JP2017180462A - 可変ノズル機構 - Google Patents

可変ノズル機構 Download PDF

Info

Publication number
JP2017180462A
JP2017180462A JP2017057526A JP2017057526A JP2017180462A JP 2017180462 A JP2017180462 A JP 2017180462A JP 2017057526 A JP2017057526 A JP 2017057526A JP 2017057526 A JP2017057526 A JP 2017057526A JP 2017180462 A JP2017180462 A JP 2017180462A
Authority
JP
Japan
Prior art keywords
arm
nozzle
contact surface
support shaft
curvature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017057526A
Other languages
English (en)
Other versions
JP6597689B2 (ja
Inventor
秋本 健太
Kenta Akimoto
健太 秋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to EP17163078.3A priority Critical patent/EP3225787B1/en
Priority to US15/469,632 priority patent/US10563536B2/en
Publication of JP2017180462A publication Critical patent/JP2017180462A/ja
Application granted granted Critical
Publication of JP6597689B2 publication Critical patent/JP6597689B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/16Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes
    • F01D17/165Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes for radial flow, i.e. the vanes turning around axes which are essentially parallel to the rotor centre line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/24Control of the pumps by using pumps or turbines with adjustable guide vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Supercharger (AREA)
  • Control Of Turbines (AREA)

Abstract

【課題】摩耗を抑制することができる可変ノズル機構を提供する。
【解決手段】可変ノズル機構は、複数のノズルベーンと、複数のアーム49と、ユニゾンリングとを備えている。複数のノズルベーンは、ノズル通路に設けられている。複数のアームは、各々が軸支端と自由端とを有しており、軸支端は支軸47によってノズルベーンに一体に連結されている。ユニゾンリングには、複数の溝が形成されている。ユニゾンリングの溝の各々に、アームの自由端がそれぞれ係合している。アームの自由端は、閉側接触面510と開側接触面520とを有している。閉側接触面510と開側接触面520との各々が、ユニゾンリングの溝を形成する一対の壁の一方にそれぞれ接触している。閉側接触面510は、支軸47に近い側と支軸47から遠い側との曲率が異なっている。
【選択図】図3

Description

本発明は、ターボチャージャに用いられる可変ノズル機構に関する。
ターボチャージャは、スクロール通路内の排気ガスをタービンホイールに吹き付けて、タービンホイールを回転駆動する。従来、ターボチャージャには、ターボチャージャの特性を可変にするために、可変ノズル機構が採用されている。可変ノズル機構は、複数のノズルベーンの移動によって排気ガスの流路断面積を増減させ、タービンホイールに吹き付けられる排気ガスの流速を制御する。
特開2014−224498号公報(特許文献1)には、可変ノズルのアームが係合するアーム嵌合溝をユニゾンリングに形成し、アーム嵌合溝の閉側溝壁面を凹型円弧状に形成し、開側溝壁面を凸型円弧状に形成する、可変ノズル機構が提案されている。
特開2014−224498号公報
特許文献1には、アーム嵌合溝の壁面のうち、排気反力の作用によってアームと通常的に接触し合う閉側溝壁面を凹型円弧状に形成することによって、閉側溝壁面とアームとの間の接触応力を低減し、アームおよび閉側溝壁面の摩耗を低減することが開示されている。しかしながら、ノズルベーンの位置精度の悪化による過給遅れまたは排気不良を抑制するために、可変ノズル機構にはアームおよびユニゾンリングの摩耗のさらなる低減が求められており、従来の可変ノズル機構では必ずしも十分とはいえず更なる改良の余地がある。
本発明の目的は、アームおよびユニゾンリングの摩耗を抑制することができる可変ノズル機構を提供することである。
本発明に係る可変ノズル機構は、ターボチャージャに用いられ、ノズル通路を介してタービンブレードに吹き付けられる排気ガスを変動させる。可変ノズル機構は、複数のノズルベーンと、複数のアームと、ユニゾンリングとを備えている。複数のノズルベーンは、ノズル通路に設けられている。複数のアームは、各々が軸支端と自由端とを有しており、軸支端は支軸によってノズルベーンに一体に連結されている。ユニゾンリングには、複数の溝が形成されている。ユニゾンリングの溝の各々に、アームの自由端がそれぞれ係合している。アームとノズルベーンとは、ノズル通路の断面積を増大する開方向と減少する閉方向との両方にユニゾンリングが回転するとき、支軸を中心に一体に開方向と閉方向とに回転して、ノズル通路の断面積を変動可能である。アームの自由端は、アームの閉方向回転側と開方向回転側との一対の接触面を有している。一対の接触面の各々が、ユニゾンリングの溝を形成する一対の壁の一方にそれぞれ接触している。アームの接触面の一方は、ユニゾンリングの溝の壁面に向けた凸曲面をなすとともに、凸曲面の支軸に近い側と支軸から遠い側との曲率が異なる。
上記可変ノズル機構において好ましくは、排気ガスの圧力はノズル通路を減少させる閉方向にノズルベーンに作用し、上記曲率を有するアームの接触面は、アームの回動の閉方向側に位置しているとともに、支軸から離れるにつれて曲率が小さくなっている。
上記可変ノズル機構において好ましくは、排気ガスの圧力はノズル通路を増大させる開方向にノズルベーンに作用し、上記曲率を有するアームの接触面は、アームの回動の開方向側に位置しているとともに、支軸から離れるにつれて曲率が大きくなっている。
上記可変ノズル機構において好ましくは、アームの接触面の曲率は、支軸から離れるにつれて連続的に変化している。
本発明によると、可変ノズル機構のアームおよびユニゾンリングの摩耗を抑制することができる。
可変ノズルターボチャージャの回転軸に沿った断面図である。 図1の左方から見た可変ノズル機構の模式的側面図である。 可変ノズル部材のアームの構成を示す模式図である。 アームの回動とノズルベーンの回動との関係を示す模式図である。 アームが閉方向に回動するときに閉側接触面が接触するアーム嵌合溝の壁面上の接触部を示す模式図である。 比較例のアームが閉方向に回動するときに閉側接触面が接触するアーム嵌合溝の壁面上の接触部を示す模式図である。 アーム回転角度と、閉側接触面の接触部の曲率半径との関係を示すグラフである。 アーム回転角度と、ユニゾンリングの回転中心から接触部までの距離との関係を示すグラフである。 アーム回転角度と、アーム嵌合溝の壁面に対する接触部の摺動距離との関係を示すグラフである。
以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
まず、可変ノズルターボチャージャ10の全体構造について説明する。なお、本実施の形態では、車両に搭載される内燃機関に取り付けられる可変ノズルターボチャージャ10を例にして説明する。図1は、可変ノズルターボチャージャ10の回転軸に沿った断面図である。
図1に示すように、可変ノズルターボチャージャ10は、ロータ20を備えている。ロータ20は、ロータハウジング12内に、回転可能に収容されている。ロータハウジング12は、タービンハウジング14、コンプレッサハウジング16、およびセンタハウジング18の、3つのハウジングを有している。センタハウジング18は、タービンハウジング14とコンプレッサハウジング16とを連結している。
ロータ20は、タービンホイール22、ロータシャフト24、およびコンプレッサホイール26を備えている。タービンホイール22とロータシャフト24とコンプレッサホイール26とは、一体となって回転可能である。
タービンホイール22は、タービンハウジング14内に配置されている。タービンホイール22は、外周部に複数のタービンブレード23を有している。
ロータシャフト24は、タービンホイール22と一体に形成されている。ロータシャフト24は、センタハウジング18内に配置されている。ロータシャフト24は、複数の軸受によって、センタハウジング18内に回転可能に支持されている。
コンプレッサホイール26は、コンプレッサハウジング16内に配置されている。コンプレッサホイール26は、ロータシャフト24の先端部に取付けられている。コンプレッサホイール26は、外周部に複数のインペラ27を有している。
タービンハウジング14には、渦巻状のスクロール通路30と、ノズル通路31とが形成されている。ノズル通路31は、スクロール通路30に開口し、かつ、タービンホイール22のタービンブレード23に対向している。スクロール通路30は、図示しない内燃機関の燃焼室から排出される排気ガスの排気通路と連通している。このため、スクロール通路30内に流れ込んだ排気ガスは、ノズル通路31からタービンホイール22のタービンブレード23に吹き付けられることにより、タービンホイール22を回転させる。その後排気ガスは、タービンハウジング14の排気出口15から排出される。
コンプレッサハウジング16には、渦巻状のコンプレッサ通路33と、ディフューザ通路34とが形成されている。ディフューザ通路34は、コンプレッサ通路33に開口し、かつ、コンプレッサホイール26のインペラ27に対向している。コンプレッサ通路33は、図示しない吸気通路を介して、内燃機関の燃焼室に連通している。コンプレッサホイール26は、タービンホイール22の回転にともなって一体的に回転される。コンプレッサホイール26は、コンプレッサハウジング16の吸気入口17から導入される吸気をインペラ27によって圧縮し、遠心作用によってディフューザ通路34へ送出する。ディフューザ通路34内へ放出された空気は、コンプレッサ通路33を経由して内燃機関の燃焼室へ過給される。
可変ノズルターボチャージャ10は、可変ノズル機構36を備えている。可変ノズル機構36は、タービンホイール22へ向けてノズル通路31内を流れる排気ガスの流速を制御する。可変ノズル機構36は、円環状のノズルリング38を有している。ノズルリング38は、ノズル通路31のセンタハウジング18側の側壁を構成している。ノズルリング38は、複数(たとえば4個)の連結ボルトによって、タービンハウジング14に固定されている。
タービンハウジング14とセンタハウジング18との接合部分の外周部には、環状空間部41が形成されている。環状空間部41とノズル通路31とは、ノズルリング38により区画されている。センタハウジング18の外周部に、フランジ状の側壁部19が形成されている。側壁部19は、環状空間部41の側壁を構成している。側壁部19は、ボルト42によりタービンハウジング14に固定されている。
次に、可変ノズル機構36の概略構成について説明する。図2は、図1の左方から見た可変ノズル機構36の模式的側面図である。図2には、可変ノズル機構36の一部(ノズルリング38など)を、アーム側(図1の左方側)から見た状態が図示されている。
図2に示すように、可変ノズル機構36は、複数(たとえば9個)の可変ノズル部材46を有する可変ノズルユニットを備えている。複数の可変ノズル部材46は、ノズルリング38に対して周方向に等間隔で配置されている。可変ノズル部材46は、支軸47と、ノズルベーン48と、アーム49とを有している。ノズルベーン48は、支軸47の一端に固定されている。アーム49は、支軸47の他端に固定されている。ノズルベーン48は、支軸47を介して、アーム49に固定的に連結されている。
支軸47は、ノズルリング38を貫通して配置されている。支軸47は、ノズルリング38に対して自転可能に支持されている。可変ノズル部材46は、支軸47によって、ノズルリング38に回動可能に支持されている。各々の可変ノズル部材46のアーム49は、支軸47によって支持された軸支端と、軸支端とは反対側の自由端とを有している。アーム49の自由端には、嵌合部50が形成されている。ノズルベーン48は、図1に示すノズル通路31内に、支軸47を中心として回動可能に配置されている。ノズルベーン48は、ノズル通路31を開閉可能に配置されている。アーム49は、図1に示す環状空間部41内に、支軸47を中心として回動可能に配置されている。
可変ノズル機構36は、円環状のユニゾンリング52を備えている。ユニゾンリング52は、図1に示す環状空間部41内に配置されている。ユニゾンリング52は、ノズルリング38と同心に配置されている。ユニゾンリング52は、ノズルリング38に対して、図1に示すセンタハウジング18の側壁部19側に配置されている。ユニゾンリング52は、図1に示すように、ノズルリング38と可変ノズル部材46のアーム49との間に配置されている。
ノズルリング38の環状空間部41側には、保持ローラ44が配置されている。保持ローラ44は、ノズルリング38に回転可能に搭載されている。保持ローラ44は、ユニゾンリング52を回転可能に保持する。ユニゾンリング52は、保持ローラ44により、タービンハウジング14に対して回動可能に保持されている。
図2に示すように、ユニゾンリング52の一側面(可変ノズル部材46のアーム49が設けられている側)には、可変ノズル部材46の数と同数のアーム嵌合溝54が、周方向に等間隔で形成されている。アーム嵌合溝54は、ユニゾンリング52の径方向に一直線状に形成されている。各可変ノズル部材46のアーム49は、各アーム嵌合溝54に嵌め入れられた嵌合部50を有している。可変ノズル部材46のアーム49は、ユニゾンリング52のアーム嵌合溝54と係合している。
図1に示すセンタハウジング18の側壁部19には、ユニゾンリングを回転駆動するための駆動部材56が設けられている。駆動部材56は、支軸57と、駆動レバー58と、駆動アーム60とを有している。駆動レバー58は、支軸57の一端に固定されている。駆動アーム60は、支軸57の他端に固定されている。
支軸57は、センタハウジング18の側壁部19を貫通して配置されている。支軸57は、側壁部19に回転可能に支持されている。駆動部材56は、支軸57によって、センタハウジング18の側壁部19に回動可能に支持されている。駆動レバー58は、環状空間部41外に配置されている。駆動アーム60は、環状空間部41内に収容されている。駆動アーム60の先端部には、円形状の嵌合部61が形成されている。
図2に示すように、ユニゾンリング52の一側面(可変ノズル部材46のアーム49が設けられている側)には、1つの駆動アーム嵌合溝63が形成されている。駆動アーム嵌合溝63は、ユニゾンリング52の周方向に隣り合う1組のアーム嵌合溝54の間に形成されている。駆動アーム嵌合溝63は、ユニゾンリング52の径方向に一直線状に形成されている。駆動アーム60は、駆動アーム嵌合溝63に嵌め入れられた嵌合部61を有している。駆動アーム60は、ユニゾンリング52の駆動アーム嵌合溝63と係合している。
図1に示すように、駆動レバー58には、アクチュエータ65の出力部(図示省略)が連係されている。アクチュエータ65は、たとえば電動モータ、電磁ソレノイド、エアシリンダなどである。なお、アクチュエータ65の出力部と駆動部材56の駆動アーム60との間に、リンク機構、ギヤ機構などの動力伝達機構が介装される場合もある。
アクチュエータ65は、コントローラ67により駆動制御される。アクチュエータ65には、その出力部の作動量を検出するアングルセンサなどの作動量検出手段68が設けられている。コントローラ67は、作動量検出手段68の出力に基づいて、ノズルベーン48の回転角(ノズルベーン48の開度)を算出する。
コントローラ67によりアクチュエータ65が作動されると、駆動レバー58が回動される。駆動アーム60は、駆動レバー58とともに、支軸57を中心にして回動する。駆動アーム60の回動に伴い、ユニゾンリング52が回動する。ユニゾンリング52の回動に伴い、複数の可変ノズル部材46が同期的に回動される。
ユニゾンリング52が図2中の反時計回り方向(矢印Y1参照)に回動すると、全ての可変ノズル部材46は、支軸47の軸線を中心にして図2中の反時計回り方向に回動される。このとき、隣り合うノズルベーン48同士が、互いに離れる方向に移動する。ノズルベーン48の移動に伴って、ノズル通路31の断面積、すなわち、隣り合うノズルベーン48間の排気ガスの流路が、大きくなる。アーム49の支軸47まわりの、ノズル通路31の断面積を大きくするための回動方向を、本明細書中では、開方向と称する。
ユニゾンリング52が図2中の時計回り方向(矢印Y2参照)に回動すると、全ての可変ノズル部材46は、支軸47の軸線を中心にして図2中の時計回り方向に回動される。このとき、隣り合うノズルベーン48同士が、互いに近づく方向に移動する。ノズルベーン48の移動に伴って、ノズル通路31の断面積、すなわち、隣り合うノズルベーン48間の排気ガスの流路が、小さくなる。アーム49の支軸47まわりの、ノズル通路31の断面積を小さくするための回動方向を、本明細書中では、閉方向と称する。
このように、ユニゾンリング52の回動に基づいて、全ての可変ノズル部材46が同期的に回動されることにより、可変ノズル部材46(詳しくはノズルベーン48)の開度が調整される。ノズルベーン48が開閉され、隣り合うノズルベーン48の相互間の流路断面積が増減されることによって、タービンホイール22に吹き付けられる排気ガスの流速が制御される。
可変ノズル機構36は、可変ノズル部材46、ユニゾンリング52、駆動部材56およびアクチュエータ65を含んで構成されている。可変ノズル部材46のアーム49とユニゾンリング52、ユニゾンリング52と駆動部材56の駆動アーム60、駆動部材56の駆動レバー58とアクチュエータ65の出力部は、アクチュエータ65からアーム49までの動力伝達経路において、互いに連結し合っている。
次に、可変ノズル部材46のアーム49の構成について説明する。図3は、可変ノズル部材46のアーム49の構成を示す模式図である。上述した通り、アーム49は、支軸47の端部に固定されている。アーム49は、支軸47を中心として回動可能に設けられている。支軸47と反対側のアーム49の先端部に、ユニゾンリング52のアーム嵌合溝54内に配置される嵌合部50が設けられている。
嵌合部50の外表面は、一対の接触面と、内側表面530と、外側表面540とを有している。一対の接触面は、閉側接触面510と、開側接触面520とを有している。閉側接触面510と開側接触面520とは、嵌合部50がユニゾンリング52のアーム嵌合溝54に嵌合された状態で、アーム嵌合溝54の壁面にそれぞれ接触する凸曲面をなしている。閉側接触面510は、アーム嵌合溝54の閉側溝壁面に接触する。開側接触面520は、アーム嵌合溝54の開側溝壁面に接触する。閉側溝壁面と開側溝壁面とは、図2に示すように、互いに平行に形成されており、間隔を空けて配置されている。
嵌合部50の閉側接触面510は、図2に示す矢印Y2方向にユニゾンリング52を回動させるときに支軸47を中心にして回動するアーム49の回動方向(上述した閉方向)の前方側に位置している。嵌合部50の開側接触面520は、図2に示す矢印Y1方向にユニゾンリング52を回動させるときに支軸47を中心にして回動するアーム49の回動方向(上述した開方向)の前方側に位置している。
閉側接触面510は、隣り合うノズルベーン48間の排気ガスの流路断面積を減少させるように動くときのアーム49の回動方向の前方側に位置している。閉側接触面510は、隣り合うノズルベーン48間の排気ガスの流路断面積を増大させるように動くときのアーム49の回動方向の後方側に位置している。
閉側接触面510は、支軸47に近い側の閉側接触面510の周縁である近位縁511と、支軸47から離れる側の閉側接触面510の周縁である遠位縁512とを有している。近位縁511は、閉側接触面510と内側表面530との境界を形成している。遠位縁512は、閉側接触面510と外側表面540との境界を形成している。
開側接触面520は、隣り合うノズルベーン48間の排気ガスの流路断面積を増大させるように動くときのアーム49の回動方向の前方側に位置している。開側接触面520は、隣り合うノズルベーン48間の排気ガスの流路断面積を減少させるように動くときのアーム49の回動方向の後方側に位置している。
開側接触面520は、支軸47に近い側の開側接触面520の周縁である近位縁521と、支軸47から離れる側の開側接触面520の周縁である遠位縁522とを有している。近位縁521は、開側接触面520と内側表面530との境界を形成している。遠位縁522は、開側接触面520と外側表面540との境界を形成している。
内側表面530は、図2に示す可変ノズル機構36が組み立てられた状態で、ノズルリング38またはユニゾンリング52の径方向内側にある、嵌合部50の外表面である。外側表面540は、図2に示す可変ノズル機構36が組み立てられた状態で、ノズルリング38またはユニゾンリング52の径方向外側にある、嵌合部50の外表面である。内側表面530と外側表面540とは、平面形状を有している。内側表面530と外側表面540とは、互いに平行に設けられている。
嵌合部50の閉側接触面510と開側接触面520とは、曲面形状を有している。閉側接触面510と開側接触面520とは、いずれも非円弧形状であって、曲率が一定ではない。閉側接触面510は、近位縁511において曲率が最も大きく、近位縁511から遠位縁512に向かうにつれて次第に曲率が小さくなり、遠位縁512において曲率が最も小さくなっている。開側接触面520は、遠位縁522において曲率が最も大きく、遠位縁522から近位縁521に向かうにつれて次第に曲率が小さくなり、近位縁521において曲率が最も小さくなっている。
閉側接触面510は、近位縁511から遠位縁512に向かうにつれて、曲率半径が徐々に大きくなっている。開側接触面520は、遠位縁522から近位縁521に向かうにつれて、曲率半径が徐々に大きくなっている。閉側接触面510は、支軸47から離れるにつれて、曲率が連続的に小さくなっている。閉側接触面510は、支軸47から離れるに従って、曲率が漸次減少している。開側接触面520は、支軸47から離れるにつれて、曲率が連続的に大きくなっている。開側接触面520は、支軸47から離れるにつれて、曲率が漸次増大している。
閉側接触面510は、滑らかに続く連続的な曲面の形状を有している。開側接触面520は、滑らかに続く連続的な曲面の形状を有している。閉側接触面510と、開側接触面520とは、たとえば、サイクロイド、双曲螺旋、対数螺旋、インボリュート、およびクロソイドからなる群から選択される一の曲面の形状を有していてもよい。閉側接触面510と開側接触面520とは、同一の形状を有していてもよく、異なる形状を有していてもよい。
図4は、アーム49の回動とノズルベーン48の回動との関係を示す模式図である。アーム49は、ユニゾンリング52の回動に従って、支軸47を中心にして両方向に回動する。図4に示すアーム嵌合溝54Aは、アーム49の中心線がノズルリング38またはユニゾンリング52の径方向に延びている配置のアーム49の嵌合部50を収容する、アーム嵌合溝54の配置を示している。なお、本明細書中では、中心線が径方向に延びており嵌合部50がアーム嵌合溝54Aに嵌め入れられているアーム49の配置を、基準配置と称する。
図4に示すアーム嵌合溝54Bは、基準配置に比較して支軸47を中心にして図4中の反時計回り方向に回動したアーム49の嵌合部50を収容する、アーム嵌合溝54の配置を示している。アーム嵌合溝54Cは、基準配置に比較して支軸47を中心にして図4中の時計回り方向に回動したアーム49の嵌合部50を収容する、アーム嵌合溝54の配置を示している。
ノズルベーン48は、支軸47を介在させて、アーム49に連結されている。ノズルベーン48は、支軸47を中心にして、アーム49と一体に回動可能に設けられている。
図4中に実線で示すアーム49およびノズルベーン48は、アーム49が基準配置にあるときのアーム49およびノズルベーン48の配置を示している。図4中に一点鎖線で示すアーム49およびノズルベーン48は、アーム49が基準配置に比較して反時計回り方向に回動したときのアーム49およびノズルベーン48の配置を示している。図4中に二点鎖線で示すアーム49およびノズルベーン48は、アーム49が基準配置に比較して時計回り方向に回動したときのアーム49およびノズルベーン48の配置を示している。
図4中に一点鎖線で示すノズルベーン48は、基準配置のノズルベーン48と比較して、隣り合うノズルベーン48との間の間隔が、大きくなっている。そのため、隣り合うノズルベーン48間の排気ガスの流路断面積が、増大している。図4中に二点鎖線で示すノズルベーン48は、基準配置のノズルベーン48と比較して、隣り合うノズルベーン48との間の間隔が、小さくなっている。そのため、隣り合うノズルベーン48間の排気ガスの流路断面積が、減少している。
アーム49およびノズルベーン48は、図4中に一点鎖線で示す配置から二点鎖線で示す配置まで、排気ガスの流路を閉じる方向に、回動可能である。アーム49およびノズルベーン48は、図4中に二点鎖線で示す配置から一点鎖線で示す配置まで、排気ガスの流路を開く方向に、回動可能である。
図5は、アーム49が閉方向に回動するときに閉側接触面510が接触するアーム嵌合溝54の壁面上の接触部Cを示す模式図である。図5には、簡略化のため、アーム49の嵌合部50のうち閉側接触面510と、アーム嵌合溝54の輪郭とが図示されている。図5中に示す黒点は、閉方向に回動するアーム49の閉側接触面510が接触するアーム嵌合溝54の壁面(閉側溝壁面)上の位置である接触部Cを示す。図5には、図4中に一点鎖線で示す配置から基準配置を経由して二点鎖線で示す配置までアーム49が回動するときの、アーム嵌合溝54の壁面上の接触部Cの動きが図示されている。
図5に示すように、アーム49の嵌合部50がアーム嵌合溝54B内にあるとき、接触部Cは、アーム嵌合溝54の壁面上の、ユニゾンリング52の中心に相対的に近い位置に存在している。アーム49が閉方向に回動するにつれて、接触部Cの位置は、径方向外側へ移動する。そして、アーム49の嵌合部50がアーム嵌合溝54C内にあるとき、接触部Cは、アーム嵌合溝54の壁面上の、ユニゾンリング52の中心から相対的に遠い位置に存在している。
アーム49が閉方向に回動するとき、閉側接触面510が接触するアーム嵌合溝54の壁面上の接触部Cは、ユニゾンリング52の径方向内側から外側へ向けて、アーム嵌合溝54の壁面上を一方通行的に移動している。隣り合うノズルベーン48間の排気ガスの流路断面積を最小とするとき、アーム嵌合溝54の壁面上の接触部Cは、閉側接触面510のうち、曲率のより小さい遠位縁512の近傍に接触している。
アーム49が閉方向に回動するにつれて、すなわち、排気ガスの流路断面積が減少するにつれて、ノズルベーン48に作用する排気ガスの圧力(いわゆる排気反力)が増大し、アーム49を閉方向に付勢する。ユニゾンリング52が閉側位置に回動すると排気反力によってアーム49の閉側接触面510がアーム嵌合溝54の壁面に押圧されるため、かかる閉側接触面510の曲率が小さくなっている。排気反力によるアーム49への付勢力が増大するにつれて、閉側接触面510がアーム嵌合溝54の壁面に接触する接触面積が増大している。これにより、閉側接触面510とアーム嵌合溝54の壁面との間に作用する圧力の増大が抑制されている。
特に、閉位置にあるユニゾンリング52が開方向に移動する際には、アーム嵌合溝54が排気反力で閉方向に付勢されるアーム49を開方向に回動させることになり、閉側接触面510とアーム嵌合溝54の壁面との接触圧は増大する。しかし、アーム49の閉側接触面510の曲率が上記のように形成されているので、両者の間に作用する圧力の増大を効果的に抑制することができる。
なお、排気反力のノズルベーン48に対する作用方向は、ノズルベーン48の形状や支軸まわりのバランス等によって調整可能である。上記では排気反力がノズルベーン48の閉方向に作用する例で説明したが、ノズルベーン48の開方向に作用させることも可能である。その場合は、ユニゾンリング52が閉方向に回動するにつれてアーム49は排気反力によって開方向に付勢され、アーム嵌合部50の開側接触面520がアーム嵌合溝54の壁面に押圧されることになる。その場合には、アーム嵌合部50の開側接触面520の曲率を支軸47から離れるにつれて大きく形成すればよい(図3,4の開側接触面520参照)。その場合には、閉側位置にあるアーム嵌合部50の開側接触面520のうちアーム嵌合溝54の壁面と接触する箇所の曲率は小さく、接触圧を抑制できる。
図6は、比較例のアームが閉方向に回動するときに閉側接触面510Zが接触するアーム嵌合溝54の壁面上の接触部CZを示す模式図である。図6に示す比較例のアームは、上述した実施の形態のアーム49と異なり、円弧面状の閉側接触面510Zを有している。図6中に示す黒点は、閉側接触面510Zが接触するアーム嵌合溝54の壁面上の位置である接触部CZを示す。図6には、図4中に一点鎖線で示す配置から基準配置を経由して二点鎖線で示す配置までアーム49が回動するときの、アーム嵌合溝54の壁面上の接触部CZの動きが図示されている。
図6に示す比較例のアームが閉方向に回動するとき、アーム嵌合溝54の壁面上の接触部CZが移動する距離は、実施の形態の接触部Cが移動する距離と比較して、相対的に小さくなっている。
比較例のアームが閉方向に回動するとき、アーム嵌合溝54の壁面上の接触部CZは、ユニゾンリング52の径方向に往復移動している。より具体的には、比較例のアームの嵌合部がアーム嵌合溝54B内にある状態から基準配置まで閉方向に回動するとき、アーム嵌合溝54の壁面上の接触部CZは、ユニゾンリング52の径方向内側から外側へ向けて移動している。その後、比較例のアームの嵌合部が基準配置からアーム嵌合溝54C内にある状態まで閉方向に回動するとき、アーム嵌合溝54の壁面上の接触部CZは、ユニゾンリング52の径方向外側から内側へ向けて移動している。
比較例のアームの閉側接触面510Zは、円弧形状を有しているため、均一な曲率を有している。比較例のアームが支軸まわりに回動しても、閉側接触面510Zがアーム嵌合溝54の壁面に接触する接触面積は一定である。そのため、比較例のアームの回動に対する抵抗が増大するにつれて、閉側接触面510Zとアーム嵌合溝54の壁面との間に作用する圧力が増大することになる。
図7は、アームの回転角度と、閉側接触面の接触部の曲率半径との関係を示すグラフである。図7中の横軸は、実施の形態および比較例のアームの支軸まわりの回転角度を示す。アームが基準配置にあるときの回転角度を0とする。基準配置に対してアームが閉方向に回転するときの回転角度を正の回転角度とする。基準配置に対してアームが開方向に回転するときの回転角度を負の回転角度とする。図7中の縦軸は、アーム嵌合溝の壁面と接触する位置における、アームの嵌合部の閉側接触面の曲率半径を示す。
図7および後述する図8,9においては、実施の形態のアーム49に関するグラフを実線で示し、図6に示す比較例のアームに関するグラフを破線で示している。
上述した通り、実施の形態のアーム49が閉方向に回動するにつれて、閉側接触面510の曲率が小さくなる。曲率半径は曲率の逆数であるので、図7に示すように、実施の形態のアーム49の回転角度が増大するにつれて、閉側接触面510の曲率半径が大きくなっている。これに対し、比較例のアームの閉側接触面510Zは円弧形状であるので、アームが回動しても曲率半径は変化せず、一定の値となっている。
その結果、図7に示すアームの回転角度が最大となるとき、実施の形態の閉側接触面510の曲率半径は、比較例の閉側接触面510Zの曲率半径の2倍以上となっている。上述した通り、アームの閉方向への回転角度が増大するにつれて、アームの回動に対する抵抗が増大する。実施の形態のアーム49では、アーム49の回動に対する抵抗が増大するにつれて、閉側接触面510がより平面に近い形状となる。実施の形態のアーム49では、アーム49の閉方向への回転角度が大きくなるほど、アーム嵌合溝54の壁面に接触している閉側接触面510の面積が大きくなる。よって、実施の形態のアーム49では、閉側接触面510とアーム嵌合溝54の壁面との間に作用する圧力の増大が抑制されている。
図8は、アーム回転角度と、ユニゾンリング52の回転中心から接触部までの距離との関係を示すグラフである。図8中の横軸は、図7と同様のアームの支軸まわりの回転角度を示す。図8中の縦軸は、円環状のユニゾンリング52の中心と、アームの嵌合部の閉側接触面とアーム嵌合溝の壁面との間の接触部との間の距離を示す。
実施の形態のアーム49が閉方向に回動するにつれて、アーム嵌合溝54の壁面上の接触部Cは、ユニゾンリング52の径方向内側から外側へ向けて一方通行的に移動する。一方、比較例のアームが閉方向に回動するとき、アーム嵌合溝54の壁面上の接触部CZは、ユニゾンリング52の径方向に往復移動する。
アームの嵌合部の閉側接触面とアーム嵌合溝の壁面とは、アームの回動に伴って摺動する。実施の形態のアーム49では、アーム嵌合溝54の壁面のうち、アーム49の閉方向への回動に伴って閉側接触面510に対して摺動する範囲が、より広い。比較例のように、アーム嵌合溝54の壁面上の接触部CZが往復移動すると、アーム嵌合溝54の壁面のより狭い範囲内で、閉側接触面に対してアーム嵌合溝54の壁面が摺動することになる。よって、実施の形態では、比較例に対して、アーム嵌合溝54の壁面上における局所的な摺動の発生が回避されている。
図9は、アーム回転角度と、アーム嵌合溝の壁面に対する接触部の摺動距離との関係を示すグラフである。図9中の横軸は、図7と同様のアームの支軸まわりの回転角度を示す。図9中の縦軸は、アームが支軸まわりに5°回転する間に閉側接触面がアーム嵌合溝の壁面に対して摺動する距離を示す。
上述したように、実施の形態では、アーム49が閉方向に回動するとき、接触部Cは一方方向的に移動する。比較例では、アームが閉方向に回動するとき、接触部CZは往復移動する。実施の形態では、アーム回転角度が正の範囲において、接触部Cは、アーム嵌合溝54の壁面を径方向内側から外側へ向けて移動する。このとき、閉側接触面510上の接触部Cが接触する点は、近位縁511側から遠位縁512側へ向けて移動する。比較例では、アーム回転角度が正の範囲において、接触部CZは、アーム嵌合溝54の壁面を径方向外側から内側へ向けて移動する。このとき、閉側接触面510Z上の接触部CZが接触する点は、近位縁側から遠位縁側へ向けて移動する。
実施の形態では、アーム回転角度が正の範囲において、接触部Cが閉側接触面510上を移動する向きと、接触部Cがアーム嵌合溝54の壁面上を移動する向きとが、合致している。そのため実施の形態では、アーム嵌合溝54の壁面に対する閉側接触面510の相対移動が、純転がりに近い運動になる。他方、比較例では、アーム回転角度が正の範囲において、接触部CZが閉側接触面510Z上を移動する向きと、接触部CZがアーム嵌合溝54の壁面上を移動する向きとが、相違している。その結果、実施の形態では、比較例に対して、アーム嵌合溝54の壁面に対する閉側接触面510の摺動が大幅に低減されている。
上述した説明と一部重複する部分もあるが、本実施の形態の特徴的な構成を以下、列挙する。本実施の形態のアーム49は、図2に示すように、支軸47を中心として回動可能に設けられている。ユニゾンリング52には、アーム嵌合溝54が形成されている。図3に示すように、アーム49は、閉側接触面510と開側接触面520とを有している。閉側接触面510と開側接触面520とは、アーム嵌合溝54の壁面に接触する。閉側接触面510は、支軸47から離れるにつれて、曲率が小さくなっている。
本実施の形態では、アーム49が閉方向に回動するとき、アーム49の回動に対する抵抗が増大するにつれて、閉側接触面510がアーム嵌合溝54の壁面に接触する面積が増大する。これにより、閉側接触面510とアーム嵌合溝54の壁面との間に作用する圧力の増大が抑制される。また、アーム49が閉方向に回動するときの、閉側接触面510に対するアーム嵌合溝54の壁面の摺動、および、アーム嵌合溝54の壁面に対する閉側接触面510の摺動が、低減されている。よって、本実施の形態では、アーム49の閉側接触面510と、閉側接触面510に接触するアーム嵌合溝54の壁面との摩耗を、ともに低減することができる。
アーム49の閉側接触面510の形状を最適化することによりアーム49およびユニゾンリング52の摩耗を低減できるので、アーム49およびユニゾンリング52の摺動する表面に硬質皮膜を形成するなどの表面処理を必ずしも必要としない。これにより、表面処理に伴うコストの増加を回避でき、また、皮膜の厚みを超える摩耗発生時に急激に摩耗が進行する事態を回避することができる。
また図3に示すように、開側接触面520は、支軸47から離れるにつれて、曲率が大きくなっている。閉側接触面510が接触するアーム嵌合溝54の閉側溝壁面と開側接触面520が接触するアーム嵌合溝54の開側溝壁面とは平行に形成されており、平行なアーム嵌合溝54の壁面に合うように、適切な開側接触面520の形状を選択することができる。
また図3に示すように、閉側接触面510は、支軸47から離れるにつれて曲率が連続的に小さくなっている。閉側接触面510を滑らかな曲面形状に形成することで、閉側接触面510とアーム嵌合溝54の壁面との接触面積が局所的に急増することを回避できるので、アーム49およびアーム嵌合溝54の摩耗を確実に低減することができる。
なお、図3を参照して説明したアーム49では、閉側接触面510と開側接触面520とは、平面状の内側表面530および外側表面540を介してつながっている。アームの嵌合部には、平面状の内側表面および外側表面が形成されなくてもよく、閉側接触面と開側接触面とが連続して形成されていてもよい。
実施の形態では、閉側接触面510の形状を最適化しているが、開側接触面520を同様の形状としてもよい。この場合、上述した閉側接触面510と同様に、アーム嵌合溝54の壁面との摩耗を低減できる作用効果が奏される。
以上のように本発明の実施の形態について説明を行なったが、今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。この発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
10 可変ノズルターボチャージャ、12 ロータハウジング、14 タービンハウジング、15 排気出口、19 側壁部、20 ロータ、22 タービンホイール、23 タービンブレード、24 ロータシャフト、26 コンプレッサホイール、27 インペラ、30 スクロール通路、31 ノズル通路、36 可変ノズル機構、38 ノズルリング、41 環状空間部、46 可変ノズル、47,57 支軸、48 ノズルベーン、49 アーム、50,61 嵌合部、52 ユニゾンリング、54,54A,54B,54C,63 アーム嵌合溝、56 駆動部材、58 駆動レバー、60 駆動アーム、65 アクチュエータ、67 コントローラ、68 作動量検出手段、510,510Z 閉側接触面、511,521 近位縁、512,522 遠位縁、520 開側接触面、530 内側表面、540 外側表面、C,CZ 接触部、Y1,Y2 矢印。

Claims (4)

  1. ターボチャージャに用いられ、ノズル通路を介してタービンブレードに吹き付けられる排気ガスを変動させる、可変ノズル機構であって、
    前記ノズル通路に設けられた複数のノズルベーンと、
    各々が軸支端と自由端とを有し、前記軸支端は支軸によって前記ノズルベーンに一体に連結される、複数のアームと、
    複数の溝が形成され、前記溝の各々に前記アームの前記自由端がそれぞれ係合する、ユニゾンリングとを備え、
    前記アームと前記ノズルベーンとは、前記ノズル通路の断面積を増大する開方向と減少する閉方向との両方に前記ユニゾンリングが回転するとき、前記支軸を中心に一体に開方向と閉方向とに回転して、前記ノズル通路の断面積を変動可能であり、
    前記アームの前記自由端は、該アームの閉方向回転側と開方向回転側との一対の接触面を有し、前記一対の接触面の各々が前記ユニゾンリングの前記溝を形成する一対の壁の一方にそれぞれ接触し、
    前記アームの前記接触面の一方は、前記ユニゾンリングの前記溝の壁面に向けた凸曲面をなすとともに、該凸曲面の前記支軸に近い側と前記支軸から遠い側との曲率が異なる、可変ノズル機構。
  2. 前記排気ガスの圧力は前記ノズル通路を減少させる閉方向に前記ノズルベーンに作用し、前記アームの前記曲率を有する前記接触面は、前記アームの回動の閉方向側に位置するとともに、前記曲率は前記支軸から離れるにつれて小さくなる、請求項1に記載の可変ノズル機構。
  3. 前記排気ガスの圧力は前記ノズル通路を増大させる開方向に前記ノズルベーンに作用し、前記アームの前記曲率を有する前記接触面は、前記アームの回動の開方向側に位置するとともに、前記曲率は前記支軸から離れるにつれて大きくなる、請求項1に記載の可変ノズル機構。
  4. 前記アームの前記接触面の前記曲率は、前記支軸から離れるにつれて連続的に変化する、請求項1乃至3のいずれか1項に記載の可変ノズル機構。
JP2017057526A 2016-03-28 2017-03-23 可変ノズル機構 Active JP6597689B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17163078.3A EP3225787B1 (en) 2016-03-28 2017-03-27 Turbocharger with variable nozzle mechanism
US15/469,632 US10563536B2 (en) 2016-03-28 2017-03-27 Variable nozzle mechanism used for turbocharger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016064341 2016-03-28
JP2016064341 2016-03-28

Publications (2)

Publication Number Publication Date
JP2017180462A true JP2017180462A (ja) 2017-10-05
JP6597689B2 JP6597689B2 (ja) 2019-10-30

Family

ID=59983812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017057526A Active JP6597689B2 (ja) 2016-03-28 2017-03-23 可変ノズル機構

Country Status (2)

Country Link
JP (1) JP6597689B2 (ja)
CN (1) CN107237654B (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019069678A1 (ja) * 2017-10-06 2019-04-11 株式会社Ihi 可変容量機構
JPWO2020225898A1 (ja) * 2019-05-09 2020-11-12
DE112019007259T5 (de) 2019-06-26 2022-01-20 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Variable düsenvorrichtung und abgasturbolader mit variabler verschiebung
CN114961884A (zh) * 2022-04-27 2022-08-30 萍乡德博科技股份有限公司 一种汽油机涡轮增压可变截面喷嘴环的叶片组件、喷嘴环

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108506051A (zh) * 2018-04-19 2018-09-07 萍乡德博科技股份有限公司 可变截面增压器喷嘴环
CN112324569A (zh) * 2020-09-17 2021-02-05 杭州萧山技师学院 一种带有自润滑结构的微型燃气轮机用涡轮盘

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49113973A (ja) * 1973-02-19 1974-10-30
JPS5970035U (ja) * 1982-10-30 1984-05-12 いすゞ自動車株式会社 可変容量型過給機のノズルベ−ン駆動装置
DE102004043928A1 (de) * 2004-09-11 2006-04-13 Ihi Charging Systems International Gmbh Stelleinrichtung für Leitschaufeln eines Abgasturboladers
JP2009243300A (ja) * 2008-03-28 2009-10-22 Ihi Corp 可変ノズルユニット及び可変容量型ターボチャージャ
WO2010089879A1 (ja) * 2009-02-06 2010-08-12 トヨタ自動車株式会社 内燃機関の可変容量型過給機
US20110138805A1 (en) * 2009-12-15 2011-06-16 Honeywell International Inc. Conjugate curve profiles for vane arms, main-arms, and unison rings
WO2013129407A1 (ja) * 2012-02-29 2013-09-06 三菱重工業株式会社 可変容量ターボチャージャ
DE102012218138A1 (de) * 2012-10-04 2014-04-10 Bosch Mahle Turbo Systems Gmbh & Co. Kg Abgasturbolader
US20140341719A1 (en) * 2013-05-16 2014-11-20 Toyota Jidosha Kabushiki Kaisha Variable nozzle turbochargers

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4659295A (en) * 1984-04-20 1987-04-21 The Garrett Corporation Gas seal vanes of variable nozzle turbine
KR101031633B1 (ko) * 2009-04-17 2011-04-27 (주)계양정밀 가변 지오메트리 터보차져의 노즐어셈블리 및 그 제작방법
KR101144515B1 (ko) * 2009-10-27 2012-05-11 현대자동차주식회사 가변 지오메트리 터보차져의 노즐어셈블리
JP6175491B2 (ja) * 2012-04-27 2017-08-02 ボーグワーナー インコーポレーテッド 排気ガスターボチャージャ

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49113973A (ja) * 1973-02-19 1974-10-30
JPS5970035U (ja) * 1982-10-30 1984-05-12 いすゞ自動車株式会社 可変容量型過給機のノズルベ−ン駆動装置
DE102004043928A1 (de) * 2004-09-11 2006-04-13 Ihi Charging Systems International Gmbh Stelleinrichtung für Leitschaufeln eines Abgasturboladers
JP2009243300A (ja) * 2008-03-28 2009-10-22 Ihi Corp 可変ノズルユニット及び可変容量型ターボチャージャ
WO2010089879A1 (ja) * 2009-02-06 2010-08-12 トヨタ自動車株式会社 内燃機関の可変容量型過給機
US20120023938A1 (en) * 2009-02-06 2012-02-02 Toyota Jidosha Kabushiki Kaisha Variable capacity supercharger for internal combustion engine
US20110138805A1 (en) * 2009-12-15 2011-06-16 Honeywell International Inc. Conjugate curve profiles for vane arms, main-arms, and unison rings
WO2013129407A1 (ja) * 2012-02-29 2013-09-06 三菱重工業株式会社 可変容量ターボチャージャ
US20150104296A1 (en) * 2012-02-29 2015-04-16 Mitsubishi Heavy Industries, Ltd. Variable geometry turbocharger
DE102012218138A1 (de) * 2012-10-04 2014-04-10 Bosch Mahle Turbo Systems Gmbh & Co. Kg Abgasturbolader
US20140341719A1 (en) * 2013-05-16 2014-11-20 Toyota Jidosha Kabushiki Kaisha Variable nozzle turbochargers
JP2014224498A (ja) * 2013-05-16 2014-12-04 株式会社豊田自動織機 可変ノズルターボチャージャ

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019069678A1 (ja) * 2017-10-06 2019-04-11 株式会社Ihi 可変容量機構
JPWO2020225898A1 (ja) * 2019-05-09 2020-11-12
WO2020225898A1 (ja) * 2019-05-09 2020-11-12 三菱重工エンジン&ターボチャージャ株式会社 可変容量型排気ターボ過給機
JP7217345B2 (ja) 2019-05-09 2023-02-02 三菱重工エンジン&ターボチャージャ株式会社 可変容量型排気ターボ過給機
DE112019007259T5 (de) 2019-06-26 2022-01-20 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Variable düsenvorrichtung und abgasturbolader mit variabler verschiebung
US11739655B2 (en) 2019-06-26 2023-08-29 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Variable nozzle device and variable-displacement type exhaust turbocharger
DE112019007259B4 (de) 2019-06-26 2024-10-17 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Variable düsenvorrichtung und abgasturbolader mit variabler verschiebung
CN114961884A (zh) * 2022-04-27 2022-08-30 萍乡德博科技股份有限公司 一种汽油机涡轮增压可变截面喷嘴环的叶片组件、喷嘴环
CN114961884B (zh) * 2022-04-27 2024-04-05 萍乡德博科技股份有限公司 一种汽油机涡轮增压可变截面喷嘴环的叶片组件、喷嘴环

Also Published As

Publication number Publication date
CN107237654B (zh) 2019-04-16
JP6597689B2 (ja) 2019-10-30
CN107237654A (zh) 2017-10-10

Similar Documents

Publication Publication Date Title
JP6597689B2 (ja) 可変ノズル機構
JP5836317B2 (ja) 可変ノズルターボチャージャ
US20120082539A1 (en) Variable geometry turbine
US20150110607A1 (en) Variable nozzle unit and variable geometry system turbocharger
JP5915146B2 (ja) 可変ノズルユニット及び可変容量型過給機
JP6690730B2 (ja) 可変ノズルユニットおよび過給機
JP2013130116A (ja) 可変ノズルユニット及び可変容量型過給機
WO2016071712A1 (en) Compressor and turbocharger
JP2007309299A (ja) 可変ディフューザ付き遠心圧縮機
JP6617837B2 (ja) 可変ノズルユニットおよび過給機
JP4779750B2 (ja) 可変ディフューザ付き遠心圧縮機
US10563536B2 (en) Variable nozzle mechanism used for turbocharger
JP2012097662A (ja) 過給機用遠心圧縮機の可変ディフューザ
JP5446969B2 (ja) 圧縮機
US20200040761A1 (en) Variable-geometry turbocharger
JP2011169192A (ja) 過給機用遠心圧縮機の可変ディフューザ
WO2017073525A1 (ja) 流量可変バルブ機構及び過給機
JP6459881B2 (ja) 可変ノズルターボチャージャ
JP6804356B2 (ja) 過給機
JPH01208501A (ja) 可変容量タービン
JP2007255220A (ja) 可変ディフューザ付き遠心圧縮機
WO2019069678A1 (ja) 可変容量機構
JP6115179B2 (ja) 可変ノズルユニット及び可変容量型過給機
JP7155429B2 (ja) 可変ノズル装置および可変容量型排気ターボ過給機
JP2011169193A (ja) 過給機用遠心圧縮機の可変ディフューザ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190916

R151 Written notification of patent or utility model registration

Ref document number: 6597689

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151