JP2017169195A - 投影システム及びキャリブレーション装置 - Google Patents

投影システム及びキャリブレーション装置 Download PDF

Info

Publication number
JP2017169195A
JP2017169195A JP2017033071A JP2017033071A JP2017169195A JP 2017169195 A JP2017169195 A JP 2017169195A JP 2017033071 A JP2017033071 A JP 2017033071A JP 2017033071 A JP2017033071 A JP 2017033071A JP 2017169195 A JP2017169195 A JP 2017169195A
Authority
JP
Japan
Prior art keywords
projection
unit
image
distance
optical path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017033071A
Other languages
English (en)
Other versions
JP6846618B2 (ja
Inventor
史雄 村松
Fumio Muramatsu
史雄 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to US15/452,953 priority Critical patent/US10104351B2/en
Publication of JP2017169195A publication Critical patent/JP2017169195A/ja
Application granted granted Critical
Publication of JP6846618B2 publication Critical patent/JP6846618B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Controls And Circuits For Display Device (AREA)
  • Projection Apparatus (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

【課題】プロジェクタとミラーが別体として構成され、両者の距離が既知ではない投影システムにおけるキャリブレーションを容易に行うことができる投影システム及びキャリブレーション装置を提供する。【解決手段】投影システムは、投影部1と、光路変更部3と、撮像部2と、制御部とを備える。投影部は、画像を表示するための投影光50aを出射する。光路変更部は、投影部からの投影光の光路を変更し、投影光を所定の投影面71に導光する。撮像部は、上記画像に基づいて光路変更部から投影面上に投影された投影画像50を撮像する。制御部は、投影画像を制御する。制御部は、撮像部が投影画像を撮像した撮像画像に基づいて、投影部から光路変更部までの光路に沿った長さである第1の距離L、及び投影部から投影面までの鉛直方向に沿った長さである第2の距離Hを算出し、算出した第1の距離及び第2の距離に基づいて投影画像を制御する。【選択図】図5

Description

本開示は、画像を投影する投影システム及び投影システムの初期調整を行うキャリブレーション装置に関する。
特許文献1は、液晶パネル等の表示画像を投影レンズにより拡大し、角度可変のミラーを介してスクリーンに投影するプロジェクタを開示している。特許文献1のプロジェクタは、ミラーによる画像光の中心軸とスクリーン法線との間の角度を検出する角度センサと、プロジェクタとスクリーンとの間の距離を検出する超音波センサ等の距離センサとを備えている。特許文献1のプロジェクタでは、角度センサ及び距離センサの検出結果に基づいて、投影面上に表示された画像の歪みを調整している。
特開2002−262198号公報
この種のプロジェクタでは、プロジェクタとミラーとの距離は既知であり、また、プロジェクタとスクリーンの距離を検出するセンサを搭載しているため、プロジェクタの投影画像の位置を調整すること、すなわちキャリブレーションは容易である。本開示は、プロジェクタとミラーが別体として構成され、両者の距離が既知ではない投影システムにおけるキャリブレーションを容易に行うことができる投影システム及びキャリブレーション装置を提供する。
本開示の一態様における投影システムは、投影部と、光路変更部と、撮像部と、制御部とを備える。投影部は、所定の画像を表示するための投影光を出射する。光路変更部は、投影部からの投影光の光路を変更し、投影光を所定の投影面に導光する。撮像部は、所定の画像に基づき光路変更部から投影面上に投影された投影画像を撮像する。制御部は、投影画像を制御する。制御部は、撮像部が投影画像を撮像した撮像画像に基づいて、投影部から光路変更部までの光路に沿った長さである第1の距離、及び投影部から投影面までの鉛直方向に沿った長さである第2の距離を算出し、算出した第1の距離及び第2の距離に基づいて投影画像を制御する。
本開示の一態様におけるキャリブレーション装置は、投影画像を投影する投影システムのキャリブレーションを行う。
本開示における投影システム及びキャリブレーション装置によれば、投影画像を投影する投影システムにおけるキャリブレーションを容易に行うことができる。
図1は、本開示の実施形態1に係る投影システムの概要を説明するための図である。 図2は、実施形態1に係る投影システムの構成を示すブロック図である。 図3は、実施形態1に係る投影システムにおけるミラーユニットの配置状態を示す斜視図である。 図4Aは、実施形態1に係る投影システムにおける制御PCの構成を示すブロック図である。 図4Bは、実施形態1に係る投影システムにおけるキャリブレーション装置の構成を示すブロック図である。 図5は、実施形態1に係る投影システムの画像投影動作を説明するための図である。 図6は、実施形態1に係る投影システムのキャリブレーション動作を示すフローチャートである。 図7は、実施形態1に係る投影システムのキャリブレーション動作を説明するための図である。 図8は、実施形態1に係るミラーの角度を設定する処理を説明するためのフローチャートである。 図9Aは、実施形態1に係る投影システムの投影画像における基準スポットを説明するための図である。 図9Bは、実施形態1に係る投影システムの撮像画像における基準スポットの軌跡を説明するための図である。 図10は、実施形態1に係る投影システムの距離Lを算出する処理を説明するためのフローチャートである。 図11は、実施形態1に係る投影システムの距離Lを算出する方法を説明するための図である。 図12は、実施形態1に係る投影システムの高さHを算出する処理を説明するためのフローチャートである。 図13Aは、実施形態1に係る投影システムの高さHを算出するための基準マークを説明するための図である。 図13Bは、実施形態1に係る投影システムの高さHを算出するための基準マークの撮像画像を説明するための図である。 図14は、実施形態1における距離Lと高さHとの関係を説明するための図である。 図15は、実施形態1における距離Lと高さHとの関係の変形例を説明するための図である。
以下、適宜図面を参照しながら、実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。
なお、出願人は、当業者が本開示を十分に理解するために添付図面および以下の説明を提供するのであって、これらによって特許請求の範囲に記載の主題を限定することを意図するものではない。
(実施形態1)
1.構成
1−1.概要
実施形態1に係る投影システムの概要について、図1を参照して説明する。図1は、本実施形態に係る投影システムの概要を説明するための図である。
本実施形態に係る投影システムは、図1に示すように、プロジェクタ1と、全方位カメラ2と、ミラーユニット3と、制御PC(パーソナルコンピュータ)4とを備える。本実施形態に係る投影システムは、天井等に吊したプロジェクタ1から出射する投影光を、ミラーユニット3において反射させることにより、投影光に基づく投影画像5を、床面、壁面及び机面等の任意の投影面に投影するシステムである。
本システムでは、プロジェクタ1の底面に全方位カメラ2が設置されている。制御PC4は、床面及び壁面にわたる全方位カメラ2の撮像画像に基づき、投影面上の投影画像5を制御する。例えば、制御PC4は、撮像画像に基づき床面上の人6を検出し、人6に追従して種々の提示情報および演出内容を含む投影画像5を投影する。
ここで、プロジェクタ1及びミラーユニット3が一体的に構成された場合、双方の総重量を有する装置を天井に吊るすこととなり、容易に本装置を設置することができない。また、特定の機種のプロジェクタとミラーユニットを一体で設計するため、多機種のプロジェクタへのミラーユニットの展開が容易ではない。そこで、本実施形態に係る投影システムでは、プロジェクタ1とミラーユニット3とを別体で構成している。これにより、プロジェクタ1とミラーユニット3とを一つずつ設置でき、また、多機種のプロジェクタに対してミラーユニットを展開でき、本システムの導入および取扱いを容易にすることができる。
以下、図1に示すように、プロジェクタ1が吊るされた鉛直方向をZ方向とし、Z方向と直交する水平面をXY平面とする。また、プロジェクタ1から投影光を出射する投影方向をY方向とし、Y,Z方向と直交するプロジェクタ1の幅方向をX方向とする。
1−2.システム構成
本実施形態に係る投影システムの構成について、図1及び図2を参照して説明する。
図2は、本システムの構成を示すブロック図である。
図2に示すように、本システムにおいて、プロジェクタ1、全方位カメラ2及びミラーユニット3は、それぞれ制御PC4に接続されている。制御PC4は、本システムにおける制御部の一例である。本システムにおける各部の構成について、それぞれ説明する。
1−2−1.プロジェクタの構成
プロジェクタ1は、図2に示すように、投影光源11と、画像形成部12と、投影光学系13とを備える。プロジェクタ1は、例えばDLP(Digital Light Processing)方式、3LCD(Liquid Crystal Display)方式又はLCOS(Liquid Crystal On Silicon)方式などのプロジェクタ装置である。プロジェクタ1は、制御PC4から入力される映像信号に基づく投影画像5を生成する投影光を出射する。プロジェクタ1は、本システムにおける投影部の一例である。
投影光源11は、例えばLD(Laser Diode)、LED(Light Emitting Diode)又はハロゲンランプなどで構成される。投影光源11は、可視光を画像形成部12に照射する。投影光源11は、プロジェクタ1の投影方式に応じて適宜、RGB等の複数色の光源素子、或いは白色の光源素子を有してもよいし、単色の光源素子のみを有してもよい。
画像形成部12は、DMD(Digital Micromirror Device)又はLCDなどの空間光変調素子を備える。画像形成部12は、空間光変調素子における画像形成面に、制御PC4からの映像信号に基づく画像を形成する。投影光源11からの光が、画像形成部12に形成された画像に応じて空間的に変調されることにより、投影光が生成される。
投影光学系13は、プロジェクタ1の画角を設定するズームレンズ、及びフォーカスを調整するフォーカスレンズを含む。投影光学系13には、各種のレンズを駆動するためのモータ等の駆動機構が組み込まれている。
なお、プロジェクタ1は、例えば台形補正、デジタルズームおよび光学ズームなどのプロジェクタ1特有の機能を実現する投影制御部(例えばマイコン、CPU(Central Processing Unit)など)を有してもよい。また、上記の各機能は、制御PC4において実現されてもよい。
また、プロジェクタ1は、レーザ走査式であってもよく、走査方向に駆動可能なMEMS(Micro Electro Mechanical Systems)ミラー或いはガルバノミラーを備えて構成されてもよい。本システムでは、プロジェクタ1とミラーユニット3とは別体であるため、プロジェクタ1として、ミラーユニット3を介して投影画像を投影する用途の専用装置に限らず、汎用的なプロジェクタ装置を用いることができる。
1−2−2.全方位カメラの構成
全方位カメラ2は、CCD(Charge Coupled Device)イメージセンサ又はCMOS(Complementary Metal Oxide Semiconductor)イメージセンサなどの撮像素子及び画角180°を有する全方位レンズ(魚眼レンズ)を備える。全方位カメラ2は、全方位カメラ2の設置位置からの全方位にわたる画像を撮像し、例えば全方位画像を構成する撮像画像を生成して制御PC4に送信する。また、全方位カメラ2は、例えば全方位画像を展開して、パノラマ画像を生成してもよい。全方位カメラ2は、所定の周期において撮像動作を行ってもよいし、制御PC4の制御により撮像動作を行ってもよい。全方位カメラ2は、本システムにおける撮像部の一例である。
1−2−3.ミラーユニットの構成
ミラーユニット3の構成について、図2及び図3を用いて説明する。図3は、本システムにおけるミラーユニット3の配置状態を示す斜視図である。
ミラーユニット3は、ミラー30と、パン駆動部31と、チルト駆動部32と、ミラー制御部33とを備える。ミラーユニット3は、ミラー30を二軸の回転軸において駆動する装置である。ミラーユニット3は、本システムにおいて、プロジェクタ1からの投影光の光路をミラー30により変更して種々の投影面に投影光を導光する光路変更部の一例である。
ミラー30は、図3に示すように、プロジェクタ1からの投影光を反射する反射面30aを有する。反射面30aの形状は、例えば水平サイズ及び垂直サイズによって規定される矩形状である。
パン駆動部31は、例えばモータ及びモータの回転角度の変位量を測定するロータリエンコーダを備えて構成される。パン駆動部31は、図3に示すように、プロジェクタ1の光軸と平行な回転軸J1においてミラー30を回転駆動する。以下、回転軸J1による回転方向を「パン方向」といい、パン方向の回転角度を「パン角度」という。
チルト駆動部32は、例えばモータ及びモータの回転角度の変位量を測定するロータリエンコーダを備えて構成される。チルト駆動部32は、図3に示すように、ミラー30の反射面30a上でプロジェクタ1の光軸と直交する方向の回転軸J2においてミラー30を回転駆動する。以下、回転軸J2による回転方向を「チルト方向」といい、チルト方向の回転角度を「チルト角度」という。チルト方向の回転軸J2は、パン方向の回転に応じてミラー30と共に回転する。
本実施形態におけるミラーユニット3では、反射面30aが水平面(XY平面)となるミラー30の角度をパン角度0°及びチルト角度90°として、該角度を基準にパン方向及びチルト方向に駆動することにより、反射面30aを種々の傾斜角度で傾斜させる。
図2に戻り、ミラー制御部33は、例えばマイコンで構成され、ミラーユニット3の動作を制御する。例えば、ミラー制御部33は、パン駆動部31及びチルト駆動部32を制御して、パン角度及びチルト角度を変更する。また、ミラー制御部33は、例えばフラッシュメモリで構成される内部メモリを有し、内部メモリに反射面30aのサイズ等を格納している。ミラー制御部33は、所定の機能を実現するように設計された専用の電子回路や再構成可能な電子回路などのハードウェア回路であってもよいし、ソフトウェアと協働して所定の機能を実現するCPU又はMPU(Micro Processing Unit)等で構成されてもよい。
1−2−4.制御PCの構成
制御PC4の構成について、図2、図4A及びA4Bを用いて説明する。図4Aは、本システムにおける制御PC4の構成を示すブロック図である。図4Bは、本システムにおけるキャリブレーション装置46の構成を示すブロック図である。
制御PC4は、本システムを構成する各部(プロジェクタ1、全方位カメラ2及びミラーユニット3)の動作を制御するパーソナルコンピュータである。制御PC4は、本システムのキャリブレーションを行うキャリブレーション装置46を備える制御部の一例である。
図4Aに示すように、制御PC4は、PC制御部40と、記憶部41と、ユーザインタフェース42と、表示部43と、機器インタフェース44と、ネットワークインタフェース45とを備える。以下、「インタフェース」を「I/F」と略記する。
PC制御部40は、例えばソフトウェアと協働して所定の機能を実現するCPU又はMPUで構成され、制御PC4の全体動作を制御する。PC制御部40は、記憶部41に格納されたデータやプログラムを読み出して種々の演算処理を行い、各種の機能を実現する。例えば、PC制御部40は、投影システムのキャリブレーション動作を実行する。キャリブレーション動作を実行するためのプログラムは、ネットワークから提供されてもよいし、所定の記憶媒体から提供されてもよいし、PC制御部40に組み込まれていてもよい。また、PC制御部40は、所定の機能を実現するように設計された専用の電子回路や再構成可能な電子回路などのハードウェア回路であってもよい。PC制御部40は、CPU,MPU,マイコン、DSP(Digital Signal Processor)、FPGA(Field Programmable Gate Array)、ASIC(Application Specific Integrated Circuit)等の種々の半導体集積回路で構成されてもよい。
記憶部41は、制御PC4の機能を実現するために必要なプログラム及びデータを記憶する記憶媒体であり、例えばハードディスク(HDD(Hard Disk Drive))や半導体記憶装置(SSD(Solid State Drive))を備える。また、記憶部41は、さらに、DRAM(Dynamic Random Access Memory)やSRAM(Static Random Access Memory)等の半導体デバイスを備えてもよく、データを一時的に記憶するとともにPC制御部40の作業エリアとしても機能する。例えば、記憶部41は、全方位カメラ2による撮像画像の画像データ、種々の投影画像の画像データ、及び本システムの各種パラメータ(例えば後述の距離L及び高さH)などを格納する。
ユーザI/F42は、ユーザが操作を行う操作部材を備える。ユーザI/F42は、例えば、キーボード、タッチパッド、タッチパネル、ボタン、スイッチ、又はこれらの組み合わせを含む。ユーザI/F42は、ユーザによって入力される種々の情報を取得する取得部の一例である。
表示部43は、例えば、液晶ディスプレイや有機ELディスプレイで構成される。表示部43は、例えばユーザI/F42から入力された情報など、種々の情報を表示する。
機器I/F44は、制御PC4に他の機器を接続するための回路(モジュール)である。機器I/F44は、所定の通信規格にしたがい通信を行う。所定の規格には、USB、HDMI(登録商標)、IEEE1394、Wi−Fi、Bluetooth(登録商標)等が含まれる。
ネットワークI/F45は、無線または有線の通信回線を介して制御PC4をネットワークに接続するための回路(モジュール)である。ネットワークI/F45は所定の通信規格に準拠した通信を行う。所定の通信規格には、IEEE802.3,IEEE802.11a/11b/11g/11ac等の通信規格が含まれる。
上述したように、制御PC4は、投影システム(プロジェクタ1、ミラーユニット3及び全方位カメラ2)のキャリブレーションを行う。すなわち、図2に示すように、制御PC4は、投影システムのキャリブレーションを行うキャリブレーション装置46を備える。
図4Bに示すように、キャリブレーション装置46は、第1算出部47と、第2算出部48と、キャリブレーション部49とを備える。第1算出部47は、全方位カメラ2が投影画像50を撮像した撮像画像に基づいて、プロジェクタ1からミラーユニット3までの光路に沿った長さである距離Lを算出する。第2算出部48は、全方位カメラ2が投影画像50を撮像した撮像画像に基づいて、プロジェクタ1から床面71までの鉛直方向に沿った長さである高さHを算出する。キャリブレーション部49は、算出した距離L及び高さHに基づいて投影画像50のキャリブレーションを行う。第1算出部47と、第2算出部48と、キャリブレーション部49とは、制御PC4を構成するPC制御部40と、記憶部41と、ユーザI/F42と、表示部43と、機器I/F44と、ネットワークI/F45とによって実現される。
2.動作
以下、本実施形態に係る投影システムの動作について説明する。
2−1.動作の概要
本実施形態に係る投影システムの動作の概要について、図5を参照して説明する。
図5は、本システムの画像投影動作を説明するための図である。図5において、プロジェクタ1及びミラーユニット3が天井70から吊るされて設置される。プロジェクタ1は、床面71を投影面として投影画像50を投影する。
本システムの画像投影時において、全方位カメラ2は床面71を撮像し、撮像画像を制御PC4(図1)に送信する。制御PC4は、全方位カメラ2からの撮像画像に基づき、投影面である床面71上に投影画像50を投影する投影位置P1、投影画像50のサイズ及び投影画像50の向き等を決定する。例えば、制御PC4は、撮像画像中で人6(図1)などの特定の被写体の位置を判断し、被写体の近傍等に投影位置P1を設定する。
制御PC4は、プロジェクタ1に映像信号を送信して、投影画像50を生成する投影光50aを出射させる。また、制御PC4は、投影画像50が投影位置P1に投影されるように、ミラーユニット3のパン角度ψ及びチルト角度αを制御する。制御PC4は、適宜、プロジェクタ1の光学ズーム及びピント位置の制御も行う。
以上のように、本システムは、投影面である床面71上の所望の投影位置P1等に投影画像50を投影する。
制御PC4は、プロジェクタ1とミラーユニット3との間の距離L、及び床面71からプロジェクタ1の光軸までの高さHを用いて種々の制御を行う。すなわち、距離L及び高さHは、投影画像50の投影位置P1、投影サイズ及びピント位置等を決定するために必要なパラメータであり、画像投影動作の開始前に距離L及び高さHを認識しておく必要がある。ここで、距離Lとは、プロジェクタ1からミラーユニット3までの投影光50aの光路に沿った距離のことである。また、高さHとは、投影面である床面71からプロジェクタ1までの鉛直方向に沿った長さである。
ここで、距離L及び高さHを知るためには、通常、作業者がメジャー等を用いて直接、距離L及び高さHを測定する必要があり、作業者にとって非常に手間が掛かる作業となる。このとき、メジャー等による測定は、精度が低いことが懸念される。また、測定結果を本システムの制御PC4等に設定することも、専門知識のない者にとって困難になる。そこで、本実施形態の投影システムは、キャリブレーション動作において、距離L及び高さHを、専用の測定センサを搭載することなく自動で算出する。これにより、調整作業者等の手間を掛けることなく距離L及び高さHを特定でき、本システムのキャリブレーションを容易に行うことができる。以下、本システムのキャリブレーション動作について説明する。
2−2.キャリブレーション動作
本実施形態に係る投影システムのキャリブレーション動作について、図6及び図7を参照して説明する。図6は、本システムのキャリブレーション動作を示すフローチャートである。図7は、本システムのキャリブレーション動作を説明するための図である。
図6のフローチャートは、制御PC4のPC制御部40によって実行される。以下、プロジェクタ1及びミラーユニット3が、図5に示すように設置された状態において、本フローチャートによる処理が開始される例について説明する。
まず、制御PC4は、ミラーユニット3におけるミラー30の角度位置を、キャリブレーション動作のための初期位置に設定する(S1)。本実施形態では、ミラー30の初期位置として、パン角度ψ=0°及びチルト角度α=45°に設定する(図7(a)参照)。また、本実施形態において、パン角度ψ=0°はミラー30の水平方向がX方向と平行になる角度位置とし、チルト角度α=0°はミラー30の反射面30aがXZ平面と平行になる角度位置とする(図5参照)。ステップS1の処理の詳細については後述する。
次に、制御PC4は、初期位置のミラーユニット3を介してプロジェクタ1から床面71に投影される投影画像50を制御し、全方位カメラ2による床面71の撮像画像に基づいて、距離L及び高さHをそれぞれ算出する(S2,S3)。図7(a)〜(e)を用いて、距離Lの算出方法の概要について説明する。
図7(a)は、プロジェクタ1から種々の距離L=L0,L1,L2に設置されたミラーユニット3に投影光50aが出射された状態を示している。図7(b)は、プロジェクタ1が投影する測定用画像D50を示している。図7(a)に示すように、投影光50aは、プロジェクタ1からY方向に出射され、チルト角度α=45°のミラーユニット3に達すると、Z方向に反射して床面71に投影される。この際、プロジェクタ1から出射された投影光50aによる測定用画像D50(図7(b))の上端(A)と下端(B)は、ミラーユニット3の反射により、床面71上ではY方向において下端と上端が反転して投影される(図7(c))。ミラー30の角度位置を上記の初期位置(パン角度ψ=0°及びチルト角度α=45°)に設定することにより、測定用画像D50の床面71上での歪みを低減できる。
図7(a)において距離L0は、プロジェクタ1からの投影光50aが、ミラー30において漏れなく反射されるような距離である。距離L0に設置されたミラーユニット3によれば、図7(c)に示すように、測定用画像D50に基づき床面71上に形成される投影画像50には、測定用画像D50の全体が投影される。
一方、図7(a)において距離L1(>L0)はプロジェクタ1からの投影光50aがミラー30の一端から漏れるような距離である。このとき、距離L0の場合よりもプロジェクタ1から出射される投影光50aは広がり、測定用画像D50の下端(B)部分の投影光50aがミラー30からはみ出している。つまり、距離L1に設置されたミラーユニット3によれば、図7(d)に示すように、床面71上の投影画像50’は、上端(B)の一部が欠けた形状になる。
また、図7(a)において距離L2(>L1)はプロジェクタ1からの投影光50aがミラー30の周囲から漏れるような距離である。このとき、プロジェクタ1から出射される投影光50aは更に広がり、測定用画像D50の上端(A)及び下端(B)部分の投影光50aがミラー30からはみ出している。つまり、距離L2に設置されたミラーユニット3によれば、図7(e)に示すように、床面71上の投影画像50”は、ミラーユニット3のミラー30の形状に応じた形状になる。
本実施形態では、以上のように距離Lに応じて変化する投影画像50、50’、50”の撮像画像を全方位カメラ2で画像解析することにより距離Lを算出する(S2)。ステップS2の処理の詳細については後述する。
また、撮像画像中の投影画像50の位置は、距離Lと高さHとの間の特定の関係に基づき、規則的に変化する(図14参照)。本実施形態では、制御PC4が上記の関係を特定することにより、高さHを算出する(S3)。ステップS3の処理の詳細については後述する。
制御PC4は、算出した距離L及び高さHを記憶部41(図4A)に格納することにより、本処理を終了する。
以上の処理により、全方位カメラ2が撮像した投影画像50の画像解析によって距離L及び高さHが算出され、自動的に投影システムのキャリブレーションを行うことができる。また、以上の処理は本システムの通常の使用時に用いる全方位カメラ2の撮像画像に基づき実行され、他のハードウェア構成を追加することなく、容易にキャリブレーションを行うことができる。以下、ステップS1,S2,S3の各処理の詳細について説明する。
2−2−1.ミラーの角度の設定処理(ステップS1)について
本実施形態に係る投影システムでは、キャリブレーション前の初期状態において、ミラーユニット3におけるミラー30のパン角度ψ及びチルト角度αの角度位置が判別できない場合が想定される。本実施形態では、図6のステップS1において、ミラーユニット3の駆動時の全方位カメラ2による撮像画像に基づき、パン角度ψ及びチルト角度αを角度位置ψ=0°,α=45°に設定する。
本実施形態では、プロジェクタ1から基準スポットを床面71に投影し、ミラーユニット3をパン駆動させたときの基準スポットの軌跡に基づき、ミラー30の角度を設定する(図9A及び図9B参照)。以下、図6のステップS1の処理について、図8、図9A及び図9Bを用いて説明する。図8は、ミラー30の角度を設定する処理を説明するためのフローチャートである。図9Aは、投影画像における基準スポットを説明するための図である。図9Bは、撮像画像における基準スポットの軌跡を説明するための図である。
まず、制御PC4は、プロジェクタ1を制御して、例えば図9Aに示すような基準スポット51を含む投影画像50Aを床面71に投影させる(S11)。基準スポット51は、図9Aに示すように、投影画像50Aの中心位置を示す基準マークの一例である。
次に、制御PC4は、ミラーユニット3に、パン駆動部31を駆動する駆動命令を送信する(S12)。制御PC4からの駆動命令に基づき、パン駆動部31は、例えば、パン角度ψを所定ピッチで順次、増大させるようにミラー30を回転駆動し、パン角度ψの変位量を随時、制御PC4に送信する。このとき、チルト駆動部32は動作せず、チルト角度αは固定される。
次に、制御PC4は、ミラーユニット3がパン方向に駆動される期間中、全方位カメラ2に床面71を撮像させ(図5参照)、全方位カメラ2から撮像画像を取得する(S13)。制御PC4は、パン駆動に同期して複数フレームの撮像画像を取得し、それぞれパン角度ψの変位量と関連付けて記憶部41に記録する。
次に、制御PC4は、取得した複数フレームの撮像画像において、床面71上に投影される基準スポット51の軌跡を解析する(S14)。図9Bに、基準スポット51の軌跡の解析結果を示す。図9Bにおいて、横軸は床面71のX方向であり、縦軸は床面71のY方向である。
図9Bに示すように、基準スポット51の位置は、パン角度ψの増大に応じてX方向に進むように移動する。また、基準スポット51の軌跡は、パン駆動時のチルト角度αに応じて変化している。図9Bに示すように、基準スポット51の軌跡は、チルト角度αの増大に応じて、XY平面において上に凸の曲線、X軸と平行な直線、及び下に凸の曲線と移り変わっている。上に凸から下に凸へと変曲する直線状の軌跡において、チルト角度αは角度範囲0°〜90°の中心の角度位置45°であることが特定できる。また、図9Bに示すように、曲線状の軌跡はそれぞれ曲線の頂点を基準として対称であり、曲線の頂点のパン角度ψが角度位置0°であることが特定できる。ステップS14において、制御PC4は、全方位カメラ2からの撮像画像を画像解析することにより、例えば基準スポット51の軌跡の曲率を計算したり、曲線状の軌跡の頂点を特定したりする。
次に、制御PC4は、上記のパン駆動中の撮像画像の解析結果(図9B)に基づいて、床面71上の基準スポット51の軌跡が直線的であるか否かを判断する(S15)。
制御PC4は、基準スポット51の軌跡が直線的でないと判断した場合(S15でNo)、ミラーユニット3にチルト駆動命令を送信して、基準スポット51の軌跡が直線状に近づくようにチルト角度αを変更する(S16)。例えば、制御PC4は、基準スポット51の軌跡の曲率に基づき曲線が上に凸であるか下に凸であるかを判断し、上に凸の場合にはチルト角度αを増大させ、下に凸の場合にはチルト角度αを減少させる。制御PC4は、変更後のチルト角度αにおいて、ステップS11以降の処理を繰り返す。
制御PC4が、基準スポット51の軌跡が直線的であると判断した場合(S15でYes)、上記の通り、チルト角度αが角度位置45°であると考えられる。制御PC4は、直線的と判断した基準スポット51の軌跡が得られた際のチルト角度αを角度位置45°として特定し、チルト角度の初期位置に設定する(S17)。
また、制御PC4は、曲線状の軌跡の頂点に応じたパン角度ψを角度位置0°に特定し、パン角度の初期角度に設定する(S17)。これにより、制御PC4は、図6のステップS1の処理を終了し、ステップS2に進む。
以上の処理によると、ミラーユニット3の駆動中に投影される基準スポット51の軌跡に基づいて、ミラーユニット3が所定の角度位置である状態を特定し、ミラー30を所定の角度位置に設定することができる。
以上の処理では、パン角度ψ及びチルト角度αそれぞれの角度位置を特定したが、例えばミラーユニット3がパン角度ψ又はチルト角度αの角度位置を特定の角度位置に設定する機能を有する場合、パン角度ψ及びチルト角度αのいずれか一方の角度を特定してもよい。また、ミラーユニット3がパン角度ψ及びチルト角度αの角度位置を特定の角度位置に設定する機能を有する場合、ステップS11〜S16の処理を省略し、直接、パン角度ψ及びチルト角度αが初期位置に設定されてもよい。
2−2−2.距離Lの算出処理(ステップS2)について
図6の距離Lを算出する処理(ステップS2)について、図10及び図11を用いて説明する。図10は、距離Lを算出する処理を説明するためのフローチャートである。図11は、距離Lを算出する方法を説明するための図である。
以下では、ステップS2の一例として、デジタルズームを用いて測定用画像D50に基づく投影画像50のサイズを制御し、投影画像50の形状の変化を判断して距離Lを算出する方法について説明する。
まず、制御PC4は、プロジェクタ1の投影光学系13を制御して光学ズームを行い、図11(a)に示すように、プロジェクタ1の画角をワイド端(広角端)の画角βwに設定する(S21)。以下、図11(a)に示すように、プロジェクタ1の画角がワイド端の状態において、ミラーユニット3の反射面30aの周囲にわたり投影光50aがはみ出す場合について説明する(図7(e)参照)。
次に、制御PC4は、図11(b)に示すように、測定用画像D50の画像全体を例えば白色等で表示する矩形領域52をプロジェクタ1に投影させる(S22)。すると、図7(e)に示すように、床面71上に形成される投影画像50”の形状は、ミラーユニット3の反射面30aに応じて、矩形領域52の上部及び下部が欠けた形状になる。
次に、制御PC4は、全方位カメラ2に床面71を撮像させ、全方位カメラ2から床面71における投影画像50”の撮像画像を取得する(S23)。
次に、制御PC4は、取得した全方位カメラ2からの撮像画像の画像解析を行い、投影画像50”の形状が、反射面30aに応じた形状であるか否かを判断する(S24)。
制御PC4は、投影画像50”の形状が反射面30aに応じた形状であると判断した場合(S24でYes)、図11(b),(c)に示すように、測定用画像D50内で矩形領域52を縮小するデジタルズームを行う(S25)。デジタルズームは、矩形領域52のアスペクト比を維持するように行われる。
制御PC4は、縮小した矩形領域52’の測定用画像D50’に基づき、ステップS22以降の処理を繰り返す。このとき、投影光50aにおいて縮小した矩形領域52’に対応する部分の投影光50bが、縮小前と同様に、反射面30aの周囲においてはみ出している場合、床面71上では、形状及び大きさが同じ投影画像50”が投影されている。一方、反射面30aの周囲において、縮小した矩形領域52’に対応する投影光50bが反射面30aの周囲をはみ出さない部分が生じると、床面71上の投影画像は、図7(d)の投影画像50’のように上端の一部が欠けた形状の投影画像に変化する。
制御PC4は、測定用画像D50’に基づく投影画像50’の形状が反射面30aに応じた形状でないと判断した場合(S24でNo)、反射面30aのサイズ、画角βw及び矩形領域52’のサイズに基づき、距離Lを算出する(S26)。例えば、図11(a)に示すように、反射面30aの上部において矩形領域52’に対応する投影光50bがはみ出さなくなった場合、制御PC4は、撮像画像中の投影画像50’の下部の形状が反射面30aに応じた形状でないことを判断する(S24でNo)。この場合、制御PC4は、例えば次式によって距離Lを算出する。
L=2−3/2V(cot(β/2)+1) (1)
上式(1)において、βは矩形領域52’に対応する有効画角であり、Vは反射面30aの垂直方向のサイズであり、cot(β/2)=1/tan(β/2)である。制御PC4は、プロジェクタ1内部の投影光50aの光路長などにより、上式を適宜、補正して用いてもよい。
制御PC4は、ステップS26において距離Lを算出することにより、図6のステップS2の処理を終了し、ステップS3に進む。
以上の処理によると、プロジェクタ1からミラーユニット3までの、投影光50aの光路に沿った長さである距離Lに応じて変化する投影画像50の形状、及び反射面30aのサイズに基づいて、距離Lを算出することができる。
上記の説明では、反射面30aの上部(Z方向)において投影光50bがはみ出さなくなった場合の投影画像50’の形状に基づき距離Lを算出する例を説明した。反射面30aの下部(Z方向)において投影光50bがはみ出さなくなった場合についても同様に、所定の式を用いて距離Lを算出することができる。
また、上記の説明では、ステップS21においてミラーユニット3の反射面30aの周囲にわたり投影光50aがはみ出す場合について説明したが、ミラーユニット3の反射面30aの一部において投影光50aがはみ出す場合についても、適宜、投影画像50”から投影画像50’への形状の変化を判断し、変化した部分に対応する式を用いることにより、距離Lを算出することができる。
また、上記の説明では、デジタルズームを用いて矩形領域52のサイズを変更したが、これに加えて、又は代えて、光学ズームを用いてもよい。
また、上記の説明では、制御PC4は、矩形領域52のサイズを変更することにより、投影画像50”の形状の変化を判断して距離Lを算出した。制御PC4は、矩形領域52のサイズを変更せずに投影画像50”の形状に基づき距離Lを算出してもよい。例えば制御PC4は、ワイド端で全画面にクロスハッチを表示した測定用画像D50に基づく投影画像50”の撮像画像の画像解析により、反射面30aの形状に応じて投影画像50”において欠けている部分を抽出し、抽出した部分の形状に基づき距離Lを算出してもよい。
2−2−3.高さHの算出処理(ステップS3)について
図6の高さHを算出する処理(ステップS3)について、図12、図13A,図13B及び図14を用いて説明する。図12は、高さHを算出する処理を説明するためのフローチャートである。図13Aは、高さHを算出するための基準マークを説明するための図である。図13Bは、高さHを算出するための基準マークの撮像画像を説明するための図である。図14は、距離Lと高さHとの関係を説明するための図である。
まず、制御PC4は、例えば図13Aに示すような十字マーク53を含む投影画像50Bをプロジェクタ1に投影させる(S31)。十字マーク53は、図13Aに示すように、投影画像50Bにおける中心位置を示している。十字マーク53は基準マークの一例であり、十字マークに代えて種々のマークを用いてもよく、図9Aの基準スポット51を用いてもよい。
次に、制御PC4は、十字マーク53が投影された床面71を全方位カメラ2に撮像させ、全方位カメラ2から撮像画像20を取得する(S32)。図13Bに、ステップS32において取得される撮像画像20の一例を示す。
次に、制御PC4は、取得した撮像画像20に基づき、図14に示すように、全方位カメラ2から十字マーク53の投影位置に向く方向D1(第1の方向)とZ方向(第2の方向)とでなす角度θを算出する(S33)。
ステップS33において、本実施形態では全方位画像を構成する撮像画像20を用いる。図13Bに示すように撮像画像20では、中心位置から同心円状の位置に応じて特定の角度位置が対応しており、例えば中心位置に十字マーク53があれば角度θ=0°である。制御PC4は、撮像画像20において中心位置を基準とする十字マーク53の位置に基づき角度θを算出する。
次に、制御PC4は、算出した角度θに基づく距離Lと高さHとの関係式を取得する(S34)。図14に示すように、距離Lと高さHとは、角度θに基づき以下の関係式を満たす。
L/H=tanθ (2)
上式(2)によると、角度θに基づく関係式(2)を満たす距離Lと高さHの組み合わせは、図14に示すように、(L1,H1),(L2,H2)など、種々の候補が考えられる。距離Lと高さHの内の一方の値が特定されると、関係式(2)に基づき他方の値を算出できる。
次に、制御PC4は、取得した関係式(2)に、図6のステップS2において算出した距離Lを代入することによって、高さHを算出し(S35)、図6のステップS3の処理を終了する。
以上の処理によると、角度θを算出することにより、距離Lと高さHとの2変数に対して、一つの独立条件(式(2))を得ることができる。ステップS2の算出結果と併せて、二つの独立条件が得られ、距離Lと高さHとを算出することができる。
以上の説明では、図6のステップS2の後に距離Lと高さHとの関係式(2)を取得したが、ステップS2の前に距離Lと高さHとの関係式(2)を取得してもよい。この場合、図12のステップS31〜S34の処理を図6のステップS2よりも前に行い、ステップS2の後に高さHの算出(S35)を行う。
以上のようにして、本実施形態に係る投影システムのキャリブレーション動作により、距離L及び高さHを求めることができる。
3.効果等
以上のように、本実施形態において投影システムは、プロジェクタ1と、ミラーユニット3と、全方位カメラ2と、制御PC4とを備える。プロジェクタ1は、測定用画像D50を表示するための投影光50aを出射する。ミラーユニット3は、プロジェクタ1からの投影光50aの光路を変更し、投影光50aを床面71に導光する。全方位カメラ2は、測定用画像D50に基づきミラーユニット3から床面71上に投影された投影画像50を撮像する。制御PC4は、投影画像50を制御する。制御PC4は、全方位カメラ2が投影画像50を撮像した撮像画像に基づいて、プロジェクタ1からミラーユニット3までの光路に沿った長さである距離L(第1の距離)、及びプロジェクタ1から床面71までの鉛直方向に沿った長さである高さH(第2の距離)を算出し、算出した距離L及び高さHに基づいて投影画像50を制御する。
以上の投影システムによると、制御PC4によって、全方位カメラ2が投影画像50を撮像した撮像画像に基づき距離L及び高さHが算出され、投影システムのキャリブレーションを容易に行うことができる。また、キャリブレーション後の本システムにおいて、適切に投影画像50を制御することができる。
また、本実施形態において、制御PC4は、投影画像50を投影する投影システム(プロジェクタ1、ミラーユニット3及び全方位カメラ2)のキャリブレーションを行うキャリブレーション装置46である。
また、本実施形態において、ミラーユニット3は、投影光50aを反射する反射面30aを備える。制御PC4は、反射面30aのチルト角度αが所定の初期位置(α=45°)である場合に投影された投影画像50の撮像画像に基づいて、距離Lと高さHとを算出する(S1)。初期位置の反射面30aに対する投影画像50の撮像画像に基づいて、制御PC4は、キャリブレーションを容易に行うことができる。
なお、チルト角度αの初期位置は45°でなくてもよい。図15を用いて、任意のチルト角度α(0°<α<90°)に基づくキャリブレーション動作について説明する。図15は、距離Lと高さHとの関係の変形例を説明するための図である。
図15に示すように、任意のチルト角度α(0°<α<90°)において、距離Lと高さHとは、以下の関係式を満たす。
L/H=(tanθ+cot(2α)) (3)
このため、種々の初期位置のチルト角度αに対して、図6のステップS3において式(2)に代えて上式(3)を用いることにより、距離Lと高さHとの関係式を得ることができる。また、ステップS1,S2においても、適宜、チルト角度αの初期位置を変更することができる。
また、本実施形態において、全方位カメラ2は、反射面30aによって反射された投影光50aが床面71に形成した投影画像50を撮像する。制御PC4は、全方位カメラ2による撮像画像における投影画像50,50’,50”の形状又はサイズの少なくとも一方と、反射面30aのサイズに基づいて、距離Lを算出する(S2)。これにより、全方位カメラ2以外のハードウェア構成を追加することなく制御PC4は、距離Lを算出することができる。
また、本実施形態において、プロジェクタ1は、基準スポット51を含む投影画像50Aを床面71上に投影する(S11)。全方位カメラ2は、床面71上に投影された基準スポット51を含む投影画像50Aを撮像する。制御PC4は、ミラーユニット3を制御して床面71上で基準スポット51を移動させる(S12)。制御PC4は、全方位カメラ2が基準スポット51を含む投影画像50Aを撮像した撮像画像における基準スポット51の軌跡(図9B)に基づいて、反射面30aのチルト角度α及びパン角度ψを特定する(S15,S17)。これにより、初期状態ではチルト角度α及びパン角度ψが判別されない場合であっても、制御PC4は、容易にキャリブレーションを行うことができる。なお、基準スポット51に限らず種々の基準マークを用いてもよい。
また、本実施形態において、プロジェクタ1は十字マーク53を含む投影画像50Bを床面71上に投影する(S31)。全方位カメラ2は、床面71上に投影された十字マーク53を含む投影画像50Bを撮像する(S32)。制御PC4は、全方位カメラ2が十字マーク53を含む投影画像50Bを撮像した撮像画像20に基づいて、全方位カメラ2から投影画像50Bが投影された位置に向く方向D1(第1の方向)と高さHを規定するZ方向(第2の方向)とでなす角度θを算出する(S33)。制御PC4は、算出した角度θ及び距離Lに基づいて、高さHを算出する(S35)。これにより、算出した角度θ及び距離Lに基づき、容易に高さHを特定することができる。
また、本実施形態において、全方位カメラ2は、人6などの所定の被写体を撮像する。制御PC4は、全方位カメラ2が被写体を撮像した撮像画像に基づいて投影画像5を制御する。これにより、通常の使用時に被写体を撮像するための全方位カメラ2を用いて、他のハードウェア構成を追加することなくキャリブレーションを行うことができる。
また、本実施形態において、プロジェクタ1から出射される投影光50aの光路は水平である。
(他の実施形態)
以上のように、本出願において開示する技術の例示として、実施形態1を説明した。しかしながら、本開示における技術は、これに限定されず、適宜、変更、置換、付加、省略などを行った実施の形態にも適用可能である。また、上記各実施形態で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。そこで、以下、他の実施形態を例示する。
上記の実施形態では、図6のステップS2,S3の処理により、距離L及び高さHを算出した。本開示における投影システムでは、ステップS2,S3のいずれか一方に代えて、例えば床面71等の投影面に投影した投影画像の合焦距離に基づいて、総距離(L+H)を算出してもよい。この場合、例えばプロジェクタ1が投影光学系13においてレンズ位置の位置センサを備えることにより、合焦距離を測定することができる。
また、上記の実施形態では、プロジェクタ1及びミラーユニット3は天井70等から吊るように設置したが、例えば壁等に固定してもよいし、床又は机等に置いて用いてもよい。この場合、第1の距離は、距離Lと同様に、それぞれ設置されたプロジェクタ1とミラーユニットとの間の距離である。また、第2の距離は、高さHに代えて、種々の設置場所に応じて適宜、設定される投影面からプロジェクタ1までの距離である。
また、上記の実施形態では、投影システムにおける撮像部の一例として、全方位カメラ2について説明した。本開示における撮像部は、全方位カメラ2に限らず、画角180°未満の画角を有するカメラを用いてもよい。この場合、例えば、図12のS33において、制御PC4は、全方位画像ではなく通常の平面画像から、角度θを算出する。また、撮像部は、RGBカメラであってもよいし、赤外カメラでもあってもよい。
また、上記の実施形態では、投影システムにおける光路変更部の一例として、ミラーユニット3について説明したが、光路変更部はミラーユニット3に限定されない。例えば、ミラー30を用いずに、プリズム等の種々の光学系を用いて光路変更部が構成されてもよい。
また、ミラーユニット3の回転軸はJ1,J2(図3)に限らない。例えば回転軸J1に代えて、Z方向を回転軸としてもよいし、反射面30aの垂直方向を回転軸としてもよい。この場合、適宜、所定の角度位置に対応する軌跡を予め設定しておくことで、図8のフローチャートと同様の処理を行うことができる。
また、上記の実施形態における制御PC4に代えて、種々の情報処理装置を用いてもよい。また、上記の実施形態では制御PC4とプロジェクタ1とは別体であったが、本開示における制御部及びキャリブレーション装置46は、投影部と一体的に構成されてもよい。
以上のように、本開示における技術の例示として、実施の形態を説明した。そのために、添付図面および詳細な説明を提供した。
したがって、添付図面および詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、上記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。
また、上述の実施の形態は、本開示における技術を例示するためのものであるから、特許請求の範囲またはその均等の範囲において、種々の変更、置換、付加、省略などを行うことができる。
本開示における投影システムは、投影面に画像を投影する種々の用途に適用可能である。
1 プロジェクタ
2 全方位カメラ
3 ミラーユニット
4 制御PC
40 PC制御部
41 記憶部
46 キャリブレーション装置
47 第1算出部
48 第2算出部
49 キャリブレーション部
L 距離(第1の距離)
H 高さ(第2の距離)

Claims (9)

  1. 所定の画像を表示するための投影光を出射する投影部と、
    前記投影部からの投影光の光路を変更し、投影光を所定の投影面に導光する光路変更部と、
    前記所定の画像に基づいて前記光路変更部から前記投影面上に投影された投影画像を撮像する撮像部と、
    前記投影画像を制御する制御部とを備え、
    前記制御部は、前記撮像部が前記投影画像を撮像した撮像画像に基づいて、前記投影部から前記光路変更部までの前記光路に沿った長さである第1の距離、及び前記投影部から前記投影面までの鉛直方向に沿った長さである第2の距離を算出し、算出した前記第1の距離及び前記第2の距離に基づいて前記投影画像を制御する
    投影システム。
  2. 前記光路変更部は、前記投影光を反射する反射面を備え、
    前記制御部は、前記反射面の傾斜角度及び前記撮像画像に基づいて前記第1及び前記第2の距離を算出する
    請求項1に記載の投影システム。
  3. 前記撮像部は、前記反射面によって反射された前記投影光が前記投影面に形成した前記投影画像を撮像し、
    前記制御部は、前記撮像部による前記撮像画像における前記投影画像の形状又はサイズの少なくとも一方と、前記反射面のサイズに基づいて、前記第1の距離を算出する
    請求項2に記載の投影システム。
  4. 前記投影部は、基準マークを含む画像を前記投影面上に投影し、
    前記撮像部は、前記投影面上に投影された前記基準マークを含む投影画像を撮像し、
    前記制御部は、
    前記光路変更部を制御して前記投影面上で前記基準マークを移動させ、
    前記撮像部が前記基準マークを含む投影画像を撮像した撮像画像における基準マークの軌跡に基づいて、前記反射面の傾斜角度を特定する
    請求項2に記載の投影システム。
  5. 前記投影部は、基準マークを含む画像を前記投影面上に投影し、
    前記撮像部は、前記投影面上に投影された前記基準マークを含む投影画像を撮像し、
    前記制御部は、前記撮像部が前記基準マークを含む投影画像を撮像した撮像画像に基づいて、前記撮像部から前記基準マークが投影された位置に向く第1の方向と、前記第2の距離を規定する第2の方向とでなす角度を算出し、
    前記角度及び前記第1の距離に基づいて、前記第2の距離を算出する
    請求項1に記載の投影システム。
  6. 前記撮像部は、所定の被写体を撮像し、
    前記制御部は、前記撮像部が前記被写体を撮像した撮像画像に基づいて前記投影画像を制御する
    請求項1に記載の投影システム。
  7. 前記撮像部は、全方位カメラで構成される
    請求項1に記載の投影システム。
  8. 前記光路は、水平である
    請求項1に記載の投影システム。
  9. 投影システムのキャリブレーションを行うキャリブレーション装置であって、
    前記投影システムは、
    所定の画像を表示するための投影光を出射する投影部と、
    前記投影部からの投影光の光路を変更し、前記投影光を所定の投影面に導光する光路変更部と、
    前記所定の画像に基づいて前記光路変更部から前記投影面上に投影された投影画像を撮像する撮像部とを備え、
    前記キャリブレーション装置は、
    前記撮像部が前記投影画像を撮像した撮像画像に基づいて、前記投影部から前記光路変更部までの前記光路に沿った長さである第1の距離を算出する第1算出部と、
    前記撮像部が前記投影画像を撮像した撮像画像に基づいて、前記投影部から前記投影面までの鉛直方向に沿った長さである第2の距離を算出する第2算出部と、
    算出した前記第1の距離及び前記第2の距離に基づいて前記投影画像のキャリブレーションを行うキャリブレーション部とを備える
    キャリブレーション装置。
JP2017033071A 2016-03-10 2017-02-24 投影システム及びキャリブレーション装置 Active JP6846618B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/452,953 US10104351B2 (en) 2016-03-10 2017-03-08 Projection system and calibration apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016047628 2016-03-10
JP2016047628 2016-03-10

Publications (2)

Publication Number Publication Date
JP2017169195A true JP2017169195A (ja) 2017-09-21
JP6846618B2 JP6846618B2 (ja) 2021-03-24

Family

ID=59914087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017033071A Active JP6846618B2 (ja) 2016-03-10 2017-02-24 投影システム及びキャリブレーション装置

Country Status (1)

Country Link
JP (1) JP6846618B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021144114A (ja) * 2020-03-11 2021-09-24 パナソニックIpマネジメント株式会社 投写方向変更装置および画像投写システム
CN113923428A (zh) * 2021-11-23 2022-01-11 中国航空工业集团公司洛阳电光设备研究所 一种平显投影装置投影精度快速校准终端及校准方法
WO2023279901A1 (zh) * 2021-07-06 2023-01-12 华为技术有限公司 一种显示设备以及成像方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000171897A (ja) * 1998-12-04 2000-06-23 Toshiba Corp 液晶プロジェクタ
JP2002262198A (ja) * 2001-03-01 2002-09-13 Seiko Epson Corp 画像歪みの補正
JP2004248126A (ja) * 2003-02-17 2004-09-02 Nippon Telegr & Teleph Corp <Ntt> 任意方向情報投影装置、この装置の制御プログラム、このプログラムを記録した記録媒体
JP2004260785A (ja) * 2002-07-23 2004-09-16 Nec Viewtechnology Ltd 画像歪み補正機能を備えたプロジェクタ装置
JP2005064667A (ja) * 2003-08-08 2005-03-10 Nec Viewtechnology Ltd プロジェクション装置並びにプロジェクション方法
US20050248729A1 (en) * 2004-05-04 2005-11-10 Microsoft Corporation Selectable projector and imaging modes of display table
JP2005331585A (ja) * 2004-05-18 2005-12-02 Nec Viewtechnology Ltd 距離傾斜角度測定装置を有するプロジェクタ
JP2008089841A (ja) * 2006-09-29 2008-04-17 Brother Ind Ltd 投影装置
JP2008203393A (ja) * 2007-02-19 2008-09-04 Seiko Epson Corp プロジェクションシステム
JP2009002982A (ja) * 2007-06-19 2009-01-08 Seiko Epson Corp 表示装置
JP2011150160A (ja) * 2010-01-22 2011-08-04 Seiko Epson Corp プロジェクターシステム
JP2015118199A (ja) * 2013-12-18 2015-06-25 カシオ計算機株式会社 投影装置及び投影方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000171897A (ja) * 1998-12-04 2000-06-23 Toshiba Corp 液晶プロジェクタ
JP2002262198A (ja) * 2001-03-01 2002-09-13 Seiko Epson Corp 画像歪みの補正
JP2004260785A (ja) * 2002-07-23 2004-09-16 Nec Viewtechnology Ltd 画像歪み補正機能を備えたプロジェクタ装置
JP2004248126A (ja) * 2003-02-17 2004-09-02 Nippon Telegr & Teleph Corp <Ntt> 任意方向情報投影装置、この装置の制御プログラム、このプログラムを記録した記録媒体
JP2005064667A (ja) * 2003-08-08 2005-03-10 Nec Viewtechnology Ltd プロジェクション装置並びにプロジェクション方法
US20050248729A1 (en) * 2004-05-04 2005-11-10 Microsoft Corporation Selectable projector and imaging modes of display table
JP2005331585A (ja) * 2004-05-18 2005-12-02 Nec Viewtechnology Ltd 距離傾斜角度測定装置を有するプロジェクタ
JP2008089841A (ja) * 2006-09-29 2008-04-17 Brother Ind Ltd 投影装置
JP2008203393A (ja) * 2007-02-19 2008-09-04 Seiko Epson Corp プロジェクションシステム
JP2009002982A (ja) * 2007-06-19 2009-01-08 Seiko Epson Corp 表示装置
JP2011150160A (ja) * 2010-01-22 2011-08-04 Seiko Epson Corp プロジェクターシステム
JP2015118199A (ja) * 2013-12-18 2015-06-25 カシオ計算機株式会社 投影装置及び投影方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021144114A (ja) * 2020-03-11 2021-09-24 パナソニックIpマネジメント株式会社 投写方向変更装置および画像投写システム
JP7417935B2 (ja) 2020-03-11 2024-01-19 パナソニックIpマネジメント株式会社 投写方向変更装置および画像投写システム
WO2023279901A1 (zh) * 2021-07-06 2023-01-12 华为技术有限公司 一种显示设备以及成像方法
CN113923428A (zh) * 2021-11-23 2022-01-11 中国航空工业集团公司洛阳电光设备研究所 一种平显投影装置投影精度快速校准终端及校准方法
CN113923428B (zh) * 2021-11-23 2024-01-30 中国航空工业集团公司洛阳电光设备研究所 一种平显投影装置投影精度快速校准终端及校准方法

Also Published As

Publication number Publication date
JP6846618B2 (ja) 2021-03-24

Similar Documents

Publication Publication Date Title
US10104351B2 (en) Projection system and calibration apparatus
JP6369810B2 (ja) 投写画像表示システム、投写画像表示方法及び投写型表示装置
JP5401940B2 (ja) 投写光学系のズーム比測定方法、そのズーム比測定方法を用いた投写画像の補正方法及びその補正方法を実行するプロジェクタ
US20210302753A1 (en) Control apparatus, control method, and program
WO2014171136A1 (ja) 投写型映像表示装置
US20140285778A1 (en) Projection apparatus, projection method, and projection program medium
JP6201359B2 (ja) 投影システム、投影方法及び投影プログラム
JP6846618B2 (ja) 投影システム及びキャリブレーション装置
CN110463191A (zh) 投影仪及投影仪的控制方法
JP2018081048A (ja) 三次元形状計測装置
CN104660944A (zh) 图像投影装置及图像投影方法
JP2014206634A (ja) 電子機器
US11558591B2 (en) Projector focusing method and projector focusing system capable of projecting high resolution images at arbitrary positions
JP6191019B2 (ja) 投影装置及び投影方法
JP5192669B2 (ja) プロジェクタ、位置調整装置および位置調整方法
US20230037686A1 (en) Electronic device, contents searching system and searching method thereof
JP7214443B2 (ja) 画像投射装置およびその制御方法
JP2016122179A (ja) 投影装置及び投影方法
JP6307706B2 (ja) 投影装置
JP2015026219A (ja) 電子機器
JP5630799B2 (ja) 投影装置、投影方法及びプログラム
EP4391528A1 (en) Electronic device and control method therefor
JP2013083985A (ja) 投影装置、投影方法及びプログラム
JP2006276492A (ja) プロジェクタ、およびプロジェクタの制御方法
US20240040094A1 (en) Electronic apparatus for projecting image and controlling method thereof

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190121

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210125

R151 Written notification of patent or utility model registration

Ref document number: 6846618

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151