired final workpiece shape accompanying the polishing process are different from the actual shape transition and the final workpiece shape. By specifying the parameter, the correlation strength between the conditional attribute, the workpiece shape transition, and the final workpiece shape may be searched. The correlation strength data is stored in the memory 30 in association with the recognition of the specified abnormal state and the conditional attribute.

なお、この相関度データ処理部60は、ワークWの条件的属性と、研磨時のワークWの形状推移及び最終ワーク形状との相関度強度の探索を専用に行う専用演算部である。そのため、この相関度データ処理部60は、ワークWの研磨加工中か否かを問わずに、相関度探索の演算を実行することができる。   The correlation degree data processing unit 60 is a dedicated arithmetic unit that exclusively searches for the degree of correlation between the conditional attributes of the workpiece W, the shape transition of the workpiece W during polishing, and the final workpiece shape. Therefore, the correlation degree data processing unit 60 can execute a correlation degree search calculation regardless of whether or not the workpiece W is being polished.

次に、図12に示すフローチャートを用いて、実施例2の研磨装置1Aにて実行される研磨停止判定処理を説明する。実施例1における研磨停止判定処理と同一の処理は、実施例1と同一の符号を付し、詳細な説明を省略する。なお、実施例2の研磨装置1Aにおいても、図12に示す研磨停止判定処理と並行して第2描画P2を生成する第2描画生成処理を実行する。実施例2にて実行される研磨停止判定処理では、第2描画生成処理によって生成された第2描画P2を必要なタイミング(ステップS4)で読み込む。   Next, a polishing stop determination process executed by the polishing apparatus 1A of the second embodiment will be described using the flowchart shown in FIG. The same processes as the polishing stop determination process in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and detailed description thereof is omitted. Also in the polishing apparatus 1A of the second embodiment, the second drawing generation process for generating the second drawing P2 is executed in parallel with the polishing stop determination process shown in FIG. In the polishing stop determination process executed in the second embodiment, the second drawing P2 generated by the second drawing generation process is read at a necessary timing (step S4).

実施例2にて実行される研磨停止判定処理では、ステップS6において選択マスターの形状情報の時系列変化と、研磨中ワークWαの形状情報の時系列変化とを比較演算する。そして、この比較演算結果から研磨中ワークWαの今後の形状推移を予測すると、ステップS61へと進む。   In the polishing stop determination process executed in the second embodiment, the time series change of the shape information of the selected master and the time series change of the shape information of the workpiece Wα being polished are compared in step S6. If the future shape transition of the workpiece Wα being polished is predicted from the comparison calculation result, the process proceeds to step S61.

ステップS61では、研磨中ワークWαの今後の形状推移の予測に基づき、研磨中ワークWαの最終ワーク形状が所望のワーク形状になり得るか否かを判定する。YES(所望状態になり得る)の場合にはステップS71へ進む。NO(所望状態になり得ない)の場合にはステップS62へ進む。   In step S61, it is determined whether or not the final workpiece shape of the workpiece Wα being polished can be a desired workpiece shape based on the prediction of the future shape transition of the workpiece Wα being polished. If YES (can be in a desired state), the process proceeds to step S71. If NO (cannot be in the desired state), the process proceeds to step S62.

ステップS62では、ステップS61での最終ワーク形状が所望状態になり得ないとの判定に続き、研磨中ワークWαの今後の形状推移の予測に基づき、研磨中ワークWαの最終ワーク形状が二次的に許容可能なワーク形状になり得るか否かを判定する。YES(二次的許容状態になり得る)の場合には、研磨加工を続行すると共にステップS63へ進む。NO(二次的許容状態になり得ない)の場合にはステップS71へ進む。   In step S62, following the determination that the final workpiece shape cannot be in the desired state in step S61, the final workpiece shape of the workpiece Wα being polished is secondary based on the prediction of the future shape transition of the workpiece Wα being polished. It is determined whether or not the workpiece shape can be acceptable. In the case of YES (which can be a secondary permissible state), the polishing process is continued and the process proceeds to step S63. If NO (cannot be in a secondary allowable state), the process proceeds to step S71.

ステップS63では、ステップS62での最終ワーク形状が二次的許容状態になり得るとの判定に続き、研磨中ワークWαの最終ワーク形状が二次的許容状態となってしまうことに対して相関度が高い条件的属性である責任パラメータを特定、又は相関度強度が高い順に責任パラメータを列挙し、ステップS71へ進む。   In step S63, following the determination that the final workpiece shape can be in the secondary allowable state in step S62, the degree of correlation with respect to the final workpiece shape of the workpiece Wα being polished in the secondary allowable state. The responsibility parameters having high conditional attributes are identified, or the responsibility parameters are listed in descending order of correlation strength, and the process proceeds to step S71.

ステップS71では、ステップS61での最終ワーク形状が所望状態になり得るとの判定、ステップS62での最終ワーク形状が所望状態及び二次的許容状態のいずれにもなり得ないとの判定、ステップS63での責任パラメータの特定、又は相関度強度が高い順の責任パラメータの列挙のいずれかに続き、研磨中ワークWαの今後の形状推移の予測に基づいて研磨中ワークWαの研磨状態を判定し、ステップS81へ進む。
ここで、研磨中ワークWαの研磨状態は、研磨中ワークWαのワーク形状が所望状態に達した「第1研磨停止状態」、研磨中ワークWαのワーク形状が二次的許容状態に達した「第2研磨停止状態」、直ちに研磨加工を停止する「第3研磨停止状態」、研磨加工の継続が必要な「研磨継続状態」のいずれかに判定される。
In step S71, it is determined that the final workpiece shape in step S61 can be in a desired state, and it is determined in step S62 that the final workpiece shape cannot be in either a desired state or a secondary allowable state, step S63. In accordance with either the identification of the responsibility parameters in the above or enumeration of the responsibility parameters in the order of high correlation strength, the polishing state of the workpiece Wα being polished is determined based on the prediction of the future shape transition of the workpiece Wα being polished, Proceed to step S81.
Here, the polishing state of the workpiece Wα being polished is the “first polishing stop state” in which the workpiece shape of the workpiece Wα being polished has reached a desired state, and the workpiece shape of the workpiece Wα being polished has reached a secondary allowable state. The determination is made as one of “second polishing stopped state”, “third polishing stopped state” in which the polishing process is immediately stopped, and “polishing continued state” in which the polishing process needs to be continued.

なお、「第1研磨停止状態」か否かの判定は、ステップS61にて最終ワーク形状が所望状態になり得るとの判定がなされたときに行われる。また「第2研磨停止状態」か否か判定は、ステップS63にて責任パラメータの特定、又は相関度強度が高い順に責任パラメータの列挙がなされたときに行われる。また、「第3研磨停止状態」との判定は、ステップS62にて最終ワーク形状が所望状態及び二次的許容状態のいずれにもなり得ないと判定されたときに行われる。さらに「研磨継続状態」との判定は、最終ワーク形状が所望状態又は二次的許容状態のいずれかになると判定されたものの、研磨中ワークWαの現在のワーク形状が所望状態又は二次的許容状態に達していないときに行われる。   The determination as to whether or not the “first polishing stop state” is made is made when it is determined in step S61 that the final workpiece shape can be in a desired state. The determination as to whether or not the state is the “second polishing stop state” is made when the responsibility parameters are specified or the responsibility parameters are listed in descending order of correlation strength in step S63. The determination of “third polishing stopped state” is performed when it is determined in step S62 that the final workpiece shape cannot be in either the desired state or the secondary allowable state. Furthermore, although it is determined that the final workpiece shape is either a desired state or a secondary permissible state, the current work shape of the workpiece Wα being polished is a desired state or a secondary permissible state. Performed when the state has not been reached.

ステップS81では、ステップS71での研磨中ワークWαの研磨状態の判定に続き、このステップS71にて実施した研磨状態の判定に基づいて、研磨機10による研磨中ワークWαの研磨加工を停止するか否かを判定する。YES(研磨停止)の場合にはステップS91へ進む。NO(研磨継続)の場合にはステップS2へ戻る。
ここで、研磨中ワークWαの研磨停止との判定は、ステップS71にて「第1研磨停止状態」、「第2研磨停止状態」、「第3研磨停止状態」のいずれかの判定がなされたときに行われる。
In step S81, following the determination of the polishing state of the workpiece Wα being polished in step S71, whether the polishing of the workpiece Wα being polished by the polishing machine 10 is stopped based on the determination of the polishing state performed in step S71. Determine whether or not. If YES (stop polishing), the process proceeds to step S91. If NO (continuous polishing), the process returns to step S2.
Here, the determination of the polishing stop of the workpiece Wα being polished is made in step S71 as one of “first polishing stopped state”, “second polishing stopped state”, and “third polishing stopped state”. Sometimes done.

ステップS91では、ステップS81での研磨停止の判断に続き、表示器40の画面40a上に研磨中ワークWαの研磨停止を判定した旨と共に研磨中ワークWαの状態を表示させる制御指令を表示器40に出力し、研磨停止判定を報知してステップS10へ進む。
ここで、ステップS71にて「第1研磨停止状態」との判定がなされた場合には、研磨停止を判定した旨と共に研磨中ワークWαが「所望状態」であることを表示させる制御指令を出力する。また、ステップS71にて「第2研磨停止状態」との判定がなされた場合には、研磨停止を判定した旨と共に研磨中ワークWαが「二次的許容状態」であることを表示させる制御指令を出力する。さらに、ステップS71にて「第3研磨停止状態」との判定がなされた場合には、研磨停止を判定した旨と共に研磨中ワークWαが、所望状態及び二次的許容状態のいずれでもないことを意味する「許容外形状」であることを表示させる制御指令を出力する。
In step S91, following the determination of polishing stop in step S81, the display 40 displays a control command for displaying the state of the workpiece Wα being polished on the screen 40a of the display 40 as well as determining that polishing of the workpiece Wα is being polished. Is output, the polishing stop determination is notified, and the process proceeds to step S10.
Here, when it is determined that the “first polishing stop state” is made in step S71, a control command for displaying that the polishing stop is determined and that the workpiece Wα being polished is in the “desired state” is output. To do. If it is determined in step S71 that the state is “second polishing stop state”, a control command for displaying that the polishing stop is determined and that the workpiece Wα being polished is in the “secondary allowable state”. Is output. Furthermore, when it is determined in step S71 that the state is the “third polishing stop state”, it is determined that the polishing stop is determined and the workpiece Wα being polished is neither in the desired state nor in the secondary allowable state. A control command for displaying the meaning of “unacceptable shape” is output.

次に、実施例2の研磨装置1Aの作用を説明する。
実施例2の研磨装置1Aでは、研磨機10によってワークWの研磨加工を実行したとき、実施例1と同様に第1描画P1及び第2描画P2を表示器40の画面40aに表示させる。その後、図12のフローチャートに示すステップS6、ステップS61の各処理を順に行う。つまり、形状推移予測部57Aは、研磨中ワークWαの形状情報の時系列変化と、選択マスターの形状情報の時系列変化とを比較演算し、その結果に基づいて研磨中ワークWαの今後の形状推移を予測する。そして、この形状推移の予測に基づき、最終ワーク形状が所望状態になり得るか否かを判定する。
Next, the operation of the polishing apparatus 1A of Example 2 will be described.
In the polishing apparatus 1A according to the second embodiment, when the workpiece W is polished by the polishing machine 10, the first drawing P1 and the second drawing P2 are displayed on the screen 40a of the display 40 as in the first embodiment. Then, each process of step S6 and step S61 shown in the flowchart of FIG. That is, the shape transition predicting unit 57A compares the time series change of the shape information of the workpiece Wα being polished with the time series change of the shape information of the selected master, and based on the result, the future shape of the workpiece Wα being polished is calculated. Predict the transition. Then, based on the prediction of the shape transition, it is determined whether or not the final workpiece shape can be in a desired state.

最終ワーク形状が所望状態になり得ると判定されたときには、図12のフローチャートに示すステップS71からステップS81の処理を順に行う。つまり、状態判定部58Aは、形状推移予測部57Aによって予測された研磨中ワークWαの形状推移に基づいて、研磨中ワークWαの現在の研磨状態を判定し、研磨状態の判定結果に基づいて研磨加工を停止するか否かを判定する。   When it is determined that the final workpiece shape can be in a desired state, the processing from step S71 to step S81 shown in the flowchart of FIG. That is, the state determination unit 58A determines the current polishing state of the workpiece Wα being polished based on the shape transition of the workpiece Wα being polished predicted by the shape transition prediction unit 57A, and polishes based on the determination result of the polishing state. It is determined whether or not machining is stopped.

そして、この状態判定部58Aにより、研磨中ワークWαの研磨状態が「第1研磨停止状態」であると判定された場合には、図12のフローチャートに示すステップS91の処理を行う。つまり、表示制御部56は、研磨中ワークWαの研磨停止を判定した旨と共に研磨中ワークWαが「所望状態」であることを表示器40の画面40aに表示させる制御指令を出力する。そして、表示器40の画面40aには、研磨中ワークWαの研磨加工が停止判定されたことに加え、研磨中ワークWαが「所望状態」であることが表示され、研磨停止判定が報知される。   When the state determination unit 58A determines that the polishing state of the workpiece Wα being polished is the “first polishing stopped state”, the process of step S91 shown in the flowchart of FIG. 12 is performed. That is, the display control unit 56 outputs a control command for displaying on the screen 40a of the display 40 that the polishing workpiece Wα is in the “desired state” as well as determining that polishing of the workpiece Wα is being polished. Then, on the screen 40a of the display 40, in addition to the fact that the polishing process of the workpiece Wα being polished is stopped, it is displayed that the workpiece Wα being polished is in the “desired state”, and the polishing stop determination is notified. .

この結果、研磨機10のユーザーは、画面40aを目視することで、研磨停止が判定されたことと、研磨中ワークWαのワーク形状を把握することができる。これにより、ユーザーがマニュアル操作で研磨機10を制御して研磨加工を停止する場合であっても、適切なタイミングで研磨加工を停止できる。また、制御部50からの停止制御指令によって研磨機10を停止させる場合であっても、ユーザーは研磨機10の停止動作を認識することが可能となる。   As a result, the user of the polishing machine 10 can grasp the polishing stoppage and the workpiece shape of the workpiece Wα being polished by viewing the screen 40a. Thereby, even if it is a case where a user controls polisher 10 by manual operation and stops polish processing, polish processing can be stopped at an appropriate timing. Even when the polishing machine 10 is stopped by a stop control command from the control unit 50, the user can recognize the stop operation of the polishing machine 10.

その後、ステップS10の処理を行い、制御部50の制御演算部51は、第1駆動装置M1〜第5駆動装置M5へ停止制御指令等研磨加工終了のための諸出力を行う。この結果、研磨機10は所定のシーケンスを経て自動停止し、研磨中ワークWαの研磨加工は終了する。   Then, the process of step S10 is performed and the control calculation part 51 of the control part 50 performs various outputs for completion | finish of grinding processes, such as a stop control command, to the 1st drive device M1-the 5th drive device M5. As a result, the polishing machine 10 automatically stops after a predetermined sequence, and the polishing of the workpiece Wα being polished is completed.

一方、研磨中ワークWαの今後の形状推移の予測に基づいて、最終ワーク形状が所望状態になり得ないと判定されたときには、図12のフローチャートに示すステップS62の処理を行う。つまり、形状推移予測部57Aは、研磨中ワークWαの今後の形状推移の予測に基づき、最終ワーク形状が二次的許容状態になり得るか否かを判定する。   On the other hand, when it is determined that the final workpiece shape cannot be in a desired state based on the prediction of the future shape transition of the workpiece Wα being polished, the process of step S62 shown in the flowchart of FIG. 12 is performed. That is, the shape transition prediction unit 57A determines whether or not the final workpiece shape can be in the secondary allowable state based on the prediction of the future shape transition of the workpiece Wα being polished.

最終ワーク形状が二次的許容状態になり得ると判定されたときには、図12のフローチャートに示すステップS63の処理を行う。つまり、パラメータ特定部59は、研磨中ワークWαの最終ワーク形状が二次的許容状態になること(最終ワーク形状が所望状態になり得ないこと)に対して相関度が高い責任パラメータを特定、又は相関度強度が高い順に責任パラメータを列挙する。   When it is determined that the final workpiece shape can be in the secondary allowable state, the process of step S63 shown in the flowchart of FIG. 12 is performed. That is, the parameter specifying unit 59 specifies a responsibility parameter having a high degree of correlation with respect to the final workpiece shape of the workpiece Wα being polished being in a secondary allowable state (the final workpiece shape cannot be in a desired state). Alternatively, the responsibility parameters are listed in descending order of correlation strength.

そして、責任パラメータが特定又は列挙されたら、図12のフローチャートに示すステップS71からステップS81、ステップS91の処理を順に行う。つまり、状態判定部58Aは、研磨中ワークWαの形状推移に基づき、この研磨中ワークWαの現在の研磨状態を判定し、研磨状態の判定結果に基づいて研磨加工を停止するか否かを判定する。そして、状態判定部58Aにより、研磨中ワークWαの研磨状態が「第2研磨停止状態」であると判定されると、表示制御部56は、研磨中ワークWαの研磨停止を判定した旨に加え、研磨中ワークWαが「二次的許容状態」であることと、パラメータ特定部59により特定された責任パラメータ又は相関度強度が高い順に列挙された責任パラメータと、を表示器40の画面40aに表示させる制御指令を出力する。そして、表示器40の画面40aには、研磨中ワークWαの研磨停止が判定されたこと、研磨中ワークWαが「二次的許容状態」であること、責任パラメータ又は相関度強度が高い順に列挙された責任パラメータがそれぞれ表示され、研磨停止判定が報知される。   When the responsibility parameters are specified or enumerated, the processing from step S71 to step S81 and step S91 shown in the flowchart of FIG. That is, the state determination unit 58A determines the current polishing state of the workpiece Wα being polished based on the shape transition of the workpiece Wα being polished, and determines whether or not to stop the polishing process based on the determination result of the polishing state. To do. When the state determination unit 58A determines that the polishing state of the workpiece Wα being polished is the “second polishing stop state”, the display control unit 56 determines that the polishing stop of the workpiece Wα being polished has been determined. The screen 40a of the display 40 shows that the workpiece Wα being polished is in the “secondary allowable state” and the responsibility parameters specified by the parameter specification unit 59 or the responsibility parameters listed in descending order of correlation strength. The control command to be displayed is output. The screen 40a of the display device 40 lists that the polishing stop of the workpiece Wα being polished is determined, the workpiece Wα being polished is “secondary allowable state”, and the responsibility parameter or the correlation strength is listed in descending order. Each responsibility parameter thus displayed is displayed, and a polishing stop determination is notified.

その後、ステップS10の処理を行い、制御部50の制御演算部51は、第1駆動装置M1〜第5駆動装置M5へ停止制御指令等研磨加工終了のための諸出力を行う。この結果、研磨機10は所定のシーケンスを経て自動停止し、研磨中ワークWαの研磨加工は終了する。   Then, the process of step S10 is performed and the control calculation part 51 of the control part 50 performs various outputs for completion | finish of grinding processes, such as a stop control command, to the 1st drive device M1-the 5th drive device M5. As a result, the polishing machine 10 automatically stops after a predetermined sequence, and the polishing of the workpiece Wα being polished is completed.

この結果、研磨機10のユーザーは、画面40aを目視することで、研磨停止が判定されたこと及び研磨中ワークWαのワーク形状に加え、研磨中ワークWαが二次的許容状態になったことに対して相関度が高い責任パラメータを把握することができる。これにより、ユーザーがマニュアル操作で研磨機10を制御して研磨加工を停止する場合であっても、適切なタイミングで研磨加工を停止できる。また、制御部50からの停止制御指令によって研磨機10を停止させる場合であっても、ユーザーは研磨機10の停止動作を認識することが可能となる。   As a result, the user of the polishing machine 10 visually observed the screen 40a to determine that the polishing was stopped, and in addition to the workpiece shape of the workpiece Wα being polished, the workpiece Wα being polished was in a secondary allowable state. It is possible to grasp responsibility parameters having a high degree of correlation. Thereby, even if it is a case where a user controls polisher 10 by manual operation and stops polish processing, polish processing can be stopped at an appropriate timing. Even when the polishing machine 10 is stopped by a stop control command from the control unit 50, the user can recognize the stop operation of the polishing machine 10.

さらに、責任パラメータ又はその候補を把握できることで、最終ワーク形状を所望状態にするための必要な対策(条件的属性の改善や研磨機10の改善等)を合理的に立案することができる。そして、所望状態のワークWを効率的に得ることが可能になる。そして、所望の最終ワーク形状と実際のワーク形状との乖離度に応じた経験データや、その乖離を解消するための研磨装置1の改善提案の積み増しを促すことができる。   Furthermore, by grasping the responsibility parameters or their candidates, necessary measures (improvement of conditional attributes, improvement of the polishing machine 10, etc.) for making the final workpiece shape a desired state can be rationally planned. And it becomes possible to obtain the workpiece | work W of a desired state efficiently. Further, it is possible to promote the accumulation of experience data corresponding to the degree of deviation between the desired final workpiece shape and the actual workpiece shape, and improvement proposals for the polishing apparatus 1 for eliminating the deviation.

なお、図12のフローチャートに示すステップS62の処理において、最終ワーク形状が二次的許容状態にもなり得ないと判定されたときには、ステップS62からステップS71、ステップS81、ステップS91の処理を順に行う。つまり、状態判定部58Aは、研磨中ワークWαの現在の研磨状態を判定し、研磨中ワークWαの研磨状態が「第3研磨停止状態」で研磨加工を停止すると判定する。そして、表示制御部56は、研磨中ワークWαの研磨停止を判定した旨に加え、研磨中ワークWαが「許容外形状」であることを表示器40の画面40aに表示させる制御指令を出力する。そして、表示器40の画面40aには、研磨中ワークWαの研磨停止が判定されたこと及び研磨中ワークWαが「許容外形状」であることが表示され、研磨停止判定が報知される。   In the process of step S62 shown in the flowchart of FIG. 12, when it is determined that the final workpiece shape cannot be in the secondary allowable state, the processes of step S62 to step S71, step S81, and step S91 are performed in order. . That is, the state determination unit 58A determines the current polishing state of the workpiece Wα being polished, and determines that the polishing process is stopped when the polishing state of the workpiece Wα being polished is the “third polishing stopped state”. The display control unit 56 outputs a control command to display on the screen 40a of the display 40 that the workpiece Wα being polished is “non-permissible shape” in addition to the fact that the polishing stop of the workpiece Wα being polished has been determined. . Then, on the screen 40a of the display 40, it is displayed that the polishing stop of the workpiece Wα being polished is determined and that the workpiece Wα being polished is “non-permissible shape”, and the polishing stop determination is notified.

その後、ステップS10の処理を行い、制御部50の制御演算部51は、第1駆動装置M1〜第5駆動装置M5へ停止制御指令等研磨加工終了のための諸出力を行う。この結果、研磨機10は所定のシーケンスを経て自動停止し、研磨中ワークWαの研磨加工は終了する。   Then, the process of step S10 is performed and the control calculation part 51 of the control part 50 performs various outputs for completion | finish of grinding processes, such as a stop control command, to the 1st drive device M1-the 5th drive device M5. As a result, the polishing machine 10 automatically stops after a predetermined sequence, and the polishing of the workpiece Wα being polished is completed.

この結果、研磨機10のユーザーは、画面40aを目視することで、研磨停止が判定されたことと、研磨中ワークWαのワーク形状とを把握することができる。これにより、ユーザーがマニュアル操作で研磨機10を制御して研磨加工を停止する場合であっても、直ちに研磨加工を停止できる。また、制御部50からの停止制御指令によって研磨機10を停止させる場合であっても、ユーザーは研磨機10の停止動作の認識をすることが可能となる。   As a result, the user of the polishing machine 10 can grasp the polishing stoppage and the workpiece shape of the workpiece Wα being polished by visually checking the screen 40a. Thereby, even if it is a case where a user controls polisher 10 by manual operation and stops polish processing, polish processing can be stopped immediately. Further, even when the polishing machine 10 is stopped by a stop control command from the control unit 50, the user can recognize the stop operation of the polishing machine 10.

また、パラメータ特定部59により複数の責任パラメータが特定され、これらの責任パラメータを相関度強度が高い順に表示器40の画面40aに表示させる場合では、研磨中ワークWαが二次的許容状態になったことに対して最も影響が大きい条件的属性を把握しやすくなる。これにより、最終ワーク形状を所望状態にするための必要な対策(条件的属性の改善や研磨機10の改善等)をさらに合理的に立案することが可能となる。   In addition, when a plurality of responsibility parameters are specified by the parameter specifying unit 59 and these responsibility parameters are displayed on the screen 40a of the display device 40 in descending order of the correlation strength, the workpiece Wα being polished is in a secondary allowable state. It becomes easy to grasp the conditional attribute that has the greatest influence on the situation. Thereby, it is possible to further rationally plan necessary measures (improvement of conditional attributes, improvement of the polishing machine 10, etc.) for making the final workpiece shape a desired state.

以下に具体例を挙げて説明する。
図13Aに示すように、研磨加工の開始時に外周領域が比較的研磨された「凸ダレ形状」である第5ワークW5を「ドレッシング後1バッチ目」の研磨機10で研磨する場合を説明する。研磨初期の研磨段階Aで「凸ダレ形状」の第5ワークW5の断面形状は、研磨加工が進行し、厚さが狙い厚さ範囲(T1≦厚さ≦T2)に達した直後の研磨段階Bでは、「フラット・ダレ形状(中央部は平坦で外周領域が過剰に研磨加工された状態)」となる。その後研磨加工を継続し、厚さが狙い厚さ範囲の下限(T1)に近くなった研磨段階Cでは、この第5ワークW5の断面形状は所望状態である「フラット形状」になる。
A specific example will be described below.
As shown in FIG. 13A, a case will be described in which a fifth workpiece W5 having a “convex sagging shape” in which the outer peripheral region is relatively polished at the start of the polishing process is polished by the “first batch after dressing” polishing machine 10. . In the polishing stage A at the initial stage of polishing, the sectional shape of the fifth workpiece W5 having the “convex sagging shape” is the polishing stage immediately after the polishing process proceeds and the thickness reaches the target thickness range (T1 ≦ thickness ≦ T2). In B, it becomes a “flat sagging shape (a state where the central portion is flat and the outer peripheral region is excessively polished)”. Thereafter, the polishing process is continued, and in the polishing stage C where the thickness is close to the lower limit (T1) of the target thickness range, the cross-sectional shape of the fifth workpiece W5 becomes a “flat shape” which is a desired state.

次に、図13Bに示すように、研磨加工の開始時に外周領域が比較的研磨された「凸ダレ形状」である第6ワークW6を「ドレッシング後10バッチ目」の研磨機10で研磨する場合を説明する。研磨初期の研磨段階Aで「凸ダレ形状」の第6ワークW6の断面形状は、研磨加工が進行し、厚さが狙い厚さ範囲(T1≦厚さ≦T2)に達した直後の研磨段階Bでは、「フラット・ダレ形状(中央部は平坦で外周領域が過剰に研磨加工された状態)」となる。しかし、さらに研磨加工を継続し、厚さが狙い厚さ範囲の下限(T1)に近くなった研磨段階Cでは、この第6ワークW6の断面形状は「凹ダレ形状(中央部が大きくへこむと共に周縁部が過剰に研磨加工された状態)」になる。   Next, as shown in FIG. 13B, when polishing the sixth workpiece W <b> 6 having a “convex sagging shape” in which the outer peripheral region is relatively polished at the start of the polishing process, with the polishing machine 10 of “10th batch after dressing”. Will be explained. The cross-sectional shape of the “convex sagging” sixth workpiece W6 in the polishing stage A at the initial stage of polishing is the polishing stage immediately after the polishing process proceeds and the thickness reaches the target thickness range (T1 ≦ thickness ≦ T2). In B, it becomes a “flat sagging shape (a state where the central portion is flat and the outer peripheral region is excessively polished)”. However, the polishing process is further continued, and in the polishing stage C where the thickness is close to the lower limit (T1) of the target thickness range, the cross-sectional shape of the sixth workpiece W6 is “concave sagging shape (the central portion is greatly recessed and The peripheral edge is excessively polished).

ここで、「ドレッシング後1バッチ目」の研磨機10で研磨加工を行うときには、研磨段階Cでは、この第5ワークW5の断面形状は「フラット形状」になるので、最終ワーク形状は所望状態になり得ると予測される。これに対し、「ドレッシング後10バッチ目」の研磨機10で研磨加工を行うときには、いずれの研磨段階であってもワーク断面形状が「フラット形状」にならない。そのため、第6ワークW6の研磨時には、最終ワーク形状は所望状態になり得ないと予測される。しかしながら、研磨段階Bにおける「フラット・ダレ形状」は二次的許容状態に該当するため、この第6ワークW6の最終ワーク形状は二次的許容状態になり得ると予測される。   Here, when the polishing process is performed by the “first batch after dressing”, the cross-sectional shape of the fifth workpiece W5 becomes “flat shape” in the polishing stage C, so that the final workpiece shape is in a desired state. Expected to be. On the other hand, when the polishing process is performed by the “10th batch after dressing”, the workpiece cross-sectional shape does not become a “flat shape” at any polishing stage. Therefore, when the sixth workpiece W6 is polished, it is predicted that the final workpiece shape cannot be in a desired state. However, since the “flat sag shape” in the polishing stage B corresponds to the secondary allowable state, it is predicted that the final workpiece shape of the sixth workpiece W6 can be the secondary allowable state.

また、この第6ワークW6の研磨時に最終ワーク形状が所望状態である「フラット形状」にならない事象を現出させることに対して相関度が高い条件的属性(責任パラメータ)は、例えばバッチ数の増加に伴って生じた研磨パッド表面の変質であると特定される。   In addition, a conditional attribute (responsibility parameter) having a high degree of correlation with respect to causing an event that the final workpiece shape does not become a “flat shape” that is a desired state at the time of polishing the sixth workpiece W6 is, for example, the number of batches It is specified that the surface of the polishing pad is altered with the increase.

そのため、実施例2の研磨装置1Aでは、第6ワークW6の研磨中、第6ワークW6の形状推移を予測した際、この予測に基づいて最終ワーク形状が所望状態(フラット形状)になり得ず、二次的許容状態(フラット・ダレ形状)になり得ると判定する。そして、研磨加工の進行に伴って第6ワークW6のワーク形状が二次的許容状態(フラット・ダレ形状)に達したタイミングで研磨停止判定を報知すると共に、第6ワークW6が二次的許容状態(フラット・ダレ形状)であることと、二次的許容状態になることに対する責任度が重いパラメータとして「研磨パッドの表面変質」を報知する。   Therefore, in the polishing apparatus 1A of Example 2, when the shape transition of the sixth workpiece W6 is predicted during the polishing of the sixth workpiece W6, the final workpiece shape cannot be in a desired state (flat shape) based on this prediction. Then, it is determined that the secondary allowable state (flat sag shape) can be obtained. Then, the polishing stop determination is notified at the timing when the workpiece shape of the sixth workpiece W6 reaches the secondary permissible state (flat / sag shape) with the progress of the polishing process, and the sixth workpiece W6 is secondary permissible. “Polishing of the surface of the polishing pad” is reported as a parameter having a high responsibility for the state (flat / sagging shape) and the secondary allowable state.

これにより、研磨停止の最良タイミングを適切に判定し、最終ワーク形状が所望状態ではないものの第2形状条件を満足する二次的許容状態に収めることができる。また、責任パラメータ又はその候補を把握することができるので、ワーク研磨時の条件的属性の改善に寄与し、より効率的なプロセス立案をユーザーができるようになる。また、研磨装置1自体が改善提案をできるようになる。   Accordingly, it is possible to appropriately determine the best timing for stopping the polishing, and to achieve a secondary allowable state that satisfies the second shape condition although the final workpiece shape is not in a desired state. In addition, since the responsibility parameter or its candidate can be grasped, it contributes to the improvement of the conditional attribute at the time of workpiece polishing, and the user can make more efficient process planning. Further, the polishing apparatus 1 itself can make an improvement proposal.

次に、効果を説明する。
実施例2の研磨装置1Aにあっては、下記に列挙する効果を得ることができる。
Next, the effect will be described.
In the polishing apparatus 1A of Example 2, the effects listed below can be obtained.

(8) 制御部50Aは、研磨中ワークWαの形状推移の予測に基づいて、この研磨中ワークWαが所望のワーク状態になり得ないと判定したとき、研磨中ワークWαが二次的許容状態のときに研磨中ワークWαの研磨加工を停止させると共に、研磨加工の停止判定を報知する構成とした。
これにより、最終ワーク形状が所望状態になり得ない場合であっても、適切なタイミングで研磨加工を停止させ、研磨加工の停止遅れが生じることを防止できる。また、研磨加工の停止タイミングが適時より遅れることを防止して、適切なタイミングで自動的に研磨加工を停止できる。
(8) When the control unit 50A determines that the workpiece Wα being polished cannot be in a desired workpiece state based on the prediction of the shape transition of the workpiece Wα being polished, the workpiece Wα being polished is in a secondary allowable state. At this time, the polishing process of the workpiece Wα being polished is stopped, and the stop determination of the polishing process is notified.
Accordingly, even when the final workpiece shape cannot be in a desired state, the polishing process can be stopped at an appropriate timing, and a delay in the polishing process can be prevented from occurring. In addition, it is possible to prevent the polishing process from being delayed and to automatically stop the polishing process at an appropriate timing.

(9) 制御部50Aは、研磨中ワークWαの二次的許容状態の現出に対して相関度が高い条件的属性(責任パラメータ)を特定、又は研磨中ワークWαの二次的許容状態の現出に対して相関度が高い順に条件的属性を列挙し、特定又は列挙された相関度が高い条件的属性(責任パラメータ又はその候補)を報知する構成とした。
これにより、ユーザーが責任パラメータ又はその候補を把握でき、最終ワーク形状を所望状態にするための必要な対策を合理的に立案することができる。
(9) The control unit 50A identifies a conditional attribute (responsibility parameter) having a high degree of correlation with the appearance of the secondary allowable state of the workpiece Wα being polished, or the secondary allowable state of the workpiece Wα being polished. Conditional attributes are listed in descending order of the degree of correlation with respect to the appearance, and the specified or listed condition attribute (responsibility parameter or candidate thereof) having a high degree of correlation is notified.
As a result, the user can grasp the responsibility parameter or its candidate, and can rationally plan necessary measures for bringing the final workpiece shape into a desired state.

以上、本発明の研磨装置を実施例1及び実施例2に基づいて説明してきたが、具体的な構成については、これらの実施例に限られるものではなく、特許請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。   As described above, the polishing apparatus of the present invention has been described based on the first and second embodiments. However, the specific configuration is not limited to these embodiments, and each claim of the claims Design changes and additions are allowed without departing from the gist of the invention.

実施例1の研磨装置1では、メモリ30が、ワークWの形状情報に、当該ワークWを研磨加工した際の条件的属性を紐づけて記憶する例を示した。しかしながら、これに限らない。例えば、メモリ30にワークWの形状情報を記憶する際、このワークWの形状情報に対して学習的に生成した条件的属性を紐づけて記憶してもよい。ここで、「学習的に生成した条件的属性」とは、過去に実施された研磨加工時に取得した形状情報と条件的属性との関係(傾向)を学習し、演算した結果得られた条件的属性である。この「学習的に生成した条件的属性」は、例えば、過去に実施された研磨加工において蓄積されたワークWの形状情報に紐づけられた条件的属性に基づき、ワークWの形状情報に応じた条件的属性の傾向を学習し、条件的属性の各々のパラメータの研磨結果における影響度の大小を所与の複雑な条件系の中で自動演算し、その結果を用いて影響度予測を重み付けするなどの演算をして出力された条件的属性等が考えられる。   In the polishing apparatus 1 according to the first embodiment, an example is shown in which the memory 30 stores the shape information of the workpiece W in association with the conditional attribute when the workpiece W is polished. However, the present invention is not limited to this. For example, when storing the shape information of the workpiece W in the memory 30, the learning attribute information may be stored in association with the shape information of the workpiece W. Here, the “conditional attribute generated by learning” is a condition attribute obtained as a result of learning and calculating the relationship (trend) between the shape information acquired in the past polishing process and the conditional attribute. Attribute. This “learning-generated conditional attribute” corresponds to the shape information of the workpiece W, for example, based on the conditional attribute associated with the shape information of the workpiece W accumulated in the past polishing process. Learn the tendency of conditional attributes, automatically calculate the degree of influence in the polishing result of each parameter of the conditional attribute in a given complex condition system, and weight the influence prediction using the result The conditional attribute etc. which were output by performing operations such as can be considered.

そして、研磨中ワークWαの条件的属性と、学習的に生成した条件的属性とをマッチングして選択マスターの形状情報を抽出し、研磨中ワークWαの形状推移の予測を行う場合では、ユーザーが従来とりがちであった予測パターンや傾向を超えて、より最適に予測するようにできる。   Then, in the case of extracting the shape information of the selected master by matching the conditional attribute of the workpiece Wα being polished and the conditional attribute generated by learning, and predicting the shape transition of the workpiece Wα being polished, the user It is possible to make predictions more optimally beyond the prediction patterns and trends that have been apt to be taken.

すなわち、学習的に生成した条件的属性に紐づけられたワークWの形状情報に基づいて選択マスターの形状情報を抽出することで、ある条件下での特定のパラメータの影響重度を自発的に見出して提示することや、影響重度の調合を行うことができる。また、影響重度を調合するように組まれた学習的アルゴリズムの組み方次第では、ユーザーによる予測の範囲を超えて、純粋に演算結果としての出力が研磨中ワークWαの形状推移の予測範囲を広げることができる。   In other words, by extracting the shape information of the selected master based on the shape information of the workpiece W associated with the learning-generated conditional attribute, the influence severity of a specific parameter under a certain condition can be found spontaneously. Can be presented, and the influence severity can be formulated. Also, depending on how the learning algorithm is designed to formulate the severity of influence, the output as the result of calculation exceeds the prediction range by the user, and the prediction range of the shape transition of the workpiece Wα being polished is expanded. Can do.

この結果、従来見落としがちであった研磨中ワークWαの形状予測の精度が、ユーザーによる予測精度よりも格段に向上する。また、特定条件下における条件的属性とワーク形状精度の相関を、客観的に高精度に予測することが可能となり、研磨中ワークWαの研磨加工前ないし研磨加工の初期段階において、条件的属性の事前変更を必要に応じて促すことができ、良品収率の向上及び安定に寄与することができる。   As a result, the accuracy of the shape prediction of the workpiece Wα being polished, which has been often overlooked in the past, is remarkably improved as compared with the prediction accuracy by the user. In addition, it becomes possible to objectively predict the correlation between the conditional attribute and the workpiece shape accuracy under a specific condition, so that the conditional attribute can be changed before or during the polishing of the workpiece Wα being polished. Advance changes can be promoted as necessary, which can contribute to the improvement and stability of good product yield.

また、実施例1の研磨装置1では、メモリ30が、ワークWの形状情報に、当該ワークWを研磨加工した際の条件的属性を紐づけて記憶する。そして、形状推移予測部57において、研磨中ワークWαの条件的属性を基準に抽出した選択マスターの形状情報の時系列変化と、研磨中ワークWαの形状情報の時系列変化とを比較演算し、研磨中ワークWαの形状推移を予測する例を示した。つまり、実施例1では、形状参考ワークWβの形状情報、又はワークWを研磨加工した際の条件的属性とワークWの形状情報との間の相関度の学習結果に基づいて生成したワーク形状パターンである典型的な形状情報に基づいて研磨中ワークWαの形状推移を推定する。しかしながら、これに限らない。   Further, in the polishing apparatus 1 of the first embodiment, the memory 30 stores the shape information of the workpiece W in association with the conditional attributes when the workpiece W is polished. Then, in the shape transition prediction unit 57, the time series change of the shape information of the selected master extracted on the basis of the conditional attribute of the workpiece Wα being polished is compared with the time series change of the shape information of the workpiece Wα being polished, An example of predicting the shape transition of the workpiece Wα during polishing was shown. That is, in the first embodiment, the workpiece shape pattern generated based on the shape information of the shape reference workpiece Wβ or the learning result of the degree of correlation between the conditional attribute when the workpiece W is polished and the shape information of the workpiece W. The shape transition of the workpiece Wα being polished is estimated based on the typical shape information. However, the present invention is not limited to this.

ワークWの形状情報を演算処理して得られたワーク形状パターンとして、相関度データ処理部60の支援を必要に応じて受け、ワークWの形状的特徴を有する情報を演算処理して得られた所望のワーク形状パターンを用いてもよい。この場合、メモリ30には、ワークWの形状的特徴を有するワーク形状パターンに、このワークWを研磨加工した際の条件的属性を全て紐づけ、条件的属性を必要に応じてグループ化したり、学習の進行に伴って細分化して記憶する。そして、形状推移予測部57は、研磨中ワークWαの形状推移を、この研磨中ワークWαの条件的属性にマッチする条件的属性に紐づけられたワーク形状パターンに基づいて予測してもよい。   As a work shape pattern obtained by calculating the shape information of the work W, the support of the correlation data processing unit 60 is received as necessary, and the information having the shape characteristics of the work W is obtained by calculation processing. A desired workpiece shape pattern may be used. In this case, in the memory 30, all the conditional attributes when the workpiece W is polished are linked to the workpiece shape pattern having the shape characteristics of the workpiece W, and the conditional attributes are grouped as necessary. Subdivided and memorized as learning progressed. Then, the shape transition prediction unit 57 may predict the shape transition of the workpiece Wα being polished based on a workpiece shape pattern associated with a conditional attribute that matches the conditional attribute of the workpiece Wα being polished.

すなわち、ワークWの形状情報及びワークWの形状情報を演算処理して得られたワーク形状パターンの少なくとも一方を含む情報を「予測情報」といい、メモリ30は、この予測情報に、ワークWを研磨加工した際の条件的属性や、学習的に生成した条件的属性を紐づけて記憶する。そして、制御部50の形状推移予測部57は、研磨中ワークWαの予測情報の時系列変化と、この研磨中ワークWαの条件的属性にマッチする条件的属性に紐づけられてメモリ30に記憶された予測情報の時系列変化との比較演算の結果に基づいて、研磨中ワークWαの形状推移を予測する。   That is, information including at least one of the shape information of the workpiece W and the workpiece shape pattern obtained by calculating the shape information of the workpiece W is referred to as “prediction information”, and the memory 30 includes the workpiece W as the prediction information. Conditional attributes at the time of polishing and conditional attributes generated by learning are linked and stored. Then, the shape transition prediction unit 57 of the control unit 50 stores in the memory 30 the time series change of the prediction information of the workpiece Wα being polished and the conditional attribute that matches the conditional attribute of the workpiece Wα being polished. The shape transition of the workpiece Wα being polished is predicted based on the result of the comparison operation with the time series change of the predicted information.

ここで、「演算処理」とは、例えば条件的属性ごとに選択された複数のワークWの断面形状線を平均化し、条件的属性ごとの平均的な断面形状線を求めることや、所定の断面形状線における厚さの最大値の最小値の差から平坦度を算出すること、複数の断面形状線の最頻値や中央値を用いて所望の断面形状線を求めること、条件的属性とワーク形状との相関度という視点において、ワークWの形状的特徴のグループ又は新たに統計的・演算的に生成されたグループと紐づくワーク形状を、当該グループにおける典型的な形状として算出すること等である。   Here, the “arithmetic processing” means, for example, averaging the cross-sectional shape lines of a plurality of workpieces W selected for each conditional attribute to obtain an average cross-sectional shape line for each conditional attribute, Calculate the flatness from the difference between the minimum and maximum thickness values of the shape line, obtain the desired cross-sectional shape line using the mode and median of the multiple cross-sectional shape lines, conditional attributes and workpiece From the viewpoint of the degree of correlation with the shape, by calculating a work shape associated with a group of the shape features of the work W or a newly generated statistically / calculated group as a typical shape in the group, etc. is there.

すなわち、例えば過去に研磨加工したワークWの形状情報から得られたワーク形状パターンであるワークWの中央部の平坦度をワーク研磨時間ごとに算出する。続いて回帰分析などを行い、図14Aに示すように、ワーク研磨時間とワーク中央部の平坦度との関係を第1平坦度予測線Laとして生成する。そして、この第1平坦度予測線Laと研磨中ワークWαの中央部の平坦度の推移とを比較し、研磨中ワークWαの形状予測を行ってもよい。   That is, for example, the flatness of the central portion of the workpiece W, which is a workpiece shape pattern obtained from the shape information of the workpiece W polished in the past, is calculated for each workpiece polishing time. Subsequently, regression analysis or the like is performed, and as shown in FIG. 14A, a relationship between the workpiece polishing time and the flatness of the central portion of the workpiece is generated as a first flatness prediction line La. Then, the shape prediction of the workpiece Wα being polished may be performed by comparing the first flatness prediction line La and the transition of the flatness of the central portion of the workpiece Wα being polished.

また、過去に研磨加工したワークWの形状情報から得られたワーク形状パターンであるワークWの外周領域の平坦度をワーク研磨時間ごとに算出する。続いて回帰分析などを行い、図14Bに示すように、ワーク研磨時間とワーク外周領域の平坦度との関係を第2平坦度予測線Lbとして生成する。そして、この第2平坦度予測線Lbと研磨中ワークWαの外周領域の平坦度の推移とを比較し、研磨中ワークWαの形状予測を行ってもよい。   Moreover, the flatness of the outer peripheral area | region of the workpiece | work W which is a workpiece | work shape pattern obtained from the shape information of the workpiece | work W grind | polished in the past is calculated for every workpiece | work grinding | polishing time. Subsequently, regression analysis or the like is performed, and as shown in FIG. 14B, a relationship between the workpiece polishing time and the flatness of the workpiece outer peripheral region is generated as a second flatness prediction line Lb. Then, the shape of the workpiece Wα being polished may be predicted by comparing the second flatness prediction line Lb with the transition of the flatness of the outer peripheral region of the workpiece Wα being polished.

なお、第1平坦度予測線Laから、ワーク中央部の平坦度は、ワーク研磨時間に応じて次第に低下し、所定時間Taを超えると悪化することがわかる。そのため、ワーク研磨時間が所定時間Taに達したタイミングで研磨中ワークWαの研磨加工を停止することで、中央部の平坦度が良好なワークを得ることができると考えられる。また、第2平坦度予測線Lbから、ワーク外周領域の平坦度は、ワーク研磨時間が所定時間Tbに達するまではマイナス側のほぼ一定値を維持し、ワーク研磨時間が所定時間Tbを超えるとプラス側になり次第に大きくなることがわかる。そのため、そのため、ワーク研磨時間が所定時間Tbに達したタイミングで研磨中ワークWαの研磨加工を停止することで、外周領域の平坦度が良好なワークを得ることができると考えられる。   In addition, it can be seen from the first flatness prediction line La that the flatness at the center of the workpiece gradually decreases in accordance with the workpiece polishing time, and deteriorates when the predetermined time Ta is exceeded. Therefore, it is considered that a workpiece with good flatness at the center can be obtained by stopping the polishing of the workpiece Wα being polished at the timing when the workpiece polishing time reaches the predetermined time Ta. Further, from the second flatness prediction line Lb, the flatness of the workpiece outer peripheral region is maintained at a substantially constant value on the minus side until the workpiece polishing time reaches the predetermined time Tb, and when the workpiece polishing time exceeds the predetermined time Tb. It turns out that it becomes a positive side and becomes large gradually. For this reason, it is considered that a workpiece with good flatness in the outer peripheral region can be obtained by stopping the polishing of the workpiece Wα being polished at the timing when the workpiece polishing time reaches the predetermined time Tb.

また、実施例1では、第2描画生成部55が、研磨中ワークWαの条件的属性にマッチする条件的属性に紐づけられた選択マスターの形状情報に基づいて第2描画P2を生成する例を示した。しかしながら、第2描画P2を生成する際に用いるワークWの形状情報はこれに限らない。例えば、研磨中ワークWαの条件的属性に拘らず、研磨中ワークWαを研磨加工した研磨機によって研磨中ワークWαの直前に研磨加工したワークWの形状情報に基づいて第2描画P2を生成してもよい。また、研磨中ワークWαの条件的属性に拘らず、研磨中ワークWαを研磨加工した研磨機によって研磨中ワークWαの直前よりも以前に研磨加工したワークWの形状情報に基づいて第2描画P2を生成してもよい。   Moreover, in Example 1, the 2nd drawing production | generation part 55 produces | generates 2nd drawing P2 based on the shape information of the selection master linked | related with the conditional attribute which matches the conditional attribute of the workpiece | work Wα in grinding | polishing. showed that. However, the shape information of the workpiece W used when generating the second drawing P2 is not limited to this. For example, regardless of the conditional attribute of the workpiece Wα being polished, the second drawing P2 is generated based on the shape information of the workpiece W polished immediately before the workpiece Wα being polished by the polishing machine that has polished the workpiece Wα being polished. May be. In addition, regardless of the conditional attributes of the workpiece Wα being polished, the second drawing P2 is performed based on the shape information of the workpiece W polished before immediately before the workpiece Wα being polished by the polishing machine that has polished the workpiece Wα being polished. May be generated.

また、実施例1及び実施例2では、第2描画生成部55にて、研磨中ワークWαの条件的属性に基づいて抽出した選択マスターの形状情報に基づいて第2描画P2を生成する例を示したが、これに限らず、選択マスターの形状情報に基づいた第2の第2描画、第3の第2描画等、研磨中ワークWαの条件的属性に基づいて複数の選択マスターを抽出し、それらの選択マスターの形状情報に基づいて第2描画を複数生成し、複数の第2描画を表示器40の画面40aに表示したり、複数の第2描画を参考にして研磨中ワークWαの今後の形状変化の推移を予測してもよい。   Moreover, in Example 1 and Example 2, the 2nd drawing production | generation part 55 produces | generates 2nd drawing P2 based on the shape information of the selection master extracted based on the conditional attribute of workpiece | work Wα in grinding | polishing. Although shown, it is not limited to this, a plurality of selection masters are extracted based on the conditional attributes of the workpiece Wα being polished, such as the second second drawing and the third second drawing based on the shape information of the selected master. Based on the shape information of the selected master, a plurality of second drawings are generated, and the plurality of second drawings are displayed on the screen 40a of the display 40, or the workpiece Wα being polished is referred to by referring to the plurality of second drawings. Future changes in shape may be predicted.

さらに、メモリ30に記憶されたワークWの形状情報を所望範囲から複数抽出し、抽出したワークWの形状情報を平均化したり、抽出したワークWの形状情報から特異データを取得して所望の形状情報を生成する等の演算処理を行って得られた形状的特徴を有するワーク形状パターンに基づいて第2描画P2を生成してもよい。
この場合であっても、第2描画P2によって示されるワーク形状の推移の精度は、選択マスターの形状情報を用いて第2描画P2を生成した場合よりも向上させることができる。そのため、研磨中ワークWαの形状推移の予測をより正確に行い、さらに適切なタイミングで研磨停止を行うことが可能となる。
Furthermore, a plurality of pieces of shape information of the workpiece W stored in the memory 30 are extracted from a desired range, the shape information of the extracted workpiece W is averaged, or specific data is acquired from the extracted shape information of the workpiece W to obtain a desired shape. The second drawing P2 may be generated based on a workpiece shape pattern having a geometric feature obtained by performing an arithmetic process such as generating information.
Even in this case, the accuracy of the transition of the workpiece shape indicated by the second drawing P2 can be improved as compared with the case where the second drawing P2 is generated using the shape information of the selected master. Therefore, it is possible to more accurately predict the shape transition of the workpiece Wα being polished, and to stop polishing at an appropriate timing.

そして、このワークWの形状情報は、研磨機10とは別に設けられた形状測定専用器(例えば、別個の平坦度測定専用器等)によるワーク形状の測定値データと比較した結果を受けて得られた測定値データを必要に応じて補正し、調整を行ってもよい。   Then, the shape information of the workpiece W is obtained by receiving the result of comparison with the measured value data of the workpiece shape by a shape measurement dedicated device (for example, a separate flatness measurement dedicated device, etc.) provided separately from the polishing machine 10. The obtained measurement value data may be corrected and adjusted as necessary.

また、実施例1の研磨装置1では、第1描画P1及び第2描画P2をそれぞれ生成し、表示器40に第1描画P1と第2描画P2とを同時に表示する例を示した。しかしながら、これに限らない。研磨中ワークWαの形状描画を時系列で並べた第1描画P1のみを表示器40に表示させてもよい。この場合であっても、ユーザーは研磨中ワークWαの形状変化の推移を把握することができる。そして、この研磨中ワークWαの形状変化の推移に基づき、所望のワーク形状になったタイミングでワークの研磨加工を停止できる。   In the polishing apparatus 1 according to the first embodiment, the first drawing P1 and the second drawing P2 are generated, and the first drawing P1 and the second drawing P2 are simultaneously displayed on the display 40. However, the present invention is not limited to this. Only the first drawing P1 in which the shape drawing of the workpiece Wα being polished is arranged in time series may be displayed on the display 40. Even in this case, the user can grasp the transition of the shape change of the workpiece Wα during polishing. Based on the transition of the shape change of the workpiece Wα during polishing, the workpiece polishing process can be stopped at the timing when the desired workpiece shape is obtained.

また、実施例1の研磨装置1では、研磨中ワークWαの研磨停止を判定したとき、この研磨加工の停止判定を表示器40に表示して報知すると共に、研磨機10を停止する例を示した。しかしながら、例えば研磨加工の停止判定を行ったことを報知するだけでもよいし、停止判定を報知することなく研磨機10を停止制御して研磨中ワークWαの研磨加工を停止させるだけでもよい。   Further, in the polishing apparatus 1 of the first embodiment, when it is determined that the polishing of the workpiece Wα being polished is stopped, the stop determination of the polishing process is displayed on the display device 40 and the polishing machine 10 is stopped. It was. However, for example, it may only be notified that the polishing process stop determination has been performed, or the polishing machine 10 may be controlled to stop without notifying the stop determination, and the polishing process of the workpiece Wα being polished may be stopped.

また、実施例2では、研磨中ワークWαの形状推移の予測に基づいて、最終ワーク形状が所望状態になり得ないと判定したとき、研磨中ワークWαが二次的許容状態のときに、この研磨加工の停止判定を表示器40に表示して報知すると共に、研磨機10を停止する例を示した。しかしながら、研磨中ワークWαが二次的許容状態のとき、例えば研磨加工の停止判定を行ったことを報知するだけでもよいし、停止判定を報知することなく研磨機10を停止制御して研磨中ワークWαの研磨加工を停止させるだけでもよい。   Further, in Example 2, when it is determined that the final workpiece shape cannot be in a desired state based on the prediction of the shape transition of the workpiece Wα during polishing, when the workpiece Wα during polishing is in a secondary allowable state, An example in which the polishing process stop determination is displayed and notified on the display 40 and the polishing machine 10 is stopped is shown. However, when the workpiece Wα being polished is in the secondary allowable state, for example, it may only be notified that the polishing process stop determination has been performed, or the polishing machine 10 is controlled to stop without informing the stop determination. It is only necessary to stop the polishing of the workpiece Wα.

そして、実施例1では、測定ユニット21が上定盤12に取り付けられた例を示したが、これに限らない。例えば、上定盤12の上方に設置された光学ヘッドから測定光であるレーザ光を照射してもよい。この場合では、上定盤12の周方向に沿って複数の測定孔を形成し、上定盤12の回転によってそれぞれの測定孔が光学ヘッドの真下にくるごとにレーザ光が照射され、ワークの厚さを測定する。なお、下定盤11に測定孔を設けて、下定盤11の下方からワークWの下面にレーザ光を照射して厚さを測定するようにしてもよい。   In the first embodiment, the example in which the measurement unit 21 is attached to the upper surface plate 12 is shown, but the present invention is not limited to this. For example, laser light that is measurement light may be emitted from an optical head installed above the upper surface plate 12. In this case, a plurality of measurement holes are formed along the circumferential direction of the upper surface plate 12, and each time the measurement holes come directly under the optical head by the rotation of the upper surface plate 12, a laser beam is irradiated, Measure the thickness. In addition, a measurement hole may be provided in the lower surface plate 11, and the thickness may be measured by irradiating the lower surface of the workpiece W with a laser beam from below the lower surface plate 11.

また、実施例1において、ワークWの断面形状を求める際、得られたデータ列を移動平均処理や多項式近似曲線描画処理などで厚さデータを平均化するが、これに限らずワークWの断面形状を可視化できればどのような方法であってもよい。   In the first embodiment, when the cross-sectional shape of the workpiece W is obtained, the obtained data string is averaged by moving average processing, polynomial approximate curve drawing processing, or the like. Any method may be used as long as the shape can be visualized.

また、実施例1及び実施例2では、研磨停止判定処理に並行して第2描画生成処理を実行し、研磨中ワークWαの条件的属性の変化を監視して、適宜第2描画P2を差し替える例を示した。しかしながら、これに限らず、例えば、研磨中と判定した後に取得した研磨中ワークWαの条件的属性に基づいて一度生成した第2描画P2を研磨終了まで維持してもよい。さらに、この場合では、研磨停止判定処理に並行して第2描画生成処理を実行しなくてもよく、研磨停止判定処理の途中(例えば、ステップS1とステップS2の間や、ステップS3とステップS4の間等)に、第2描画生成処理におけるステップS12、ステップS13、ステップS14の各処理を実行してもよい。   In the first and second embodiments, the second drawing generation process is executed in parallel with the polishing stop determination process, the change in the conditional attribute of the workpiece Wα being polished is monitored, and the second drawing P2 is appropriately replaced. An example is shown. However, the present invention is not limited to this. For example, the second drawing P2 generated once based on the conditional attribute of the workpiece Wα being polished acquired after it is determined that the polishing is being performed may be maintained until the polishing is completed. Furthermore, in this case, it is not necessary to execute the second drawing generation process in parallel with the polishing stop determination process, and during the polishing stop determination process (for example, between step S1 and step S2, or between step S3 and step S4). In the second drawing generation process, each process of step S12, step S13, and step S14 may be executed.

また、実施例1及び実施例2では、下定盤11と上定盤12を有し、ワークWの両面を同時に研磨可能な両面研磨装置を示したが、ワークWの片面のみを研磨する片面研磨装置であっても、本発明を適用することができる。   Moreover, in Example 1 and Example 2, although the double-side polishing apparatus which has the lower surface plate 11 and the upper surface plate 12 and can grind | polish both surfaces of the workpiece | work W simultaneously was shown, the single-side polishing which grind | polishes only the single side | surface of the workpiece | work W. The present invention can be applied even to an apparatus.

1,1A 研磨装置
10 研磨機
11 下定盤
12 上定盤
20 形状測定器
19 測定孔
30 メモリ
40 表示器
40a 画面
50,50A 制御部
51,51A 制御演算部
54 第1描画生成部
55 第2描画生成部
56,56A 表示制御部
57,57A 形状推移予測部
58,58A 状態判定部
59 パラメータ特定部
60 相関度データ処理部
1, 1A Polishing apparatus 10 Polishing machine 11 Lower surface plate 12 Upper surface plate 20 Shape measuring device 19 Measuring hole 30 Memory 40 Display device 40a Screen 50, 50A Control unit 51, 51A Control operation unit 54 First drawing generation unit 55 Second drawing Generation unit 56, 56A Display control unit 57, 57A Shape transition prediction unit 58, 58A State determination unit 59 Parameter identification unit 60 Correlation degree data processing unit

Claims (9)

回転する定盤によってワークを研磨する研磨機と、
前記定盤に形成された測定孔を介して前記ワークの形状を測定する形状測定器と、
前記形状測定器によって測定された前記ワークの形状情報を記憶するメモリと、
前記形状測定器によって測定された前記ワークの形状情報を表示する表示器と、
前記表示器の表示内容を制御する制御部と、を備え、
前記制御部は、前記形状測定器によって測定された現在研磨中のワークである研磨中ワークの形状描画を時系列で並べた第1描画を生成し、前記第1描画を前記表示器に表示させる
ことを特徴とする研磨装置。
A polishing machine that polishes a workpiece with a rotating surface plate;
A shape measuring instrument for measuring the shape of the workpiece through a measurement hole formed in the surface plate;
A memory for storing shape information of the workpiece measured by the shape measuring instrument;
A display for displaying the shape information of the workpiece measured by the shape measuring instrument;
A control unit for controlling the display content of the display,
The control unit generates a first drawing in which the shape drawing of the workpiece being polished, which is a workpiece currently being polished, measured by the shape measuring instrument is arranged in time series, and causes the display to display the first drawing. A polishing apparatus characterized by that.
請求項1に記載された研磨装置において、
前記メモリは、前記ワークの形状情報及び前記ワークの形状情報を演算処理して得られたワーク形状パターンの少なくとも一方を含む予測情報に、このワークを研磨加工した際の条件的属性又は学習的に生成した条件的属性を紐づけて記憶し、
前記制御部は、前記研磨中ワークの予測情報の時系列変化と、前記研磨中ワークの条件的属性にマッチする条件的属性に紐づけられた予測情報の時系列変化との比較演算の結果に基づいて前記研磨中ワークの形状推移を予測し、前記研磨中ワークの形状推移の予測に基づいて前記研磨中ワークの状態判定を行う
ことを特徴とする研磨装置。
The polishing apparatus according to claim 1, wherein
The memory is used to predict information including at least one of the workpiece shape information and the workpiece shape pattern obtained by calculating the workpiece shape information. The generated conditional attributes are linked and stored,
The control unit is a result of a comparison operation between the time series change of the prediction information of the workpiece being polished and the time series change of the prediction information associated with the conditional attribute that matches the conditional attribute of the workpiece being polished. A polishing apparatus that predicts a shape transition of the workpiece under polishing based on the prediction, and determines a state of the workpiece during polishing based on the prediction of the shape transition of the workpiece during polishing.
回転する定盤によってワークを研磨する研磨機と、
前記定盤に形成された測定孔を介して前記ワークの形状を測定する形状測定器と、
前記形状測定器によって測定された前記ワークの形状情報を記憶するメモリと、
前記形状測定器によって測定された前記ワークの形状情報を表示する表示器と、
前記表示器の表示内容を制御する制御部と、を備え、
前記制御部は、前記形状測定器によって測定された現在研磨中のワークである研磨中ワークの形状描画を時系列で並べた第1描画と、前記研磨中ワークの研磨以前に研磨加工されたワークの形状描画を時系列で並べた第2描画と、を生成し、前記第1描画及び前記第2描画を同時に前記表示器に表示させる
ことを特徴とする研磨装置。
A polishing machine that polishes a workpiece with a rotating surface plate;
A shape measuring instrument for measuring the shape of the workpiece through a measurement hole formed in the surface plate;
A memory for storing shape information of the workpiece measured by the shape measuring instrument;
A display for displaying the shape information of the workpiece measured by the shape measuring instrument;
A control unit for controlling the display content of the display,
The control unit includes a first drawing in which shape drawing of a workpiece being polished, which is a workpiece currently being polished, measured by the shape measuring instrument, arranged in time series, and a workpiece polished before the polishing of the workpiece being polished A polishing apparatus, wherein a second drawing in which the shape drawing is arranged in time series is generated, and the first drawing and the second drawing are simultaneously displayed on the display.
請求項3に記載された研磨装置において、
前記メモリは、前記ワークの形状情報に、このワークを研磨加工した際の条件的属性又は学習的に生成した条件的属性を紐づけて記憶し、
前記制御部は、前記研磨中ワークの条件的属性にマッチする条件的属性に紐づけられたワークの形状情報に基づいて前記第2描画を生成する
ことを特徴とする研磨装置。
The polishing apparatus according to claim 3, wherein
The memory stores the shape information of the workpiece in association with a conditional attribute when the workpiece is polished or a learning-generated conditional attribute,
The said control part produces | generates said 2nd drawing based on the shape information of the workpiece | work linked | linked with the conditional attribute which matches the conditional attribute of the said workpiece | work in grinding | polishing. The grinding | polishing apparatus characterized by the above-mentioned.
請求項3又は請求項4に記載された研磨装置において、
前記制御部は、前記メモリに記憶された前記ワークの形状情報を演算処理して得られたワーク形状パターン、又は前記ワークを研磨加工した際の条件的属性と前記ワークの形状情報との間の相関度の学習結果に基づいて生成したワーク形状パターンに基づいて前記第2描画を生成する
ことを特徴とする研磨装置。
In the polishing apparatus according to claim 3 or 4,
The control unit is a workpiece shape pattern obtained by calculating the shape information of the workpiece stored in the memory, or between a conditional attribute when the workpiece is polished and the shape information of the workpiece. The polishing apparatus, wherein the second drawing is generated based on a work shape pattern generated based on a learning result of the degree of correlation.
請求項3から請求項5のいずれか一項に記載された研磨装置において、
前記メモリは、前記ワークの形状情報及び前記ワークの形状情報を演算処理して得られたワーク形状パターンの少なくとも一方を含む予測情報に、このワークを研磨加工した際の条件的属性又は学習的に生成した条件的属性を紐づけて記憶し、
前記制御部は、前記研磨中ワークの予測情報の時系列変化と、前記研磨中ワークの条件的属性にマッチする条件的属性に紐づけられた予測情報の時系列変化との比較演算の結果に基づいて前記研磨中ワークの形状推移を予測し、前記形状推移の予測に基づいて前記研磨中ワークの状態判定を行う
ことを特徴とする研磨装置。
In the polishing apparatus according to any one of claims 3 to 5,
The memory is used to predict information including at least one of the workpiece shape information and the workpiece shape pattern obtained by calculating the workpiece shape information. The generated conditional attributes are linked and stored,
The control unit is a result of a comparison operation between the time series change of the prediction information of the workpiece being polished and the time series change of the prediction information associated with the conditional attribute that matches the conditional attribute of the workpiece being polished. A polishing apparatus that predicts a shape transition of the workpiece under polishing based on the shape and determines a state of the workpiece under polishing based on the prediction of the shape transition.
請求項2又は請求項6に記載された研磨装置において、
前記制御部は、前記研磨中ワークの状態判定の結果、前記研磨中ワークの研磨加工を停止すると判定したとき、前記研磨中ワークの研磨加工の停止及び前記研磨中ワークの研磨加工の停止判定の報知のうち、少なくとも一方を行う
ことを特徴とする研磨装置。
In the polishing apparatus according to claim 2 or 6,
When the control unit determines that the polishing process of the workpiece being polished is to be stopped as a result of the state determination of the workpiece being polished, the controller determines whether to stop the polishing process of the workpiece being polished and to stop the polishing process of the workpiece being polished. A polishing apparatus that performs at least one of the notifications.
請求項2又は請求項6に記載された研磨装置において、
前記制御部は、前記研磨中ワークの形状推移の予測に基づいて前記研磨中ワークが所望のワーク状態になり得ないと判定したとき、前記研磨中ワークが二次的許容状態のときに前記研磨中ワークの研磨加工の停止及び前記研磨中ワークの研磨加工の停止判定の報知のうち、少なくとも一方を行う
ことを特徴とする研磨装置。
In the polishing apparatus according to claim 2 or 6,
When the control unit determines that the workpiece being polished cannot be in a desired workpiece state based on the prediction of the shape transition of the workpiece being polished, the control unit performs the polishing when the workpiece being polished is in a secondary allowable state. A polishing apparatus that performs at least one of a stop of a polishing process of a medium workpiece and a notification of a stop determination of a polishing process of the workpiece being polished.
請求項8に記載された研磨装置において、
前記制御部は、前記研磨中ワークの二次的許容状態の現出に対して相関度が高い条件的属性を特定、又は前記研磨中ワークの二次的許容状態の現出に対して相関度が高い順に条件的属性を列挙し、特定或いは列挙された条件的属性を報知する
ことを特徴とする研磨装置。
The polishing apparatus according to claim 8, wherein
The control unit specifies a conditional attribute having a high correlation with the appearance of the secondary allowable state of the workpiece being polished, or the correlation with the appearance of the secondary allowable state of the workpiece being polished. A polishing apparatus characterized by listing conditional attributes in descending order and notifying the specified or listed conditional attributes.
JP2018079177A 2018-04-17 2018-04-17 Polishing equipment Active JP7046358B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018079177A JP7046358B2 (en) 2018-04-17 2018-04-17 Polishing equipment
KR1020190035254A KR102627963B1 (en) 2018-04-17 2019-03-27 Polishing device
CN201910284961.2A CN110394726B (en) 2018-04-17 2019-04-10 Grinding device
TW108112580A TWI807007B (en) 2018-04-17 2019-04-11 Polishing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018079177A JP7046358B2 (en) 2018-04-17 2018-04-17 Polishing equipment

Publications (2)

Publication Number Publication Date
JP2019181657A true JP2019181657A (en) 2019-10-24
JP7046358B2 JP7046358B2 (en) 2022-04-04

Family

ID=68322485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018079177A Active JP7046358B2 (en) 2018-04-17 2018-04-17 Polishing equipment

Country Status (4)

Country Link
JP (1) JP7046358B2 (en)
KR (1) KR102627963B1 (en)
CN (1) CN110394726B (en)
TW (1) TWI807007B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230147530A (en) 2022-04-14 2023-10-23 신에쯔 한도타이 가부시키가이샤 Double-sided polishing device and double-sided polishing method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021102245A (en) * 2019-12-25 2021-07-15 スピードファム株式会社 Workpiece hole detection device and workpiece hole detection method
JP7465498B2 (en) * 2020-03-24 2024-04-11 株式会社荏原製作所 System for chemical mechanical polishing of a workpiece, computing system, and method for creating a simulation model of chemical mechanical polishing - Patents.com
CN115697631A (en) * 2020-12-18 2023-02-03 应用材料公司 Adaptive slurry dispensing system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130210173A1 (en) * 2012-02-14 2013-08-15 Taiwan Semiconductor Manufacturing Co., Ltd. Multiple Zone Temperature Control for CMP
JP2015023113A (en) * 2013-07-18 2015-02-02 株式会社岡本工作機械製作所 Flattening and grinding method of semiconductor substrate
JP2017207455A (en) * 2016-05-20 2017-11-24 スピードファム株式会社 Cross-section shape measurement method

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW374050B (en) * 1997-10-31 1999-11-11 Applied Materials Inc Method and apparatus for modeling substrate reflectivity during chemical mechanical polishing
US6375540B1 (en) * 2000-06-30 2002-04-23 Lam Research Corporation End-point detection system for chemical mechanical posing applications
US7160739B2 (en) * 2001-06-19 2007-01-09 Applied Materials, Inc. Feedback control of a chemical mechanical polishing device providing manipulation of removal rate profiles
JP3932836B2 (en) * 2001-07-27 2007-06-20 株式会社日立製作所 Thin film thickness measuring method and apparatus, and device manufacturing method using the same
JP2005026453A (en) * 2003-07-02 2005-01-27 Ebara Corp Substrate polishing apparatus and method therefor
DE102007035833B3 (en) * 2007-07-31 2009-03-12 Advanced Micro Devices, Inc., Sunnyvale Advanced automatic deposition profile targeting and control through the use of advanced polishing endpoint feedback
JP6146213B2 (en) 2013-08-30 2017-06-14 株式会社Sumco Double-side polishing apparatus and double-side polishing method for work
JP2015126179A (en) * 2013-12-27 2015-07-06 株式会社荏原製作所 Polishing end point detection method, and polishing end point detector
CN105458908A (en) * 2015-12-30 2016-04-06 天通吉成机器技术有限公司 Workpiece fixed-size compensation type double-sided grinding device and method
JP6622117B2 (en) * 2016-03-08 2019-12-18 スピードファム株式会社 Planar polishing apparatus and carrier
JP6760638B2 (en) * 2016-04-14 2020-09-23 スピードファム株式会社 Flat surface polishing device
JP6765887B2 (en) * 2016-07-21 2020-10-07 スピードファム株式会社 Polishing equipment
DE102016116012A1 (en) * 2016-08-29 2018-03-01 Lapmaster Wolters Gmbh Method for measuring the thickness of flat workpieces
JP6771216B2 (en) * 2016-10-07 2020-10-21 スピードファム株式会社 Flat surface polishing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130210173A1 (en) * 2012-02-14 2013-08-15 Taiwan Semiconductor Manufacturing Co., Ltd. Multiple Zone Temperature Control for CMP
JP2015023113A (en) * 2013-07-18 2015-02-02 株式会社岡本工作機械製作所 Flattening and grinding method of semiconductor substrate
JP2017207455A (en) * 2016-05-20 2017-11-24 スピードファム株式会社 Cross-section shape measurement method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230147530A (en) 2022-04-14 2023-10-23 신에쯔 한도타이 가부시키가이샤 Double-sided polishing device and double-sided polishing method

Also Published As

Publication number Publication date
KR102627963B1 (en) 2024-01-19
TW201943497A (en) 2019-11-16
CN110394726A (en) 2019-11-01
KR20190121239A (en) 2019-10-25
CN110394726B (en) 2022-06-24
TWI807007B (en) 2023-07-01
JP7046358B2 (en) 2022-04-04

Similar Documents

Publication Publication Date Title
KR102627963B1 (en) Polishing device
US10101735B2 (en) Modular system for real-time evaluation and monitoring of a machining production-line overall performances calculated from each given workpiece, tool and machine
CN103076757B (en) Intelligent cnc machine tool with automatic processing function and control method thereof
CN112262017B (en) Machining dimension prediction device, system, and method for machine tool, device abnormality determination device for machine tool, and recording medium
US20200033842A1 (en) Grinding quality estimation model generating device, grinding quality estimating device, poor quality factor estimating device, grinding machine operation command data adjustment model generating device, and grinding machine operation command data updating device
JP2018086712A (en) Tool wear prediction device and method therefor
JP2004086911A (en) Method and system for improving process management, and storage medium
JP2020023040A (en) Grinding quality estimation model generation device, grinding quality estimation device, operation command data adjustment model generation device of grinding machine and operation command data updating device of grinding machine
JP2004284002A (en) Working control device
US20200030939A1 (en) Estimation model creating device for grinding wheel surface condition estimation, grinding wheel surface condition estimating device, adjustment model creating device for grinding machine operation command data adjustment, and updating device for grinding machine operation command data update
US20210239577A1 (en) System for estimating the state of wear of a cutting tool during machining
JP2020123191A (en) Numeric control system
JP2018063653A (en) Information processor
JP2019530082A (en) Method for estimating error propagation
KR20220092865A (en) Dental machining systems for predicting wear conditions on dental tools
JP2020044620A (en) Generation device for learning model relating to grinding, estimation device and operation command data renewal device
JP7244367B2 (en) Machining instruction improvement system and machining instruction improvement method
JP7380107B2 (en) quality prediction system
KR101896291B1 (en) Tool path correction method of machining tools
EP3736648B1 (en) Method for autonomous optimization of a grinding process
Sousa et al. Zero-Defect Manufacturing using data-driven technologies to support the natural stone industry
US20240069528A1 (en) Display device and computer program
CN114007800B (en) Laser processing system, processing condition search device, and processing condition search method
JP2003162309A (en) Manufacturing method of worked products, manufacturing equipment and program for manufacture
WO2022059595A1 (en) Information processing device and information processing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211020

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220315

R150 Certificate of patent or registration of utility model

Ref document number: 7046358

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150