JP2017180110A - 内燃機関 - Google Patents

内燃機関 Download PDF

Info

Publication number
JP2017180110A
JP2017180110A JP2016063500A JP2016063500A JP2017180110A JP 2017180110 A JP2017180110 A JP 2017180110A JP 2016063500 A JP2016063500 A JP 2016063500A JP 2016063500 A JP2016063500 A JP 2016063500A JP 2017180110 A JP2017180110 A JP 2017180110A
Authority
JP
Japan
Prior art keywords
temperature
engine
mode
egr
knock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016063500A
Other languages
English (en)
Other versions
JP6436122B2 (ja
Inventor
慎太郎 堀田
Shintaro Hotta
慎太郎 堀田
田中 宏幸
Hiroyuki Tanaka
宏幸 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016063500A priority Critical patent/JP6436122B2/ja
Priority to DE102017102444.1A priority patent/DE102017102444B4/de
Priority to US15/468,453 priority patent/US10393049B2/en
Publication of JP2017180110A publication Critical patent/JP2017180110A/ja
Application granted granted Critical
Publication of JP6436122B2 publication Critical patent/JP6436122B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • F02D41/1498With detection of the mechanical response of the engine measuring engine roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • F01L1/053Camshafts overhead type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/12Transmitting gear between valve drive and valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/12Transmitting gear between valve drive and valve
    • F01L1/18Rocking arms or levers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/12Transmitting gear between valve drive and valve
    • F01L1/18Rocking arms or levers
    • F01L1/181Centre pivot rocking arms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/26Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of two or more valves operated simultaneously by same transmitting-gear; peculiar to machines or engines with more than two lift-valves per cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/167Controlling of coolant flow the coolant being liquid by thermostatic control by adjusting the pre-set temperature according to engine parameters, e.g. engine load, engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/027Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions using knock sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • F02D41/0052Feedback control of engine parameters, e.g. for control of air/fuel ratio or intake air amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/16Pistons  having cooling means
    • F02F3/20Pistons  having cooling means the means being a fluid flowing through or along piston
    • F02F3/22Pistons  having cooling means the means being a fluid flowing through or along piston the fluid being liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/152Digital data processing dependent on pinking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • F01L2001/0476Camshaft bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2305/00Valve arrangements comprising rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • F01P2003/024Cooling cylinder heads
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

【課題】リーンモードからストイキモードへの切り替えに合わせて、ノックを抑えながらリーンモードに好適な温度からストイキモードに好適な温度へ冷却水温度を変化させることができる内燃機関を提供する。【解決手段】リーンモードでは、エンジンヘッドを通過した冷却水の温度が第1温度域に入るようにエンジン水温調整装置を操作し、ストイキモードでは、エンジンヘッドを通過した冷却水の温度が第1温度域よりも低温の第2温度域に入るようにエンジン水温調整装置を操作する。そして、リーンモードからストイキモードの切り替えの開始後にノックが検知された場合、吸気バルブの閉じタイミングを遅角するように可変動弁装置を操作する第1の操作と、オイル噴射量を増大させるようにオイル噴射装置を操作する第2の操作と、EGR量を増大させるようにEGR装置を操作する第3の操作との中の何れか1つの操作を実行する。【選択図】図6

Description

本発明は、内燃機関に関し、特に、理論空燃比で運転するストイキモードと、理論空燃比よりも燃料リーンな空燃比で運転するリーンモードとを運転域に応じて切り替える内燃機関に関する。
特開2003−239747号公報には、内燃機関のノックの発生のし易さを表すノック指標を運転条件に対応付けて記憶しておき、運転条件から定まるノック指標に基づいて冷却水の流量を制御することによって、ノックを抑制する技術が開示されている。また、本出願の出願時点における技術水準を示す文献としては、上記特許文献の他にも、特開2011−149313号公報等が挙げられる。
特開2003−239747号公報 特開2011−149313号公報
ところで、燃焼室の吸気側の壁面温度は、低温の吸気が吸気ポートを流れるために温度の上昇が抑えられている。これに対し、排気ポートを流れる排気は高温であるため、燃焼室の排気側の壁面温度は高温になりやすい。よって、燃焼室の排気側の壁面温度の上昇を抑えることは、ノックを抑制する上で特に必要なことであり、そのためには、エンジンヘッドの排気側を流れる冷却水の温度を適正に管理することが求められる。
冷却水の温度、詳しくは、エンジンヘッドの排気側を流れる冷却水の温度は、内燃機関の運転モードによってその適正値に違いがある。理論空燃比で運転するストイキモードでは、上記の通り、ノックを抑制できる温度が冷却水の好適な温度である。しかし、理論空燃比よりも燃料リーンな空燃比で運転するリーンモードでは、ノックを抑えることよりも寧ろ、内燃機関から出る未燃HCを低減することが求められている。リーンモードは、燃焼温度が低いために排気温度が高くならず、触媒の浄化性能が十分に発揮され難いからである。未燃HCの低減が目的の場合の冷却水の好適な温度は、ノックを抑制することが目的の場合の冷却水の好適な温度よりも高い。ゆえに、リーンモードにおける冷却水温度(エンジンヘッドの排気側を流れる冷却水の温度)は、ストイキモードにおける冷却水温度よりも高くすることが望ましい。
上記のごとくリーンモードとストイキモードとで冷却水温度に違いをもたせる場合、運転モードの切り替え時には、それに合わせて冷却水温度も変化させる必要がある。この時、冷却水温度を上昇させることは速やかに達成可能であるが、冷却水温度を低下させるには時間を要する。ゆえに、リーンモードからストイキモードへの切り替え時には、冷却水温度の低下の遅れによってノックが発生し易い状況が生じる。
本発明は、上述の課題に鑑みてなされたものであり、リーンモードからストイキモードへの切り替えに合わせて、ノックを抑えながらリーンモードに好適な温度からストイキモードに好適な温度へ冷却水温度を変化させることができる内燃機関を提供することを目的とする。
本発明に係る内燃機関は、理論空燃比で運転するストイキモードと、理論空燃比よりも燃料リーンな空燃比で運転するリーンモードとを運転域に応じて切り替える内燃機関において、以下の装置を備える。
本発明に係る内燃機関は、吸気バルブの閉じタイミングを変更可能な可変動弁装置と、ピストンの裏面にオイルを噴射するオイル噴射装置と、排気の一部を吸気通路に再循環させるEGR装置と、エンジンヘッドの排気側を流れる冷却水の温度を調整するエンジン水温調整装置と、少なくともそれらの装置を操作する制御装置とを備える。制御装置は、内燃機関がリーンモードで運転する場合は、エンジンヘッドを通過した冷却水の温度が第1温度域に入るようにエンジン水温調整装置を操作し、内燃機関がストイキモードで運転する場合は、エンジンヘッドを通過した冷却水の温度が第1温度域よりも低温の第2温度域に入るようにエンジン水温調整装置を操作するように構成される。さらに、制御装置は、リーンモードからストイキモードの切り替えの開始後にノックが検知された場合、吸気バルブの閉じタイミングを遅角するように可変動弁装置を操作する第1の操作と、オイル噴射量を増大させるようにオイル噴射装置を操作する第2の操作と、EGR量(EGRガスの導入量)を増大させるようにEGR装置を操作する第3の操作との中の何れか1つの操作を実行するように構成される。
このような構成によれば、リーンモードからストイキモードへの切り替えに合わせて、エンジンヘッドを通過した冷却水の温度が低下させられる。そのときにノックが発生した場合には、上記第1乃至第3の操作の中の何れか1つの操作が実行されることによって、ノックが抑えられる。具体的には、第1の操作が実行されたときには、吸気バルブの閉じタイミングの遅角によって実圧縮比が抑えられ、それによる筒内温度の低下によってノックが抑えられる。第2の操作が実行されたときには、ピストンの裏面に噴射されるオイル量が増大され、それによるピストン及びピストンが摺動するシリンダ壁面の冷却によってノックが抑えられる。そして、第3の操作が実行されたときには、EGR量を増加させることによる燃焼の緩慢化によってノックが抑えられる。
第1温度域は、第1温度を中心とする誤差範囲で規定される温度域であってよく、誤差はゼロとしてもよい。第2温度域は、第1温度よりも低温の第2温度を上限とする温度域であってよい。よって、制御装置は、内燃機関がリーンモードで運転する場合は、エンジンヘッドを通過した冷却水の温度が第1温度になるようにエンジン水温調整装置を操作し、内燃機関がストイキモードで運転する場合は、エンジンヘッドを通過した冷却水の温度が第1温度よりも低温の第2温度以下になるようにエンジン水温調整装置を操作するように構成されてもよい。
また、制御装置は、上記のごとく第1乃至第3の操作の中の1つの操作を実行した後もノックが検知された場合、残り2つの操作の中の何れか1つの操作を実行するように構成されてもよい。つまり、1つの操作ではノックを十分に抑えることができなかった場合、追加で別の操作を実行してもよい。例えば、第1の操作を実行した後もノックが検知された場合、第2の操作或いは第3の操作を実行してもよい。これによれば、2つの操作を同時に実行する場合よりも燃費性能の低下は抑えられる。
さらに、制御装置は、上記のごとく第1乃至第3の操作の中の2つの操作を実行した後もノックが検知された場合、最後に残った操作を実行するように構成されてもよい。つまり、2つの操作を実行してもノックを十分に抑えることができなかった場合、追加で残る1つの操作を実行してもよい。例えば、第1の操作を実行した後もノックが検知された場合、第2の操作を実行し、第2の操作を実行した後もノックが検知された場合、さらに第2の操作を実行してもよい。これによれば、複数の操作を同時に実行する場合よりも燃費性能の低下は抑えられる。
さらに、制御装置は、第1乃至第3の操作の全ての操作を実行した後もノックが検知された場合、点火時期をMBT点火時期よりも遅角するように構成されてもよい。つまり、全ての操作を実行してもノックを十分に抑えることができなかった場合、点火時期をMBT点火時期よりも遅角してもよい。これによれば、最終的にはノックを確かに抑えることができるし、最初から点火時期の遅角を行う場合よりも燃費性能の低下は抑えられる。
ただし、ノックを確実に抑えることを優先するのであれば、第1乃至第3の操作の中の2つの操作を実行した後もノックが検知された場合、点火時期をMBT点火時期よりも遅角することを選択してもよい。ノックを確実に抑えることをより優先するのであれば、第1乃至第3の操作の中の1つの操作を実行した後もノックが検知された場合、点火時期をMBT点火時期よりも遅角することを選択してもよい。
以上述べたとおり、本発明に係る内燃機関によれば、リーンモードからストイキモードへの切り替えに合わせて、ノックを抑えながらリーンモードに好適な温度からストイキモードに好適な温度へ冷却水温度を変化させることができる。
実施の形態の内燃機関の全体の構成を示す図である。 実施の形態の内燃機関の燃焼室周りの構成を示す図である。 実施の形態の燃料噴射量制御及び点火時期制御について説明するための図である。 目標吸気温度及びHT冷却系の目標エンジン水温をエンジン回転速度及びトルクに関連付けるマップのイメージを示す図である。 実施の形態の過渡ノック制御の制御フローを示すフローチャートである。 実施の形態の過渡ノック制御が吸気温度制御及びエンジン水温制御とともに実行された場合の内燃機関の動作の一例を示すタイムチャートである。
以下、図面を参照して本発明の実施の形態について説明する。ただし、以下に示す実施の形態において各要素の個数、数量、量、範囲等の数に言及した場合、特に明示した場合や原理的に明らかにその数に特定される場合を除いて、その言及した数に、この発明が限定されるものではない。また、以下に示す実施の形態において説明する構造やステップ等は、特に明示した場合や明らかに原理的にそれに特定される場合を除いて、この発明に必ずしも必須のものではない。
1.内燃機関の全体の構成
図1は、実施の形態の内燃機関の全体の構成を示す概念図である。内燃機関(以下、単にエンジンという)1は、エンジンブロック3と、エンジンブロック3上に図示しないガスケットを介して配置されるエンジンヘッド2とを有している。
エンジンヘッド2には、吸気通路70と排気通路80とが接続されている。吸気通路70には、その上流からエンジンヘッド2に向かって、コンプレッサ92、インタークーラ72、及び電子制御式スロットル74がこの順で配置されている。スロットル74よりも下流の吸気通路70には、エンジンヘッド2に導入される吸気の温度を測定するための吸気温度センサ76が取り付けられている。排気通路80には、エンジンヘッド2から下流に向かって、タービン94及び三元触媒82がこの順で配置されている。排気通路80のさらに下流には、図示しないNOx吸蔵還元型触媒(NSR)及び選択還元型触媒(SCR)がこの順で配置されている。
コンプレッサ92とタービン94はターボ過給機90を構成する。コンプレッサ92とタービン94は、軸受98によって回転自由に支持された回転軸96によって連結され、一体となって回転する。なお、排気通路80には、図示はしていないが、タービン94をバイパスするタービンバイパス通路と、タービンバイパス通路を開閉するウエストゲートバルブとが設けられている。
エンジン1は、排気通路80から吸気通路70へ排気の一部を再循環させるEGR装置100を備える。EGR装置100は、EGR通路102、EGRクーラ104、及びEGRバルブ106から構成される。EGR通路102は、三元触媒82よりも下流の排気通路80とコンプレッサ92よりも上流の吸気通路70とを接続する。EGRクーラ104はEGR通路102に設けられ、EGR通路102を流れる排気(EGRガス)を冷却する。EGRバルブ106は、EGRガスの流れの方向においてEGRクーラ104よりも下流のEGR通路102に設けられている。
エンジン1は、エンジン1の本体及び構成部品を冷却する2系統の冷却システム30,50を備える。冷却システム30,50はともに冷却水が循環する閉回路として構成され、冷却システム30と冷却システム50とで循環する冷却水の温度を異ならせることができる。以下、相対的に低温の冷却水を循環させる冷却システム30をLT冷却システムと称し、相対的に高温の冷却水を循環させる冷却システム50をHT冷却システムと称する。また、LT冷却システム30において回路内を循環する冷却水をLT冷却水と称し、HT冷却システム50において回路内を循環する冷却水をHT冷却水と称する。図1において、LT冷却システム30を構成するLT冷却水の流路(以下、LT流路という)は二重線で描かれ、HT冷却システム50を構成するHT冷却水の流路(以下、HT流路という)は二重破線で描かれている。なお、LTはLow Temperatureの略であり、HTはHigh Temperatureの略である。
LT冷却システム30は、LT冷却水の循環回路を構成する第1LT流路32〜第4LT流路38と、LT冷却水を循環させるための電動ウォータポンプ46とを備える。第1LT流路32はインタークーラ72内を通り、第2LT流路34はエンジンヘッド2内の吸気側を通り、第3LT流路36はターボ過給機90の軸受98を通っている。これら第1LT流路32〜第3LT流路36は、それぞれ、その両端を第4LT流路38の両端に並列に接続されている。第4LT流路38にはラジエータ40が配置されている。第4LT流路38は、第1LT流路32〜第3LT流路36のそれぞれとの間でLT冷却水が循環する回路を形成している。電動ウォータポンプ46は、第4LT流路38のラジエータ40より下流に設けられている。電動ウォータポンプ46の吐出量、すなわち、回路内を循環するLT冷却水の流量は、モータの出力を調整することによって任意に変更することができる。
第1LT流路32を流れるLT冷却水は、インタークーラ72内において、インタークーラ72を通過する吸気との間で熱交換を行う。第2LT流路34は、エンジンヘッド2内の各気筒の吸気ポートの近傍を通るように(好ましくは吸気ポートを囲むように)設けられている。第2LT流路34を流れるLT冷却水は、エンジンヘッド2を介して吸気ポートを通過する吸気との間で熱交換を行う。LT冷却水の温度が吸気の温度よりも低温であれば、熱交換によって吸気は冷却されるが、LT冷却水の温度が吸気の温度よりも高温であれば、熱交換によって吸気は加温される。これらの部位での熱交換によって、燃焼室内に入る吸気の温度はLT冷却水の温度に合わせて調整される。第3LT流路36を流れるLT冷却水は、ターボ過給機90の軸受98との間で熱交換を行い、軸受98の過熱を抑制する。
なお、この実施の形態では、第1LT流路32と第2LT流路34は並列に接続されているが、直列に接続されていてもよい。すなわち、インタークーラ72を通ったLT冷却水がエンジンヘッド2内の吸気側を通るように流路を配管してもよい。同様に、軸受98を通る第3LT流路36も、第1LT流路32や第2LT流路34と直列に接続されていてもよい。
HT冷却システム50は、HT冷却水の循環回路を構成する第1HT流路52〜第6HT流路62と、HT冷却水を循環させるための電動ウォータポンプ64と、循環回路内のHT冷却水の流れを制御するための多機能弁66を備える。第1HT流路52はエンジンヘッド2内の排気側を通り、第2HT流路54はエンジンブロック3内を通っている。これら第1HT流路52及び第2HT流路54は、それぞれに多機能弁66の別々の吸入ポートに接続される。
多機能弁66は、その詳細については後述するが、2つの吸入ポートと4つの排出ポートとを有している。多機能弁66の4つの排出ポートには、第3HT流路56〜第6HT流路62が接続されている。第3HT流路56にはラジエータ60が配置され、第4HT流路58はインタークーラ72内を通り、第5HT流路59はEGRクーラ104内を通っている。第6HT流路62はラジエータ60、インタークーラ72及びEGRクーラ104をバイパスしている。これら第3HT流路56〜第6HT流路62は、電動ウォータポンプ64の吸入ポートに接続されている。電動ウォータポンプ64の吐出ポートには、第1HT流路52及び第2HT流路54が接続されている。これにより、第1流路52及び第2HT流路54と、第3HT流路56〜第6HT流路62とによって、HT冷却水が循環する回路が形成されている。回路内を循環するHT冷却水の流量は、電動ウォータポンプ64のモータの出力を調整することによって任意に変更することができる。
HT冷却水の循環回路を構成する流路のうち、エンジン1の本体或いは構成部品との間で熱交換が行われる流路は、第1HT流路52、第2HT流路54、第4HT流路58、及び第5HT流路59である。第1HT流路52は、エンジンヘッド2内において各気筒の燃焼室の排気側の壁面近傍を通るように設けられている。前述の第2LT流路34が吸気ポートの近傍に局所的に設けられたものであるのに対し、第1HT流路52はエンジンヘッド2の全体を通って最終的に排気側からエンジンヘッド2の外に出るように設けられている。第1HT流路52のエンジンヘッド2の出口には、エンジンヘッド2の出口におけるLT冷却水の温度を測定するためのエンジン水温センサ68が設けられている。エンジン水温センサ68によって測定される温度は、燃焼室の排気側の壁面温度に対応している。第2HT流路54は、エンジンブロック3に形成されたシリンダの周壁を囲むウォータジャケットの主要部を構成しシリンダの周壁を全体的に冷却している。第4HT流路58は、インタークーラ72内において、インタークーラ72を通過する吸気との間で熱交換を行う。前述の第1LT流路32がインタークーラ72内において吸気の流れ方向の下流側に設けられているのに対し、第4HT流路58はインタークーラ72内において吸気の流れ方向の上流側に設けられている。つまり、インタークーラ72では、まず、HT冷却水と吸気との間で熱交換が行われ、次に、LT冷却水と吸気との間で熱交換が行われる。第5HT流路59は、EGRクーラ104内において、EGRクーラ104を通過するEGRガスとの間で熱交換を行う。
多機能弁66は、循環回路内のHT冷却水の温度(エンジン水温センサ68によって測定されるエンジン水温)に基づいて、2つの吸入ポートに流れ込むHT冷却水の比率、すなわち、第1HT流路52を流れるHT冷却水と、第2HT流路54を流れるHT冷却水との比率を調整する。例えば、HT冷却水の温度が低い冷間始動時には、エンジンブロック3を通る第2HT流路54の流通を遮断し、エンジンヘッド2を通る第1HT流路52の流通のみを許容することが行われる。また、多機能弁66は、HT冷却水の温度に基づいて、4つの排出ポートから流れ出すHT冷却水の比率、すなわち、第3HT流路56を流れるHT冷却水と、第4HT流路58を流れるHT冷却水と、第5HT流路59を流れるHT冷却水と、第6HT流路62を流れるHT冷却水との比率を調整する。例えば、HT冷却水の温度が低い冷間始動時には、ラジエータ60が配置された第3HT流路56の流通を遮断し、第4HT流路58或いは第6HT流路62にHT冷却水を流通させることが行われる。
エンジン1は、制御装置120を備える。制御装置120は、エンジン1が備える様々な装置及びアクチュエータを操作することにより、エンジン1の運転を制御する。制御装置120は、少なくとも1つのCPU、少なくとも1つのROM、少なくとも1つのRAMを有するECU(Electronic Control Unit)である。ただし、制御装置120は、複数のECUから構成されていてもよい。制御装置120では、ROMに記憶されているプログラムをRAMにロードし、CPUで実行することで、エンジン制御に係る様々な機能が実現される。
2.冷却システムの操作
制御装置120により操作される対象には、2つの冷却システム30,50が含まれる。吸気通路70からエンジンヘッド2に供給され、燃焼室に入る吸気の温度を制御するため、2つの冷却システム30,50の操作が行われる。つまり、制御装置120は、燃焼室に入る吸気の温度を第1の制御量(制御すべき状態量)として、冷却システム30,50を操作する。
具体的には、ターボ過給機90による過給時のように吸気温度が高温の場合、制御装置120は、インタークーラ72によって吸気を冷却するように冷却システム30,50を操作する。詳しくは、LT冷却システム30の電動ウォータポンプ46を操作して、第1LT流路32を流れるLT冷却水の流量を調整するとともに、HT冷却システム50の多機能弁66を操作して、エンジンヘッド2或いはエンジンブロック3から出てきた高温のHT冷却水(ラジエータ60で冷却されていないHT冷却水)の第4HT流路58への流通を遮断する。これらの操作により、第1LT流路32を流れるLT冷却水の流量の増減に応じて、インタークーラ72を通過する吸気に対する冷却量は増減し、吸気の温度が調整される。なお、インタークーラ72で冷却された吸気は、さらに、エンジンヘッド2内で吸気ポートを通過する際、第2LT流路34を流れるLT冷却水との間での熱交換によっても冷却される。
逆に、冷間始動時のように吸気温度が低温の場合、制御装置120は、HT冷却システム50の多機能弁66を操作して、第4HT流路58へのHT冷却水の流通を許容する。第4HT流路58を流れる高温のHT冷却水によってインタークーラ72を通過する吸気は加熱され、加熱によって昇温された吸気がインタークーラ72から出てくる。また、制御装置120は、LT冷却システム30に対する操作として、電動ウォータポンプ46を停止し、LT冷却水(ラジエータ40で冷却された低温のLT冷却水)の第1LT流路32への流量を遮断する。これらの操作により、第4HT流路58を流れるHT冷却水の流量の増減に応じて、インタークーラ72を通過する吸気に対する加熱量は増減し、吸気の温度が調整される。
また、制御装置120は、エンジンヘッド2の排気側を流れる冷却水の温度(以下、この温度をエンジン水温ともいう)を第2の制御量として、HT冷却システム50を操作することも行う。エンジンヘッド2の排気側を流れる冷却水の温度は、エンジンヘッド2の出口に設けられたエンジン水温センサ68により測定される温度によって表される。エンジン水温センサ68により測定される温度と目標温度との間に差がある場合、制御装置120は、電動ウォータポンプ64を操作して、第1HT流路52を流れるLT冷却水の流量を調整するとともに、多機能弁66を操作して、第3HT流路56へ流れてラジエータ60で冷却されるLT冷却水の比率を調整する。これらの操作により、第1HT流路52を流れるLT冷却水の流量の増減に応じて、また、ラジエータ60で冷却されるLT冷却水の比率の増減に応じて、エンジンヘッド2の排気側を流れる冷却水の温度が調整される。
上記のごとく、エンジン1では、エンジンヘッド2の排気側を流れる冷却水の温度を制御量としてHT冷却システム50の操作が行われる。この操作は、本出願の請求項1に記載の“エンジン水温調整装置”に対する操作に関係する。この実施の形態では、HT冷却システム50が、請求項1に記載の“エンジン水温調整装置”に該当する。
3.燃焼室周りの構成
次に、図2を用いてエンジン1の燃焼室周りの構成について説明する。図2には、エンジン1を構成する要素がクランク軸に垂直な1つの平面上に投影して描かれている。エンジン1は、複数のシリンダ4を有する火花点火式の多気筒エンジンである。シリンダ4の数と配置に限定はない。エンジンブロック3のシリンダ4内にはその軸方向に往復動するピストン8が配置されている。エンジンヘッド2の下面には、シリンダ4の上部空間であるペントルーフ形状の燃焼室6が形成されている。
エンジンヘッド2には、燃焼室6に連通する吸気ポート10及び排気ポート12が形成されている。吸気ポート10の燃焼室6に連通する開口部には、吸気バルブ14が設けられ、排気ポート12の燃焼室6に連通する開口部には、排気バルブ16が設けられている。吸気バルブ14は、その開特性を変更することができる可変動弁装置(以下、IN−VVTという)15によって駆動される。排気バルブ16は、その開特性を変更することができる可変動弁装置(以下、EX−VVTという)17によって駆動される。IN−VVT15は、バルブタイミングの変更或いは作用角の変更によって、少なくとも吸気バルブ14の閉じタイミング(以下、IVCという)を変更可能に構成されている。EX−VVT17による開特性の変更方法には限定はない。
図示はされていないが、吸気ポート10は、エンジンヘッド2の側面に形成された入口から燃焼室6に連通する開口部に向かう途中で二股に分かれている。吸気ポート10が二股に分かれる部分の上流には、吸気ポート10の内部に燃料を噴射するポート噴射弁24が設けられている。二股に分かれた吸気ポート10の間であって、吸気ポート10の下方には、先端が燃焼室6を臨むように、燃焼室6の内部に燃料を噴射する筒内噴射弁26が設けられている。また、燃焼室6の頂部付近には、点火プラグ20と、燃焼圧を計測するための燃焼圧センサ22が設けられている。
エンジンブロック3には、オイル噴射装置130のオイル噴射ノズル132が取り付けられている。オイル噴射ノズル132は、ピストン8の裏面に向けてオイルが噴射されるように、その位置及び角度が調整されている。オイル噴射ノズル132には、図示しないオイルポンプが組み上げたオイルをオイル噴射ノズル132に供給する油路134が接続されている。この油路134には、オイル噴射ノズル132から噴射されるオイルの量(単位時間当たりの量、以下、オイル噴射量という)を調整するためのオイル制御バルブ(OCV)136が設けられている。
エンジン1は、リーンモードによる運転と、ストイキモードによる運転とを切り替え可能なエンジンである。リーンモードでは、均質性の高い混合気が得られるポート噴射によって、或いはポート噴射を主とするポート噴射と筒内噴射との組み合わせによって燃料リーンな空燃比(例えば、25程度の空燃比)による運転、すなわち、リーン燃焼による運転が行われる。詳しくは、エンジン1で実現されるリーン燃焼は、燃料濃度の高い混合気の層を点火プラグ20の周辺に形成する成層リーン燃焼ではなく、燃焼室6の全体に均質な燃料濃度の混合気を分布させる均質リーン燃焼である。また、リーンモードでは、EGR装置100によるEGRガスの導入は行われず、新気のみによるリーン燃焼が行われる。ストイキモードでは、筒内噴射によって、或いは、筒内噴射を主とするポート噴射と筒内噴射との組み合わせによって理論空燃比による運転、すなわち、ストイキ燃焼による運転が行われる。ただし、理論空燃比による運転とは、必ずしも運転空燃比が常に理論空燃比ぴったりであることを意味しない。本明細書においては、運転空燃比が理論空燃比に対して多少リッチ側或いはリーン側にずれていることも、運転空燃比が理論空燃比を中心に小さな振幅で振動していることも、理論空燃比による運転に含まれる。ストイキモードは、リーンモードが選択される運転域よりも高負荷の運転域で選択される。また、この実施の形態のストイキモードでは、EGR装置100によるEGRが実行される。ゆえに、以下の説明では、EGRが実行されないリーンモードとの区別のため、EGRが実行されるストイキモードを特にストイキEGRモードと称す。
リーンモード及びストイキEGRモードを実現するための装置及びアクチュエータの操作は、制御装置120によって行われる。制御装置120には、燃焼圧センサ22によって得られる燃焼圧データが取り込まれている。この燃焼圧データは、クランク角センサ122から取り込まれるクランク角信号とともに、次に説明する燃料噴射量制御及び点火時期制御に用いられる。また、制御装置120には、エンジンブロック3に取り付けられ、ノック信号(ノックが発生したときに出る特定の周波数の信号)を検出するノックセンサ124が接続されている。ノックセンサ124が検出したノック信号は、ノックを抑制するためのノック制御に用いられる。ただし、ノックセンサ124は必須ではなく、燃焼圧センサ22によって得られる燃焼圧データからノックを検知し、それをノック制御に用いることもできる。ノック制御の内容については後述する。なお、制御装置120が複数のECUから構成される場合、燃料噴射量制御や点火時期制御を行うECUと、前述の吸気温度制御やエンジン水温制御を行うECUとは別々のECUであってもよい。また、ノック制御を行うECUもそれらECUとは別々のECUであってもよい。
4.燃焼圧データに基づく燃料噴射量制御及び点火時期制御
制御装置120は、リーンモードによる運転時には、燃焼圧センサ22によって得られる燃焼圧データに基づいて燃料噴射量制御と点火時期制御とを行なっている。以下、その詳細について図3を用いて説明する。
制御装置120は、燃焼圧センサ22より得た筒内圧データを用いて、任意のクランク角度θでの筒内の発熱量Qを式(1)に従って算出する。ただし、式(1)において、Pは筒内圧力、Vは筒内容積、κは筒内ガスの比熱比である。また、PおよびVは、計算開始点θ(想定される燃焼開始点に対して余裕をもって定められた圧縮行程中の所定クランク角度)での筒内圧力および筒内容積である。
Figure 2017180110
燃焼期間を含む所定クランク角期間の各クランク角度θにおける発熱量Qを算出することができたら、次に、任意のクランク角度θにおける燃焼質量割合(以下、MFBという)を式(2)に従って算出する。ただし、式(2)において、θstaは燃焼開始点であり、θfinは燃焼終了点である。
Figure 2017180110
図3は、上記の式(2)に従って算出されたクランク角に対するMFBの波形を表した図である。点火時期SAにて混合気に点火を行った後、MFBが10%となる時のクランク角度CA10までのクランク角期間(以下、この期間をSA−CA10という)は、着火遅れを代表するパラメータであり、燃焼した混合気の空燃比(特に、リーン燃焼が可能な限界空燃比)との相関性が高いことが知られている。SA−CA10が目標値になるように燃料噴射量をフィードバック制御すれば、空燃比を目標空燃比(リーン限界空燃比)に自ずと近づけることができるようになる。制御装置120による燃料噴射量制御では、MFBの波形から実際のSA−CA10を計算し、目標SA−CA10と実際SA−CA10との差に基づいて燃料噴射量を補正することが行われる。なお、エンジン回転速度が変わると、1クランク角度当たりの時間が変化するため、目標SA−CA10は、少なくともエンジン回転速度に応じて設定されていることが好ましい。
また、MFBが50%となる時のクランク角度CA50は燃焼重心位置に相当する。CA50は点火時期SAによって変化する。実現されるトルクが最大となるときの燃焼重心位置にCA50が一致していれば、そのときの点火時期SAはMBTであると言える。制御装置120による点火時期制御では、MFBの波形から実際のCA50を計算し、目標CA50と実際CA50との差に基づいて基本点火時期を補正することが行われる。目標CA50も、少なくともエンジン回転速度に応じて設定されていることが好ましい。
上記のごとく、この実施の形態では、燃焼圧センサ22によって得られる燃焼圧データに基づいてSA−CA10とCA50が計算され、SA−CA10に基づいて燃料噴射量制御が行われるとともに、CA50に基づいて点火時期制御が行われる。なお、SA−CA10に基づく燃料噴射量制御は運転モードによらず行うことができるが、この実施の形態では、SA−CA10に基づく燃料噴射量制御はリーンモードによる運転時に行われる。ストイキEGRモードによる運転時には、図示しない空燃比センサ或いは酸素濃度センサの出力に基づく空燃比フィードバック制御が行われるようになっている。
5.吸気温度制御及びエンジン水温制御
SA−CA10に基づく燃料噴射量制御は、SA−CA10と空燃比との間には強い相関があるとの前提に立つが、燃焼室6内に入る吸気の温度は、SA−CA10と空燃比との関係に影響する。ゆえに、SA−CA10に基づく燃料噴射量制御の精度を担保するためには、吸気温度を一定にすることが求められる。しかし、吸気温度はそれ自体が燃焼に影響するパラメータであるので、目標とする吸気温度はどのような温度でもよいと言うものではない。また、エンジン水温制御の制御量であるエンジン水温(エンジンヘッド2の排気側を流れる冷却水の温度)も燃焼に影響するパラメータである。よって、エンジン水温についても吸気温度と同様にばらつきがないことが好ましい。
ここで、目標とする吸気温度及びエンジン水温の設定について検討するにあたり、リーンモードとストイキEGRモードのそれぞれにおける課題について以下にまとめて記載する。
リーンモードには、少なくとも次の3つの課題がある。第1の課題は、燃焼のロバスト性を向上させることである。これは、均質リーン燃焼は、混合気の燃料濃度が全体的に薄いため、ストイキ燃焼や成層リーン燃焼に比較して、燃焼を維持する上で外乱に対する制約が多いことによる課題である。第2の課題は、未燃HCの発生を低減させることである。これは、リーン燃焼はストイキ燃焼に比較して燃焼温度が低いため、燃焼室6のクエンチエリアから未燃HCが発生しやすいことによる課題である。そして、第3の課題は、上限空気量を増大させることである。さらなる燃費性能の向上のため、上限空気量を増大させてリーンモードによる運転領域を高負荷側に拡大することが求められている。
ストイキEGRモードには、少なくとも次の3つの課題がある。第1の課題は、燃焼のロバスト性を向上させることである。これは、ストイキEGRモードでは、燃費の改善のために多量のEGRガスが導入されるところ、導入されるEGR量にはサイクルごとのばらつきがあるために燃焼が不安定になりやすいことによる課題である。第2の課題は、EGRガスに含まれる水蒸気の結露による凝縮水の発生を抑えることである。これは、EGRガスには硫黄成分や炭化水素成分が含まれているため、それらが凝縮水に溶けることで凝縮水が酸性化し、エンジン1を腐食或いは劣化させるおそれがあることによる課題である。そして、第3の課題は、高負荷時のノックの発生を抑えることである。これは、負荷が高くなると圧縮端温度が上昇し、ノックが発生しやすくなることによる課題である。
以上の課題を踏まえて検討した結果、この実施の形態では、リーンモードとストイキEGRモードのそれぞれにおける吸気温度(燃焼室6内に入る吸気の温度)及びエンジン水温(エンジンヘッド2の排気側を流れる冷却水の温度)の各目標値を以下のように設定することにした。
まず、吸気温度の目標値の設定について説明する。上記の課題のうち、ストイキEGRモードにおける吸気温度に特に関係するのはストイキEGRモードの第1の課題と第2の課題であり、リーンモードにおける吸気温度に特に関係するのはリーンモードの第1の課題と第3の課題である。各モードにおける吸気温度の目標値は、これらの課題を総合的に達成するための最適吸気温度に設定される。
この実施の形態におけるストイキEGRモードの最適吸気温度は45℃である。この温度は、標準的な運転条件(この運転条件には、気圧、外気温度、湿度、EGR率等が含まれる)における露点温度に相当する温度である。ストイキEGRモードでは、吸気温度センサ76によって測定される吸気温度が最適吸気温度である45℃に維持されるように、2つの冷却システム30,50が操作される。
凝縮水が発生するリスクを低減する目的では、ストイキEGRモードにおける吸気温度は高いほどよい。しかし、吸気温度が高くなるほど吸入効率は低下してしまう。上記のように吸気温度を露点温度に制御することで、吸入効率の低下を最小限に抑えつつ凝縮水の発生リスクを抑えることができる。ただし、露点温度は運転条件によって変化するが、ストイキEGRモードにおける吸気温度の目標値は標準運転条件での露点温度に固定される。つまり、露点温度が変化したとしても、吸気温度を露点温度に応じて変化させることはしない。これは、ストイキEGRモードでは多量のEGRガスが導入され、EGR量のサイクルごとのばらつきが燃焼に影響を与えるところ、吸気温度にもばらつきがあると燃焼の不安定を招くおそれがあるからである。要するに、燃焼のロバスト性を向上させるべく、ストイキEGRモードでも吸気温度を一定に維持することにしている。なお、吸気温度は最適吸気温度丁度に維持されることが好ましいが、最適吸気温度に対するある程度の誤差(例えば1℃程度)は許容してもよい。つまり、最適吸気温度を中心とする誤差範囲で規定される温度域に吸気温度が入るように、吸気温度の調整を行うようにしてもよい。
一方、リーンモードの最適吸気温度は、ストイキEGRモードの最適吸気温度よりも低温である。再循環を行わないリーンモードでは、EGR量がサイクルごとにばらつくことによる燃焼安定性の低下が生じない。このため、ストイキEGRモードよりも相対的に低温の吸気を燃焼室内に供給することができる。この実施の形態におけるリーンモードの最適吸気温度は35℃である。リーンモードでは、吸気温度センサ76によって測定される吸気温度が最適吸気温度である35℃に維持されるように、2つの冷却システム30,50が操作される。
吸気温度を最適吸気温度に維持することで、SA−CA10に基づく燃料噴射量制御の精度が向上し、空燃比の目標空燃比に対するずれを抑えることができる。それと同時に、吸入効率の向上による上限空気量の増大によって、リーンモードによる運転領域を高負荷側に拡大することもできる。なお、吸気温度は最適吸気温度丁度に維持されることが好ましいが、最適吸気温度に対するある程度の誤差(例えば1℃程度)は許容してもよい。つまり、最適吸気温度を中心とする誤差範囲で規定される温度域に吸気温度が入るように、吸気温度の調整を行うようにしてもよい。
次に、エンジン水温の目標値の設定について説明する。上記の課題のうち、ストイキEGRモードにおけるエンジン水温に特に関係するのはストイキEGRモードの第3の課題であり、リーンモードにおけるエンジン水温に特に関係するのはリーンモードの第2の課題である。各モードにおけるエンジン水温の目標値は、これらの課題を総合的に達成するための最適エンジン水温に設定される。
この実施の形態におけるリーンモードの最適エンジン水温(第1温度)は95℃である。リーンモードでは、エンジン水温センサ68により測定されるエンジン水温が最適エンジン水温である95℃に維持されるように、HT冷却システム50が操作される。
エンジン水温を最適エンジン水温に維持することで、燃焼室6の壁面温度、特に、排気側の壁面温度を高めることができるので、燃焼室6のクエンチエリアから発生する未燃HCを低減することができる。リーン燃焼はストイキ燃焼に比較して燃焼温度が低く、排気温度が高くならないため、触媒の浄化性能が十分に発揮され難い。このため、エンジン1から出る未燃HC自体を低減することが求められている。なお、エンジン水温は最適エンジン水温丁度に維持されることが好ましいが、最適エンジン水温に対するある程度の誤差(例えば1℃程度)は許容してもよい。つまり、最適エンジン水温を中心とする誤差範囲で規定される温度域(第1温度域)にエンジン水温が入るように、エンジン水温の調整を行うようにしてもよい。
一方、ストイキEGRモードの最適エンジン水温には温度幅があるが、その上限温度はリーンモードの最適エンジン水温よりも低温である。ストイキEGRモードでは、燃焼温度が高く排気温度も高いため、クエンチエリアから未燃HCが発生したとしても十分に機能した触媒によって浄化することができる。このため、リーンモードよりも相対的に低温の冷却水をエンジンヘッドの排気側へ流すことができる。この実施の形態におけるストイキEGRモードの最適エンジン水温は、88℃を上限温度(第2温度)とする温度範囲(第2温度域)内の温度、つまり、88℃以下の温度である。ただし、88℃以下の温度とは、いくら低温でも許容されるという意味ではなく、88℃が好ましいが88℃よりも低くなることも多少は許容されるという意味である。リーンモードでは、エンジン水温センサ68により測定されるエンジン水温が88℃以下の温度に維持されるように、HT冷却システム50が操作される。
ストイキEGRモードのエンジン水温をリーンモードのそれよりも低くするのは、ノックの発生を抑えるためである。エンジン水温を低くすると燃焼室6のクエンチエリアから発生する未燃HCは増大しやすくなるが、ストイキ燃焼により高温となった排気の供給を受けて十分に機能した触媒によって未燃HCを浄化することができる。なお、ストイキEGRモードの最適エンジン水温には温度幅が設けられているが、燃焼のロバスト性を向上させる上では、エンジン水温は一定温度に維持されることが好ましい。
以上が、リーンモードとストイキEGRモードのそれぞれにおける吸気温度及びエンジン水温の各目標値に関する説明である。上記のごとく設定された吸気温度及びエンジン水温の各目標値は、制御装置120のROMに記憶されたマップにおいて、エンジン回転速度及びトルクに関連付けて記憶されている。図4は吸気温度及びエンジン水温の各目標値をエンジン-回転速度及びトルクに関連付けるマップのイメージを示す図である。図4中にHTと表記している温度がエンジン水温の目標値であり、LTと表記している温度が吸気温度の目標値である。吸気温度制御及びエンジン水温制御を含むエンジン1の各種制御は、エンジン回転速度とトルクとを軸とする2次元平面上に設定された運転域にしたがって行われる。
図4には、エンジン1の運転域として、リーンモードによる運転を行うリーン領域と、ストイキEGRモードによる運転を行うストイキEGR領域とが設定されている。リーン領域では、上記のごとく吸気温度の目標値は35℃に設定され、エンジン水温の目標値は95℃に設定される。ストイキEGR領域では、吸気温度の目標値は45℃以上に設定され、エンジン水温の目標値は88℃以下に設定される。吸気温度の目標値の45℃以上とは、通常は45℃が目標値であるが、高負荷域では吸気温度が45℃より高くなることが許容されることを意味する。
吸気温度制御及びエンジン水温制御は、上記のごとく設定された吸気温度及びエンジン水温の各目標値に基づいて実施される。
6.ノック制御
次に、ノックを抑制するためのノック制御について説明する。ノック制御は、ノックセンサ124の信号、或いは、燃焼圧センサ22の信号からノックを検知した場合に実行される。制御装置120により実行されるノック制御には、通常ノック制御と過渡ノック制御とが含まれる。
通常ノック制御は、ノックが発生しない限りにおいて点火時期をMBT点火時期に近づける制御、すなわち、点火時期をトレースノック点火時期に調整する制御である。通常ノック制御では、細分化された運転領域ごとにトレースノック点火時期を学習するノック学習が行われる。ただし、通常ノック制御は、ストイキEGRモードによる運転時にのみ行われ、リーンモードによる運転時には行われない。リーンモードは調整可能な点火時期の幅が狭く、点火時期をMBT点火時期から遅角することは実質的に不可になっている。ゆえに、リーンモードではノック学習も行われない。
過渡ノック制御は、リーンモードからストイキEGRモードへの切り替えの際に発生するノックを抑制するための制御である。リーンモードからストイキEGRモードへの切り替えの際には、エンジン水温を95℃から88℃以下に低下させることが行われる。しかし、HT冷却システム50の構成から予想されるように、エンジン水温を低下させることは、エンジン水温を上昇させる場合に比較して応答性に優れておらず、短かからぬ時間を要する。例えば、あるスペックのもとでは、エンジン水温を88℃以下から95℃まで上昇させることに要する時間をα(αは熱伝達時間をさす)とすると、エンジン水温を95℃から88℃以下に低下させることに要する時間は6秒+α程度となる。このように、運転モードがストイキEGRモードに切り替わったにも関わらず、エンジン水温が88℃以下まで低下していないことによって、ノックが助長されてしまう。
過渡ノック制御において、ノックの抑制に用いられる手段は、次の3つである。第1の手段は、IN−VVT15である。IVCを遅角するようにIN−VVT15を操作すること(この操作を第1の操作という)により、実圧縮比が抑えられ、それによる筒内温度の低下によってノックが抑えられる。IVCを遅角するための方法は、IN−VVT15がバルブタイミングを可変にする装置である場合には、IVCの遅角はバルブタイミングの遅角により行われ、IN−VVT15が作用角を可変にする装置である場合には、IVCの遅角は作用角の拡大により行われる。ただし、IVCには遅角限界が設けられている。IVCは燃焼室6内の乱れに強く影響しているため、燃焼の安定性を確保するためには、所定角度(例えば下死点後50度)を超えてIVCを遅角しないことが求められる。
第2の手段は、オイル噴射装置130である。オイル噴射量を増大させるようにオイル噴射装置130を操作すること(この操作を第2の操作という)により、ピストン8及びピストン8が摺動するシリンダ4の壁面の冷却が促進され、それによってノックが抑えられる。ただし、オイル噴射量には、オイル制御バルブ136の最大開度から決まる最大噴射量が存在し、最大噴射量を超えてはオイルを噴射することはできない。
第3の手段は、EGR装置100である。EGR量を増大させるようにEGR装置100を操作すること(この操作を第3の操作という)により、燃焼が緩慢化され、それによってノックが抑えられる。ただし、筒内ガスに占めるEGRガスの比であるEGR率には、燃焼の安定性を確保するための上限が設けられている。このEGR率の上限から決まるEGR量の上限を超えないように、EGRバルブ106の開度を調整することが求められる。
上記の3つの操作は、ノックを抑制する効果がある反面、多少なりとも燃費性能の低下を招くことになる。ゆえに、過渡ノック制御では、第1乃至第3の操作が同時に実行されるのではなく、ノックが収まるまで予め決められた順序で1つずつ実行されていく。操作の実行順序は、操作に対する制御量の応答が早い順とされている。具体的には、最初に実行されるのは第1の操作であり、次に実行されるのは第2の操作であり、最後に実行されるのは第3の操作である。より詳しくは、まず、第1の操作によりIVCが遅角される。IVCが遅角限界に達してもノックが収まらない場合には、次に、第2の操作によりオイル噴射量が増やされる。オイル噴射量が最大値に達してもノックが収まらない場合には、さらに、第3の操作によりEGR量が増やされる。そして、EGR量が上限に達してもノックが収まらない場合には、最後に、点火時期をMBT点火時期よりも遅角させることが行われる。
以上概説した過渡ノック制御の詳細な制御フローをフローチャートで表したものが図5である。制御装置120は、このような制御フローで表されるプログラムをROMから読み出し、CPUのクロック数に対応する所定の制御周期で繰り返し実行する。
まず、制御装置120は、ステップS2において、リーンモードからストイキEGRモードへの切り替え後かどうか判定する。リーンモードからストイキEGRモードへの切り替えは、エンジン回転速度と目標トルクとで定まるエンジン1の動作点が、リーン領域内からストイキEGR領域内へ移ったときに行われる。エンジン1の運転モードがリーンモードの場合、制御フローは終了する。
エンジン1の運転モードがストイキEGRモードの場合、制御フローは次にステップS4に進む。ステップS4では、制御装置120は、エンジン水温がリーンモードの目標温度(95℃)からストイキEGRモードへの目標温度(88℃以下)への変化の途中かどうか、すなわち、過渡かどうか判定する。この判定は、エンジン水温センサ68により測定されるエンジン水温に基づいて行われる。エンジン水温が88℃以下になっている場合、制御フローは終了する。
エンジン水温が88℃以下まで低下していない過渡の場合、制御フローは次にステップS6に進む。ステップS6では、制御装置120は、ノックセンサ124によって(或いは燃焼圧センサ22によって)ノックが検知されたかどうか判定する。ノックが検知されていない場合、制御フローは終了する。
ノックが検知された場合、制御フローは次にステップS8に進む。ステップS8では、制御装置120は、IVCが遅角限界まで遅角されているかどうか判定する。IVCが未だ遅角限界まで達していないのであれば、IVCをさらに遅角して実圧縮比を下げることによって、IVCの遅角によるノック抑制効果を高めることができる。この場合、制御フローは次にステップS10に進む。ステップS10では、制御装置120は、IVCを遅角するようにIN−VVT15を操作する第1の操作を実行する。なお、このときのIN−VVT15の操作方法としては、制御ステップごとに所定角度ずつIVCを遅角することでもよい。ただし、ノックの速やかな抑制の観点からは、IVCを遅角限界まで最大速度で遅角することが好ましい。
IVCが既に遅角限界まで遅角されているのであれば、制御装置120は、別の手段を用いてノックを抑制する。この場合、制御フローは次にステップS12に進む。ステップS12では、制御装置120は、オイル制御バルブ136が最大開度まで開いているかどうか判定する。オイル制御バルブ136が未だ最大開度まで開いていないのであれば、オイル制御バルブ136の開度をさらに大きくすることによって、オイル噴射量の増量によるノック抑制効果を高めることができる。この場合、制御フローは次にステップS14に進む。ステップS14では、制御装置120は、オイル噴射量を増大させるようにオイル制御バルブ136を操作する第2の操作を実行する。なお、このときのオイル制御バルブ136の操作方法としては、制御ステップごとに所定量ずつ開度を拡大することでもよい。ただし、ノックの速やかな抑制の観点からは、オイル制御バルブ136を最大開度まで最大速度で開くことが好ましい。
オイル制御バルブ136が既に最大開度まで開いているのであれば、制御装置120は、さらに別の手段を用いてノックを抑制する。この場合、制御フローは次にステップS16に進む。ステップS16では、制御装置120は、EGR量が上限値まで増やされているかどうか判定する。EGR量が未だ上限値まで達していないのであれば、EGRバルブ106の開度をさらに大きくすることによって、EGR量の増量によるノック抑制効果を高めることができる。この場合、制御フローは次にステップS18に進む。ステップS18では、制御装置120は、EGR量を増大させるようにEGRバルブ106を操作する第3の操作を実行する。なお、このときのEGRバルブ106の操作方法としては、制御ステップごとに所定量ずつ開度を拡大することでもよい。ただし、ノックの速やかな抑制の観点からは、EGR量が上限値に達する開度までEGRバルブ106を最大速度で開くことが好ましい。
EGR量が上限値に達しているのであれば、制御装置120は、最後の手段を用いてノックを抑制する。この場合、制御フローは次にステップS20に進む。ステップS20では、制御装置120は、点火時期をMBT点火時期よりも遅角させることを行う。基準となるMBT点火時期は、ストイキEGRモードでのMBT点火時期である。このときの点火装置の操作方法としては、制御ステップごとに所定角度ずつ点火時期を遅角することでもよい。ただし、エンジン水温が低下するまでの間の一時的な操作であるので、ノックが確実に抑えられるように一度に大きく遅角してもよい。また、ステップS20で行われる点火時期の遅角に対しては、通常ノック制御で行なっているノック学習は行わない。ここでの遅角量を学習値として取り込んでしまうと、エンジン水温が目標値に収束した後も点火時期を常時遅角してしまい、燃費性能の低下を招くことになるからである。ゆえに、ステップS20に続くステップS22では、制御装置120は、ノック学習を一時的に停止する。
以上のステップS2−S22からなる制御フローにしたがって過渡ノック制御が実行されることで、リーンモードからストイキEGRモードへの切り替えの際にエンジン水温の応答遅れに起因して発生するノックを効果的に抑えることができる。
ところで、ノックが発生する可能性は、エンジン水温がストイキEGRモードの目標温度に近づくにつれて、つまり、時間が経つにつれて低下していく。よって、ノックが一旦収まった後は、上記の制御フローの手順を逆にたどっていくことにより、ストイキEGRモードに応じた制御状態へ戻すための操作が行われる。以下、上記の制御フローにおいて点火時期の遅角まで行われた場合を例にとって、ノックが収まった後の操作手順について具体的に説明する。
ノックセンサ124或いは燃焼圧センサ22の信号よりノックが収まったことが確認された場合、制御装置120は、まず、点火時期をストイキEGRモードのMBT点火時期まで進角することを行う。
次に、制御装置120は、エンジン1の動作点から決まる目標EGR率が実現されるように、EGR装置100を操作して、上限まで増量していたEGR量を低下させていく。EGRバルブ106を閉じ始めるタイミングは、点火時期をMBT点火時期まで進角した直後でもよい。ただし、ノックの抑制のための操作とは異なり必ずしも急ぐ必要のない操作であるため、点火時期の進角後、ノックが再発しないか確認するための一定時間が経過してからEGRバルブ106を閉じ始めてもよい。
次に、制御装置120は、オイル噴射装置130を操作して、オイル噴射量をストイキEGRモードにおける規定噴射量まで低下させていく。ストイキEGRモードにおける規定噴射量は、リーンモードにおける規定噴射量よりも多い。ストイキEGRモードでは、点火時期は通常ノック制御によってトレースノック点火時期に調整されるため、ノックが発生しやすい条件とならないようにリーンモードよりもオイル噴射による冷却が強められている。オイル制御バルブ136を閉じ始めるタイミングは、EGRバルブ106を目標開度まで閉じ始めた後であれば、目標開度まで閉じ終わるまででもよいし、目標開度まで閉じ終わった後でもよい。
最後に、制御装置120は、IN−VVT15を操作して、IVCを遅角限界からエンジン1の動作点から決まる設定角度まで進角していく。IVCを進角し始めるタイミングは、オイル制御バルブ136を閉じ始めた後であり、且つ、エンジン水温がストイキEGRモードの目標温度に収束するまでであればよい。なお、このときのIN−VVT15の操作方法としては、制御ステップごとに所定角度ずつIVCを進角してもよいし、IVCをストイキEGRモードの設定角度まで最大速度で進角してもよい。
点火時期がMBT点火時期まで進角され、且つ、EGR装置100、オイル噴射装置130、及びIN−VVT15の全ての操作量の変更が完了した場合、制御装置120は、過渡ノック制御を終了して通常ノック制御を開始する。そして、通常ノック制御の開始とともにノック学習も開始する。
7.エンジンの動作の一例
図6は、上述のノック制御(過渡ノック制御)を吸気温度制御及びエンジン水温制御とともに実行した場合のエンジン1の動作の一例を示すタイムチャートである。図6には、図4においてエンジン回転速度を一定のままリーン領域からストイキEGR領域まで負荷を増大させた場合の下記パラメータの時間による変化が描かれている。そのパラメータとは、運転モードの切り替えに係るパラメータである空燃比(a)と、吸気温度制御及びエンジン水温制御の制御量であるエンジン水温(b)及び吸気温度(c)と、過渡ノック制御の操作量であるIVC(d)、OCV開度(e)及びEGRバルブ開度(f)と、点火時期(g)である。
リーン領域では、空燃比は所定のリーン空燃比に設定される。負荷の増大に応じて過給圧が増大され、過給圧の増大に応じてインタークーラ72に入る吸気の温度は上昇していくが、吸気温度センサ76により測定される吸気温度は35℃で一定とされる。これを実現するために、LT冷却システム30の電動ウォータポンプ流量は、負荷の増大に応じて増大されている。また、エンジン水温センサ68により測定されるエンジン水温は95℃で一定とされる。負荷の増大に応じて冷却損失が増加するため、エンジン水温が一定になるように、HT冷却システム50の電動ウォータポンプ流量とラジエータ60に通じる流路の開度(多機能弁66の第3HT流路56の開度)は、負荷の増大に応じて増大されている。
リーン領域では、IVC、OCV開度(オイル制御バルブ136の開度)及びEGRバルブ開度の各操作量は、リーンモードにおける目標値或いは設定値とされている。EGRバルブ開度に関して言えば、この実施の形態のリーンモードではEGRガスの導入は行わないため、EGRバルブ開度はゼロとされている。点火時期はMBT点火時期に調整されている。
そして、エンジン1の動作点がリーン領域からストイキEGR領域に移ると、運転モードがリーンモードからストイキEGRモードに切り替えられる。この運転モードの切り替えは、チャート(a)に示すように空燃比をリーン空燃比から理論空燃比に切り替えるとともに、チャート(f)に示すようにEGRバルブ開度をゼロからステップ応答的に増大させ、EGR量をゼロからエンジン回転速度及び目標トルクに応じた量まで増大させることで実現される。
また、エンジン1の動作点がリーン領域からストイキEGR領域に移ると、吸気温度は35℃から45℃まで上げられ、エンジン水温は88℃以下まで下げられる。これを実現するため、運転モードの切り替えのタイミングで、HT冷却システム50の電動ウォータポンプ流量とラジエータ60に通じる流路の開度(多機能弁66の第3HT流路56の開度)はステップ応答的に増大され、LT冷却システム30の電動ウォータポンプ流量はステップ応答的に減少される。
ただし、エンジン1から多量の熱が放熱されている環境下では、吸気温度やエンジン水温を上昇させることは容易であるが、吸気温度やエンジン水温を低下させることは容易ではない。つまり、LT冷却システム30の操作に対して吸気温度が応答良く上昇するのに対し、HT冷却システム50の操作に対するエンジン水温の応答遅れは大きい。このため、運転モードの切り替えからエンジン水温が88℃以下になるまでには、ある程度の時間を要する。
エンジン水温が88℃以下になるまでの間、冷却不足によってノックが発生しやすい状況となる。図6には、運転モードの切り替え後直ぐにノックが発生した場合のエンジン1の動作例が示されている。ノックが検知された場合、チャート(d)に示すようにIVCが遅角限界まで遅角される。それでもノックが収まらない場合、チャート(e)に示すようにオイル制御バルブ136が最大開度まで開かれ、オイル噴射量が最大噴射量まで増量される。さらにノックが続くようであれば、チャート(f)に示すようにEGRバルブ106が上限開度まで開かれ、EGR量が上限まで増量される。それでもノックが収まらない場合、チャート(g)に示すように点火時期がMBT点火時期よりも遅角される。
点火時期の遅角によって最終的にはノックは抑制される。その後、まず、チャート(g)に示すように点火時期が再びMBT点火時期まで進角される。点火時期を進角してもノックが再発しないようであれば、次に、チャート(f)に示すようにEGRバルブ106が元の開度まで閉じられ、EGR量がエンジン回転速度及び目標トルクに応じた量まで減量される。さらに、チャート(e)に示すようにオイル制御バルブ136がストイキEGRモードの設定開度まで閉じられ、オイル噴射量が減量される。さらに、チャート(d)に示すようにIVCが遅角限界からストイキEGRモードの設定角度(例えば、下死点後10〜25度)まで進角される。
IVCがストイキEGRモードの設定角度まで進角され、且つ、エンジン水温が88℃以下まで低下した時点で過渡ノック制御は終了し、ノック学習を伴う通常ノック制御が開始される。ストイキEGRモードでは、吸気温度は45℃に維持され、エンジン水温は88℃以下に維持される。
8.その他実施の形態
上記の実施の形態では、エンジン水温の過渡においてノックが検知された場合、第1の操作、第2の操作、第3の操作の順に実行しているが、この順序は変更してもよい。また、第1乃至第3の操作の全てを実行するのではなく、何れか2つの操作を実行してもノックが収まらなければ、点火時期の遅角を用いてノックを抑えるようにしてもよい。さらに、第1乃至第3の操作の中の何れか1つの操作を実行してもノックが収まらなければ、点火時期の遅角を用いてノックを抑えるようにしてもよい。
1 エンジン
2 エンジンヘッド
3 エンジンブロック
4 シリンダ
6 燃焼室
14 吸気バルブ
15 可変動弁装置(IN−VVT)
20 点火プラグ
22 燃焼圧センサ
24 ポート噴射弁
26 筒内噴射弁
30 LT冷却システム
50 HT冷却システム
68 エンジン水温センサ
72 インタークーラ
76 吸気温度センサ
90 ターボ過給機
100 EGR装置
106 EGRバルブ
120 制御装置
124 ノックセンサ
130 オイル噴射装置
136 オイル制御バルブ

Claims (7)

  1. 理論空燃比で運転するストイキモードと、理論空燃比よりも燃料リーンな空燃比で運転するリーンモードとを運転域に応じて切り替える内燃機関において、
    吸気バルブの閉じタイミングを変更可能な可変動弁装置と、
    ピストンの裏面にオイルを噴射するオイル噴射装置と、
    排気の一部を吸気通路に再循環させるEGR装置と、
    エンジンヘッドの排気側を流れる冷却水の温度を調整するエンジン水温調整装置と、
    少なくとも前記可変動弁装置、前記EGR装置、前記オイル噴射装置、及び前記エンジン水温調整装置を操作する制御装置と、を備え、
    前記制御装置は、前記内燃機関が前記リーンモードで運転する場合は、前記エンジンヘッドを通過した冷却水の温度が第1温度域に入るように前記エンジン水温調整装置を操作し、前記内燃機関が前記ストイキモードで運転する場合は、前記エンジンヘッドを通過した冷却水の温度が前記第1温度域よりも低温の第2温度域に入るように前記エンジン水温調整装置を操作するように構成され、且つ、
    前記制御装置は、前記リーンモードから前記ストイキモードの切り替えの開始後にノックが検知された場合、前記吸気バルブの閉じタイミングを遅角するように前記可変動弁装置を操作する第1の操作と、オイル噴射量を増大させるように前記オイル噴射装置を操作する第2の操作と、EGR量を増大させるように前記EGR装置を操作する第3の操作との中の何れか1つの操作を実行するように構成されている
    ことを特徴とする内燃機関。
  2. 前記制御装置は、前記第1乃至第3の操作の中の1つの操作を実行した後もノックが検知された場合、残り2つの操作の中の何れか1つの操作を実行するように構成されている
    ことを特徴とする請求項1に記載の内燃機関。
  3. 前記制御装置は、前記第1乃至第3の操作の中の1つの操作を実行した後もノックが検知された場合、点火時期をMBT点火時期よりも遅角するように構成されている
    ことを特徴とする請求項1に記載の内燃機関。
  4. 前記制御装置は、前記第1乃至第3の操作の中の2つの操作を実行した後もノックが検知された場合、最後に残った操作を実行するように構成されている
    ことを特徴とする請求項2に記載の内燃機関。
  5. 前記制御装置は、前記第1乃至第3の操作の中の2つの操作を実行した後もノックが検知された場合、点火時期をMBT点火時期よりも遅角するように構成されている
    ことを特徴とする請求項2に記載の内燃機関。
  6. 前記制御装置は、前記第1乃至第3の操作の全ての操作を実行した後もノックが検知された場合、点火時期をMBT点火時期よりも遅角するように構成されている
    ことを特徴とする請求項4に記載の内燃機関。
  7. 前記制御装置は、前記第1乃至第3の操作のうち前記第1の操作を最初に実行するように構成されている
    ことを特徴とする請求項1乃至6の何れか1項に記載の内燃機関。
JP2016063500A 2016-03-28 2016-03-28 内燃機関 Active JP6436122B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016063500A JP6436122B2 (ja) 2016-03-28 2016-03-28 内燃機関
DE102017102444.1A DE102017102444B4 (de) 2016-03-28 2017-02-08 Verbrennungsmaschine
US15/468,453 US10393049B2 (en) 2016-03-28 2017-03-24 Internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016063500A JP6436122B2 (ja) 2016-03-28 2016-03-28 内燃機関

Publications (2)

Publication Number Publication Date
JP2017180110A true JP2017180110A (ja) 2017-10-05
JP6436122B2 JP6436122B2 (ja) 2018-12-12

Family

ID=59814762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016063500A Active JP6436122B2 (ja) 2016-03-28 2016-03-28 内燃機関

Country Status (3)

Country Link
US (1) US10393049B2 (ja)
JP (1) JP6436122B2 (ja)
DE (1) DE102017102444B4 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020169599A (ja) * 2019-04-03 2020-10-15 マツダ株式会社 エンジンの冷却システム
JP2020169602A (ja) * 2019-04-03 2020-10-15 マツダ株式会社 エンジンの冷却システム
JP2020169600A (ja) * 2019-04-03 2020-10-15 マツダ株式会社 エンジンの冷却システム

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6414117B2 (ja) * 2016-03-28 2018-10-31 トヨタ自動車株式会社 内燃機関
US10895208B2 (en) * 2017-08-24 2021-01-19 Mazda Motor Corporation Control system for compression-ignition engine
JP6614221B2 (ja) * 2017-10-02 2019-12-04 トヨタ自動車株式会社 内燃機関の制御装置
KR20210152117A (ko) 2020-06-08 2021-12-15 현대자동차주식회사 차량의 제어 장치 및 방법

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08338272A (ja) * 1995-06-08 1996-12-24 Toyota Motor Corp バルブタイミング制御装置
JP2001214844A (ja) * 2000-01-31 2001-08-10 Toyota Motor Corp 内燃機関の制御装置
JP2003239742A (ja) * 2002-02-13 2003-08-27 Toyota Motor Corp 内燃機関の冷却装置
JP2004156490A (ja) * 2002-11-05 2004-06-03 Denso Corp 内燃機関の冷却制御装置
JP2009144540A (ja) * 2007-12-12 2009-07-02 Toyota Motor Corp 内燃機関の制御装置
JP2009191661A (ja) * 2008-02-12 2009-08-27 Toyota Motor Corp 内燃機関の冷却装置
JP2010084621A (ja) * 2008-09-30 2010-04-15 Mazda Motor Corp エンジンの制御方法および制御装置
JP2011149313A (ja) * 2010-01-20 2011-08-04 Toyota Motor Corp 内燃機関の制御装置
JP2011179421A (ja) * 2010-03-02 2011-09-15 Toyota Motor Corp 内燃機関の冷却装置
JP2013119832A (ja) * 2011-12-08 2013-06-17 Toyota Motor Corp 内燃機関の制御装置
JP2016006305A (ja) * 2014-06-20 2016-01-14 本田技研工業株式会社 内燃機関の制御装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3189734B2 (ja) * 1996-12-19 2001-07-16 三菱自動車工業株式会社 火花点火式筒内噴射型内燃機関
DE19951362A1 (de) * 1999-10-26 2001-05-03 Bosch Gmbh Robert Verfahren zur Regelung der Kühlwassertemperatur eines Kraftfahrzeugs mit einem Verbrennungsmotor
JP4168638B2 (ja) 2002-02-15 2008-10-22 トヨタ自動車株式会社 ノック指標に基づいて冷却程度が制御される内燃機関
US7182048B2 (en) 2002-10-02 2007-02-27 Denso Corporation Internal combustion engine cooling system
DE102006045422A1 (de) * 2006-09-26 2008-04-03 Volkswagen Ag Ottomotorisches Brennverfahren mit Magerbetrieb und Brennkraftmaschine für ein ottomotorisches Brennverfahren mit Magerbetrieb
US7461628B2 (en) * 2006-12-01 2008-12-09 Ford Global Technologies, Llc Multiple combustion mode engine using direct alcohol injection
DE102010033005A1 (de) * 2010-07-31 2012-02-02 Daimler Ag Brennkraftmaschine und zugehöriges Betriebsverfahren
CA2807879C (en) * 2010-08-16 2018-12-04 Westport Power Inc. Gaseous-fuelled stoichiometric compression ignition internal combustion engine
US9453439B2 (en) * 2010-08-31 2016-09-27 Ford Global Technologies, Llc Approach for variable pressure oil injection
JP5967064B2 (ja) * 2013-12-13 2016-08-10 トヨタ自動車株式会社 内燃機関の制御装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08338272A (ja) * 1995-06-08 1996-12-24 Toyota Motor Corp バルブタイミング制御装置
JP2001214844A (ja) * 2000-01-31 2001-08-10 Toyota Motor Corp 内燃機関の制御装置
JP2003239742A (ja) * 2002-02-13 2003-08-27 Toyota Motor Corp 内燃機関の冷却装置
JP2004156490A (ja) * 2002-11-05 2004-06-03 Denso Corp 内燃機関の冷却制御装置
JP2009144540A (ja) * 2007-12-12 2009-07-02 Toyota Motor Corp 内燃機関の制御装置
JP2009191661A (ja) * 2008-02-12 2009-08-27 Toyota Motor Corp 内燃機関の冷却装置
JP2010084621A (ja) * 2008-09-30 2010-04-15 Mazda Motor Corp エンジンの制御方法および制御装置
JP2011149313A (ja) * 2010-01-20 2011-08-04 Toyota Motor Corp 内燃機関の制御装置
JP2011179421A (ja) * 2010-03-02 2011-09-15 Toyota Motor Corp 内燃機関の冷却装置
JP2013119832A (ja) * 2011-12-08 2013-06-17 Toyota Motor Corp 内燃機関の制御装置
JP2016006305A (ja) * 2014-06-20 2016-01-14 本田技研工業株式会社 内燃機関の制御装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020169599A (ja) * 2019-04-03 2020-10-15 マツダ株式会社 エンジンの冷却システム
JP2020169602A (ja) * 2019-04-03 2020-10-15 マツダ株式会社 エンジンの冷却システム
JP2020169600A (ja) * 2019-04-03 2020-10-15 マツダ株式会社 エンジンの冷却システム
JP7226033B2 (ja) 2019-04-03 2023-02-21 マツダ株式会社 エンジンの冷却システム
JP7226031B2 (ja) 2019-04-03 2023-02-21 マツダ株式会社 エンジンの冷却システム
JP7230648B2 (ja) 2019-04-03 2023-03-01 マツダ株式会社 エンジンの冷却システム

Also Published As

Publication number Publication date
DE102017102444B4 (de) 2020-03-19
DE102017102444A1 (de) 2017-09-28
US10393049B2 (en) 2019-08-27
US20170276082A1 (en) 2017-09-28
JP6436122B2 (ja) 2018-12-12

Similar Documents

Publication Publication Date Title
JP6436122B2 (ja) 内燃機関
US10677143B2 (en) Control device for compression self-ignition engine
JP5143170B2 (ja) 内燃機関の制御方法
JP5904144B2 (ja) 圧縮自己着火式エンジン
JP6414117B2 (ja) 内燃機関
JP4475221B2 (ja) エンジン
JP4144251B2 (ja) 内燃機関における排気環流の制御
JP6299795B2 (ja) 内燃機関
JP2006046084A (ja) 内燃機関の点火時期制御装置
JP5939179B2 (ja) 圧縮自己着火式エンジン
JP2005090468A (ja) 予混合圧縮自着火内燃機関のegr装置、および、予混合圧縮自着火内燃機関の着火時期制御方法
JP2009024599A (ja) 内燃機関の制御装置
JP2012062865A (ja) 内燃機関の制御装置及び制御方法
JP2014152615A (ja) 可変気筒エンジン
JP2015183675A (ja) ディーゼルエンジンの制御装置およびその方法
JP2020029788A (ja) 内燃機関の制御装置及び内燃機関の制御方法
JP5979039B2 (ja) 圧縮自己着火式エンジン
JP7226032B2 (ja) エンジンの冷却システム
JP4778879B2 (ja) 内燃機関の過給圧制御装置
JP2002242714A (ja) 自動車用4サイクルエンジン
JP6117631B2 (ja) 内燃機関の制御装置
JP2014173530A (ja) 圧縮自己着火式エンジン
JP2009167868A (ja) 予混合圧縮自着火内燃機関
JP5303349B2 (ja) 内燃機関のegr制御装置
JP2004263633A (ja) 内燃機関のノッキング抑制装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180921

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181029

R151 Written notification of patent or utility model registration

Ref document number: 6436122

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151