JP2017201374A - 画像形成装置及び画像処理装置 - Google Patents

画像形成装置及び画像処理装置 Download PDF

Info

Publication number
JP2017201374A
JP2017201374A JP2016093377A JP2016093377A JP2017201374A JP 2017201374 A JP2017201374 A JP 2017201374A JP 2016093377 A JP2016093377 A JP 2016093377A JP 2016093377 A JP2016093377 A JP 2016093377A JP 2017201374 A JP2017201374 A JP 2017201374A
Authority
JP
Japan
Prior art keywords
pixel
scanning
sub
scanning direction
forming apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016093377A
Other languages
English (en)
Inventor
山崎 博之
Hiroyuki Yamazaki
博之 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2016093377A priority Critical patent/JP2017201374A/ja
Publication of JP2017201374A publication Critical patent/JP2017201374A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】濃度ムラを抑える画像形成装置を提供する。
【解決手段】画像形成装置は、感光体と、前記感光体を光で走査して静電潜像を形成する走査手段と、前記走査手段により形成される画素の副走査方向の位置ずれ量を示す位置ずれ量情報を記憶する記憶手段と、前記位置ずれ量情報に基づき第1画素の副走査方向の第1ずれ量と、前記第1画素と前記副走査方向において隣接する第2画素の前記副走査方向の第2ずれ量と、を判定する判定手段と、前記第1ずれ量と前記第2ずれ量とに基づき、画像データが示す前記第1画素の画素値を前記第1画素と前記第2画素に配分する様に前記画像データを補正する補正手段と、を備えている。
【選択図】図8

Description

本発明は、プリンタ・複写機・記録機・ファクシミリなどの画像形成装置における画質制御技術に関する。
近年、電子写真方式を採用した画像形成装置による印刷が広く行われている。このような画像形成装置では光源から放射された光ビームを光偏向器により偏向し、これにより感光体を走査することで、感光体に静電潜像を形成する。以下、感光体における光ビームの走査方向を主走査方向と呼ぶ。ここで、光偏向器の製造時の切削加工精度や取り付け精度により面倒れ等が発生すると、感光体の走査位置が感光体の回転方向(以下、副走査方向と呼ぶ。)に変動し、これにより走査線の副走査方向の間隔が変動して濃度ムラが発生する。
このため、特許文献1は、電歪素子により光源が射出する光ビームの方向を変化させる構成を開示している。また、特許文献2は、走査線間の間隔の変動に応じて光ビームの強度を調整する構成を開示している。さらに、特許文献3は、走査線の副走査方向への傾きや湾曲を補正するようにビットマップデータを変更する構成を開示している。
特開昭63−313113号公報 特開平4−200065号公報 特開2004−170755号公報
しかしながら、特許文献1の構成は、機械的に面倒れを補正するものであり、画像形成装置のサイズ及びコストが増大する。また、特許文献2の構成は、走査線の間隔に応じて光ビームの強度を調整するものであるが、画像のパターンによっては濃度ムラを十分に補正できない。例えば、第1反射面から第4反射面の4つの反射面を有する光偏向器を使用し、第i反射面(iは1から4の整数)で反射された光ビームによる走査線を第i走査線とする。なお、光偏向器は、第1反射面、第2反射面、第3反射面、第4反射面、第1反射面との順に光源からの光ビームを反射するものとする。ここで、第1走査線を基準とし、第2走査線が第3走査線側にずれ、第3走査線が第2走査線側にずれ、第4走査線が第3走査線側にずれたものとする。そして、上記ずれにより、第1走査線と第2走査線の間隔が理想的な間隔より長くなり、第2走査線と第3走査線の間隔が理想的な間隔より短くなり、第3走査線と第4走査線の間隔が理想的な間隔より長くなったものとする。なお、第4走査線は、第3走査線側にずれているため、第1走査線と第4走査線の間隔は理想的な間隔より短くなっている。この場合、特許文献2の構成では、第2走査線と第3走査線に対する光ビームの強度を弱くし、第1走査線と第4走査線に対する光ビームの強度を強くする。ここで、形成される画像パターンでは、第1走査線と第4走査線による露光を行うが、第2走査線と第3走査線による露光を行わない場合、第1走査線と第4走査線の間隔は理想より短いにも拘らず強い強度で露光され濃度が高くなってしまう。
また、特許文献3の構成は、走査線の傾きや湾曲の様に、各走査線の副走査方向のずれ量が同じである場合には効果があるが、面倒れによる走査線のずれの様に、走査線毎に副走査方向のずれ量が異なると、十分に濃度ムラを補正できない。例えば、副走査方向において、上流側から下流側に向けて順に第1走査線から第3走査線があり、これら3つの走査線の主走査方向が同じ位置である第1画素から第3画素を考える。そして、第1画素から第3画素は、それぞれ、走査線の間隔の0.4画素だけ上流側にずれているものとする。つまり、第2画素は、理想的な位置より第1画素側に0.4画素だけずれているものとする。この場合、第2画素をその画素値の60%の強度で露光し、第3画素を、第2画素の画素値の40%の強度で露光することで濃度ムラを抑えることができる。しかしながら、第2画素が第1画素側に0.4画素だけすれているが、第3画素が、第2画素とは逆の方向にずれていると特許文献3の構成では濃度ムラを抑えることはできない。
本発明は、濃度ムラを抑える画像形成装置及び画像処理装置を提供するものである。
本発明の一側面によると、画像形成装置は、感光体と、前記感光体を光で走査して静電潜像を形成する走査手段と、前記走査手段により形成される画素の副走査方向の位置ずれ量を示す位置ずれ量情報を記憶する記憶手段と、前記位置ずれ量情報に基づき第1画素の副走査方向の第1ずれ量と、前記第1画素と前記副走査方向において隣接する第2画素の前記副走査方向の第2ずれ量と、を判定する判定手段と、前記第1ずれ量と前記第2ずれ量とに基づき、画像データが示す前記第1画素の画素値を前記第1画素と前記第2画素に配分する様に前記画像データを補正する補正手段と、を備えていることを特徴とする。
本発明によると、濃度ムラを抑えることができる。
一実施形態による画像形成装置の構成図。 一実施形態によるビデオコントローラの構成図。 一実施形態によるデータ処理部の構成図。 一実施形態による画像形成装置の断面図。 一実施形態による走査部の構成図。 一実施形態による画像形成処理のフローチャート。 一実施形態によるBD周期を示す図。 一実施形態による面倒補正処理のフローチャート。 一実施形態による効果の説明図。 一実施形態によるデータ処理部の構成図。 一実施形態による形状補正処理のフローチャート。 一実施形態による形状補正処理のフローチャート。 一実施形態による効果の説明図。
以下、本発明の例示的な実施形態について図面を参照して説明する。なお、以下の実施形態は例示であり、本発明を実施形態の内容に限定するものではない。また、以下の各図においては、実施形態の説明に必要ではない構成要素については図から省略する。
<第一実施形態>
図1は、本実施形態による画像形成装置102を含むシステム構成図である。図1に示す様に、ホストコンピュータ101は、本実施形態による画像形成装置102に画像データを送信して画像の形成を指示する。ビデオコントローラ103は、ホストコンピュータ101から画像形成が指示されると、受信した画像データをラスタライズし、色変換やハーフトーン処理などの各種処理を行い、処理後の画像データをプリンタエンジン104に送信する。プリンタエンジン104は、受信する画像データに基づき、後述する図4の各部材を制御して画像を形成する。
図2は、ビデオコントローラ103の構成図である。CPU201は、ビデオコントローラ103の制御部である。不揮発性記憶部202は、例えば、ROM、EEPROM、ハードディスクであり、CPU201が実行する各種制御コードや制御に使用するデータを格納する。RAM203は、CPU201の主メモリ、ワークエリア等として機能する。ホストI/F204は、ホストコンピュータ101との画像データや、制御データの入出力部である。例えば、ホストI/F204により受信した画像データは、RAM203に格納される。ここで画像データは、PDLと呼ばれるプリンタ記述言語によって記述されたデータであり、通常、文字、グラフィックス、イメージ等の描画命令が含まれている。データ処理部205は、CPU201からの指示によりRAM203の画像データに対して各種の処理を行う。データ処理部205の詳細な動作については後述する。操作/表示部207は、画像形成装置本体に設けられた操作/表示部である。ユーザは、操作/表示部207を介して画像形成装置を操作し、かつ、画像形成装置の各種情報を取得する。エンジンI/F208は、プリンタエンジン104との信号の入出力部である。DMA制御部206は、CPU201からの指示によりRAM203の画像データを、エンジンI/F208、データ処理部205に転送する。上記各構成要素は、システムバス209に接続され、互いにアクセス可能となっている。なお、データ処理部205の機能はASICや専用ハードウェアとして実現しても良いし、機能の一部或いは全てをCPU201に行わせても良い。さらに、ビデオコントローラ103の機能の一部或いは全てをホストコンピュータ101等の外部機器に行わせても良い。
図3は、データ処理部205の構成図である。RIP部301は、RAM203に格納されている画像データのページ記述言語の内容を解析して中間言語を生成し、さらにラスタ画像データにラスタライズを行う。ラスタライズされたラスタ画像データはRGBの画像データとしてRAM203内の画像メモリ領域に書き込まれる。色変換処理部302は、RGBの画像信号を画像形成装置の色再現域に合わせたデバイスRGB信号に変換するカラーマッチング処理、及び、デバイスRGB信号をCMYK信号に変換する色分解処理を行う。濃度補正部303は、プリンタエンジン104によって記録媒体上に形成される画像の濃度を理想的な濃度に近づけるべく、CMYK画像データの各階調値をLUT(ルックアップテーブル)によって変換する。
ハーフトーン処理部304は、濃度補正部303によって補正されたCMYKの各画像データに対して組織的ディザなどのハーフトーン処理を施すことによって画像形成装置で再現可能な画像データへの量子化を行う。面倒補正処理部305は、ハーフトーン処理が為されたCMYKの各画像データに対して面倒補正処理を行う。面倒補正処理部305の詳細な動作については後述する。駆動信号生成部306は、面倒補正処理されたCMYKの各画像データに基づき感光体を走査する光源の駆動信号を生成する。
図4は、本実施形態による画像形成装置の画像形成に関わる部材を示す断面図である。図4において、参照符号の末尾のY、M、C、Kは、それぞれ、当該参照符号が示す部材が形成に関わるトナーの色が、それぞれ、イエロー、マゼンタ、シアン、ブラックであることを示している。なお、トナーの色を区別する必要が無い場合、参照符号の末尾のアルファベットを除いた参照符号を使用する。感光体42は、画像形成時、反時計周りに回転駆動される。帯電部43は、感光体42の表面を一様な電位に帯電させる。走査部44は、帯電された感光体42を光源が射出する光ビームで走査し、感光体42に静電潜像を形成する。現像部46は、感光体42の静電潜像をトナーで現像し、トナー像として可視化する。転写ベルト47は、画像形成時、駆動ローラ45により、時計周り方向に回転駆動され、各感光体42に形成されたトナー像が転写される。一方、給紙カセット41a又は給紙トレイ41bの記録材11は、転写ベルト47に形成されたトナー像が転写ローラ48の対向位置に到達するタイミングに合わせて、転写ローラ48の対向位置へと搬送される。そして、転写ローラ48は、記録材11に転写ベルト47のトナー像を転写する。定着部50は、トナー像が転写された記録材11を加熱・加圧し、トナー像を記録材11に定着させる。トナー像の定着後、記録材11は、画像形成装置外へと排出される。クリーニング部49は、転写ベルト47上に残ったトナーをクリーニングする。なお、図1のプリンタエンジン104は、図4に示す各部材を制御して画像を形成する。
図5は、走査部44の構成図である。レーザ駆動部619は、駆動信号生成部306からの駆動信号に基づき光源612を駆動する。光源612が出射した光ビームLは、複合アナモフィックコリメータレンズ613によって主走査断面内では略収束光とされ、副走査断面内では収束光とされる。その後、光ビームLは開口絞り614を通って光束幅が制限されて、回転多面鏡615の反射面Ma〜Mdにおいてほぼ線像(主走査方向に長手の線像)として結像する。そして、この光ビームLは、回転多面鏡615を回転させることによって偏向走査される。反射面Ma〜Mdのいずれかで反射された光ビームLは、fθレンズ618を介して感光体42を走査・露光する。fθレンズ618は、光ビームLが感光体42において、スポットを形成し、かつ、スポットの走査速度が等速となる様に設計されている。また、反射面Ma〜Mdのいずれかで反射された光ビームLは、その反射方向によって、BDセンサ617に入射する。BDセンサ617は、反射面Ma〜Mdにより所定方向に反射された光ビームLを検出したタイミングを、感光体42における主走査方向の書き出し基準タイミングとする。内部カウンタ621は、BDセンサ617が光ビームLを検出した間隔(以下、BD周期)を測定し、このBD周期は、BD周期記憶部622に記憶される。
回転多面鏡615の回転によって光ビームLによる感光体42への主走査方向の像形成が行われる。また感光体42が、回転駆動することによって副走査方向の像形成が行われる。このようにして感光体42の表面には静電潜像が形成される。また、走査部44には、予め補正データを、例えば、プリンタエンジン104に設けられた不揮発性記憶部506内の補正データ記憶領域620に保持させておく。補正データの詳細は後述する。
図6は、画像形成処理のフローチャートである。ホストコンピュータ101から画像形成が指示されると、CPU201は、S100で、プリンタエンジン104に対して走査面特定処理の実行を指示する。図7は、走査面特定処理の説明図である。一般に、回転多面鏡615は、製造誤差によって面分割誤差を有する。例えば4面の回転多面鏡であれば各反射面間の角度が90度になるように製造されるが、加工誤差により±数分程度の角度誤差が残ってしまう。そのため、BD周期は等間隔にはならず、数nsecから数十nsecのばらつきを生じる。図7は、反射面Ma、Mb、Mc、Mdで反射された光束がBDセンサ617に入射したときのBDセンサ617から出力されるBD信号の波形を示した図である。図7において、点線は、理想的なタイミングを示している。図7の例では、反射面Maで反射した光ビームLは、理想より遅いタイミングでBDセンサ617に入射している。一方、反射面Mbで反射した光束は理想より早いタイミングでBDセンサ617に入射している。同様に、反射面Mcで反射した光ビームLは、理想より早いタイミングでBDセンサ617に入射し、反射面Mdで反射した光ビームLは、理想より遅いタイミングでBDセンサ617に入射している。そのため、それぞれのBD周期はTab<Tbc<Tda<Tcdという関係になる。なお、BD周期Tabとは、反射面Maで反射した光ビームLをBDセンサ617が検出してから、反射面Mbで反射した光ビームLをBDセンサ617が検出するまでの期間である。BD周期Tbc、Tcd及びTdaについても同様である。プリンタエンジン104は、このBD周期のばらつきを利用して、工場出荷時に定義された基準反射面を特定する。例えば、BD周期の最も短い周期又は最も長い周期を検出し、それを基準に基準反射面を特定し、これにより、各走査線の走査の際に光ビームLを反射する回転多面鏡615の反射面を特定する。
また、工場出荷検査時に反射面ごとの副走査方向の照射位置を測定し、理想的な照射位置からのずれ量を測定し、その逆符号を補正データとして求める。そして、基準反射面を基準に回転方向の順に、各反射面の補正データを補正データ記憶領域620に記憶させておく。つまり、補正データとは、反射面に関連付けられており、関連付けられた反射面を使用して行う走査において形成される各画素の副走査方向のずれ量を示すデータである。
走査面特定処理では、まずレーザ駆動部619を駆動し、BD周期を測定し、BD周期記憶部622に記憶する。そして、BD周期記憶部622に記憶されたBD周期の中で、例えば、最も長い周期となる2つの面の前側の反射面を基準反射面として特定する。これにより、補正データ記憶領域620に格納された補正データと、各走査線の走査のために光ビームLを反射する反射面との対応関係が判定される。なお、以下の説明において、反射面Ma〜Mdそれぞれの補正データを、補正データCa〜Cdとする。
図6に戻り、CPU201は、S101で、面倒補正処理部305に面倒補正処理の実行を指示する。図8は、面倒補正処理のフローチャートである。なお、図8の処理は、Y、M、C及びKそれぞれの画像データに対して実施する。以下では、主走査方向においてx番目であり、かつ、副走査方向においてy番目の画素を、p(x,y)とし、画素p(x,y)の面倒補正処理前の画素値をI(x,y)とし、画素p(x,y)の面倒補正処理後の画素値をI´(x,y)とする。また、主走査方向の画素数がNxであり、1つの記録材11に形成する走査線数がNyであるものとする。さらに、補正値データが正の値であることは、画素が理想的な位置より上流側にずれていることを意味し、補正値データが負の値であることは、画素が理想的な位置より下流側にずれていることを意味するものとする。なお、上流側とは、yの値が小さくなる側であり、下流側とはyの値が大きくなる側である。
S10で、面倒補正処理部305は初期化を行う。具体的には、I´(x,y)の総てを0に設定し、処理対象の走査線を示すyに1を設定する。次に、面倒補正処理部305は、S11で、補正対象の走査線の番号yに基づき補正値データd、d及びdをそれぞれ以下の値に設定する。
:(y−1)番目の走査線に対応する反射面の補正値データ
:y番目の走査線に対応する反射面の補正値データ
:(y+1)番目の走査線に対応する反射面の補正値データ
例えば、y番目の走査線が反射面Mbで反射されるのであれば、dは補正データCaであり、dは補正データCbであり、dは補正データCcとなる。なお、以下では、補正データd(iは0、1、2)が示す、x番目の画素の補正データをdixと表記する。
S12で、面倒れ補正処理部305は、x=1とし、S13で、補正データd1xがd1x≧0であるか否かを判定する。つまり、処理対象の走査線のx番目の画素p(x,y)が副走査方向において上流側にずれているか否かを判定する。d1xが0以上であると、処理対象の画素p(x,y)は、上流側にずれているため、S14において、下流側の走査線の補正データd2xを使用して注目画素p(x,y)の画素値の配分比率Vを以下の式(1)により計算する。
V=(1−d2x)/(1−d2x+d1x) (1)
そして、面倒補正処理部305は、S15で注目画素p(x,y)と、注目画素の下流側の画素p(x,y+1)の画素値を、それぞれ、以下の式(2)及び(3)に基づき更新する。
I´(x,y)=I´(x,y)+V×I(x,y) (2)
I´(x,y+1)=I´(x,y+1)+(1−V)×I(x,y) (3)
一方、d1xが0以上でないと、画素p(x,y)は、下流側にずれているため、S16において、上流側の走査線の補正データd0xを使用して注目画素p(x,y)の画素値の配分比率Vを以下の式(4)により計算する。
V=(1+d0x)/(1−d1x+d0x) (4)
そして、面倒補正処理部305は、S17で注目画素p(x,y)と、注目画素の上流側の画素p(x,y−1)の画素値を、それぞれ、以下式(5)及び(6)に基づき更新する。
I´(x,y)=I´(x,y)+V×I(x,y) (5)
I´(x,y−1)=I´(x,y−1)+(1−V)×I(x,y) (6)
面倒補正処理部305は、S18で、注目画素p(x,y)が走査線の最後の画素であるかを判定し、最後の画素でなければS19でxを1だけ増加させてS13から処理を繰り返す。一方、注目画素p(x,y)が走査線の最後の画素であると、面倒補正処理部305は、S20で注目画素p(x,y)が最後の走査線の画素であるか否かを判定し、最後の走査線の画素ではないと、S21でyを1だけ増加させてS11から処理を繰り返す。一方、S20で、最後の走査線の画素であると、面倒補正処理部305は、処理を終了する。
図6に戻り、面倒補正処理が完了すると、CPU201は、S102で、面倒補正処理後の画像データにより画像形成処理を行う。
例えば、図9に示す様に、注目画素p(x,y)が上流側に0.4画素だけずれ、注目画素p(x,y)の1つ下流側の画素p(x,y+1)が下流側に0.4画素だけずれているものとする。この場合、d1xは+0.4画素であるため、図8のS13は"Yes"となる。また、d2xは−0.4画素であるため、配分比率Vは(1+0.4)/(1+0.4+0.4)=1.4/1.8≒0.777となる。したがって、注目画素p(x,y)の画素値を、注目画素(x,y)と、1つ下流側の画素p(x,y+1)に、それぞれ、約78%と22%に配分することになる。ここで、注目画素p(x,y)の理想位置から、注目画素p(x,y)は−0.4画素ずれている。また、1つ下流側の画素p(x,y+1)と注目画素p(x,y)の理想位置との距離は+1.4画素である。したがって、2つの画素の露光分布の重心の理想位置からのずれ量は、−0.4×(1.4/1.8)+1.4(0.4/1.8)=0となる。つまり、重心位置は注目画素p(x,y)の理想位置と同じとなる。
より一般的に説明すると、式(1)〜(3)より、注目画素p(x,y)が上流側にずれている場合、注目画素p(x,y)の画素値は、注目画素p(x,y)に(1−d2x)/(1−d2x+d1x)の比率で配分される。また、注目画素p(x,y)の画素値は、1つ下流側の画素にd1x/(1−d2x+d1x)の比率で配分される。注目画素p(x,y)の理想位置に対する、その形成位置のずれ量は−d1xである。また、注目画素p(x,y)の理想位置と画素p(x,y+1)の形成位置との距離は1−d2xである。したがって、重心の理想位置からのずれ量は、(1−d2x)(−d1x)/(1−d2x+d1x)+(1-d2x)d1x/(1−d2x+d1x)=0となる。
同様に、式(4)〜(6)より、注目画素p(x,y)が下流側にずれている場合、注目画素p(x,y)の画素値は、注目画素p(x,y)に(1+d0x)/(1−d1x+d0x)の比率で配分される。また、注目画素p(x,y)の画素値は、1つ上流側の画素に−d1x/(1−d2x+d1x)の比率で配分される。注目画素p(x,y)の理想位置からのずれ量は−d1xであり、注目画素p(x,y)の理想位置と1つ上流側の画素の形成位置との距離は−(1+d0x)である。したがって、重心の理想位置からのずれ量は、(1+d0x)(−d1x)/(1−d1x+d0x)+(1+d0x)d1x/(1−d1x+d0x)=0となる。
以上の様に、本実施形態では、位置ずれ量情報である補正データを予め測定して記憶しておく。補正データは、回転多面鏡615の反射面それぞれと関連付けられており、関連付けられた反射面で反射された光により感光体42を走査したときの、当該走査で形成される各画素の副走査方向のずれ量を示している。なお、上記実施形態において、補正データは、走査線の画素毎に副走査方向のずれ量を示していたが、走査線の総ての画素において副走査方向のずれ量が同じ、或いは、略同じである場合には、走査線に対して単一のずれ量を示すものとすることができる。また、走査線を主走査方向の複数の区間に分割し、区間内の画素に対して単一のずれ量を示す構成とすることもできる。
面倒補正処理部305は、補正データに基づき第1画素の副走査方向の第1ずれ量と、第1画素と副走査方向において隣接する第2画素の副走査方向の第2ずれ量と、を判定する。ここで、第1画素が副走査方向の上流側にずれていると、第2画素は、副走査方向において第1画素の下流側の画素である。一方、第1画素が副走査方向の下流側にずれていると、第2画素は、副走査方向において第1画素の上流側の画素である。
面倒補正処理部305は、この第1ずれ量と第2ずれ量とに基づき、画像データが示す第1画素の画素値を第1画素と第2画素に配分する様に画像データを補正する。具体的に述べると、面倒補正処理部305は、補正後の画像データに基づき形成した第1画素及び第2画素の露光分布の副走査方向の重心が第1画素の理想的な位置に近づく様に、第1画素の画素値を第1画素と第2画素に配分する。このため、面倒補正処理部305は、第1画素の理想的な形成位置と第2画素の実際の形成位置との距離を第3ずれ量とし、この第3ずれ量を、第2ずれ量と副走査方向における走査線間の理想的な間隔に基づき求める。そして、面倒補正処理部305は、第1ずれ量と第3ずれ量との和に対する第3ずれ量の比と、画像データが示す第1画素の画素値との積を第1画素に配分する。そして、画像データが示す第1画素の画素値の残りを第2画素に配分する。
なお、画素の副走査方向のずれ量を特定するためには、走査線の走査に使用される回転多面鏡615の反射面を特定する必要がある。このため、プリンタエンジン104は、BD周期を測定し、感光体の走査に使用されている反射面を特定する。
以上、本実施形態によると、走査線の副走査方向の変動に拘らず、画素の副走査方向の露光分布の重心を理想的な位置に近づけることができる。よって、画像形成装置が形成する画像の濃度ムラを抑えることができる。
なお、データ処理部205を含むビデオコントローラ103をホストコンピュータ101に設ける場合、ホストコンピュータ101は画像形成装置に画像データを供給する画像処理装置として動作する。画像処理装置の面倒補正処理部305は、画像データに基づき上述した面倒補正処理を行い補正処理後の画像データを画像形成装置に出力する。なお、このとき、画像処理装置は、画像形成装置から、感光体の走査に使用する反射面と、画像データの各画素の関係を特定する特定情報を受信する。そして、面倒補正処理部305は、この特定情報と補正データに基づき各画素の副走査方向のずれ量を判定する。
<第二実施形態>
続いて、第二実施形態について第一実施形態との相違点を中心に説明する。図10は、本実施形態によるデータ処理部205の構成図である。図3に示す第一実施形態のデータ処理部205に対して、本実施形態によるデータ処理部205は、形状補正部1206を有する点で相違する。
以下、形状補正部1206における処理について図11のフローチャートにより説明する。なお、ある画素を光強度Aで、時間Sだけ露光すると、当該画素の副走査方向(変数hで表す)の露光分布は、以下の式(7)で表される。
Z(h)=A×exp(−(h−h/S) (7)
ここで、hは、当該画素の副走査方向の位置である。形状補正部1206は、S30で各パラメータの初期化を行う。具体的には、走査線の番号yに1を設定し、全ての画素についてのA(x,y)、S(x,y)を0に初期化する。続いて、S31で、補正データd、d、dを、図8のS11と同様に設定する。続いて、形状補正部1206は、S32で、xに1を設定し、S33で、画素p(x、y)が孤立画素であるか否かを判定する。本実施形態において、画素p(x、y)が露光する画素であり、画素p(x,y−1)及び画素p(x,y+1)が露光しない画素、つまり、トナーを付着させない画素であると、画素p(x、y)を孤立画素と判定する。より詳しくは、I(x,y)が0%ではなく、かつ、I(x,y−1)及びI(x,y+1)=0%であれば画素p(x、y)を孤立画素と判定する。画素(x、y)が孤立画素であると、形状補正部1206は、S34で補正値データd1xがd1x≧0かどうかを判断する。d1x≧0であれば、形状補正部1206は、S35で、A(x,y)、S(x,y)、A(x,y+1)、S(x,y+1)の値を、以下に説明する様に決定する。
まず、画素p(x,y)を光強度A1で、時間S1だけ露光し、画素p(x,y+1)を光強度A2で、時間S2だけ露光するものとして以下の式(8)及び(9)を作成する。
Z(x、y)(h)=A1×exp(−(h−hy)/S1) (8)
Z(x、y+1)(h)=A2×exp(−(h−hy+1)/S2) (9)
ここで、露光分布Z(x、y)(h)及び露光分布Z(x、y+1)(h)は、それぞれ、画素p(x,y)及び画素p(x,y+1)の露光分布である。また、hyは、画素p(x、y)の副走査方向の形成位置である。露光分布Z(x、y)(h)及びZ(x、y+1)(h)が重畳した重畳露光分布Z´(h)は、以下の式(10)で表される。
Z´(h)=Z(x、y)(h)+Z(x、y+1)(h) (10)
また、理想的な位置に形成された画素p(x,y)が画素値100%である場合の露光分布Zi(x、y)(h)は以下の式(11)で表される。
Zi(x、y)(h)=A0×exp(−h/S0) (11)
なお、A0及びS0は、画素値が100%の画素に対して画像形成装置の特性から予め定められた既知数である。式(11)から、画素p(x,y)の面倒補正処理前の画素値I(x,y)に基づく、画素p(x,y)に対する理想的な露光分布は、Zi(x、y)(h)×I(x,y)となる。したがって、重畳露光分布Z´(h)と、画素p(x,y)に対する理想的な露光分布との差分の2乗和kは、以下の式(12)で表される。
k=Σ(Z´(h)−Zi(x、y)(h)×I(x、y)) (12)
なお、式(12)及び以下の各式において、Σは変数hに対する積算を示す。
形状補正部1206は、以下の式(13)及び(14)を満たしつつ、かつ、式(12)のkを最小とするA1、A2、S1、S2を求める。
ΣZ(x、y)(h)=ΣZi(x、y)(h)×I´(x,y) (13)
ΣZ(x、y+1)=ΣZi(x、y)(h)×I´(x,y+1) (14)
式(13)は、画素p(x,y)を光強度A1で、時間S1だけ露光したときの総露光量が、面倒補正処理後の画素p(x,y)の画素値I´(x,y)に対応するものとする条件式である。同様に、式(14)は、画素p(x,y+1)を光強度A2で、時間S2だけ露光したときの総露光量が、面倒補正処理後の画素p(x,y+1)の画素値I´(x,y+1)に対応するものとする条件式である。
第一実施形態にて述べた様に、S13でd1xが0以上であると、画素p(x,y)の画素値を、画素p(x,y)と画素p(x,y+1)に配分する。したがって、図11のS35の処理は、配分後の画素値I´(x,y)とI´(x,y+1)の重畳露光分布Z´(h)を、画素p(x,y)が理想的な位置に形成されるときの露光分布Zi(x、y)(h)×I(x,y)に近づけるための処理である。
形状補正部1206は、この様にして求めたA1、A2、S1、S2を、それぞれ、A(x,y)=A1,A(x,y+1)=A2,S(x,y)=S1,S(x,y+1)=S2として設定する。
一方、S34で補正値データd1xがd1x≧0でなければ、形状補正部1206は、S36で、A(x,y)、S(x,y)、A(x,y−1)、S(x,y−1)の値をS35の処理と同様に設定する。なお、処理の考え方は、S35と同様であるため、以下では簡略化して説明する。
まず、画素p(x,y)を光強度A1で、時間S1だけ露光し、画素p(x,y−1)を光強度A2で、時間S2だけ露光するものとして以下の式(15)及び(16)を作成する。
Z(x、y)(h)=A1×exp(−(h−hy)/S1) (15)
Z(x、y+1)(h)=A2×exp(−(h−hy−1)/S2) (16)
形状補正部1206は、以下の式(17)及び(18)を満たしつつ、かつ、式(12)のkを最小とするA1、A2、S1、S2を求める。
ΣZ(x、y)(h)=ΣZi(x、y)(h)×I´(x,y) (17)
ΣZ(x、y−1)(h)=ΣZi(x、y)(h)×I´(x,y−1) (18)
形状補正部1206は、この様にして算出したA1、A2、S1、S2をA(x,y)=A1,A(x,y−1)=A2,S(x,y)=S1,S(x,y−1)=S2として設定する。
一方、S33で孤立画素ではないと判定されると処理は図12のS41に進む。まず、形状補正部1206は、S41で、S35又はS36の処理により、A(x,y),S(x,y)に既に値が設定されているかを判定する。設定されていると、処理は、図11のS37に進む。一方、設定されていないと、形状補正部1206は、S42において、A(x,y)及びS(x,y)を以下に説明する様に設定する。まず、画素p(x,y)のA(x,y)を、式(11)と同じA0とする。そして、画素p(x,y)を光強度A0で、時間S1だけ露光するものとして、以下の式(19)を作成する。
Z(x、y)(h)=A0×exp(−h/S1) (19)
そして、以下の式(20)を満たすS1を求める。
ΣZ(x、y)(h)=ΣZi(x、y)(h)×I´(x,y) (20)
形状補正部1206は、S35、S36、S42で値を設定すると、S37で、注目画素p(x,y)が走査線の最後の画素であるかを判定し、最後の画素でなければS39でxを1だけ増加させてS33から処理を繰り返す。一方、注目画素p(x,y)が走査線の最後の画素であると、形状補正部1206は、S38で注目画素p(x,y)が最後の走査線の画素であるか否かを判定し、最後の走査線の画素ではないと、S40でyを1だけ増加させてS31から処理を繰り返す。一方、S38で、最後の走査線の画素であると、形状補正部1206は、処理を終了する。
なお、本実施形態では、S42において計算により露光時間を計算したが、露光時間と総光量を対応付けるテーブルを保持しておき、そのテーブルを参照することによって露光時間を求めても良い。
形状補正部1206が各画素について露光時間A(x,y)及び露光強度S(x,y)を決定すると、駆動信号生成部306は形状補正部1206が設定した露光時間及び露光強度に従い駆動信号を生成しプリンタエンジン104に送信する。そして、プリンタエンジン104は、この駆動信号に従って画像を形成する。
本実施形態の効果について図13を用いて説明する。例えば、第一実施形態の図9で説明した様に、注目画素p(x,y)が上流側に0.4画素だけずれ、注目画素p(x,y)の1つ下流側の画素p(x,y+1)が下流側に0.4画素だけずれているものとする。そして、これにより、注目画素p(x,y)の画素値を、注目画素(x,y)と、1つ下流側の画素p(x,y+1)に、それぞれ、約78%と22%に配分したものとする。図13(A)は副走査方向の露光分布を示す図である。図13(A)において、参照符号1401は、理想的な位置に形成した注目画素p(x,y)の露光分布を表す。一方、参照符号1402は、注目画素p(x,y)の画素値を、注目画素p(x,y)と、画素(x,y+1)にそれぞれ、78%と22%で配分し、かつ、所定の露光強度及び露光時間で露光した場合の露光分布を示している。図13(A)において、参照符号1401及び1402の重心位置は同じ位置であるが、露光分布の形状は大きく異なる。画素p(x,y)が孤立画素であると、この露光分布の違いが画素の不均一性として目立つ場合がある。
これに対して、本実施形態において、形状補正部1206は、露光強度と露光時間を最適化する様に決定する。図13(B)の参照符号1403は、本実施形態で述べた様に露光強度と露光時間を最適化したときの露光分布を示している。参照符号1403の重心位置は参照符号1401と同じ位置であり、かつ、露光分布も参照符号1401で示す理想的な形状に近くなっている。これにより孤立画素の不均一性が低減される。
なお、本実施形態では副走査方向において、隣接する2つの画素がトナー付着を付着させる画素ではないと、当該画素を孤立画素していた。しかしながら、連続する2画素や3画素の周囲にトナー付着させる画素がないと、これら2画素又は3画素を孤立画素と判定しても良い。
[その他の実施形態]
本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
42:感光体、44:走査部、506:不揮発性記憶部、305:面倒補正処理部

Claims (13)

  1. 感光体と、
    前記感光体を光で走査して静電潜像を形成する走査手段と、
    前記走査手段により形成される画素の副走査方向の位置ずれ量を示す位置ずれ量情報を記憶する記憶手段と、
    前記位置ずれ量情報に基づき第1画素の副走査方向の第1ずれ量と、前記第1画素と前記副走査方向において隣接する第2画素の前記副走査方向の第2ずれ量と、を判定する判定手段と、
    前記第1ずれ量と前記第2ずれ量とに基づき、画像データが示す前記第1画素の画素値を前記第1画素と前記第2画素に配分する様に前記画像データを補正する補正手段と、
    を備えていることを特徴とする画像形成装置。
  2. 前記補正手段は、前記補正手段による補正後の画像データに基づき前記走査手段により形成した前記第1画素及び前記第2画素の露光分布の前記副走査方向の重心が前記第1画素の理想的な位置に近づく様に、前記画像データが示す前記第1画素の画素値を前記第1画素と前記第2画素に配分することを特徴とする請求項1に記載の画像形成装置。
  3. 前記補正手段は、前記第1画素の理想的な形成位置と前記第2画素の前記走査手段による形成位置との前記副走査方向の距離を、前記第2ずれ量と前記副走査方向における走査線間の理想的な間隔に基づき求め、前記第1ずれ量と前記距離との和に対する前記距離の比に基づき、前記画像データが示す前記第1画素の画素値を前記第1画素と前記第2画素に配分することを特徴とする請求項1又は2に記載の画像形成装置。
  4. 前記補正手段は、前記比と前記画像データが示す前記第1画素の画素値との積を前記第1画素に配分することを特徴とする請求項3に記載の画像形成装置。
  5. 前記第1画素が前記副走査方向の上流側にずれていると、前記第2画素は、前記副走査方向において前記第1画素の下流側の画素であり、
    前記第1画素が前記副走査方向の下流側にずれていると、前記第2画素は、前記副走査方向において前記第1画素の上流側の画素であることを特徴とする請求項1から4のいずれか1項に記載の画像形成装置。
  6. 前記走査手段は、
    光源と、
    回転駆動され、前記光源が射出する光を反射する複数の反射面を有する多面鏡と、
    を備えており、
    前記位置ずれ量情報は、前記複数の反射面それぞれの反射面に関連付けられていることを特徴とする請求項1から5のいずれか1項に記載の画像形成装置。
  7. 1つの反射面に関連付けられている前記位置ずれ量情報は、当該1つの反射面で反射された光により前記感光体を走査したときの、当該走査で形成される各画素の前記副走査方向のずれ量を示していることを特徴とする請求項6に記載の画像形成装置。
  8. 前記複数の反射面で所定方向に反射された光を検出する検出手段と、
    前記検出手段が検出する光の間隔に基づき、前記感光体の走査に使用されている反射面を特定する特定手段と、
    をさらに備えており
    前記判定手段は、前記特定手段が特定した反射面と前記位置ずれ量情報に基づき前記第1ずれ量及び前記第2ずれ量を判定することを特徴とする請求項6又は7に記載の画像形成装置。
  9. 前記第1画素と前記副走査方向の上流側及び下流側それぞれにおいて隣接する2つの画素が共に露光しない画素であることを前記画像データが示していると、前記第1画素が理想的な位置に形成された場合の露光分布に基づき、前記補正手段による補正後の画像データに基づき前記走査手段が前記第1画素及び前記第2画素を露光する際の露光強度及び露光時間を決定する決定手段をさらに備えていることを特徴とする請求項1から8のいずれか1項に記載の画像形成装置。
  10. 前記決定手段は、前記走査手段により形成する前記第1画素の露光分布と前記第2画素の露光分布とを重畳した重畳露光分布と、前記第1画素が理想的な位置に形成された場合の露光分布との差が小さくなる様に、前記走査手段により前記第1画素及び前記第2画素を露光する際の露光強度及び露光時間を決定することを特徴とする請求項9に記載の画像形成装置。
  11. 感光体と、
    前記感光体を光で走査して静電潜像を形成する走査手段と、
    を備えている画像形成装置に画像データを送信する画像処理装置であって、
    前記走査手段により形成される画素の副走査方向の位置ずれ量を示す位置ずれ量情報を記憶する記憶手段と、
    前記位置ずれ量情報に基づき第1画素の副走査方向の第1ずれ量と、前記第1画素と前記副走査方向において隣接する第2画素の前記副走査方向の第2ずれ量と、を判定する判定手段と、
    前記第1ずれ量と前記第2ずれ量とに基づき、画像データが示す前記第1画素の画素値を前記第1画素と前記第2画素に配分する様に前記画像データを補正する補正手段と、
    前記補正手段による補正後の画像データを前記画像形成装置に出力する出力手段と、
    を備えていることを特徴とする画像処理装置。
  12. 前記走査手段は、
    光源と、
    回転駆動され、前記光源が射出する光を反射する複数の反射面を有する多面鏡と、
    を備えており、
    前記位置ずれ量情報は、前記複数の反射面それぞれの反射面に関連付けられていることを特徴とする請求項11に記載の画像処理装置。
  13. 前記判定手段は、前記画像形成装置から、前記感光体の走査に使用する反射面を特定する特定情報を受信し、前記特定情報と前記位置ずれ量情報に基づき前記第1ずれ量及び前記第2ずれ量を判定することを特徴とする請求項12に記載の画像処理装置。
JP2016093377A 2016-05-06 2016-05-06 画像形成装置及び画像処理装置 Pending JP2017201374A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016093377A JP2017201374A (ja) 2016-05-06 2016-05-06 画像形成装置及び画像処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016093377A JP2017201374A (ja) 2016-05-06 2016-05-06 画像形成装置及び画像処理装置

Publications (1)

Publication Number Publication Date
JP2017201374A true JP2017201374A (ja) 2017-11-09

Family

ID=60264449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016093377A Pending JP2017201374A (ja) 2016-05-06 2016-05-06 画像形成装置及び画像処理装置

Country Status (1)

Country Link
JP (1) JP2017201374A (ja)

Similar Documents

Publication Publication Date Title
KR101646821B1 (ko) 레이저 빔 간의 상대 위치를 보정할 수 있는 화상 형성 장치
JP5078836B2 (ja) 光走査装置および画像形成装置
US9606472B2 (en) Image forming apparatus having light emission luminance based on scanning speed
US10845726B2 (en) Image forming apparatus which controls exposure amount of photoreceptor per unit area by correcting pulse width of drive signal for driving light source
US20110280599A1 (en) Image forming apparatus
US9588472B2 (en) Image formation apparatus and image formation method
JP5515893B2 (ja) 光書き込み装置、画像形成装置及び光書き込み装置の制御方法
JP5484614B2 (ja) 画像形成装置
JP6647054B2 (ja) 画像形成装置
JP4747995B2 (ja) 光走査装置
JP6296868B2 (ja) 画像形成装置
US10429640B2 (en) Image forming apparatus performing processing in accordance with reflective surface of rotating polygonal mirror for scanning photosensitive member
JP2022128010A (ja) 画像形成装置
JP5821863B2 (ja) 画像形成装置
JP2017201374A (ja) 画像形成装置及び画像処理装置
JP6486430B2 (ja) レーザ光間の位置ずれを補正する画像形成装置
JP4289417B2 (ja) 光走査装置及び画像形成装置
JP7418122B2 (ja) 画像形成装置
US11973914B2 (en) Image forming apparatus configured to perform halftone processing
JP2004212873A (ja) 光走査装置及び画像形成装置
JP2018116144A (ja) 画像形成装置及び画像形成制御プログラム
JP5188097B2 (ja) 画像形成装置
JP2022012828A (ja) 画像形成装置
JP6091685B2 (ja) 画像形成装置
JP6221916B2 (ja) 画像形成装置及び露光制御方法