JP2015023113A - Flattening and grinding method of semiconductor substrate - Google Patents

Flattening and grinding method of semiconductor substrate Download PDF

Info

Publication number
JP2015023113A
JP2015023113A JP2013149245A JP2013149245A JP2015023113A JP 2015023113 A JP2015023113 A JP 2015023113A JP 2013149245 A JP2013149245 A JP 2013149245A JP 2013149245 A JP2013149245 A JP 2013149245A JP 2015023113 A JP2015023113 A JP 2015023113A
Authority
JP
Japan
Prior art keywords
grinding
semiconductor substrate
value
wheel
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013149245A
Other languages
Japanese (ja)
Other versions
JP6179021B2 (en
Inventor
井出 悟
Satoru Ide
悟 井出
山本 栄一
Eiichi Yamamoto
栄一 山本
順行 持丸
Yoriyuki Mochimaru
順行 持丸
久保 富美夫
Tomio Kubo
富美夫 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okamoto Machine Tool Works Ltd
Original Assignee
Okamoto Machine Tool Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okamoto Machine Tool Works Ltd filed Critical Okamoto Machine Tool Works Ltd
Priority to JP2013149245A priority Critical patent/JP6179021B2/en
Publication of JP2015023113A publication Critical patent/JP2015023113A/en
Application granted granted Critical
Publication of JP6179021B2 publication Critical patent/JP6179021B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a 3D through-electrode semiconductor substrate having a TTV (Total Thickness Variation) value of 0.1 μm or less and an in-plane uniformity of 3.0% or less.SOLUTION: In the middle of a conventional substrate flattening and grinding process using a numerical control grinding device 1 with a mechanism for tilting an axis angle of a cup wheel type grinding stone, a plurality of thicknesses (t) of the substrate measured in the flattening process are transmitted to a memory (ROM) of the numerical control device, and a correction flattening and grinding process of changing a grindstone axis moving amount and a grindstone axis tilting angle in consideration of a TTV value and an in-plane uniformity value calculated by an operation part, that are fed back to the numerical control grinding device 1, is added.

Description

本発明は、円板状半導体基板を研削加工して基板直径方向幅の肉厚変動分布である平坦度(TTV)値が0.1μm以下、厚みのバラツキ度を示す面内均一性が3.0%以下の平坦化加工半導体基板を製造する方法に関する。本願発明の実施により得られた平坦化半導体基板は、トランジスター、キャパシタ、メモリーカード、変位センサ測定素子、撮像素子、等として携帯電話、デジタルカメラ、ビデオカメラ、カーナビゲーション、パソコン、ゲーム機、液晶テレビジョン、プリンター等に使用される。   In the present invention, a flat semiconductor (TTV) value, which is a thickness variation distribution in the width direction of the substrate diameter after grinding a disk-shaped semiconductor substrate, is 0.1 μm or less, and the in-plane uniformity indicating the thickness variation is 3. The present invention relates to a method of manufacturing a planarized semiconductor substrate of 0% or less. The flattened semiconductor substrate obtained by the implementation of the present invention is a transistor, a capacitor, a memory card, a displacement sensor measuring element, an imaging element, etc., as a mobile phone, a digital camera, a video camera, a car navigation system, a personal computer, a game machine, a liquid crystal television. Used for John, printer, etc.

砥石軸をワークテーブル上の基板に対し傾斜可能な研削装置を用いてTTVの優れた平坦化加工半導体基板を製造することは知られている。例えば、特公平1−52148号公報(特許文献1)は、研削工具を先端に取り付けたスピンドルを回転自在に支持したスピンドルヘッドの中央部に球面の凹部が形成され、前記スピンドルヘッドは更に摺動部材に固定され、この摺動部材には球面のスピンドル傾斜用ジョイントが固定されており、前記スピンドルヘッドの凹部と球面結合されている。ワークテーブルの平面と直角に調整された後、前記摺動部材とスピンドルヘッドは相互にボルトにボルト固定された研削装置のスピンドル傾斜調整機構を開示する。   It is known to manufacture a flattened semiconductor substrate excellent in TTV by using a grinding apparatus capable of tilting a grindstone axis with respect to a substrate on a work table. For example, in Japanese Patent Publication No. 1-52148 (Patent Document 1), a spherical recess is formed at the center of a spindle head that rotatably supports a spindle with a grinding tool attached to the tip, and the spindle head further slides. A spherical spindle tilting joint is fixed to the sliding member, and is coupled to the concave portion of the spindle head by a spherical surface. Disclosed is a spindle tilt adjusting mechanism of a grinding apparatus in which the sliding member and the spindle head are bolted to each other after being adjusted at right angles to the plane of the worktable.

また、特開平4−201178号公報(特許文献2)は、保持機構でスピンドル軸を傾斜させて上方定盤(工具)を下方定盤(ワークテーブル)に対して非平行とし、ワークの外周側を俯角としワークの中心側を仰角としてワークを凸面に研磨加工した後、次いで、このワークの中心側を俯角としワークの外周側を仰角として凹面に研磨加工した後、保持機構でスピンドル軸を垂直保持させて上方定盤と下方定盤とを平行としてワーク表面を工具で平面に研磨加工する方法を開示する。   Japanese Patent Laid-Open No. 4-2011178 (Patent Document 2) discloses that the spindle is tilted by a holding mechanism so that the upper surface plate (tool) is not parallel to the lower surface plate (work table), and the outer peripheral side of the workpiece is After polishing the workpiece into a convex surface with the center angle of the workpiece as the elevation angle, and then polishing the concave surface with the center side of the workpiece as the depression angle and the outer periphery side of the workpiece as the elevation angle, the spindle is vertically aligned with the holding mechanism. A method is disclosed in which the workpiece surface is polished to a flat surface with a tool while holding the upper surface plate and the lower surface plate in parallel.

特開平8−170912号公報(特許文献3)は、下端に研削用砥石を備えたスピンドル軸の下方のロータリーテーブルへチャック機構を配設すると共に、該ロータリーテーブルの熱膨張の影響を受けない近傍の周辺部位へ独立して二点式インプロセスゲージを配設し、前記チャック機構の上面にバキューム吸着された半導体ウエハの最終仕上げ研削工程の計測方法及び研削方法であって、前記チャック機構の上面で半導体ウエハをバキューム吸着した状態で、該半導体ウエハの加工面の最凹部とチャック機構の上面との最凹部計測値を前記二点式インプロセスゲージを用いて計測すると共に、前記半導体ウエハの加工面の最凸部とチャック機構の上面との最凸部計測値を前記二点式インプロセスゲージを用いて計測し、前記最凸部計測値と最凹部計測値との計測値差を求め、該計測値差をチャック機構の上面と研削用砥石の下面とを限りなく平行状態に近づけて研削加工する最終仕上げ研削工程を実施すること特徴とする半導体ウエハの計測方法及び研削方法を提案する。   Japanese Patent Application Laid-Open No. 8-170912 (Patent Document 3) discloses that a chuck mechanism is disposed on a rotary table below a spindle shaft having a grinding wheel at the lower end and is not affected by thermal expansion of the rotary table. A measuring method and a grinding method of a final finish grinding step of a semiconductor wafer vacuum-adsorbed on the upper surface of the chuck mechanism, wherein a two-point in-process gauge is provided independently on a peripheral portion of the chuck mechanism, the upper surface of the chuck mechanism In the state in which the semiconductor wafer is vacuum-adsorbed with the above-mentioned two-point in-process gauge, the measurement value of the most recessed portion between the most recessed portion of the processing surface of the semiconductor wafer and the upper surface of the chuck mechanism is measured. The most convex measurement value of the most convex part of the surface and the upper surface of the chuck mechanism is measured using the two-point in-process gauge, and the most convex measurement value A semiconductor, characterized in that a measurement value difference from the measurement value of the recess is obtained, and a final finish grinding process is performed in which the measurement value difference is ground by bringing the upper surface of the chuck mechanism and the lower surface of the grinding wheel as close as possible to a parallel state. A wafer measurement method and a grinding method are proposed.

特許第3472784号特許明細書(特許文献4)は、水平面内で回転駆動される加工材料を、垂直方向に配置されたスピンドルヘッドの下部に取り付けられた砥石により研削する数値制御研削装置において、前記スピンドルヘッドと加工材料を垂直方向であるz軸方向に相対移動させる駆動手段と、前記スピンドルヘッドまたは加工材料を水平面内のx軸およびy軸の回りに回転させる傾動手段と、前記駆動手段および傾動手段を制御してスピンドルヘッドの送り量およびスピンドルヘッドと加工材料との相対的な傾きを研削の段階に応じて段階的または連続的に変化させる制御手段と、砥石の加工材料に対する加工開始点から加工終了点の間に位置する最深切り込み点の砥石中心からの方向と、前記加工開始点と加工終了点の加工材料からの高さの差とを入力パラメータとして、z軸方向の送り量とx軸回りおよびy軸回りの回転量とを算出する手段と、角度計測手段とを備えた砥石
軸角度調整可能な数値制御研削装置を提案する。また、前記制御手段が、スピンドルヘッドの送り量およびスピンドルヘッドと加工材料との相対的な傾きを初めに大きく、次第に小さく制御する半導体基板の研削方法も提案する。
Patent No. 3472784 patent specification (Patent Document 4) is a numerically controlled grinding apparatus for grinding a work material that is rotationally driven in a horizontal plane with a grindstone attached to a lower portion of a spindle head arranged in a vertical direction. Drive means for relatively moving the spindle head and the work material in the vertical z-axis direction, tilting means for rotating the spindle head or the work material around the x axis and the y axis in a horizontal plane, the drive means and the tilt Control means for controlling the means to change the feed amount of the spindle head and the relative inclination between the spindle head and the work material stepwise or continuously according to the stage of grinding, and from the processing start point of the grindstone for the work material The direction of the deepest incision point located between the machining end points from the center of the grindstone, and the machining material at the machining start point and the machining end point. Numerical control with a wheel axis angle adjustable, comprising means for calculating a feed amount in the z-axis direction and a rotation amount about the x-axis and about the y-axis, and an angle measurement means, using the difference in height of the wheel as an input parameter A grinding device is proposed. Also proposed is a semiconductor substrate grinding method in which the control means controls the feed amount of the spindle head and the relative inclination between the spindle head and the work material to be initially large and gradually small.

特開2005−22059号公報(特許文献5)は、被研削物(ワーク)を保持して回転駆動するターンテーブルと、カップホイール型研削砥石を取り付けて回転駆動する研削工具(砥石軸)とを具備し、前記ターンテーブルに保持した被研削物に研削工具の砥石を押し付けた状態で被研削物と研削工具とを相対運動させることにより被研削物の被研削面を平面状に研削する研削盤において、前記研削工具に、この研削工具の姿勢を制御する磁気軸受を設置し、前記研削工具の被研削物に対する相対的な姿勢を検出するセンサと、前記センサによって検出した検出データを用いて前記研削工具が予め設定した姿勢となるように前記磁気軸受を制御する姿勢制御手段とを具備し、前記センサは、前記磁気軸受の固定側部材と研削工具間の相対的位置の変位を複数箇所で検出する変位センサであることを特徴とする半導体基板用の研削装置を提案する。   Japanese Patent Laying-Open No. 2005-22059 (Patent Document 5) includes a turntable that holds and rotates a workpiece (workpiece) and a grinding tool (grinding wheel shaft) that is rotationally driven by attaching a cup wheel grinding wheel. A grinding machine for grinding a surface to be ground in a planar shape by relatively moving the object to be ground and the grinding tool in a state where the grindstone of the grinding tool is pressed against the object to be ground held on the turntable. In the grinding tool, a magnetic bearing for controlling the posture of the grinding tool is installed in the grinding tool, and a sensor for detecting a relative posture of the grinding tool with respect to an object to be ground and detection data detected by the sensor are used. And a posture control means for controlling the magnetic bearing so that the grinding tool assumes a preset posture, and the sensor is a relative position between the stationary member of the magnetic bearing and the grinding tool. Suggest grinding apparatus for a semiconductor substrate which is a displacement sensor for detecting a displacement in a plurality of locations.

さらに、特許第5184910号特許明細書(特許文献6)は、回転/直動可能な砥石軸に軸承されたカップホイール型砥石を静圧軸受と磁気軸受で回転および直動可能に支持した研削ヘッド、前記砥石軸を回転/直動させる回転/直動複合アクチュエータ、その砥石軸が垂直方向となるよう下面中央位置に研削ヘッドを固定した固定板、前記研削ヘッドの下方に設けたポーラスセラミック製ロータリーチャックテーブルが中空スピンドルにより軸承され、その中空スピンドルが静圧軸受により軸受けされるワークチャックロータリーテーブル機構であって、前記ポーラスセラミック製ロータリーチャックテーブルの水平方向表面が前記砥石軸に軸承されたカップホイール型砥石の底面に平行となるように設けたワークチャックロータリーテーブル機構、および、前記砥石軸を垂直方向に備えさせた固定板下面の中心点に対し正三角形または二等辺三角形の頂点位置の三箇所に前記固定板を上下移動させるキネマカップリングとシリンダロッドを備える固定板昇降機構3基備える基板平面研削装置であって、前記固定板昇降機構が、ワークチャックロータリーテーブル機構の機枠ベース表面に固定された中央にボールネジが貫通する孔を有する断面V形状カップリング雌部材、中央にボールネジが貫通する孔を有し、前記カップリング雌部材のV凹部内面壁に嵌合する底部断面形状がV形状のカップリング雄部材、前記カップリング雌部材の貫通孔およびカップリング雌部材の貫通孔を鉛直線上に貫通して設置されるボールネジであって、下端をワークチャックロータリーテーブル機構の機枠ベースの底部で固定具により回転駆動可能により固定され、上端は研削ヘッドの固定板の下面で固定嵌合プレートにより回転駆動可能により固定され、ボールネジの上端側にボールネジ駆動モータとエンコーダとボールネジ螺合体が取り付けられたボールネジ、および、前記カップリング雌部材のV凹部と前記カップリング雄部材の底面とで構成される空所内にマイクロサーボモータの駆動により進退移動可能なボールネジの先端に取り付けられた楔、とで構成され、該楔と前記カップリング雄部材の底面の接触により固定板の高さ位置が決定可能である固定板高さ位置調整機構であることを特徴とする、基板の平面研削装置を提案する。 Patent No. 5184910 (Patent Document 6) discloses a grinding head in which a cup wheel type grindstone supported by a grindstone shaft capable of rotation / linear movement is supported by a hydrostatic bearing and a magnetic bearing so as to be rotatable and linearly movable. Rotating / linearly acting combined actuator for rotating / linearly moving the grindstone shaft, a fixed plate having a grinding head fixed at the center of the lower surface so that the grindstone shaft is in the vertical direction, and a porous ceramic rotary provided below the grinding head A work wheel rotary table mechanism in which a chuck table is supported by a hollow spindle, and the hollow spindle is supported by a hydrostatic bearing, wherein a horizontal surface of the porous ceramic rotary chuck table is supported by the grindstone shaft. Work chuck rotary tape provided so as to be parallel to the bottom of the grinding wheel And a kinema coupling and a cylinder rod that move the fixing plate up and down at three positions of the apex of an equilateral triangle or an isosceles triangle with respect to the center point of the lower surface of the fixing plate provided with the grinding wheel shaft in the vertical direction. a surface grinding device for the substrate provided with a fixing plate lift mechanism 3 group comprising the fixed plate lifting mechanism, cross-section having a bore ball screw centrally fixed to the machine frame base surface of the workpiece chuck rotary table mechanism penetrates V Coupling female member having a hole through which a ball screw penetrates in the center and fitting to the inner wall of the V recess of the coupling female member. A ball screw installed through the hole and the through hole of the coupling female member on the vertical line, with the lower end at the work chuck rotary table Fixed at the bottom of the machine base of the machine mechanism by a fixing tool, and fixed at the upper end by a fixed fitting plate at the lower surface of the grinding head fixing plate. A ball screw to which an encoder and a ball screw threaded body are attached, and a tip of a ball screw capable of moving forward and backward by driving a micro servo motor in a space formed by a V recess of the coupling female member and a bottom surface of the coupling male member A fixed plate height position adjusting mechanism, wherein the fixed plate height position can be determined by contact between the wedge and the bottom surface of the coupling male member. A substrate surface grinding machine is proposed.

一方、特許第5219569号特許明細書(特許文献7)は、ウエハを保持して、ウエハを研削する研削手段と、研削手段を研削送りする送り手段とを備えたウエハ研削装置であって、
研削工程の間に、実際のウエハの厚さを測定する検出手段と、
前記研削工程の間に、前記研削手段の送り量を演算する演算部と、
前記研削工程の間に、前記研削手段の前記送り量に対応するウエハの厚さを、予め記憶したデータから抽出する導出部と、
前記研削工程の間に、前記導出部が抽出した前記ウエハの厚さと前記検出手段が測定した前記実際のウエハの厚さとを比較するとともに、前記導出部が抽出した前記ウエハの厚
さと前記実際のウエハ厚さとの差が所定範囲内に有るか否かを監視して、前記ウエハの前記裏面の加工良否を判定する加工良否判定部と、
を具備するウエハ研削装置を用い、
研削工程の間に、前記研削手段の送り量を算出し、
前記研削工程の間に、前記研削手段の前記送り量に対応するウエハの厚さを、予め格納したデータから抽出し、
前記研削工程の間に、実際のウエハの厚さを測定し、
前記研削工程の間に、前記研削手段の送り量に対応する前記ウエハの厚さと前記実際のウエハの厚さとを比較するとともに、前記研削手段の前記送り量に対応する前記ウエハの厚さと前記実際のウエハの厚さとの差が所定範囲内に有るか否かを監視して、前記ウエハの前記裏面の加工良否を判定する、
加工良否判定方法を提案する。
On the other hand, Japanese Patent No. 5219569 (Patent Document 7) is a wafer grinding apparatus comprising a grinding means for holding a wafer and grinding the wafer, and a feeding means for grinding and feeding the grinding means.
Detecting means for measuring the actual thickness of the wafer during the grinding process;
A calculation unit for calculating the feed amount of the grinding means during the grinding step;
A derivation unit that extracts the thickness of the wafer corresponding to the feed amount of the grinding means from pre-stored data during the grinding step;
During the grinding process, the wafer thickness extracted by the derivation unit is compared with the actual wafer thickness measured by the detection means, and the wafer thickness extracted by the derivation unit and the actual thickness are compared. Monitoring whether or not the difference between the wafer thickness is within a predetermined range and determining whether or not the back surface of the wafer is processed;
Using a wafer grinding apparatus comprising:
During the grinding process, calculate the feed amount of the grinding means,
During the grinding process, the wafer thickness corresponding to the feed amount of the grinding means is extracted from pre-stored data;
During the grinding process, the actual wafer thickness is measured,
During the grinding step, the wafer thickness corresponding to the feed amount of the grinding means is compared with the actual wafer thickness, and the wafer thickness corresponding to the feed amount of the grinding means and the actual thickness are compared. Monitoring whether the difference between the thickness of the wafer is within a predetermined range and determining whether the processing of the back surface of the wafer is good,
We propose a method for determining machining quality.

また、特許第4875409号特許明細書(特許文献8)は、測定範囲、感度、分解能も同種の2つの変位計A,Bを用い、標準直定規に対してレバー式自律校正法で校正された変位計A,Bの両方をピッチ距離p間離して数値制御平面研削機械の前後方向に移動可能なツールテーブルに搭載された砥石頭に変位計A,Bの列が左右方向に移動可能なワークテーブルの長手方向に向くよう距離p離して支持し、次の工程を経て前記ワークテーブル上の被平面研削加工物の真直度Sを測定し、
1)前記ワークテーブルおよび前記変位計A,Bの相対的な移動により前記ワークテーブル上に固定された標準直定規表面と各変位計A,Bプロ−ブ間の距離SA(Xi),SB(Xi
+p)を検出し、メモリーで記録する。
2)演算部で両者の差{SB(Xi+p)−SA(Xi)}を演算し、被平面研削加工物の基準面と非接触型静電容量型変位計Aのプローブ電極間の距離をZ0A、被平面研削加工物の基準
面と非接触型静電容量型変位計Bのプローブ電極間の距離Z0Bと仮定したときの距離Z0Bと距離Z0Aの差(Z0B−Z0A)としてメモリーに記憶する。
3)前記変位計A,Bを用いて前記ワークテーブル上の被平面研削加工物表面と各変位計A,Bのプローブ間の距離m1(Xi)およびm2(Xi+p)を検出し、メモリーする。
4)これら検出値の差m2d(Xi)=〔m2(Xi+p)−m1(Xi)〕を演算し、メモリーする。
5)m2d(Xi)/pを求める式に{SB(Xi+p)−SA(Xi)}を代入する演算を行い、このm2d(Xi)/pを被平面研削加工物表面の高さ変位函数f(X)の微分値df(X)/dXとして近似させ、次式で表される微分値を検出されていった各値よりこの導関数を積分していくとともに、メモリーに記録する。
df(X)/dX≒〔f(Xi+p)−f(Xi)〕/p+{SB(Xi+p)−SA(Xi)}/p
6)前式の導関数を積分した変位函数f(X)を、変位計Aにより計測された被平面研削加工物表面の真直度変位グラフとして出力するか、そのf(X)値の最大ピ−ク値を被平面研削加工物の真直度Sとして出力する。
ついで、
上記工程6)で出力されたf(Xi)の値と、工程1)で検出された変位計AのSA(Xi)お
よび工程3)で検出されたm1(Xi)の値より走査運動誤差Ez(Xi)を次式で演算し、
Ez(Xi)=m1(Xi)−f(Xi)+SA(Xi)
この走査運動誤差Ez(Xi)を数値制御装置にメモリーし、
前記数値制御平面研削機械の左右方向に移動可能な前記ワークテーブル上に載置される前記被平面研削加工物と、前記砥石頭との相対的な動きにより砥石頭の砥石軸に回転自在に備えられた砥石車により前記被平面研削加工物表面をワークテーブル座標位置Xi位置で研削加工する際、前記被加工物の平面研削加工時の前記砥石車の上下方向移動距離を前記Ez(Xi)の昇降移動補正を成しながら平面研削加工を行うことを特徴とする、被平面研削加工物の平面研削方法を提案する。
Patent No. 4875409 patent specification (Patent Document 8) was calibrated by a lever-type autonomous calibration method with respect to a standard straight ruler using two displacement meters A and B having the same measurement range, sensitivity, and resolution. Workpieces in which the rows of displacement gauges A and B can be moved in the left-right direction on a grinding wheel head mounted on a tool table that can be moved in the front-rear direction of a numerically controlled surface grinding machine by separating both displacement gauges A and B by a pitch distance p supported apart a distance p to face in the longitudinal direction of the table, through the following steps to measure the straightness S a of the surface grinding work piece on the work table,
1) A distance S A (X i ) between the standard straight ruler surface fixed on the work table by the relative movement of the work table and the displacement gauges A and B and the displacement gauges A and B probes, S B (X i
+ P ) is detected and recorded in memory.
2) The difference {S B (X i + p ) −S A (X i )} between the two is calculated by the calculation unit, and between the reference surface of the surface ground workpiece and the probe electrode of the non-contact capacitive displacement meter A distance Z 0A of the difference between the distance Z 0B and the distance Z 0A, assuming that the distance Z 0B between the probe electrodes and the reference plane of the surface grinding was the non-contact type electrostatic capacity type displacement gauge B (Z 0B -Z 0A ) is stored in the memory.
3) Using the displacement meters A and B, the distances m 1 (X i ) and m 2 (X i + p ) between the surface of the workpiece to be ground on the work table and the probes of the displacement meters A and B are detected. , Memory.
4) The difference between the detected values m 2d (X i ) = [m 2 (X i + p ) −m 1 (X i )] is calculated and stored.
5) the equation for m 2d (X i) / p is performed an operation of substituting {S B (X i + p ) -S A (X i)}, the surface grinding of the m 2d (X i) / p Approximate it as a differential value df (X) / dX of the height displacement function f (X) of the object surface, and integrate this derivative from each value that was detected with the differential value represented by the following equation: Record in memory.
df (X) / dX≈ [f (X i + p ) −f (X i )] / p + {S B (X i + p ) −S A (X i )} / p
6) Output the displacement function f (X) obtained by integrating the derivative of the previous equation as a straightness displacement graph of the surface of the surface-ground workpiece measured by the displacement meter A, or the maximum value of the f (X) value. - to output a click value as straightness S a of the surface grinding work piece.
Next,
The value of f (X i ) output in the above step 6), S A (X i ) of the displacement meter A detected in step 1) and the value of m 1 (X i ) detected in step 3) The scanning motion error Ez (X i ) is calculated by the following equation:
Ez (X i ) = m 1 (X i ) −f (X i ) + S A (X i )
This scanning motion error Ez (X i ) is stored in the numerical controller,
The grinding wheel shaft of the grinding wheel head is rotatably provided by the relative movement of the surface grinding workpiece placed on the work table movable in the left-right direction of the numerically controlled surface grinding machine and the grinding wheel head. When the surface of the workpiece to be ground is ground at the work table coordinate position X i by the grinding wheel, the vertical movement distance of the grinding wheel during the surface grinding of the workpiece is expressed as Ez (X i We propose a surface grinding method for surface-ground workpieces, characterized in that surface grinding is performed while correcting the up and down movement.

特公平1−52148号公報Japanese Patent Publication No. 1-52148 特開平4−201178号公報JP-A-4-2011178 特開平8−170912号公報JP-A-8-170912 特許第3472784号特許明細書Patent No. 3472784 Patent Specification 特開2005−22059号公報JP 2005-22059 A 特許第5184910号特許明細書Japanese Patent No. 5184910 特許第5219569号特許明細書Patent No. 5219569 Patent Specification 特許第4875409号特許明細書Patent No. 4875409 Patent Specification

上記特許文献1乃至特許文献6記載の工具(カップホイール型研削砥石または研磨パッド)軸傾斜可能な半導体基板用工作機械は、基板の平坦加工後に静電容量厚み測定計または非接触近赤外光センサを用いて平坦化半導体シリコン基板の平坦度(TTV値)も0.2μmの値を示すほどまで向上した。しかし、上記特許文献1乃至特許文献6記載の砥石軸傾斜可能な半導体基板用研削装置は、平坦化加工中の半導体基板の厚みの測定が半導体基板の回転中心点廻りの円周上であり、工具軸の半導体基板面に対する俯角を88.0度から90度に変化させて平坦化加工を行うため、平坦化加工された半導体基板の外周淵内側近くに山だれ現象が見受けられ、この山の存在がTTV0.2μm最良値となっている。よって、TTV0.1μmの平坦化加工された半導体基板を得るには、続いてCMP平坦化加工する工程が必要とされていた。また、直径が異なる銅電極柱がシリコン基盤に分散密度を変えて多数設けられた貫通電極基板を軸傾斜可能な数値制御研削装置を用いて平坦化加工した加工基板の厚みバラツキ度を示す面内均一性値は10〜15%、頭出しされた銅電極のシリコン基板面からの突出高さは、50nmから18μmと異なった値を示す。貫通電極半導体装置の製造メーカは、平坦化加工された貫通電極基板のTTV値を0.1μm以下、面内均一性を3%以下とすることを要望している。   The tool (cup wheel type grinding wheel or polishing pad) described in Patent Document 1 to Patent Document 6 described above is capable of tilting a semiconductor substrate machine tool, a capacitance thickness meter or non-contact near-infrared light after flattening the substrate. The flatness (TTV value) of the flattened semiconductor silicon substrate using the sensor was improved to a value of 0.2 μm. However, in the grinding apparatus for semiconductor substrate capable of tilting the grinding wheel axis described in Patent Document 1 to Patent Document 6, the measurement of the thickness of the semiconductor substrate during planarization is on the circumference around the rotation center point of the semiconductor substrate, Since the angle of depression of the tool axis with respect to the semiconductor substrate surface is changed from 88.0 degrees to 90 degrees, flattening is performed, and therefore a ridge phenomenon is observed near the inner periphery of the flattened semiconductor substrate. Existence is the best value of TTV 0.2 μm. Therefore, in order to obtain a flattened semiconductor substrate having a TTV of 0.1 μm, a subsequent CMP flattening step has been required. Also, in-plane showing the thickness variation degree of the processed substrate flattened using a numerically controlled grinding machine that can tilt the through electrode substrate in which a large number of copper electrode columns with different diameters are provided on the silicon substrate with different dispersion density. The uniformity value is 10 to 15%, and the protruding height of the cued copper electrode from the silicon substrate surface is different from 50 nm to 18 μm. Manufacturers of through-electrode semiconductor devices are requesting that the TTV value of the planarized through-electrode substrate be 0.1 μm or less and the in-plane uniformity be 3% or less.

本願発明者らは、上記特許文献7または特許文献8記載の先の平坦化研削加工された被研削物(ワーク)の物性値(厚みまたは真直度)を数値制御工作機械にフィードバックさせて新しい被研削物の平坦化加工を行うという方式を、上記工具軸傾斜可能な半導体基板用工作機械に応用することを鑑み、平坦化加工中の基板の径方向の厚みを直動移動方式の非接触センサで測定し、数値制御装置(CPU)のメモリー部(ROM)に記録させるとともに、数値制御装置の演算部でTTV曲線を算出し、そのTTV曲線をメモリー部に記録させ、数値制御工作機械にフィードバックさせて新しい半導体基板の平坦化加工を行うことを検討し、本発明に想着した。   The inventors of the present application feed back the physical property value (thickness or straightness) of the workpiece (workpiece) subjected to the above-described flattening grinding process described in Patent Document 7 or Patent Document 8 to a numerically controlled machine tool to provide a new workpiece. In view of applying the method of flattening the grinding object to the above-mentioned machine tool for semiconductor substrate capable of tilting the tool axis, the non-contact sensor of the linear movement type is used to determine the thickness of the substrate in the radial direction during the flattening processing. Measured by, and recorded in the memory unit (ROM) of the numerical control device (CPU), calculated the TTV curve by the arithmetic unit of the numerical control device, recorded the TTV curve in the memory unit, and fed back to the numerical control machine tool Then, the inventors studied to planarize a new semiconductor substrate and came up with the present invention.

本発明の目的は、TTV値が0.1μm以下、面内均一性が3%以下の平坦化加工半導体基板が得られる半導体基板の平坦化加工方法を提供するものである。   An object of the present invention is to provide a method for planarizing a semiconductor substrate, from which a planarized semiconductor substrate having a TTV value of 0.1 μm or less and an in-plane uniformity of 3% or less can be obtained.

請求項1の発明は、カップホイール型研削砥石軸傾斜可能な数値制御研削装置を用い、直動移動方式の非接触センサまたは複数本の非接触センサを基板の半径方向に並設した複数の変位センサを用いて研削加工されている途中の半導体装置の厚み(t)を測定し、その値(t)を数値制御装置のメモリー部に送信し、演算部でTTV曲線を作成、TTV値を算出、面内均一性値を算出し、前記TTV値および面内均一性値を前記メモリー部に記憶させながら数値制御装置より前記数値制御研削装置にフィードバックさせるカップホイール型研削砥石による半導体基板(ワーク)表面の平坦化加工を行う半導体基板の平坦化研削加工方法において、
平坦化研削加工の工程の間(途中)に、前記カップホイール型研削砥石軸の送り量を算出し、前記研削工程の間に前記カップホイール型研削砥石軸の送り量に対応する半導体基板の厚み(t0)を予めメモリー部に格納したデータから抽出し、
前記平坦化加工の工程の間に実際の半導体基板の厚み(t)を測定し、
前記平坦化加工の工程の間に、前記カップホイール型研削砥石軸の送り量に対応する半導体基板の厚み(t0)と前記実際測定された半導体基板の厚み(t)とを比較するとともに、前記カップホイール型研削砥石軸の前記送り量に対応する半導体基板の厚み(t0)と前記実際測定された半導体基板の厚み(t)との差が所望するTTV値範囲内(
0.1μm以下)に在るか否かを数値制御装置の判定部で判定する監視を行うとともに、演算部よりメモリー部に送信された面内均一性値が所望する面内均一性値(3%以下)に在るか否かも数値制御装置の判定部で判定する監視を行い、
判定されたTTV値、面内均一性値、および加工された半導体基板の厚み(t)が所望の厚み(T)範囲内であるときは、半導体基板のカップホイール型研削砥石による平坦化加工を終了し、
判定されたTTV値および面内均一性値、および、研削加工された半導体基板の厚み(t)の一つでも所望の範囲外であるときは、前記カップホイール型研削砥石軸の送り量およびカップホイール型研削砥石軸傾斜角度を変えて半導体基板のカップホイール型研削砥石による平坦化研削加工を、判定されるTTV値、面内均一性値、および、加工された半導体基板の厚み(t)の全てが所望の範囲内となるまで続行する、
ことを特徴とする半導体基板の平坦化研削加工方法を提供するものである。
The invention of claim 1 uses a numerically controlled grinding apparatus capable of tilting a cup wheel grinding wheel axis, and a plurality of displacements in which a non-contact sensor of a linear motion type or a plurality of non-contact sensors are arranged in parallel in the radial direction of the substrate. The thickness (t i ) of the semiconductor device that is being ground is measured using a sensor, the value (t i ) is transmitted to the memory unit of the numerical controller, and a TTV curve is created by the calculation unit. A semiconductor substrate by a cup wheel type grinding wheel that calculates an in-plane uniformity value and feeds back the TTV value and the in-plane uniformity value from the numerical control device to the numerical control grinding device while storing them in the memory unit ( Work) In a semiconductor substrate flattening grinding method for surface flattening,
The thickness of the semiconductor substrate corresponding to the feed amount of the cup wheel grinding wheel shaft is calculated during the grinding process, while calculating the feed amount of the cup wheel grinding wheel shaft during the grinding process. (T 0 ) is extracted from data stored in the memory unit in advance,
Measuring the thickness (t i ) of the actual semiconductor substrate during the planarization process;
During the flattening step, the thickness (t 0 ) of the semiconductor substrate corresponding to the feed amount of the cup wheel grinding wheel shaft is compared with the actually measured thickness (t i ) of the semiconductor substrate. The difference between the thickness (t 0 ) of the semiconductor substrate corresponding to the feed amount of the cup wheel grinding wheel shaft and the actually measured thickness (t i ) of the semiconductor substrate is within a desired TTV value range (
The determination unit of the numerical controller determines whether or not it is 0.1 μm or less) and the in-plane uniformity value transmitted from the calculation unit to the memory unit is a desired in-plane uniformity value (3 % Or less) is monitored by the determination unit of the numerical controller.
When the determined TTV value, in-plane uniformity value, and processed semiconductor substrate thickness (t e ) are within the desired thickness (T e ) range, the semiconductor substrate is planarized by a cup wheel grinding wheel Finish processing
If any one of the determined TTV value and in-plane uniformity value and the thickness (t e ) of the ground semiconductor substrate is outside the desired range, the feed amount of the cup wheel grinding wheel shaft and the planarization grinding by cup wheel grinding wheel of the semiconductor substrate by changing the cup wheel grinding wheel axis inclination angle, TTV value to be determined, in-plane uniformity value, and processed semiconductor substrate having a thickness (t e ) Continue until everything is within the desired range,
The present invention provides a method for flattening and grinding a semiconductor substrate.

請求項2の発明は、カップホイール型研削砥石による半導体基板用平坦化加工中に前記カップホイール型研削砥石の半導体基板の表面研削加工に供されていない砥石刃先にこの砥石刃までの距離5〜20mm位置にあるノズル噴出口より圧力3〜20MPaの洗浄水を噴射させて砥石刃に付着した電極研削屑、絶縁層研削屑、樹脂研削屑等の異物を洗い流す砥石刃洗浄(加圧水ドレッシング)を行うことを特徴とする、請求項1記載の半導体基板の平坦化研削加工方法を提供するものである。   The invention according to claim 2 is that the distance between the grinding wheel edge that is not used for surface grinding of the semiconductor substrate of the cup wheel grinding wheel during the planarization processing for the semiconductor substrate by the cup wheel grinding wheel is 5 to 5 Grinding stone blade cleaning (pressure water dressing) to wash away foreign matter such as electrode grinding waste, insulating layer grinding waste, resin grinding waste, etc. adhering to the grinding wheel blade by spraying cleaning water with a pressure of 3-20 MPa from the nozzle outlet located at 20 mm position. The present invention provides a method for planarizing and grinding a semiconductor substrate according to claim 1.

半導体基板の半径方向の厚み測定を加えたフィードバック研削加工工程を従来の研削加工工程の途中に取り入れたことにより、TTV値が0.1μm以下、面内均一性値が3.0%以下の平坦化研削加工半導体基板が得られる。また、カップホイール型研削砥石の加圧水ドレッシング工程を加えたことにより3D貫通電極半導体基板表面の配線金属(Cu,AG,Al)研削屑汚染(Smearing)問題が解消される。   By adopting a feedback grinding process with thickness measurement in the radial direction of the semiconductor substrate in the middle of the conventional grinding process, a flat surface with a TTV value of 0.1 μm or less and an in-plane uniformity value of 3.0% or less A ground semiconductor substrate can be obtained. Further, by adding the pressurized water dressing process of the cup wheel type grinding wheel, the wiring metal (Cu, AG, Al) grinding dust contamination (Smearing) problem on the surface of the 3D through electrode semiconductor substrate is solved.

図1は半導体基板を平坦化加工している状態を示す数値制御研削装置の正面図である。FIG. 1 is a front view of a numerically controlled grinding apparatus showing a state in which a semiconductor substrate is flattened. 図2は半導体基板の平坦化加工手順を示すブロック図である。FIG. 2 is a block diagram showing a procedure for planarizing the semiconductor substrate. 図3はフィードバックされる半導体基板平坦化加工途中に作成される平坦化加工半導体基板のTTV曲線の変化を示す図である。FIG. 3 is a diagram illustrating a change in the TTV curve of a planarized semiconductor substrate created during the planarized semiconductor substrate planarization process.

以下、図1および図2を用いて半導体基板(ワーク)wのカップホイール型研削砥石による平坦化加工方法を詳細に説明する。   Hereinafter, the planarization method of the semiconductor substrate (work) w using a cup wheel grinding wheel will be described in detail with reference to FIGS. 1 and 2.

実施例1
(1).半導体基板wをカップホイール型研削砥石軸角度調整可能な研削装置1のポーラスセラミックチャックテーブル2a上に載置する。
Example 1
(1). The semiconductor substrate w is placed on the porous ceramic chuck table 2a of the grinding apparatus 1 capable of adjusting the cup wheel grinding wheel axis angle.

(2).数値制御装置のメモリー部(ROM)に、研削前のワークの厚み(T)、所望する平坦加工ワークの厚み(T)、カップホイール型研削砥石軸の送り量に対応する半導体基板の厚み(t0)、所望する上限のTTV値(0.1μm)、所望する上限の面内均一値(3.0%)、変位センサの測定位置(i)および測定点数を入力する。 (2). The thickness (T 0 ) of the workpiece before grinding, the thickness of the desired flat processed workpiece (T e ), and the thickness of the semiconductor substrate corresponding to the feed amount of the cup wheel grinding wheel axis are stored in the memory section (ROM) of the numerical controller. (T 0 ), a desired upper limit TTV value (0.1 μm), a desired upper limit in-plane uniform value (3.0%), a measurement position (i) of the displacement sensor, and the number of measurement points.

カップホイール型研削砥石軸傾斜可能な数値制御半導体基板用平坦化加工装置1を用い
、直動移動方式の非接触変位センサ(近赤外光変位センサ)を用いて半導体装置の厚み(t)を測定し、その値(t)を数値制御装置のメモリー部(ROM)に送信し、演算部でTTV値を算出するとともに、TTV曲線を作成させて前記メモリー部に記憶させながらカップホイール型研削砥石3による半導体基板w表面の平坦化研削加工を開始する。
The thickness (t i ) of a semiconductor device using a non-contact displacement sensor (near-infrared light displacement sensor) of a linear motion type using a numerically controlled semiconductor substrate flattening apparatus 1 capable of tilting a cup wheel grinding wheel axis. Cup wheel type, while transmitting the value (t i ) to the memory unit (ROM) of the numerical control device, calculating the TTV value in the arithmetic unit, and creating the TTV curve and storing it in the memory unit Flattening grinding of the surface of the semiconductor substrate w by the grinding wheel 3 is started.

具体的には、図1に示される数値制御半導体基板用平坦化加工装置1を用い、数値制御装置の記憶部(RAM)に記憶されている研削加工プログラムからの指令に従ってカップホイール型研削砥石軸の送り量(砥石軸傾斜角度、カップホイール型研削砥石3のインフィード切り込み量、カップホイール型研削砥石3の砥石刃3gが半導体基板表面に接する位置座標)を変えながら半導体基板表面の平坦化研削加工を行う。砥石軸傾斜角度の変化は、従来通りの88度開始、90度(半導体基板の上面と砥石刃の下面が平行である)終了でよい。また、複数個(図1では3個)の非接触変位センサを半導体基板の半径方向に並べて設置してもよいし、直動移動方式の非接触変位センサ1個を半導体基板の半径方向に直線移動させて監視をおこなってもよい。   Specifically, a cup wheel type grinding wheel shaft is used in accordance with a command from a grinding program stored in a storage unit (RAM) of the numerical control device using the numerical control semiconductor substrate flattening processing device 1 shown in FIG. The surface of the semiconductor substrate is flattened while changing the feed amount of the wheel (inclination angle of the grinding wheel axis, infeed cutting amount of the cup wheel grinding wheel 3, position coordinates where the grinding wheel 3 g of the cup wheel grinding wheel 3 contacts the semiconductor substrate surface). Processing. The change in the inclination angle of the grindstone axis may be as usual, starting at 88 degrees and ending at 90 degrees (the upper surface of the semiconductor substrate and the lower surface of the grindstone blade are parallel). Further, a plurality (three in FIG. 1) of non-contact displacement sensors may be arranged side by side in the radial direction of the semiconductor substrate, or one non-contact displacement sensor of linear motion type is linearly arranged in the radial direction of the semiconductor substrate. It may be moved and monitored.

前記数値制御研削装置1は、基板チャック2aを回転軸2bに軸承させた基板吸着チャック機構2、砥石軸3bに軸承された高い砥番のカップホイール型研削砥石3aを備える砥石ヘッド3、該研削砥石の砥石刃先3aを高圧ジェット洗浄するノズル4aを備える洗浄液噴射装置4および貫通電極付きセラミック基板の貫通電極が形成されている面に研削液を供給する研削液供給ノズル5を備える。 The numerically controlled grinding apparatus 1 includes a substrate suction chuck mechanism 2 in which a substrate chuck 2a is supported on a rotating shaft 2b, a grinding wheel head 3 including a cup wheel type grinding wheel 3a having a high grinding number supported on a grinding wheel shaft 3b, and the grinding. the grinding wheel cutting edge 3a g of the grinding wheel comprises a grinding liquid supply nozzle 5 for supplying a grinding fluid to a surface cleaning liquid injection device 4 and the through electrode with the ceramic substrate through electrode is formed with a nozzle 4a of the high-pressure jet cleaning.

前記カップホイール型研削砥石3は、砥粒素材として砥番#300〜#1,200のダイヤモンド、cBN、SiCの砥粒を用いたビトリアイドボンド砥石、メタルボンド砥石、レジンボンド砥石などが利用できる。なかでも、ダイヤモンドビトリファイドボンドカップホイール型研削砥石が面平坦度仕上げ(面内均一性)および研削速度の面で優れる。   The cup wheel type grinding wheel 3 can use a vitriaide bond wheel, a metal bond wheel, a resin bond wheel, etc. using diamonds of diamond numbers # 300 to # 1,200, cBN, and SiC as abrasive materials. . Among them, the diamond vitrified bond cup wheel type grinding wheel is excellent in terms of surface flatness finish (in-plane uniformity) and grinding speed.

研削液供給ノズル5より供給される研削液としては、純水が一般であるが、半導体基板素材の種類(シリコン、ガラス、セラミック)および電極素材の金属(銅、アルミニウム、銀)によっては、純水以外のエタノールアミン水溶液、テトラメチルアンモニウムヒドロキシド水溶液、苛性カリ水溶液、酢酸、塩酸等の導電性水溶液、シリカ水分散液セリア水分散液、アルミナ水分散液なども利用してもよい。   As the grinding fluid supplied from the grinding fluid supply nozzle 5, pure water is generally used, but depending on the type of the semiconductor substrate material (silicon, glass, ceramic) and the metal of the electrode material (copper, aluminum, silver), pure water may be used. An ethanolamine aqueous solution other than water, a tetramethylammonium hydroxide aqueous solution, a caustic potash aqueous solution, a conductive aqueous solution such as acetic acid or hydrochloric acid, a silica water dispersion, a ceria aqueous dispersion, an alumina aqueous dispersion, or the like may also be used.

洗浄液噴射装置4のノズル4aより供給される洗浄液としては、上述の研削液を用いてもよいが、排水処理の面から純水が一般的である。洗浄水の砥石刃3aへの噴射角度は、3〜20度、好ましくは、5〜18度の扇形状である。 As the cleaning liquid supplied from the nozzle 4a of the cleaning liquid injection device 4, the above-described grinding liquid may be used, but pure water is generally used from the viewpoint of wastewater treatment. Injection angle to the grindstone blade 3a g of washing water, 3 to 20 degrees, preferably, 5 to 18 degrees of fan shape.

洗浄液噴射装置4としては、旭サナック株式会社の精密高圧ジェット水洗浄機械“HPMJ AFS5400S”(商品名)が利用できる。   As the cleaning liquid injection device 4, a precision high-pressure jet water cleaning machine “HPMJ AFS5400S” (trade name) manufactured by Asahi Sunac Corporation can be used.

上記数値制御研削装置1のカップホイール型研削砥石研削砥石3gを用いて銅貫通電極が形成されたシリコン基板(ワーク)wの表面平坦化加工を行う銅貫通電極の頭出し研削加工作業は、回転軸2bを100〜150min−1回転させることによりワークを回転させ、高粒度カップホイール型研削砥石3aの砥石軸3bを1,200〜2,000min−1回転させながら30μm/分の下降速度で下降させて、そのカップホイール型研削砥石の砥石刃先3aを前記ワークw表面上で摺擦させて厚みを所望量(2〜50μm)減少させるワークの仕上げ研削加工をするとともに、この研削加工中に前記カップホイール型研削砥石の半導体基板の表面研削加工に供されていないポーラスセラミックテーブル2a外領域部分の砥石刃先3aにこの砥石刃までの距離5〜20mm位置にあるノズル噴出口4aより圧力3〜20MPa、好ましくは、10〜12MPaの洗浄水を噴射させて砥石刃に付着した銅電極研削屑、絶縁層研削屑、樹脂研削屑等を洗い流す砥石刃洗浄工程(加圧水ドレッシング)を行う。上記研削加工中、ワークの表面には研削液供給ノズル
5より研削液が10〜20リットル/分の割合で供給される。
Cue grinding work of the copper through electrode that performs surface flattening of the silicon substrate (workpiece) w on which the copper through electrode is formed by using the cup wheel type grinding wheel grinding wheel 3g of the numerical control grinding apparatus 1 is a rotation. by the shaft 2b 100~150min -1 rotated to rotate the workpiece while the grinding wheel shaft 3b of Kotsubudo cup wheel grinding wheel 3a 1,200~2,000min -1 rotated downward by 30 [mu] m / min lowering speed by, with the finish grinding of the workpiece to the desired amount of thickness is rubbed grinding wheel cutting edge 3a g on the workpiece w surface of the cup wheel grinding wheel (2 to 50 [mu] m) is reduced, during the grinding The grindstone cutting edge 3a of the outer region of the porous ceramic table 2a not subjected to the surface grinding of the semiconductor substrate of the cup wheel grinding wheel Copper electrode grinding debris adhered to the grinding wheel by injecting cleaning water with a pressure of 3 to 20 MPa, preferably 10 to 12 MPa from the nozzle outlet 4a located at a distance of 5 to 20 mm from the grinding wheel to g. A grinding wheel cleaning process (pressurized water dressing) for washing away scraps, resin grinding scraps and the like is performed. During the grinding process, the grinding liquid is supplied from the grinding liquid supply nozzle 5 to the surface of the workpiece at a rate of 10 to 20 liters / minute.

(3).上記半導体基板表面の平坦化研削加工の工程の間に、前記カップホイール型研削砥石軸3aの送り量を数値制御装置(CPU)の演算部で算出し、前記平坦化工程の間に前記カップホイール型研削砥石軸の送り量に対応する半導体基板の厚み(t0)を予めメモ
リー部に格納したデータから抽出する。
(3). During the flattening grinding process of the semiconductor substrate surface, the feed amount of the cup wheel type grinding wheel shaft 3a is calculated by a calculation unit of a numerical controller (CPU), and the cup wheel during the flattening process. The thickness (t 0 ) of the semiconductor substrate corresponding to the feed amount of the die grinding wheel shaft is extracted from the data stored in the memory unit in advance.

(4).前記平坦化研削加工の工程の間に実際の半導体基板の厚み(t)を3本の近赤外光変位センサで同時に測定する。 (4). During the flattening grinding process, the actual thickness (t i ) of the semiconductor substrate is simultaneously measured by three near infrared light displacement sensors.

(5).また、前記平坦化加工の工程の間に、前記カップホイール型研削砥石軸の送り量に対応する半導体基板の厚み(t0)と前記実際測定された半導体基板の厚み(t)とを比較するとともに、前記カップホイール型研削砥石軸の前記送り量に対応する半導体基板の厚み(t0)と前記実際測定された半導体基板の厚み(t)との差の絶対値|t−t0|が所望するTTV値の範囲内(0.1μm以下)に在るか否かを数値制御装置の判定部で判定する監視を行うとともに、メモリー部に記憶された前記測定された半導体基板の厚み(t)より厚みのバラツキを演算部で算出し、面内均一性値が所望する値内(3%以下)に在るか否かも数値制御装置の判定部で判定する監視を行う。 (5). Further, during the flattening process, the thickness (t 0 ) of the semiconductor substrate corresponding to the feed amount of the cup wheel type grinding wheel shaft is compared with the actually measured thickness (t i ) of the semiconductor substrate. In addition, the absolute value of the difference between the thickness (t 0 ) of the semiconductor substrate corresponding to the feed amount of the cup wheel grinding wheel shaft and the thickness (t i ) of the actually measured semiconductor substrate | t i −t 0 | is monitored by the determination unit of the numerical control device to determine whether it is within a desired TTV value range (0.1 μm or less), and the measured semiconductor substrate stored in the memory unit is monitored. The thickness variation from the thickness (t i ) is calculated by the calculation unit, and monitoring is performed to determine whether the in-plane uniformity value is within a desired value (3% or less) by the determination unit of the numerical controller.

(6).判定されたTTV値および面内均一性値および加工された半導体基板の厚み(t)が所望の範囲(T)内であるときは、半導体基板のカップホイール型研削砥石による平坦化研削加工を終了する。 (6). When the determined TTV value and in-plane uniformity value and the thickness (t e ) of the processed semiconductor substrate are within a desired range (T e ), the semiconductor substrate is planarized by a cup wheel grinding wheel. Exit.

(7).上記(5)工程で判定されたTTV値および面内均一性値および加工された半導体基板の厚み(t)の一つでも所望の範囲外であるときは、前記カップホイール型研削砥石軸の送り量、砥石軸角度を変える前記(5)工程に戻り、半導体基板のカップホイール型研削砥石による平坦化研削加工を、判定されるTTV値および面内均一性値および加工された半導体基板の厚み(t)の全てが所望の範囲内となるまで続行し、次いで、上記(6)工程終了に到る。 (7). If any one of the TTV value and the in-plane uniformity value determined in the step (5) and the thickness (t e ) of the processed semiconductor substrate is outside the desired range, the cup wheel grinding wheel shaft Returning to the step (5) in which the feed amount and the grindstone axis angle are changed, the flattening grinding process of the semiconductor substrate by the cup wheel type grinding grindstone is performed, the TTV value to be determined, the in-plane uniformity value, and the thickness of the processed semiconductor substrate all (t e) is continued until the desired range, then reaches the above step (6) ends.

図3に示す複数のTTV曲線から理解されるように、フィードバック平坦化研削加工の進展につれ、得られるTTV曲線は、最上部TTV曲線から最下位部のTTV曲線へと変化する。この最下位部のTTV曲線はTTV0.094μm、面内均一性2.8%の平坦化研削加工された銅貫通電極半導体基板の物性を示すもので、基板外周縁近傍の山だれ減少が極めて小さくなっていることが理解される。よって、半導体装置製造メーカの要望を満たす平坦化加工された銅貫通電極半導体基板を提供できる。   As can be seen from the multiple TTV curves shown in FIG. 3, as the feedback flattening grinding process progresses, the resulting TTV curve changes from the top TTV curve to the bottom TTV curve. The lowest TTV curve shows the physical properties of the planarized and ground copper through-electrode semiconductor substrate with a TTV of 0.094 μm and an in-plane uniformity of 2.8%. It is understood that Accordingly, a planarized copper through electrode semiconductor substrate that satisfies the demands of the semiconductor device manufacturer can be provided.

1 研削装置
w 銅貫通電極が形成されたシリコン基板(被研削物)
2 基板チャック機構
2a バキュームチャックテーブル
2b バキュームチャックテーブルの回転軸
3 カップホイール型研削砥石
3ag カップホイール型研削砥石の砥石刃先
3b カップホイール型研削砥石軸
4 洗浄液噴射装置
4a 高圧ジェット洗浄するノズル
5 研削液供給ノズル
1 Grinding device w Silicon substrate on which copper through electrode is formed (to-be-ground object)
DESCRIPTION OF SYMBOLS 2 Substrate chuck mechanism 2a Vacuum chuck table 2b Rotary shaft of vacuum chuck table 3 Cup wheel type grinding wheel 3ag Cup wheel type grinding wheel edge 3b Cup wheel type grinding wheel shaft 4 Cleaning fluid injection device 4a High pressure jet cleaning nozzle 5 Grinding fluid Supply nozzle

Claims (2)

カップホイール型研削砥石軸傾斜可能な数値制御研削装置を用い、直動移動方式の非接触センサまたは複数本の非接触センサを基板の半径方向に並設した複数の変位センサを用いて研削加工されている途中の半導体装置の厚み(t)を測定し、その値(t)を数値制御装置のメモリー部に送信し、演算部でTTV曲線を作成、TTV値を算出、面内均一性値を算出し、前記TTV値および面内均一性値を前記メモリー部に記憶させながら数値制御装置より前記数値制御研削装置にフィードバックさせるカップホイール型研削砥石による半導体基板(ワーク)表面の平坦化加工を行う半導体基板の平坦化研削加工方法において、
平坦化研削加工の工程の間(途中)に、前記カップホイール型研削砥石軸の送り量を算出し、前記研削工程の間に前記カップホイール型研削砥石軸の送り量に対応する半導体基板の厚み(t0)を予めメモリー部に格納したデータから抽出し、
前記平坦化加工の工程の間に実際の半導体基板の厚み(t)を測定し、
前記平坦化加工の工程の間に、前記カップホイール型研削砥石軸の送り量に対応する半導体基板の厚み(t0)と前記実際測定された半導体基板の厚み(t)とを比較するとともに、前記カップホイール型研削砥石軸の前記送り量に対応する半導体基板の厚み(t0)と前記実際測定された半導体基板の厚み(t)との差が所望するTTV値範囲内に在るか否かを数値制御装置の判定部で判定する監視を行うとともに、演算部よりメモリー部に送信された面内均一性値が所望する面内均一性値に在るか否かも数値制御装置の判定部で判定する監視を行い、
判定されたTTV値、面内均一性値、および加工された半導体基板の厚み(t)が所望の値の範囲内であるときは、半導体基板のカップホイール型研削砥石による平坦化研削加工を終了し、
判定されたTTV値および面内均一性値、および、研削加工された半導体基板の厚み(t)の一つでも所望の範囲外であるときは、前記カップホイール型研削砥石軸の送り量およびカップホイール型研削砥石軸傾斜角度を変えて半導体基板のカップホイール型研削砥石による平坦化研削加工を、判定されるTTV値、面内均一性値、および、加工された半導体基板の厚み(t)の全てが所望の範囲内となるまで続行する、
ことを特徴とする半導体基板の平坦化研削加工方法。
It is ground using a numerically controlled grinding machine capable of tilting the cup wheel type grinding wheel axis, using a non-contact sensor of linear motion type or a plurality of non-contact sensors arranged in parallel in the radial direction of the substrate. The thickness (t i ) of the semiconductor device being measured is measured, the value (t i ) is transmitted to the memory unit of the numerical controller, a TTV curve is created by the calculation unit, the TTV value is calculated, and in-plane uniformity The surface of the semiconductor substrate (work) is planarized by a cup wheel grinding wheel that calculates a value and feeds back the TTV value and the in-plane uniformity value to the numerical control grinding device from the numerical control device while storing them in the memory unit. In the semiconductor substrate flattening grinding method,
The thickness of the semiconductor substrate corresponding to the feed amount of the cup wheel grinding wheel shaft is calculated during the grinding process, while calculating the feed amount of the cup wheel grinding wheel shaft during the grinding process. (T 0 ) is extracted from data stored in the memory unit in advance,
Measuring the thickness (t i ) of the actual semiconductor substrate during the planarization process;
During the flattening step, the thickness (t 0 ) of the semiconductor substrate corresponding to the feed amount of the cup wheel grinding wheel shaft is compared with the actually measured thickness (t i ) of the semiconductor substrate. The difference between the semiconductor substrate thickness (t 0 ) corresponding to the feed amount of the cup wheel grinding wheel axis and the actually measured semiconductor substrate thickness (t i ) is within a desired TTV value range. Whether or not the in-plane uniformity value transmitted from the calculation unit to the memory unit is at a desired in-plane uniformity value. Performs monitoring to be determined by the determination unit,
When the determined TTV value, in-plane uniformity value, and processed semiconductor substrate thickness (t e ) are within the desired value range, the semiconductor substrate is planarized by a cup wheel grinding wheel. Exit
If any one of the determined TTV value and in-plane uniformity value and the thickness (t e ) of the ground semiconductor substrate is outside the desired range, the feed amount of the cup wheel grinding wheel shaft and the planarization grinding by cup wheel grinding wheel of the semiconductor substrate by changing the cup wheel grinding wheel axis inclination angle, TTV value to be determined, in-plane uniformity value, and processed semiconductor substrate having a thickness (t e ) Continue until everything is within the desired range,
A method for planarizing and grinding a semiconductor substrate.
カップホイール型研削砥石による半導体基板用平坦化加工中に前記カップホイール型研削砥石の半導体基板の表面研削加工に供されていない砥石刃先にこの砥石刃までの距離5〜20mm位置にあるノズル噴出口より圧力3〜20MPaの洗浄水を噴射させて砥石刃に付着した電極研削屑、絶縁層研削屑、樹脂研削屑等の異物を洗い流す砥石刃洗浄を行うことを特徴とする、請求項1記載の半導体基板の平坦化研削加工方法。   Nozzle outlet located at a distance of 5 to 20 mm from the grinding wheel edge that is not used for surface grinding of the semiconductor substrate of the cup wheel grinding wheel during the planarization of the semiconductor substrate by the cup wheel grinding wheel The grinding wheel cleaning is performed to wash away foreign matters such as electrode grinding waste, insulating layer grinding waste, and resin grinding waste adhering to the grinding wheel blade by spraying cleaning water at a pressure of 3 to 20 MPa. A method for flattening and grinding a semiconductor substrate.
JP2013149245A 2013-07-18 2013-07-18 Semiconductor substrate flattening grinding method Active JP6179021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013149245A JP6179021B2 (en) 2013-07-18 2013-07-18 Semiconductor substrate flattening grinding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013149245A JP6179021B2 (en) 2013-07-18 2013-07-18 Semiconductor substrate flattening grinding method

Publications (2)

Publication Number Publication Date
JP2015023113A true JP2015023113A (en) 2015-02-02
JP6179021B2 JP6179021B2 (en) 2017-08-16

Family

ID=52487330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013149245A Active JP6179021B2 (en) 2013-07-18 2013-07-18 Semiconductor substrate flattening grinding method

Country Status (1)

Country Link
JP (1) JP6179021B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016201422A (en) * 2015-04-08 2016-12-01 株式会社東京精密 Workpiece processing device
KR20190087287A (en) * 2018-01-16 2019-07-24 가부시기가이샤 디스코 Planarization method
JP2019181657A (en) * 2018-04-17 2019-10-24 スピードファム株式会社 Polishing apparatus
US10763171B2 (en) 2018-02-07 2020-09-01 Okamoto Machine Tool Works, Ltd. Method of manufacturing semiconductor apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0985619A (en) * 1995-05-26 1997-03-31 Tokyo Seimitsu Co Ltd Surface grinding method and device therefor
JP2006000997A (en) * 2004-06-21 2006-01-05 Nachi Fujikoshi Corp Apparatus for cleaning abrasive grain surface of grinding wheel
JP2009246240A (en) * 2008-03-31 2009-10-22 Tokyo Seimitsu Co Ltd Grinding method for grinding back-surface of semiconductor wafer and grinding apparatus for grinding back-surface of semiconductor wafer used in same
JP2011171324A (en) * 2010-02-16 2011-09-01 Okamoto Machine Tool Works Ltd Flattening device and method of compound semiconductor substrate
JP2011206891A (en) * 2010-03-30 2011-10-20 Sumitomo Metal Mining Co Ltd Method for polishing wafer substrate, and polishing plate
JP2011245610A (en) * 2010-05-31 2011-12-08 Mitsubishi Electric Corp Method of manufacturing semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0985619A (en) * 1995-05-26 1997-03-31 Tokyo Seimitsu Co Ltd Surface grinding method and device therefor
JP2006000997A (en) * 2004-06-21 2006-01-05 Nachi Fujikoshi Corp Apparatus for cleaning abrasive grain surface of grinding wheel
JP2009246240A (en) * 2008-03-31 2009-10-22 Tokyo Seimitsu Co Ltd Grinding method for grinding back-surface of semiconductor wafer and grinding apparatus for grinding back-surface of semiconductor wafer used in same
JP2011171324A (en) * 2010-02-16 2011-09-01 Okamoto Machine Tool Works Ltd Flattening device and method of compound semiconductor substrate
JP2011206891A (en) * 2010-03-30 2011-10-20 Sumitomo Metal Mining Co Ltd Method for polishing wafer substrate, and polishing plate
JP2011245610A (en) * 2010-05-31 2011-12-08 Mitsubishi Electric Corp Method of manufacturing semiconductor device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016201422A (en) * 2015-04-08 2016-12-01 株式会社東京精密 Workpiece processing device
KR20190087287A (en) * 2018-01-16 2019-07-24 가부시기가이샤 디스코 Planarization method
JP2019125687A (en) * 2018-01-16 2019-07-25 株式会社ディスコ Planarization method
JP7009224B2 (en) 2018-01-16 2022-01-25 株式会社ディスコ Flattening method
KR102549852B1 (en) 2018-01-16 2023-06-29 가부시기가이샤 디스코 Planarization method
US10763171B2 (en) 2018-02-07 2020-09-01 Okamoto Machine Tool Works, Ltd. Method of manufacturing semiconductor apparatus
JP2019181657A (en) * 2018-04-17 2019-10-24 スピードファム株式会社 Polishing apparatus
KR20190121239A (en) * 2018-04-17 2019-10-25 스피드팸 가부시키가이샤 Polishing device
CN110394726A (en) * 2018-04-17 2019-11-01 创技股份有限公司 Grinding device
JP7046358B2 (en) 2018-04-17 2022-04-04 スピードファム株式会社 Polishing equipment
CN110394726B (en) * 2018-04-17 2022-06-24 创技股份有限公司 Grinding device
KR102627963B1 (en) 2018-04-17 2024-01-19 스피드팸 가부시키가이샤 Polishing device

Also Published As

Publication number Publication date
JP6179021B2 (en) 2017-08-16

Similar Documents

Publication Publication Date Title
US9108292B2 (en) Method of obtaining a sliding distance distribution of a dresser on a polishing member, method of obtaining a sliding vector distribution of a dresser on a polishing member, and polishing apparatus
US9156130B2 (en) Method of adjusting profile of a polishing member used in a polishing apparatus, and polishing apparatus
US8965555B2 (en) Dressing method, method of determining dressing conditions, program for determining dressing conditions, and polishing apparatus
TWI436854B (en) Substrate surface grinding device
US7314401B2 (en) Methods and systems for conditioning planarizing pads used in planarizing substrates
KR102094274B1 (en) Polishing method and polishing apparatus
KR20180097136A (en) Polishing apparatus and polishing method of substrate
US10828747B2 (en) Substrate polishing apparatus and method
KR100895902B1 (en) Method of grinding back surface of semiconductor wafer and semiconductor wafer grinding apparatus
JP6179021B2 (en) Semiconductor substrate flattening grinding method
JP2018164972A (en) Grinding device
JP2018083266A (en) Griding apparatus and roughness measuring method
TWI574778B (en) Polishing machine
JP2007019434A (en) Polishing pad profile modification equipment and polishing equipment
JP2017164823A (en) Grinding device
JP4702765B2 (en) Vibration polishing method and apparatus
TWI411030B (en) Machining quality judging method for wafer grinding machine and wafer grinding machine
JP2020049557A (en) Grinding device
KR20160120237A (en) Thin plate-shaped workpiece manufacturing method and double-end surface grinding apparatus
JP2002307303A (en) Both face grinding method for thin plate disclike workpiece and device thereof
JP2011036974A (en) Polishing method and polishing device
JP7252837B2 (en) Grinding equipment
JP6539467B2 (en) Grinding machine
JP2020049593A (en) Grinding method
JP2012240176A (en) Grinding apparatus, and grinding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170627

R150 Certificate of patent or registration of utility model

Ref document number: 6179021

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250