JP2017502906A5 - - Google Patents
Download PDFInfo
- Publication number
- JP2017502906A5 JP2017502906A5 JP2016543705A JP2016543705A JP2017502906A5 JP 2017502906 A5 JP2017502906 A5 JP 2017502906A5 JP 2016543705 A JP2016543705 A JP 2016543705A JP 2016543705 A JP2016543705 A JP 2016543705A JP 2017502906 A5 JP2017502906 A5 JP 2017502906A5
- Authority
- JP
- Japan
- Prior art keywords
- ratio
- crystal
- reaction mixture
- ddr framework
- volume
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011541 reaction mixture Substances 0.000 claims description 23
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 16
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 16
- 239000003795 chemical substances by application Substances 0.000 claims description 9
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxyl anion Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 4
- 239000003513 alkali Substances 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 3
- 238000005755 formation reaction Methods 0.000 claims description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N AI2O3 Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 2
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 2
- 230000000875 corresponding Effects 0.000 claims description 2
- 239000000463 material Substances 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- 150000003839 salts Chemical group 0.000 claims description 2
- 230000002194 synthesizing Effects 0.000 claims description 2
- 239000010457 zeolite Substances 0.000 claims description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims 1
- 238000011067 equilibration Methods 0.000 claims 1
- 230000004048 modification Effects 0.000 description 2
- 238000006011 modification reaction Methods 0.000 description 2
- 238000001354 calcination Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000010025 steaming Methods 0.000 description 1
Description
本発明は特定の実施形態に関して記載されたが、それは限定されない。特定の条件下での作業のための適切な変更/修正は、当業者に明白であろう。したがって、以下の請求項が、全てのそのような変更/修正を本発明の真の精神/範囲に含まれるものとして包含するように解釈されることが意図される。
本明細書には、下記の形態が含まれる。
1.
結晶質DDRフレームワーク型材料を形成することが可能であり、水、酸化ケイ素、アルカリまたはアルカリ土属水酸化物、およびメチルトロピニウム塩構造指向剤を含んでなり、約0.01〜約1.0の酸化ケイ素と水酸化物との比率、約0.01〜約2.0の酸化ケイ素とアルカリおよびアルカリ土類金属との比率、約0.01〜約2.0の酸化ケイ素と構造指向剤との比率、ならびに混合物の重量に対して少なくとも約0.05重量%の種結晶を有する、反応混合物を形成するステップと;
前記反応混合物からDDRフレームワーク型結晶を回収し、任意選択的にそれらを脱水および/または焼成するステップと;
前記回収された(ならびに任意選択的に脱水および/または焼成された)DDRフレームワーク型結晶を、N 2 BET表面積およびメタン拡散率を有するそれらのH−型、あるいはその内部細孔が、その中に存在するアルカリまたはアルカリ土属イオンを実質的に有さない形態(集合的に、前記「H−型」)に変換するステップと;
以下の特性:
その他は同一であるが、蒸気処理されていないH−型DDRフレームワーク型結晶のCH 4 拡散率の95%以下のCH 4 拡散率;
その他は同一であるが、蒸気処理されていないH−型DDRフレームワーク型結晶のN 2 BET表面積の85%〜110%のN 2 BET表面積;
約100℃における前処理に続いて、その他は同一の前処理されたが、蒸気処理されていないH−型DDRフレームワーク型結晶の平衡CO 2 吸着容量の80%〜105%の平衡CO 2 吸着容量;および
約400℃における前処理に続いて、その他は同一の前処理されたが、蒸気処理されていないH−型DDRフレームワーク型結晶の平衡CO 2 吸着容量の80%〜105%の平衡CO 2 吸着容量
の1つまたはそれ以上を達成するために、426℃〜1100℃の温度において、約30分〜約48時間の時間で、場合によりロータリー式焼成装置で、前記H−型DDRフレームワーク型結晶に蒸気処理をするステップと
を含んでなる、DDRフレームワーク型ゼオライトを合成する方法。
2.
前記反応混合物が、約12〜約25の水と酸化ケイ素との比率および約0.01〜約1.0の酸化ケイ素と構造指向剤との比率を有し、かつ前記回収されたDDRフレームワーク型結晶が、頂点間の距離および端縁間の距離の比率である1.1以下の軸比率を有し、深さ寸法が、前記頂点間の距離および前記端縁間の距離より短い、上記1に記載の方法。
3.
前記軸比率が1.05以下である、上記2に記載の方法。
4.
前記ZSM−58結晶の10体積%未満が約5μm以下の代表径を有する、上記2または上記3に記載の方法。
5.
前記反応混合物が、約0.01〜約1.0の酸化ケイ素とアルカリまたはアルカリ土類金属との比率を有し、かつ前記回収されたDDRフレームワーク型結晶が、単峰形の体積対結晶径分布を有し、前記DDRフレームワーク型結晶の10体積%未満が約5μm以下の代表径を有し、前記体積対結晶径分布のピークの結晶径が約15μm〜約40μmであり、かつ1μmビン幅を有する前記体積対結晶径プロットのピーク高さが少なくとも約10体積%である、上記1に記載の方法。
6.
前記反応混合物が、前記反応混合物の全重量に基づき、約0.05重量%〜約5.0重量%の種結晶、例えば、約0.05重量%〜約1.0重量%の種結晶をさらに含んでなる、上記1〜5のいずれかに記載の方法。
7.
前記構造指向剤が塩化メチルトロピニウムであり、かつ前記DDRフレームワーク型結晶がZSM−58を実質的に含んでなる、上記1〜6のいずれかに記載の方法。
8.
前記反応混合物が、前記DDRフレームワーク型結晶の形成の間、約120℃〜約175℃の温度に保持される、上記1〜7のいずれかに記載の方法。
9.
前記深さ寸法と前記端縁間の距離との比率が約0.9以下である、上記1〜8のいずれかに記載の方法。
10.
前記反応混合物が、約12〜約25、例えば、約12〜約20の水と酸化ケイ素との比率を有する、上記5〜9のいずれかに記載の方法。
11.
前記単峰形の体積対結晶径分布が、ピーク高さの半分に相当する体積における結晶径間の差異が、ほぼ前記ピークの結晶径以下である、体積対結晶径分布をさらに含んでなる、上記5〜10のいずれかに記載の方法。
12.
前記回収されたDDRフレームワーク型結晶が、頂点間の距離および端縁間の距離の比率である1.1以下の軸比率を有し、深さ寸法が、前記頂点間の距離および前記端縁間の距離より短い、上記5〜11のいずれかに記載の方法。
13.
前記反応混合物がアルミナ供給源をさらに含んでなる、上記1〜12のいずれかに記載の方法。
14.
前記反応混合物が、少なくとも3000(例えば、少なくとも約4000、少なくとも約5000、少なくとも約7500または少なくとも約10000)のSiO 2 :Al 2 O 3 比を有する、上記1〜13のいずれかに記載の方法。
15.
前記蒸気処理が、約900℃〜約1100℃(例えば、約950℃〜約1100℃、約975℃〜約1100℃、または約1000℃〜約1100℃)の温度で、約35体積%〜約65体積%の蒸気を含んでなる雰囲気において、多くとも6.0E−13m 2 /秒、例えば、多くとも5.5E−13m 2 /秒または多くとも5.0E−13m 2 /秒のメタン拡散率を達成するために、ロータリー式焼成装置において実行される、上記1〜14のいずれかに記載の方法。
本明細書には、下記の形態が含まれる。
1.
結晶質DDRフレームワーク型材料を形成することが可能であり、水、酸化ケイ素、アルカリまたはアルカリ土属水酸化物、およびメチルトロピニウム塩構造指向剤を含んでなり、約0.01〜約1.0の酸化ケイ素と水酸化物との比率、約0.01〜約2.0の酸化ケイ素とアルカリおよびアルカリ土類金属との比率、約0.01〜約2.0の酸化ケイ素と構造指向剤との比率、ならびに混合物の重量に対して少なくとも約0.05重量%の種結晶を有する、反応混合物を形成するステップと;
前記反応混合物からDDRフレームワーク型結晶を回収し、任意選択的にそれらを脱水および/または焼成するステップと;
前記回収された(ならびに任意選択的に脱水および/または焼成された)DDRフレームワーク型結晶を、N 2 BET表面積およびメタン拡散率を有するそれらのH−型、あるいはその内部細孔が、その中に存在するアルカリまたはアルカリ土属イオンを実質的に有さない形態(集合的に、前記「H−型」)に変換するステップと;
以下の特性:
その他は同一であるが、蒸気処理されていないH−型DDRフレームワーク型結晶のCH 4 拡散率の95%以下のCH 4 拡散率;
その他は同一であるが、蒸気処理されていないH−型DDRフレームワーク型結晶のN 2 BET表面積の85%〜110%のN 2 BET表面積;
約100℃における前処理に続いて、その他は同一の前処理されたが、蒸気処理されていないH−型DDRフレームワーク型結晶の平衡CO 2 吸着容量の80%〜105%の平衡CO 2 吸着容量;および
約400℃における前処理に続いて、その他は同一の前処理されたが、蒸気処理されていないH−型DDRフレームワーク型結晶の平衡CO 2 吸着容量の80%〜105%の平衡CO 2 吸着容量
の1つまたはそれ以上を達成するために、426℃〜1100℃の温度において、約30分〜約48時間の時間で、場合によりロータリー式焼成装置で、前記H−型DDRフレームワーク型結晶に蒸気処理をするステップと
を含んでなる、DDRフレームワーク型ゼオライトを合成する方法。
2.
前記反応混合物が、約12〜約25の水と酸化ケイ素との比率および約0.01〜約1.0の酸化ケイ素と構造指向剤との比率を有し、かつ前記回収されたDDRフレームワーク型結晶が、頂点間の距離および端縁間の距離の比率である1.1以下の軸比率を有し、深さ寸法が、前記頂点間の距離および前記端縁間の距離より短い、上記1に記載の方法。
3.
前記軸比率が1.05以下である、上記2に記載の方法。
4.
前記ZSM−58結晶の10体積%未満が約5μm以下の代表径を有する、上記2または上記3に記載の方法。
5.
前記反応混合物が、約0.01〜約1.0の酸化ケイ素とアルカリまたはアルカリ土類金属との比率を有し、かつ前記回収されたDDRフレームワーク型結晶が、単峰形の体積対結晶径分布を有し、前記DDRフレームワーク型結晶の10体積%未満が約5μm以下の代表径を有し、前記体積対結晶径分布のピークの結晶径が約15μm〜約40μmであり、かつ1μmビン幅を有する前記体積対結晶径プロットのピーク高さが少なくとも約10体積%である、上記1に記載の方法。
6.
前記反応混合物が、前記反応混合物の全重量に基づき、約0.05重量%〜約5.0重量%の種結晶、例えば、約0.05重量%〜約1.0重量%の種結晶をさらに含んでなる、上記1〜5のいずれかに記載の方法。
7.
前記構造指向剤が塩化メチルトロピニウムであり、かつ前記DDRフレームワーク型結晶がZSM−58を実質的に含んでなる、上記1〜6のいずれかに記載の方法。
8.
前記反応混合物が、前記DDRフレームワーク型結晶の形成の間、約120℃〜約175℃の温度に保持される、上記1〜7のいずれかに記載の方法。
9.
前記深さ寸法と前記端縁間の距離との比率が約0.9以下である、上記1〜8のいずれかに記載の方法。
10.
前記反応混合物が、約12〜約25、例えば、約12〜約20の水と酸化ケイ素との比率を有する、上記5〜9のいずれかに記載の方法。
11.
前記単峰形の体積対結晶径分布が、ピーク高さの半分に相当する体積における結晶径間の差異が、ほぼ前記ピークの結晶径以下である、体積対結晶径分布をさらに含んでなる、上記5〜10のいずれかに記載の方法。
12.
前記回収されたDDRフレームワーク型結晶が、頂点間の距離および端縁間の距離の比率である1.1以下の軸比率を有し、深さ寸法が、前記頂点間の距離および前記端縁間の距離より短い、上記5〜11のいずれかに記載の方法。
13.
前記反応混合物がアルミナ供給源をさらに含んでなる、上記1〜12のいずれかに記載の方法。
14.
前記反応混合物が、少なくとも3000(例えば、少なくとも約4000、少なくとも約5000、少なくとも約7500または少なくとも約10000)のSiO 2 :Al 2 O 3 比を有する、上記1〜13のいずれかに記載の方法。
15.
前記蒸気処理が、約900℃〜約1100℃(例えば、約950℃〜約1100℃、約975℃〜約1100℃、または約1000℃〜約1100℃)の温度で、約35体積%〜約65体積%の蒸気を含んでなる雰囲気において、多くとも6.0E−13m 2 /秒、例えば、多くとも5.5E−13m 2 /秒または多くとも5.0E−13m 2 /秒のメタン拡散率を達成するために、ロータリー式焼成装置において実行される、上記1〜14のいずれかに記載の方法。
Claims (19)
- 結晶質DDRフレームワーク型材料を形成することが可能であり、水、酸化ケイ素、アルカリまたはアルカリ土属水酸化物、およびメチルトロピニウム塩構造指向剤を含んでなり、約0.01〜約1.0の酸化ケイ素と水酸化物との比率、約0.01〜約2.0の酸化ケイ素とアルカリおよびアルカリ土類金属との比率、約0.01〜約2.0の酸化ケイ素と構造指向剤との比率、ならびに混合物の重量に対して少なくとも約0.05重量%の種結晶を有する、反応混合物を形成するステップと;
前記反応混合物からDDRフレームワーク型結晶を回収するステップと;
前記回収されたDDRフレームワーク型結晶を、N2 BET表面積およびメタン拡散率を有するそれらのH−型に変換するステップと;
以下の特性:
その他は同一であるが、蒸気処理されていないH−型DDRフレームワーク型結晶のCH4拡散率の95%以下のCH4拡散率;
その他は同一であるが、蒸気処理されていないH−型DDRフレームワーク型結晶のN2 BET表面積の85%〜110%のN2 BET表面積;
約100℃における前処理に続いて、その他は同一の前処理されたが、蒸気処理されていないH−型DDRフレームワーク型結晶の平衡CO2吸着容量の80%〜105%の平衡CO2吸着容量;および
約400℃における前処理に続いて、その他は同一の前処理されたが、蒸気処理されていないH−型DDRフレームワーク型結晶の平衡CO2吸着容量の80%〜105%の平衡CO2吸着容量
の1つまたはそれ以上を達成するために、426℃〜1100℃の温度において、約30分〜約48時間の時間で、前記H−型DDRフレームワーク型結晶に蒸気処理をするステップと
を含んでなる、DDRフレームワーク型ゼオライトを合成する方法。 - 前記反応混合物が、約12〜約25の水と酸化ケイ素との比率および約0.01〜約1.0の酸化ケイ素と構造指向剤との比率を有し、かつ前記回収されたDDRフレームワーク型結晶が、頂点間の距離および端縁間の距離の比率である1.1以下の軸比率を有し、深さ寸法が、前記頂点間の距離および前記端縁間の距離より短い、請求項1に記載の方法。
- 前記軸比率が1.05以下である、請求項2に記載の方法。
- 前記ZSM−58結晶の10体積%未満が約5μm以下の代表径を有する、請求項2に記載の方法。
- 前記反応混合物が、前記反応混合物の全重量に基づき、約0.05重量%〜約5.0重量%の種結晶をさらに含んでなる、請求項2に記載の方法。
- 前記構造指向剤が塩化メチルトロピニウムであり、かつ前記DDRフレームワーク型結晶がZSM−58を実質的に含んでなる、請求項2に記載の方法。
- 前記反応混合物が、前記DDRフレームワーク型結晶の形成の間、約120℃〜約175℃の温度に保持される、請求項2に記載の方法。
- 前記深さ寸法と前記端縁間の距離との比率が約0.9以下である、請求項2に記載の方法。
- 前記反応混合物が、約0.01〜約1.0の酸化ケイ素とアルカリまたはアルカリ土類金属との比率を有し、かつ前記回収されたDDRフレームワーク型結晶が、単峰形の体積対結晶径分布を有し、前記DDRフレームワーク型結晶の10体積%未満が約5μm以下の代表径を有し、前記体積対結晶径分布のピークの結晶径が約15μm〜約40μmであり、かつ1μmビン幅を有する前記体積対結晶径プロットのピーク高さが少なくとも約10体積%である、請求項1に記載の方法。
- 前記反応混合物が、前記反応混合物の全重量に基づき、約0.05重量%〜約1.0重量%の種結晶をさらに含んでなる、請求項9に記載の方法。
- 前記構造指向剤が塩化メチルトロピニウムであり、かつ前記DDRフレームワーク型結晶がZSM−58を実質的に含んでなる、請求項9に記載の方法。
- 前記反応混合物が、前記DDRフレームワーク型結晶の形成の間、約120℃〜約175℃の温度に保持される、請求項9に記載の方法。
- 前記深さ寸法と前記端縁間の距離との比率が約0.9以下である、請求項9に記載の方法。
- 前記反応混合物が、約12〜約25の水と酸化ケイ素との比率を有する、請求項9に記載の方法。
- 前記単峰形の体積対結晶径分布が、ピーク高さの半分に相当する体積における結晶径間の差異が、ほぼ前記ピークの結晶径以下である、体積対結晶径分布をさらに含んでなる、請求項9に記載の方法。
- 前記回収されたDDRフレームワーク型結晶が、頂点間の距離および端縁間の距離の比率である1.1以下の軸比率を有し、深さ寸法が、前記頂点間の距離および前記端縁間の距離より短い、請求項9に記載の方法。
- 前記反応混合物がアルミナ供給源をさらに含んでなる、請求項1に記載の方法。
- 前記反応混合物が、少なくとも3000のSiO2:Al2O3比を有する、請求項17に記載の方法。
- 前記蒸気処理が、約900℃〜約1100℃の温度で、約35体積%〜約65体積%の蒸気を含んでなる雰囲気において、多くとも6.0E−13m 2 /秒のメタン拡散率を達成するために、ロータリー式焼成装置において実行される、請求項1に記載の方法。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361921653P | 2013-12-30 | 2013-12-30 | |
US61/921,653 | 2013-12-30 | ||
PCT/US2014/070786 WO2015102900A1 (en) | 2013-12-30 | 2014-12-17 | Synthesis of zsm-58 crystals with improved diffusivity for use in gas separations |
US14/573,177 US9573116B2 (en) | 2013-12-30 | 2014-12-17 | Synthesis of ZSM-58 crystals with improved diffusivity for use in gas separations |
US14/573,177 | 2014-12-17 |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2017502906A JP2017502906A (ja) | 2017-01-26 |
JP2017502906A5 true JP2017502906A5 (ja) | 2017-08-03 |
JP6244471B2 JP6244471B2 (ja) | 2017-12-06 |
Family
ID=53480694
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016543705A Expired - Fee Related JP6244471B2 (ja) | 2013-12-30 | 2014-12-17 | 気体分離の用途における改善された拡散率を有するzsm−58結晶の合成 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9573116B2 (ja) |
EP (1) | EP3089941A1 (ja) |
JP (1) | JP6244471B2 (ja) |
CN (1) | CN105849043B (ja) |
SG (1) | SG11201603365XA (ja) |
WO (1) | WO2015102900A1 (ja) |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3218326B1 (en) | 2014-11-11 | 2020-03-04 | ExxonMobil Upstream Research Company | High capacity structures and monoliths via paste imprinting |
WO2016081144A1 (en) * | 2014-11-20 | 2016-05-26 | Exxonmobil Research And Engineering Company | Synthesis of ddr framework-type molecular sieves |
MX2017006219A (es) | 2014-12-23 | 2017-07-31 | Exxonmobil Res & Eng Co | Materiales adsorbentes y metodos de uso. |
CA3005448A1 (en) | 2015-11-16 | 2017-05-26 | Exxonmobil Upstream Research Company | Adsorbent materials and methods of adsorbing carbon dioxide |
CA3017612C (en) | 2016-03-18 | 2021-06-22 | Exxonmobil Upstream Research Company | Apparatus and system for swing adsorption processes related thereto |
CA3025615A1 (en) | 2016-05-31 | 2017-12-07 | Exxonmobil Upstream Research Company | Apparatus and system for swing adsorption processes |
EP3463620A1 (en) | 2016-05-31 | 2019-04-10 | ExxonMobil Upstream Research Company | Apparatus and system for swing adsorption processes |
US10434458B2 (en) | 2016-08-31 | 2019-10-08 | Exxonmobil Upstream Research Company | Apparatus and system for swing adsorption processes related thereto |
AU2017320837B2 (en) | 2016-09-01 | 2020-07-23 | Exxonmobil Upstream Research Company | Swing adsorption processes for removing water using 3A zeolite structures |
EP3558487A1 (en) | 2016-12-21 | 2019-10-30 | ExxonMobil Upstream Research Company | Self-supporting structures having active materials |
RU2019120009A (ru) | 2016-12-21 | 2021-01-22 | Эксонмобил Апстрим Рисерч Компани | Самоподдерживающиеся структуры, имеющие структуры с геометрией пены и активные материалы |
KR101927889B1 (ko) * | 2017-01-03 | 2018-12-11 | 고려대학교 산학협력단 | Ddr 유형 제올라이트 분리막의 제조방법 및 이로부터 제조된 분리막 |
US20180339263A1 (en) | 2017-05-26 | 2018-11-29 | Ralph C. Dehaas | Apparatus and System for Swing Adsorption Processes |
US11331620B2 (en) | 2018-01-24 | 2022-05-17 | Exxonmobil Upstream Research Company | Apparatus and system for swing adsorption processes |
WO2019168628A1 (en) | 2018-02-28 | 2019-09-06 | Exxonmobil Upstream Research Company | Apparatus and system for swing adsorption processes |
WO2020131496A1 (en) | 2018-12-21 | 2020-06-25 | Exxonmobil Upstream Research Company | Flow modulation systems, apparatus, and methods for cyclical swing adsorption |
US11376545B2 (en) | 2019-04-30 | 2022-07-05 | Exxonmobil Upstream Research Company | Rapid cycle adsorbent bed |
US11655910B2 (en) | 2019-10-07 | 2023-05-23 | ExxonMobil Technology and Engineering Company | Adsorption processes and systems utilizing step lift control of hydraulically actuated poppet valves |
EP4045173A1 (en) | 2019-10-16 | 2022-08-24 | Exxonmobil Upstream Research Company (EMHC-N1-4A-607) | Dehydration processes utilizing cationic zeolite rho |
CN112808301B (zh) * | 2021-01-04 | 2022-01-11 | 大连理工大学 | 一种复合催化剂及其催化甲醛完全氧化消除的方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4698217A (en) * | 1985-02-26 | 1987-10-06 | Mobil Oil Corporation | Crystalline silicate ZSM-58 and process for its preparation using a methyltropinium cation |
NZ214838A (en) * | 1985-02-26 | 1988-02-29 | Mobil Oil Corp | Zsm-58 zeolite and its preparation |
WO2007101241A2 (en) * | 2006-02-28 | 2007-09-07 | The Regents Of The University Of Michigan | Preparation of functionalized zeolitic frameworks |
WO2008118434A1 (en) * | 2007-03-26 | 2008-10-02 | Pq Corporation | Novel microporous crystalline material comprising a molecular sieve or zeolite having an 8-ring pore opening structure and methods of making and using same |
SG10201503121SA (en) * | 2010-06-30 | 2015-06-29 | Exxonmobil Res & Eng Co | Liquid phase distillate dewaxing |
JP6234473B2 (ja) | 2012-12-06 | 2017-11-22 | エクソンモービル リサーチ アンド エンジニアリング カンパニーExxon Research And Engineering Company | ガス分離のための吸着剤の選択化 |
WO2016105870A1 (en) * | 2014-12-23 | 2016-06-30 | Exxonmobil Research And Engineering Company | Structured adsorbent beds, methods of producing the same and uses thereof |
-
2014
- 2014-12-17 JP JP2016543705A patent/JP6244471B2/ja not_active Expired - Fee Related
- 2014-12-17 US US14/573,177 patent/US9573116B2/en not_active Expired - Fee Related
- 2014-12-17 WO PCT/US2014/070786 patent/WO2015102900A1/en active Application Filing
- 2014-12-17 SG SG11201603365XA patent/SG11201603365XA/en unknown
- 2014-12-17 EP EP14828604.0A patent/EP3089941A1/en not_active Withdrawn
- 2014-12-17 CN CN201480071588.8A patent/CN105849043B/zh not_active Expired - Fee Related
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2017502906A5 (ja) | ||
JP2016501178A5 (ja) | ||
JP2018504357A5 (ja) | ||
JP2017526608A5 (ja) | ||
Popper et al. | Boron phosphide, a III–V compound of zinc-blende structure | |
JP2018526315A5 (ja) | ||
JP2016539893A5 (ja) | ||
JP2016510687A5 (ja) | ||
PH12016502449A1 (en) | Suspension of a magnesium silicate, method for making same and the use thereof as a phospor | |
WO2018141653A8 (de) | Synthese eines movnbte-katalysators mit erhöhter spezifischer oberfläche und höherer aktivität für die oxidative dehydrierung von ethan zu ethylen | |
RU2017125256A (ru) | Синтез цеолита с кристаллической структурой сна, способ синтеза и его применение для каталитических применений | |
RU2015137732A (ru) | Способ получения титансодержащего цеолитного материала, имеющего каркасную структуру mww | |
JP2015532645A5 (ja) | ||
JP2014501683A5 (ja) | ||
RU2017110278A (ru) | Способ получения производных хлорида алюминия | |
JP6505323B2 (ja) | Mwf型ゼオライト | |
JP2016164120A5 (ja) | ||
RU2015123925A (ru) | Синтез кристаллов zsm-5 с улучшенной морфологией | |
RU2018127671A (ru) | Цеолитные частицы нанометровых размеров и способ их получения | |
JP2020502023A5 (ja) | ||
WO2015110913A4 (en) | Alumina compositions and methods for producing same | |
JP2015507591A5 (ja) | ||
JP7023871B2 (ja) | ゼオライト転換を介するアルミノケイ酸塩ゼオライトssz-26の合成 | |
JP2016506903A5 (ja) | ||
JP2015527288A5 (ja) |