JP2017162998A - 素子チップの製造方法 - Google Patents

素子チップの製造方法 Download PDF

Info

Publication number
JP2017162998A
JP2017162998A JP2016046339A JP2016046339A JP2017162998A JP 2017162998 A JP2017162998 A JP 2017162998A JP 2016046339 A JP2016046339 A JP 2016046339A JP 2016046339 A JP2016046339 A JP 2016046339A JP 2017162998 A JP2017162998 A JP 2017162998A
Authority
JP
Japan
Prior art keywords
plasma
substrate
holding sheet
stage
plasma etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016046339A
Other languages
English (en)
Other versions
JP6524534B2 (ja
Inventor
尚吾 置田
Shogo Okita
尚吾 置田
篤史 針貝
Atsushi Harigai
篤史 針貝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2016046339A priority Critical patent/JP6524534B2/ja
Priority to US15/427,561 priority patent/US10037891B2/en
Priority to CN201710088563.4A priority patent/CN107180753B/zh
Publication of JP2017162998A publication Critical patent/JP2017162998A/ja
Application granted granted Critical
Publication of JP6524534B2 publication Critical patent/JP6524534B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • H01L21/30655Plasma etching; Reactive-ion etching comprising alternated and repeated etching and passivation steps, e.g. Bosch process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31127Etching organic layers
    • H01L21/31133Etching organic layers by chemical means
    • H01L21/31138Etching organic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68742Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a lifting arrangement, e.g. lift pins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68785Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by the mechanical construction of the susceptor, stage or support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/544Marks applied to semiconductor devices or parts, e.g. registration marks, alignment structures, wafer maps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54453Marks applied to semiconductor devices or parts for use prior to dicing
    • H01L2223/5446Located in scribe lines

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Drying Of Semiconductors (AREA)
  • Dicing (AREA)

Abstract

【課題】保持シートに保持された基板をプラズマダイシングする際に、製品の歩留まりを向上させる。【解決手段】基板を分割して複数の素子チップを形成する素子チップの製造方法であって、基板の第1主面を保持シートに貼着させて、保持シートに保持された基板を準備する準備工程と、基板を保持した保持シートを、プラズマ処理装置内に設けられたステージに載置する載置工程と、基板の分割領域を、第1主面までプラズマエッチングし、基板を複数の素子チップに個片化するプラズマダイシング工程と、を備え、プラズマダイシング工程が、ステージと保持シートとの間に冷却用ガスを供給しながら、分割領域の厚みの一部をプラズマエッチングする、第1のプラズマエッチング工程と、第1のプラズマエッチング工程の後、冷却用ガスの供給を停止して、分割領域の残部をプラズマエッチングする、第2のプラズマエッチング工程と、を備える素子チップの製造方法。【選択図】図2

Description

本発明は、保持シートに保持された基板から素子チップを製造する方法に関する。
分割領域で画定される複数の素子領域を備える基板をダイシングする方法として、当該分割領域をプラズマエッチングして、基板を複数の素子チップに分割するプラズマダイシングが知られている。近年、電子機器が小型化および薄型化しており、電子機器に搭載されるICチップなどの厚みは小さくなっている。これにともない、プラズマダイシングの対象となるICチップなどを形成するための基板の厚みも小さくなっており、基板が撓みやすくなっている。
特許文献1は、搬送やピックアップ等における基板あるいは素子チップのハンドリング性向上のために、フレームとその開口部を覆う保持シートとを備える搬送キャリアに基板を保持させた状態で、プラズマ処理装置に備えられたステージに載置し、プラズマダイシングを行うことを教示している。保持シートを使用する場合、保持シートが高温になると、伸長したり損傷するなどして、個片化された素子チップが脱落したり、保持シートから素子チップをピックアップすることが困難になる。そのため、ステージは、保持シートを密着させるための静電吸着機構を備えるとともに冷却されている。冷却されたステージに保持シートを静電吸着させることにより、プラズマ処理中の保持シートも冷却される。
国際公開第2012/164857号パンフレット
絶縁膜を含む回路層を備える基板を、保持シートに保持させた状態でプラズマダイシングする場合、ステージに埋設された高周波電極に大きな高周波電力を印加し、高いバイアス電圧をかけながらプラズマ処理が行われる。これにより、エッチング速度が速くなり、スループットを向上させることができる。一方、高いバイアス電圧をかけると、保持シートは高温になり易い。そのため、スループット向上の観点からも、プラズマ処理中、保持シートを効率よく冷却させることが求められる。
ところで、処理対象が保持シートに保持された基板ではなく、十分な厚みを有する基板単体の場合、基板の冷却効率を向上させるために、基板をステージに静電吸着させるとともに、ステージ表面に設けたガス孔から、冷却用ガスとしてヘリウム(He)などの伝熱ガスを基板とステージとの間に供給する場合がある。このとき、基板とステージとの間に供給する伝熱ガスの圧力を高めることにより、基板の冷却効率はさらに向上する。
しかし、保持シートを用いる場合、ステージと保持シートの間に供給する伝熱ガスの圧力を高めることが困難な場合がある。保持シートのステージに対する静電吸着力は、基板単体のステージに対する静電吸着力に比べて弱いためである。さらに、プラズマエッチングの進行に伴って基板の分割領域の厚みが小さくなると、基板は平坦な形状を保つことが難しくなる。そのため、保持シートを介したステージ側からの伝熱ガスの圧力により、基板は、分割領域を起点として保持シートとともにステージから浮き上がり易くなる。基板がステージから浮き上がると、加工形状の異常や異常放電などのトラブルが発生し易くなる。さらに、保持シートとのステージとの密着性が低下するため、保持シートを十分に冷却することができない。
また、プラズマダイシングする場合、静電吸着力が不安定になりやすいという課題がある。一般に静電吸着に用いられる静電吸着用電極(以下、ESC電極と称す)には、ジョンソンラーベック力を利用するESC電極とクーロン力を利用するESC電極がある。プラズマダイシングにおいて、基板は、保持シートを介してステージに吸着させる必要がある。保持シートが絶縁性である場合のように、ジョンソンラーベック力が働き難い場合には、クーロン力を利用するESC電極を用いることが好ましい。
クーロン力を利用するESC電極の場合、基板および保持シートの表面に帯電した電荷と、ステージ内部に設けられたESC電極との間に静電吸着力が発生する。プラズマダイシングにおいては、基板は、保持シート上で素子チップに個片化される。このとき、基板の膜厚分布やプラズマの分布などの影響により、個片化されるタイミングには基板面内でばらつきが生じる。そのため、プラズマダイシングの過程で基板の個片化が始まると、基板表面に帯電した電荷の面内分布が不均一になり、静電吸着力が不安定になりやすい。
一方、ジョンソンラーベック力を利用するESC電極の場合、保持シートおよび基板に微小電流が流れることにより静電吸着する。この場合も、プラズマダイシングにおいて基板が素子チップに個片化される際に、保持シートを介して基板の裏面に流れる微小電流の経路が変化する。そのため、基板が個片化される前後で、静電吸着力が不安定になりやすい。
上記のように、プラズマ処理によって基板を個片化するプラズマダイシングにおいては、個片化の前後で静電吸着力が不安定になりやすいという課題がある。そのため、ステージと保持シートの間に伝熱ガスを導入することは困難である。
本発明の一局面は、第1主面およびその反対側の第2主面を備え、分割領域で画定される複数の素子領域を備える基板を、前記分割領域で分割して複数の素子チップを形成する素子チップの製造方法であって、前記第1主面を保持シートに貼着させて、前記保持シートに保持された基板を準備する準備工程と、前記基板を保持した前記保持シートを、プラズマ処理装置内に設けられたステージに載置する載置工程と、前記基板の前記分割領域を、前記第2主面から前記第1主面までプラズマエッチングし、前記基板を複数の素子チップに個片化するプラズマダイシング工程と、を備え、前記プラズマダイシング工程が、前記ステージと前記保持シートとの間に冷却用ガスを供給しながら、前記分割領域の厚みの一部をプラズマエッチングする、第1のプラズマエッチング工程と、前記第1のプラズマエッチング工程の後、前記冷却用ガスの供給を停止して、前記分割領域の残部をプラズマエッチングする、第2のプラズマエッチング工程と、を備える、素子チップの製造方法に関する。
本発明によれば、保持シートに保持された基板をプラズマ処理する際に、基板のステージからの浮き上がりを抑制しながら、冷却用ガスを用いて効率的に保持シートを冷却することができるため、スループットおよび製品の歩留まりが向上する。
本発明の実施形態に係る基板を保持した搬送キャリアを概略的に示す上面図(a)およびそのB−B線での断面図(b)である。 本発明の実施形態に係るプラズマ処理装置の概略構造を断面で示す概念図である。 本発明の実施形態に係るプラズマ処理方法の工程の一部を示す断面図((a)〜(c))である。 プラズマ処理装置のステージおよび冷却用ガス孔の配置を示す上面図である。 本発明の他の実施形態に係るプラズマ処理方法の工程の一部を示す断面図((a)〜(c))である。 本発明の他の実施形態に係るプラズマ処理方法の工程の一部を示す断面図((a)〜(c))である。 本発明の他の実施形態に係るプラズマ処理方法の工程の一部を示す断面図((a)〜(c))である。 本発明の他の実施形態に係るプラズマ処理方法の工程の一部を示す断面図((a)〜(c))である。
本実施形態では、基板の分割領域の厚みを考慮しながら、ステージと保持シートの間に冷却用ガスを供給する。つまり、プラズマダイシング工程の序盤から保持シートの浮き上がりが生じ易くなるまでの間は、冷却用ガスにより保持シートを効率的に冷却しながら、プラズマエッチングを行う。一方、プラズマダイシング工程の終盤の保持シートの浮き上がりが生じ易くなる状態においては、冷却用ガスの供給を停止して、プラズマエッチングを行う。これにより、保持シートが冷却用ガスによって浮き上がる現象を抑制しながら、保持シートを損傷させることなく、プラズマダイシングを効率よく行うことができる。
すなわち、本実施形態に係る素子チップの製造方法は、第1主面およびその反対側の第2主面を備え、分割領域で画定される複数の素子領域を備える基板を、分割領域で分割して複数の素子チップを形成する素子チップの製造方法であって、第1主面を保持シートに貼着させて、保持シートに保持された基板を準備する準備工程と、基板を保持した保持シートを、プラズマ処理装置内に設けられたステージに載置する載置工程と、基板の分割領域を、第2主面から第1主面までプラズマエッチングし、基板を複数の素子チップに個片化するプラズマダイシング工程と、を備え、プラズマダイシング工程が、ステージと保持シートとの間に冷却用ガスを供給しながら、分割領域の厚みの一部をプラズマエッチングする、第1のプラズマエッチング工程と、第1のプラズマエッチング工程の後、冷却用ガスの供給を停止して、分割領域の残部をプラズマエッチングする、第2のプラズマエッチング工程と、を備える。
プラズマダイシング工程は、ステージに高周波電力(バイアス電圧)を印加した状態で行われてもよい。このとき、冷却用ガスを供給しながらプラズマエッチングを行う第1のプラズマエッチング工程では、第2のプラズマエッチング工程より高いバイアス電圧をかけることができる。そのため、第1のプラズマエッチング工程におけるエッチング速度が速くなり、スループットが向上する。この方法は、特に基板が絶縁膜や金属材料を備える場合に有用である。基板が絶縁膜や金属材料を備える場合、処理の高速化の観点から、通常、高いバイアス電圧をかけながらプラズマ処理が行われるためである。
まず、本発明で使用される搬送キャリアの一実施形態について、図1(a)および(b)を参照しながら説明する。図1(a)は、基板10とこれを保持する搬送キャリア20とを概略的に示す上面図であり、図1(b)は、基板10および搬送キャリア20の図1(a)に示すB−B線での断面図である。なお、図1では、フレーム21および基板10が共に略円形である場合について図示するが、これに限定されるものではない。
(基板)
基板10は、プラズマ処理の対象物であり、分割領域R1と、分割領域R1によって画定される複数の素子領域R2とに区画されている(図3参照)。基板10は、本体層11と、例えば、半導体回路、電子部品素子、MEMS等を具備する回路層12とを備える。基板10の分割領域R1をエッチングすることにより、上記回路層12を有する素子チップ110(図3参照)が得られる。
本体層11は、例えば、シリコン(Si)、ガリウム砒素(GaAs)、窒化ガリウム(GaN)、炭化ケイ素(SiC)等からなる半導体層である。回路層12は、少なくとも絶縁膜を含んでおり、その他、金属材料、樹脂保護層(例えば、ポリイミド)、レジスト層、電極パッド、バンプ等を含んでいてもよい。絶縁膜は、配線用の金属材料との積層体(多層配線層)として含まれてもよい。絶縁膜は、例えば、ポリイミドなどの樹脂膜、二酸化ケイ素(SiO)、窒化ケイ素(Si)、低誘電率膜(Low−k膜)、タンタル酸リチウム(LiTaO)、ニオブ酸リチウム(LiNbO)等を含む。
本体層11の厚みは特に限定されず、例えば、20〜1000μmであり、100〜300μmであってもよい。絶縁膜の厚みも特に限定されず、例えば、2〜10μmである。多層配線層の厚みも特に限定されず、例えば、2〜10μmである。レジスト層の厚みも特に限定されず、例えば、5〜20μmである。基板10の大きさも特に限定されず、例えば、最大径50mm〜300mm程度である。基板10の形状も特に限定されず、例えば、円形、角型である。また、基板10には、オリエンテーションフラット(オリフラ)、ノッチ等の切欠き(いずれも図示せず)が設けられていてもよい。
さらに、本体層11の回路層12とは反対側に、バックメタル層13(図7(a)参照)が配置されていてもよい。バックメタル層13は、得られる素子チップ110がパワーデバイスである場合等に配置される。バックメタル層13は、例えば、金(Au)、ニッケル(Ni)、チタン(Ti)、アルミニウム(Al)、錫(Sn)、銀(Ag)、白金(Pt)、パラジウム(Pd)等を含む。これらは、単独で用いてもよく、二種以上を組み合わせて用いてもよい。バックメタル層13は、例えば、上記の金属を単独で含む単層であってもよいし、上記の金属を単独で含む層の積層体であってもよい。バックメタル層13の厚みは特に限定されず、例えば、0.5〜1.5μmである。
(保持シート)
保持シート22の材質は特に限定されない。なかでも、基板10が貼着され易い点で、保持シート22は、粘着層22aと柔軟性のある樹脂フィルム22bとを含むことが好ましい。この場合、ハンドリング性の観点から、保持シート22はフレーム21に固定される。以下、フレーム21と、フレーム21に固定された保持シート22とを併せて、搬送キャリア20と称する。
樹脂フィルム22bの材質は特に限定されず、例えば、ポリエチレンおよびポリプロピレン等のポリオレフィン、ポリエチレンテレフタレート等のポリエステル等の熱可塑性樹脂が挙げられる。樹脂フィルムには、伸縮性を付加するためのゴム成分(例えば、エチレン−プロピレンゴム(EPM)、エチレン−プロピレン−ジエンゴム(EPDM)等)、可塑剤、軟化剤、酸化防止剤、導電性材料等の各種添加剤が配合されていてもよい。また、上記熱可塑性樹脂は、アクリル基等の光重合反応を示す官能基を有していてもよい。樹脂フィルム22bの厚みは特に限定されず、例えば、50〜300μmであり、好ましくは50〜150μmである。
粘着層22aの外周縁は、フレーム21の一方の面に貼着しており、フレーム21の開口を覆っている。粘着層22aのフレーム21の開口から露出した部分に、基板10の一方の主面(第1主面10X)が貼着されて支持される。プラズマ処理の際、保持シート22は、プラズマ処理装置内に設置されるステージと樹脂フィルム22bとが接するように、ステージに載置される。すなわち、プラズマエッチングは、第1主面10Xとは反対の主面(第2主面10Y)側から行われる。
粘着層22aは、紫外線(UV)の照射によって粘着力が減少する粘着成分からなることが好ましい。これにより、プラズマダイシング後に素子チップ110をピックアップする際、UV照射を行うことにより、素子チップ110が粘着層22aから容易に剥離されて、ピックアップし易くなる。例えば、粘着層22aは、樹脂フィルム22bの片面に、UV硬化型アクリル粘着剤を5〜100μm(好ましくは5〜15μm)の厚みに塗布することにより得られる。
(フレーム)
フレーム21は、基板10の全体と同じかそれ以上の面積の開口を有した枠体であり、所定の幅および略一定の薄い厚みを有している。フレーム21は、保持シート22および基板10を保持した状態で搬送できる程度の剛性を有している。フレーム21の開口の形状は特に限定されないが、例えば、円形や、矩形、六角形など多角形であってもよい。フレーム21には、位置決めのためのノッチ21aやコーナーカット21bが設けられていてもよい。フレーム21の材質としては、例えば、アルミニウム、ステンレス鋼等の金属や、樹脂等が挙げられる。
(プラズマ処理装置)
次に、図2を参照しながら、本発明の実施形態に係るプラズマ処理装置200の構造を説明する。図2は、プラズマ処理装置200の構造の断面を概略的に示している。
プラズマ処理装置200は、ステージ211を備えている。搬送キャリア20は、保持シート22の基板10を保持している面が上方を向くように、ステージ211に搭載される。ステージ211は、搬送キャリア20の全体を載置できる程度の大きさを備える。ステージ211の上方には、フレーム21および保持シート22の少なくとも一部を覆うとともに、基板10の少なくとも一部を露出させるための窓部224Wを有するカバー224が配置されている。
ステージ211およびカバー224は、処理室(真空チャンバ203)内に配置されている。真空チャンバ203は、上部が開口した概ね円筒状であり、上部開口は蓋体である誘電体部材208により閉鎖されている。真空チャンバ203を構成する材料としては、アルミニウム、ステンレス鋼(SUS)、表面をアルマイト加工したアルミニウム等が例示できる。誘電体部材208を構成する材料としては、酸化イットリウム(Y23)、窒化アルミニウム(AlN)、アルミナ(Al23)、石英(SiO2)等の誘電体材料が例示できる。誘電体部材208の上方には、上部電極としてのアンテナ209が配置されている。アンテナ209は、第1高周波電源210Aと電気的に接続されている。ステージ211は、真空チャンバ203内の底部側に配置される。
真空チャンバ203には、ガス導入口203aが接続されている。ガス導入口203aには、プラズマ発生用ガスの供給原であるプロセスガス源212およびアッシングガス源213が、それぞれ配管によって接続されている。また、真空チャンバ203には、排気口203bが設けられており、排気口203bには、真空チャンバ203内のガスを排気して減圧するための真空ポンプを含む減圧機構214が接続されている。
ステージ211は、それぞれ略円形の電極層215と、金属層216と、電極層215および金属層216を支持する基台217と、電極層215、金属層216および基台217を取り囲む外周部218とを備える。外周部218は導電性および耐エッチング性を有する金属により構成されており、電極層215、金属層216および基台217をプラズマから保護する。外周部218の上面には、円環状の外周リング229が配置されている。外周リング229は、外周部218の上面をプラズマから保護する役割をもつ。電極層215および外周リング229は、例えば、上記の誘電体材料により構成される。
電極層215の内部には、静電吸着機構を構成するESC電極219と、第2高周波電源210Bに電気的に接続された高周波電極部220とが配置されている。ESC電極219には、直流電源226が電気的に接続されている。静電吸着機構は、ESC電極219および直流電源226により構成されている。静電吸着機構によって、保持シート22はステージ211に吸着される。
金属層216は、例えば、表面にアルマイト被覆を形成したアルミニウム等により構成される。金属層216内には、冷媒流路227が形成されている。冷媒流路227は、ステージ211を冷却する。ステージ211が冷却されることにより、ステージ211に搭載された保持シート22が冷却されるとともに、ステージ211にその一部が接触しているカバー224も冷却される。冷媒流路227内の冷媒は、冷媒循環装置225により循環される。
ステージ211の外周付近には、ステージ211を貫通する複数の支持部222が配置されている。支持部222は、昇降機構223Aにより昇降駆動される。搬送キャリア20が真空チャンバ203内に搬送されると、所定の位置まで上昇した支持部222に受け渡される。支持部222は、搬送キャリア20のフレーム21を支持する。支持部222の上端面がステージ211と同じレベル以下にまで降下することにより、搬送キャリア20は、ステージ211の所定の位置に搭載される。
カバー224の端部には、複数の昇降ロッド221が連結しており、カバー224を昇降可能にしている。昇降ロッド221は、昇降機構223Bにより昇降駆動される。昇降機構223Bによるカバー224の昇降の動作は、昇降機構223Aとは独立して行うことができる。
制御装置228は、第1高周波電源210A、第2高周波電源210B、プロセスガス源212、アッシングガス源213、減圧機構214、冷媒循環装置225、昇降機構223A、昇降機構223Bおよび静電吸着機構を含むプラズマ処理装置200を構成する要素の動作を制御する。
(第1実施形態)
以下、第1実施形態について、図3を参照しながら説明する。図3は、本実施形態におけるプラズマ処理方法の一部を示す断面図である。基板10は、図3(a)に示すように、半導体層である本体層11と、多層配線層121、電極パッド122および多層配線層121を部分的に被覆するレジスト層123を備える回路層12と、を備える。レジスト層123は、素子領域R2を被覆しており、プラズマから素子領域R2を保護している。言い換えれば、素子領域R2はレジスト層123を備える領域であり、その他の領域が分割領域R1である。なお、電極パッド122の一部は、レジスト層123から露出していてもよい。
(1)準備工程
まず、搬送キャリア20を準備する。搬送キャリア20は、保持シート22をフレーム21の一方の面に貼着し、固定することにより得られる。このとき、図1(b)に示すように、保持シート22の粘着層22aをフレームに対向させる。次いで、保持シート22の粘着層22aに基板10の本体層11を貼着することにより、基板10を搬送キャリア20に保持させる(図3(a))。すなわち、本実施形態において、基板10の保持シート22に貼着される面(第1主面10X)は、本体層11である。
(2)搬入工程
次に、基板10が保持された搬送キャリア20を真空チャンバ203内に搬入する。
真空チャンバ203内では、昇降ロッド221の駆動により、カバー224が所定の位置まで上昇している。図示しないゲートバルブが開いて搬送キャリア20が搬入される。複数の支持部222は、上昇した状態で待機している。搬送キャリア20がステージ211上方の所定の位置に到達すると、支持部222に搬送キャリア20が受け渡される。搬送キャリア20は、保持シート22の粘着層22aが上方を向くように、支持部222の上端面に受け渡される。
(3)載置工程
搬送キャリア20が支持部222に受け渡されると、ゲートバルブが閉じられ、反応室103は密閉状態に置かれる。次に、支持部222が降下を開始する。支持部222の上端面が、ステージ211と同じレベル以下にまで降下することにより、搬送キャリア20は、ステージ211に載置される。続いて、昇降ロッド221が駆動する。昇降ロッド221は、カバー224を所定の位置にまで降下させる。このとき、カバー224が搬送キャリア20に接触することなくフレーム21を覆うことができるように、カバー224とステージ211との距離は調節されている。これにより、フレーム21および保持シート22の基板10を保持していない部分は、カバー224と接触することなくカバー224によって覆われ、基板10はカバー224の窓部224Wから露出する。
カバー224は、例えば、略円形の外形輪郭を有したドーナツ形であり、一定の幅および薄い厚みを備えている。カバー224の内径(窓部224Wの直径)はフレーム21の内径よりも小さく、カバー224の外径はフレーム21の外径よりも大きい。したがって、搬送キャリア20をステージの所定の位置に搭載し、カバー224を降下させると、カバー224は、フレーム21と保持シート22の少なくとも一部を覆うことができる。窓部224Wからは、基板10の少なくとも一部が露出する。このとき、カバー224は、フレーム21、保持シート22および基板10のいずれとも接触しない。カバー224は、例えば、セラミックス(例えば、アルミナ、窒化アルミニウムなど)や石英などの誘電体や、アルミニウムあるいは表面がアルマイト処理されたアルミニウムなどの金属で構成される。
搬送キャリア20が支持部222に受け渡された後、直流電源226からESC電極219に電圧を印加する。これにより、保持シート22がステージ211に接触すると同時にステージ211に静電吸着される。なお、ESC電極219への電圧の印加は、保持シート22がステージ211に載置された後(接触した後)に、開始されてもよい。
(4)プラズマダイシング工程
(4−1)第1のプラズマエッチング工程
第1のプラズマエッチング工程では、基板10の第2主面10Y側からエッチングが行われ、分割領域R1の厚みの一部(本実施形態では、回路層12(多層配線層121))のみが、発生したプラズマP1との物理化学的反応によって除去される(図3(b))。このとき、ステージ211と保持シート22との間に冷却用ガスGを供給する。これにより、第1のプラズマエッチング工程中の保持シート22の温度上昇は抑制される。冷却用ガスGとしては特に限定されず、例えば、Heなどの伝熱ガスが挙げられる。
第1のプラズマエッチング工程では分割領域R1の厚みの一部のみが除去される。つまり、第1のプラズマエッチング工程中、基板10は、分割領域R1において、その平坦な形状を維持するのに十分な厚みを備えている。そのため、ステージ211と保持シート22との間に冷却用ガスGを供給しても、基板10のステージ211からの浮き上がりは抑制される。よって、基板10の全面に亘ってESC電極219(ステージ211)と保持シート22との間にクーロン力が発生して、基板10および保持シート22はステージ211に強く静電吸着される。これにより、加工形状が安定し、また、異常放電などのトラブルが抑制される。
ステージ211が冷却されている場合、ステージ211に強く静電吸着される基板10および保持シート22の熱的ダメージはさらに抑制される。そのため、ステージ211に埋設されている高周波電極部220に、100kHz以上(例えば、400〜500kHz、あるいは、13.56MHz)の高周波電力を投入して、高いバイアス電圧をかけながらプラズマエッチングすることができる。これにより、高速加工が可能となりスループットが向上する。ステージ211の冷却は、冷媒循環装置225により、ステージ211内に、例えば温度−20℃〜20℃の冷媒を循環させることによって行われる。冷却用ガスGの供給さらにはステージ211の冷却により、プラズマ処理中の保持シート22の温度は、例えば70℃以下に抑制される。
なお、本実施形態では、第1のプラズマエッチング工程において回路層12を除去しているが、これに限定されない。例えば、第1のプラズマエッチング工程において、回路層12の一部のみを除去してもよいし、回路層12とともに本体層11の一部を除去してもよい。いずれの場合であっても、ステージ211と保持シート22との間に冷却用ガスGを供給することによる、基板10のステージ211からの浮き上がりを抑制するために、分割領域R1の残厚が20μmよりも大きい時点、好ましくは50μmよりも大きい時点で第1のプラズマエッチング工程を終了することが好ましい。
冷却用ガスGは、ステージ211の表面に配置された冷却用ガス孔230(図2参照)から、ステージ211と保持シート22との間に供給される。冷却用ガス孔230の位置は特に限定されないが、ステージ211(具体的には、電極層215)の表面のフレーム21に対向する位置に配置されることが好ましい。この場合、ステージ211の表面(搬送キャリア20が載置される面)のうち、冷却用ガス孔230を含む環状の領域の表面粗さを粗くする(つまり、粗度を大きくする)ことが好ましい。具体的には、図4に示すように、ステージ211は、冷却用ガス孔230を含む環状の第1の領域211aと、第1の領域211aよりも小さい粗度を有し、第1の領域211aの周囲に形成される第2の領域211bと、第1の領域211aよりも小さい粗度を有し、第1の領域211aの内部に形成される第3の領域211cとを備えることが好ましい。第1の領域211aの形状は特に限定されないが、保持シート22を均一に効率よく冷却できる点で、フレーム21の形状に対応する形状であることが好ましい。第2の領域211bの少なくとも一部は、フレーム21に対向する位置に形成されることが好ましい。すなわち、フレーム21は、第1の領域211aおよび第2の領域211bに跨って載置されることが好ましい。
冷却用ガス孔230から供給された冷却用ガスGは、まず、第1の領域211aと保持シート22との間に滞留する。第1の領域211aの粗度は大きいため、第1の領域211aと保持シート22との間には比較的大きな隙間が形成されている。そのため、多くの冷却用ガスGを第1の領域211aと保持シート22との間に滞留させることができる。さらに、第1の領域211aの周囲に形成される第2の領域211bの粗度はより小さいため、第2の領域211bと保持シート22との密着性は高い。よって、冷却用ガスGは、第1の領域211aから外側に漏れ難い。つまり、冷却用ガスは、第1の領域211aの内部の第3の領域211cに向かって流れるため、保持シート22は効率よく冷却され得る。第3の領域211cの粗度もまた小さいため、保持シート22と第3の領域211cとの密着性も高い。よって、冷却効果はさらに高まる。
各領域211a〜111cの粗度は、ステージ211の表面を研磨またはブラスト加工することにより調節できる。例えば、ステージ211の表面全体を滑らかに加工した後で、第1の領域211aに相当する領域を研磨またはブラスト加工することにより、当該領域の粗度を大きくすることができる。各領域211a〜211cの粗度は特に限定されないが、例えば、第1の領域211aの算術平均粗さRa1は1.6〜2μmであることが好ましく、第2の領域211bの算術平均粗さRa2は、0.1〜1.2μmであることが好ましく、第3の領域211cの算術平均粗さRa3は、0.1〜1.2μmであることが好ましい。
冷却用ガス孔230の数は特に限定されないが、保持シート22を均一かつ効率よく冷却する観点から、複数であることが好ましい。この場合、冷却用ガス孔230は、第1領域に等間隔(例えば、5〜100mm間隔、好ましくは30〜70mm間隔)に配置されることが好ましい。また、冷却用ガス孔230の数は、フレーム21の直径に応じて設定してもよい。例えば、フレーム21の直径が300mmの場合、冷却用ガス孔230の数は13〜29個であることが好ましく、フレーム21の直径が400mmの場合、冷却用ガス孔230の数は17〜41個であることが好ましい。冷却用ガス孔230の形状は特に制限されず、円状、楕円状、多角形状(四角形、六角形など)などであってもよい。
冷却用ガス孔230のサイズは、保持シート22を効率よく冷却する観点から、大きいほど好ましい。一方、冷却用ガス孔230が過度に大きいと、プラズマ処理中に冷却用ガス孔230において異常放電が生じ易くなる。そのため、冷却用ガス孔230のサイズは、同じ面積を有する相当円の直径が、例えば、0.3〜1.0mmであることが好ましく、0.5〜0.8mmであってもよい。特に、異常放電を抑制する観点から、冷却用ガス孔230のサイズをさらに小口径化(例えば、0.05〜0.3mm)してもよい。この場合、小口径化に伴う冷却用ガスの供給量の低下を補うため、冷却用ガス孔230の数は、上記よりもさらに多いことが好ましい。
冷却用ガス孔230は、ガス導入経路231に接続している。冷却用ガス孔230が複数ある場合には、ガス導入経路231を分岐させて、すべての冷却用ガス孔230をガス導入経路231に接続してもよい。ガス導入経路231には、冷却用ガス源232から冷却用ガスGが供給される。ガス導入経路231には、図示しないマノメータや冷却用ガスGの流量をコントロールする流量コントローラ等を接続してもよい。ガス導入経路231からは、例えば、圧力30〜2000Pa、流量1〜100sccm、好ましくは、圧力30〜400Pa、流量1〜20sccmの冷却用ガスGが供給される。
プラズマP1は、以下のようにして発生される。まず、プロセスガス源212からガス導入口203aを通って、プロセスガスが真空チャンバ203内部に導入される。一方、減圧機構214は、真空チャンバ203内のガスを排気口203bから排気し、真空チャンバ203内を所定の圧力に維持する。続いて、アンテナ209に第1高周波電源210Aから高周波電力を投入し、真空チャンバ203内にプラズマP1を発生させる。発生したプラズマP1は、イオン、電子、ラジカルなどから構成される。
プラズマP1の発生条件は、エッチングされる層(この場合、回路層12)の材質などに応じて設定される。例えば、金属材料を含む多層配線層121をエッチングする場合、プラズマP1は、アルゴン(Ar)を含むプロセスガスを原料として発生させることが好ましい。この場合、プラズマP1の物理的作用によるイオン性エッチングが行われる。このとき、上記のとおり、アンテナ209に第1高周波電源210Aから1000〜5000Wの周波数13.56MHzの高周波電力を供給するとともに、第2高周波電源210Bから高周波電極部220に、100kHz以上(例えば、400〜500kHz、あるいは、13.56MHz)の高周波電力を投入することが好ましい。高周波電極部220に高周波電力が投入されることにより、ステージ211の表面にバイアス電圧が発生し、このバイアス電圧によって基板10に入射するイオンが加速され、エッチング速度が増加する。
第1のプラズマエッチング工程では、ステージ211と保持シート22との間に冷却用ガスGを供給しながらエッチングが行われるため、第2のプラズマエッチング工程において高周波電極部220に印加される場合の高周波電力よりも大きい高周波電力を印加することができる。例えば、原料ガスとしてCFとArの混合ガス(CF:Ar=50:50)を150〜250sccmで供給する場合、処理室内の圧力を0.2〜1.5Paに調整し、第1高周波電源210Aからアンテナ209への投入電力を1500〜2500W、第2高周波電源210Bから高周波電極部220への投入電力を500〜1800Wとする条件により、プラズマP1を発生させることができる。
また、上記のように、第1のプラズマエッチング工程において、回路層12とともに本体層11の一部を除去する場合、エッチングは条件を切り替えて行ってもよい。例えば、Arを含むプロセスガスを原料とするプラズマにより回路層12を除去した後、後述するプラズマP2を発生させる条件に切り替えて(あるいは、ボッシュプロセスにより)、本体層11の一部を除去してもよい。
(4−2)第2のプラズマエッチング工程
第1のプラズマ工程の後、冷却用ガスGの供給を停止して、分割領域R1の残部をプラズマP2によりプラズマエッチングする(図3(c))。これにより、基板10は個片化されて、保持シート22には複数の素子チップ110が保持される。
プラズマP2の発生条件もまた、エッチングされる層(この場合、本体層11)の材質などに応じて設定される。例えば、Siを含む本体層11をエッチングする場合、プラズマP2は、六フッ化硫黄(SF)を含むプロセスガスを原料として発生させることが好ましい。この場合、例えば、プロセスガス源212から、SFガスを100〜800sccmで供給しながら、減圧機構214により反応室103の圧力を10〜50Paに制御する。
本体層11がSiからなる半導体層である場合、本体層11を深さ方向に垂直にエッチングするために、いわゆるボッシュプロセスを用いることができる。ボッシュプロセスでは、保護膜堆積ステップと、保護膜エッチングステップと、Siエッチングステップとを順次繰り返すことにより、本体層11を深さ方向に掘り進む。
保護膜堆積ステップは、例えば、原料ガスとしてCを150〜250sccmで供給しながら、処理室内の圧力を15〜25Paに調整し、第1高周波電源210Aからアンテナ209への投入電力を1500〜2500W、第2高周波電源210Bから高周波電極部220への投入電力を0〜50Wとして、2〜15秒間、処理する条件で行われる。
保護膜エッチングステップは、例えば、原料ガスとしてSFを200〜400sccmで供給しながら、処理室内の圧力を5〜15Paに調整し、第1高周波電源210Aからアンテナ209への投入電力を1500〜2500W、第2高周波電源210Bから高周波電極部220への投入電力を300〜1000Wとして、2〜10秒間、処理する条件で行われる。
Siエッチングステップは、例えば、原料ガスとしてSFを200〜400sccmで供給しながら、処理室内の圧力を5〜15Paに調整し、第1高周波電源210Aからアンテナ209への投入電力を1500〜2500W、第2高周波電源210Bから高周波電極部220への投入電力を50〜500Wとして、10〜20秒間、処理する条件で行われる。
上記のような条件で、保護膜堆積ステップ、保護膜エッチングステップ、および、Siエッチングステップを繰り返すことにより、Siを含む本体層11は、10μm/分の速度で深さ方向に垂直にエッチングされ得る。
第2のプラズマエッチング工程では、第1のプラズマエッチング工程に比べて低いバイアス電圧をかけた状態で、例えば本体層11を高速加工することができる。言い換えれば、第2のプラズマエッチング工程において、高周波電極部220への投入電力は、第1のプラズマエッチング工程における高周波電極部220への投入電力よりも小さくなるように設定することができる。そのため、冷却用ガスGによる冷却を要しない。つまり、第2のプラズマエッチング工程においても、基板10のステージ211からの浮き上がりを生じない条件で、本体層11を効率よくエッチングすることができる。第2のプラズマエッチング工程において高速加工が可能になる点で、第1のプラズマエッチング工程では、本体層11のみを残存させるようにエッチングが行われることが好ましい。なお、上記のとおり、第1のプラズマエッチング工程において、回路層12とともに本体層11の一部を除去してもよい。
冷却用ガスGの供給を停止した後も、直流電源226からESC電極219への電圧の印加は継続されることが好ましい。これにより、保持シート22がステージ211に静電吸着された状態が維持される。そのため、冷却用ガスGの供給を停止した後においても、保持シート22はステージ211との接触によって冷却され得る。冷却用ガスGの供給を停止した直後に直流電源226からESC電極219への電圧の印加を停止すると、保持シート22とステージ211の間に残存する冷却用ガスGの残圧によって、保持シート22がステージ211から浮き上がる場合もある。この点からも、冷却用ガスGの供給を停止した後においても、直流電源226からESC電極219への電圧の印加は継続されることが好ましい。
(4−3)アッシング工程
プラズマダイシング工程によって基板10が個片化された後、アッシングが実行される。アッシング用のプロセスガス(例えば、酸素ガス(O)や、Oとフッ素を含むガスとの混合ガス等)を、アッシングガス源213から真空チャンバ203内に導入する。一方、減圧機構214による排気を行い、真空チャンバ203内を所定の圧力に維持する。第1高周波電源210Aからの高周波電力の投入により、真空チャンバ203内には酸素プラズマが発生し、カバー224の窓部224Wから露出している個片化された基板10(素子チップ110)の表面のレジスト層123が除去される。
アッシングは、例えば、原料ガスとしてCFとOとの混合ガス(CF:O=50:50)を150〜300sccmで供給しながら、処理室内の圧力を5〜15Paに調整し、第1高周波電源210Aからアンテナ209への投入電力を1500〜2500W、第2高周波電源210Bから高周波電極部220への投入電力を0〜300Wとする条件により行われる。なお、アッシング工程における高周波電極部220への投入電力は、第1のプラズマエッチング工程における高周波電極部220への投入電力よりも小さくなるように設定することが望ましい。これにより、第1のプラズマエッチング工程に比べて低いバイアス電圧がかかった状態でアッシングされる。そのため、冷却用ガスGによる冷却を要しない。
(5)搬出工程
アッシングが終了すると、真空チャンバ203内のガスが排出され、ゲートバルブが開く。複数の素子チップ110を保持する搬送キャリア20は、ゲートバルブから進入した搬送機構によって、プラズマ処理装置200から搬出される。搬送キャリア20が搬出されると、ゲートバルブは速やかに閉じられる。搬送キャリア20の搬出プロセスは、上記のような搬送キャリア20をステージ211に搭載する手順とは逆の手順で行われても良い。すなわち、カバー224を所定の位置にまで上昇させた後、ESC電極229への印加電圧をゼロにして、搬送キャリア20のステージ211への吸着を解除し、支持部222を上昇させる。支持部222が所定の位置まで上昇した後、搬送キャリア20は搬出される。
(第2実施形態)
本実施形態は、図5(a)に示すように、第1のプラズマエッチング工程に供される基板10の分割領域R1における多層配線層121の少なくとも一部がすでに除去されていること以外、第1実施形態と同様である。多層配線層121は、例えば、第1のプラズマエッチング工程の前に、レーザスクライビング加工あるいはプラズマエッチング加工によって、その少なくとも一部が除去される。この場合も、第1のプラズマエッチング工程(図5(b))では、多層配線層121の残部のみを除去してもよいし、多層配線層121の残部とともに本体層11の一部を除去してもよい。
なお、本実施形態では、第1のプラズマエッチング工程に供される基板10の分割領域R1において、多層配線層121の一部が残存しているが、分割領域R1における多層配線層121は、第1のプラズマエッチング工程の前に、すべてが除去されていてもよい。この場合、第1のプラズマエッチング工程は、分割領域R1(すなわち、本体層11)の残厚が20μmよりも大きい時点、好ましくは50μmよりも大きい時点で終了されることが好ましい。冷却用ガスGによる、基板10のステージ211からの浮き上がりを抑制するためである。第1のプラズマエッチング工程の後、第1実施形態と同様に第2のプラズマエッチング工程(図5(c))が行われる。
(第3実施形態)
本実施形態は、図6(a)に示すように、第1のプラズマエッチング工程に供される基板10にレジスト層123が含まれていないこと以外、第1実施形態と同様である。レジスト層123は、例えば、第1のプラズマエッチング工程の前に除去される場合もあるし、元々レジスト層123が形成されていない場合(マスクレス加工)もあり得る。この場合も、第1のプラズマエッチング工程(図6(b))において、多層配線層121のみを除去してもよいし、多層配線層121とともに本体層11の一部を除去してもよい。なお、この場合、第2実施形態のように、第1のプラズマエッチング工程の前に多層配線層121の少なくとも一部が除去されていてもよい。第1のプラズマエッチング工程の後、第1実施形態と同様に第2のプラズマエッチング工程(図6(c))が行われる。
本実施形態では、素子領域R2がレジスト層123で保護されていない状態で、第1のプラズマエッチング工程および第2のプラズマエッチング工程が行われる。そのため、各エッチング工程において、素子領域R2もエッチングされ得る。そこで、第1のプラズマエッチング工程および第2のプラズマエッチング工程を、素子領域R2の表面がエッチングされ難い条件で行ってもよい。これにより、素子領域R2のエッチングは抑制される。あるいは、例えば上記の条件における第1のプラズマエッチング工程および第2のプラズマエッチング工程による素子領域R2のエッチングの程度を、予め把握しておき、素子領域R2が十分に厚くなるように設計してもよい。
(第4実施形態)
本実施形態は、図7(a)に示すように、第1のプラズマエッチング工程に供される基板10が本体層11の多層配線層121とは反対側にバックメタル層13を備えること、および、基板10の保持シート22に貼着される面(第1主面10X)が、多層配線層121の電極パッド122を備える面であること以外、第1実施形態と同様である。なお、本実施形態において、レジスト層123は、バックメタル層13の本体層11とは反対側の表面に配置される。
第1のプラズマエッチング工程では、少なくともバックメタル層13がエッチングされる(図7(b))。スループットを低下させずにバックメタル層13をプラズマエッチングするには、高いバイアス電圧をかけることが望ましい。ここで、第1のプラズマエッチング工程中、基板10の分割領域R1には本体層11および回路層12が配置されているため、基板10はその平坦な形状を保つ。そのため、基板10のステージ211からの浮き上がりを抑制しながら、ステージ211と保持シート22との間に冷却用ガスGを供給することができる。これにより、保持シート22および基板10の温度上昇は抑制される。すなわち、本実施形態においても、高いバイアス電圧をかけながら、第1のプラズマエッチング工程を行うことができるため、スループットが向上する。
第1のプラズマエッチング工程では、分割領域R1におけるバックメタル層13をすべて除去することが好ましい(図7(b))。スループットがさらに向上するためである。なお、第1のプラズマエッチング工程では、バックメタル層13とともに本体層11の少なくとも一部を除去してもよい。この場合も、基板10のステージ211からの浮き上がりを抑制するために、分割領域R1の残厚が20μmよりも大きい時点、好ましくは50μmよりも大きい時点で第1のプラズマエッチング工程を終了することが好ましい。
第1のプラズマエッチング工程は、例えば、Arを含むプロセスガスを原料として発生するプラズマP1を用いて行われる。このとき、上記のとおり、第2高周波電源210Bから高周波電極部220に、100kHz以上(例えば、400〜500kHz、あるいは、13.56MHz)の高周波電力を投入して、高いバイアス電圧をかける。具体的には、原料ガスとしてCFとArの混合ガス(CF:Ar=50:50)を150〜250sccmで供給しながら、処理室内の圧力を0.2〜1.5Paに調整し、第1高周波電源210Aからアンテナ209への投入電力を1500〜2500W、第2高周波電源210Bから高周波電極部220への投入電力を500〜1800Wとする条件により、プラズマP1を発生させることができる。
第2のプラズマエッチング工程では、分割領域R1の残部(図7(c)では、本体層11および多層配線層121)がエッチングされる。これにより、基板10は個片化されて、保持シート22には複数の素子チップ110が保持される。本体層11および多層配線層121のエッチング条件は、それぞれ異なっていてもよい。例えば、上記のように、ボッシュプロセス加工により本体層11を除去した後、Arを含むプロセスガスを原料とするプラズマにより多層配線層121を除去してもよい。
多層配線層121のエッチングは、例えば、原料ガスとしてCFとArの混合ガス(CF:Ar=50:50)を150〜250sccmで供給しながら、処理室内の圧力を0.2〜1.5Paに調整し、第1高周波電源210Aからアンテナ209への投入電力を1500〜2500W、第2高周波電源210Bから高周波電極部220への投入電力を500〜1000Wとする条件により行うことができる。ただし、第2のプラズマエッチング工程(特に、多層配線層121の除去)では、冷却用ガスGの供給が停止されるため、温度上昇をもたらすような高いバイアス電圧の印加は行われないことが好ましい。
(第5実施形態)
本実施形態は、図8(a)に示すように、第1のプラズマエッチング工程に供される基板10の分割領域R1に、多層配線層121が含まれていないこと以外、第4実施形態と同様である。多層配線層121は、第1のプラズマエッチング工程の前にレーザスクライビング加工あるいはプラズマエッチング加工によって除去されている場合もあるし、レイアウトの工夫により、分割領域R1に元々形成されていない場合もあり得る。なお、図8(b)に示すように、基板10を保持シート22に保持させた状態において、隣接する素子領域R2の多層配線層121同士の間には、保持シート22の粘着層22aが介在することが好ましい。ステージ211に対する基板10の吸着力がより高まるためである。
スループット向上の観点から、第1のプラズマエッチング工程では、分割領域R1におけるバックメタル層13をすべて除去することが好ましい(図8(b))。この場合、第2のプラズマエッチング工程では、本体層11のみを除去すればよい(図8(c))。そのため、高いバイアス電圧の印加を行うことができなくても、ボッシュプロセスを高速で行うことができる。つまり、冷却用ガスGによる冷却を要しない。すなわち、第2のプラズマエッチング工程においても、基板10のステージ211からの浮き上がりを生じない条件で、本体層11を効率よくエッチングすることができる。
本発明の製造方法は、保持シートに保持され、回路層を備える基板から素子チップを製造する方法として有用である。
10:基板、11:本体層、12:回路層、121:多層配線層、122:電極パッド、123:レジスト層、13:バックメタル層
110:素子チップ
20:搬送キャリア、21:フレーム、21a:ノッチ、21b:コーナーカット、22:保持シート、22a:粘着層、22b:樹脂フィルム
200:プラズマ処理装置、203:真空チャンバ、203a:ガス導入口、103b:排気口、208:誘電体部材、209:アンテナ、210A:第1高周波電源、210B:第2高周波電源、211:ステージ、211a:第1の領域、211b:第2の領域、211c:第3の領域、212:プロセスガス源、213:アッシングガス源、214:減圧機構、215:電極層、216:金属層、217:基台、218:外周部、219:ESC電極、220:高周波電極部、221:昇降ロッド、222:支持部、223A、223B:昇降機構、224:カバー、224W:窓部、225:冷媒循環装置、226:直流電源、227:冷媒流路、228:制御装置、229:外周リング、230:冷却用ガス孔、231:ガス導入経路、232:冷却用ガス源

Claims (3)

  1. 第1主面およびその反対側の第2主面を備え、分割領域で画定される複数の素子領域を備える基板を、前記分割領域で分割して複数の素子チップを形成する素子チップの製造方法であって、
    前記第1主面を保持シートに貼着させて、前記保持シートに保持された基板を準備する準備工程と、
    前記基板を保持した前記保持シートを、プラズマ処理装置内に設けられたステージに載置する載置工程と、
    前記基板の前記分割領域を、前記第2主面から前記第1主面までプラズマエッチングし、前記基板を複数の素子チップに個片化するプラズマダイシング工程と、を備え、
    前記プラズマダイシング工程が、
    前記ステージと前記保持シートとの間に冷却用ガスを供給しながら、前記分割領域の厚みの一部をプラズマエッチングする、第1のプラズマエッチング工程と、
    前記第1のプラズマエッチング工程の後、前記冷却用ガスの供給を停止して、前記分割領域の残部をプラズマエッチングする、第2のプラズマエッチング工程と、を備える、素子チップの製造方法。
  2. 前記プラズマダイシング工程が、前記ステージに高周波電力を印加した状態で行われ、
    前記第1のプラズマエッチング工程において前記ステージに印加される前記高周波電力が、前記第2のプラズマエッチング工程において前記ステージに印加される前記高周波電力よりも大きい、請求項1に記載の素子チップの製造方法。
  3. 前記分割領域の残厚が20μmよりも大きい時点で、前記第1のプラズマエッチング工程を終了し、前記第2のプラズマエッチング工程を開始する、請求項1または2に記載の素子チップの製造方法。
JP2016046339A 2016-03-09 2016-03-09 素子チップの製造方法 Active JP6524534B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016046339A JP6524534B2 (ja) 2016-03-09 2016-03-09 素子チップの製造方法
US15/427,561 US10037891B2 (en) 2016-03-09 2017-02-08 Manufacturing method of element chip
CN201710088563.4A CN107180753B (zh) 2016-03-09 2017-02-17 元件芯片的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016046339A JP6524534B2 (ja) 2016-03-09 2016-03-09 素子チップの製造方法

Publications (2)

Publication Number Publication Date
JP2017162998A true JP2017162998A (ja) 2017-09-14
JP6524534B2 JP6524534B2 (ja) 2019-06-05

Family

ID=59788485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016046339A Active JP6524534B2 (ja) 2016-03-09 2016-03-09 素子チップの製造方法

Country Status (3)

Country Link
US (1) US10037891B2 (ja)
JP (1) JP6524534B2 (ja)
CN (1) CN107180753B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021509227A (ja) * 2018-06-20 2021-03-18 エルジー・ケム・リミテッド 回折格子導光板用モールドの製造方法および回折格子導光板の製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6631782B2 (ja) * 2015-11-16 2020-01-15 住友電工デバイス・イノベーション株式会社 半導体装置の製造方法
JP6519802B2 (ja) * 2016-03-18 2019-05-29 パナソニックIpマネジメント株式会社 プラズマ処理方法およびプラズマ処理装置
US10535505B2 (en) * 2016-11-11 2020-01-14 Lam Research Corporation Plasma light up suppression
US11075117B2 (en) * 2018-02-26 2021-07-27 Xilinx, Inc. Die singulation and stacked device structures
JP2022089007A (ja) * 2020-12-03 2022-06-15 パナソニックIpマネジメント株式会社 プラズマ処理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11274141A (ja) * 1998-03-20 1999-10-08 Hitachi Ltd プラズマ処理装置及びプラズマ処理方法
JP2015088687A (ja) * 2013-11-01 2015-05-07 パナソニックIpマネジメント株式会社 プラズマ処理装置及びプラズマ処理方法
JP2015177111A (ja) * 2014-03-17 2015-10-05 株式会社東芝 プラズマダイシング方法およびプラズマダイシング装置
JP2016506087A (ja) * 2013-01-25 2016-02-25 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated フィルムフレームウェハアプリケーションのためのエッチングチャンバシールドリングを用いたレーザ・プラズマエッチングウェハダイシング

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101094982B1 (ko) * 2008-02-27 2011-12-20 도쿄엘렉트론가부시키가이샤 플라즈마 에칭 처리 장치 및 플라즈마 에칭 처리 방법
US9070760B2 (en) * 2011-03-14 2015-06-30 Plasma-Therm Llc Method and apparatus for plasma dicing a semi-conductor wafer
JP5528394B2 (ja) 2011-05-30 2014-06-25 パナソニック株式会社 プラズマ処理装置、搬送キャリア、及びプラズマ処理方法
JP5938716B2 (ja) * 2013-11-01 2016-06-22 パナソニックIpマネジメント株式会社 プラズマ処理装置及びプラズマ処理方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11274141A (ja) * 1998-03-20 1999-10-08 Hitachi Ltd プラズマ処理装置及びプラズマ処理方法
JP2016506087A (ja) * 2013-01-25 2016-02-25 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated フィルムフレームウェハアプリケーションのためのエッチングチャンバシールドリングを用いたレーザ・プラズマエッチングウェハダイシング
JP2015088687A (ja) * 2013-11-01 2015-05-07 パナソニックIpマネジメント株式会社 プラズマ処理装置及びプラズマ処理方法
JP2015177111A (ja) * 2014-03-17 2015-10-05 株式会社東芝 プラズマダイシング方法およびプラズマダイシング装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021509227A (ja) * 2018-06-20 2021-03-18 エルジー・ケム・リミテッド 回折格子導光板用モールドの製造方法および回折格子導光板の製造方法
JP7305246B2 (ja) 2018-06-20 2023-07-10 エルジー・ケム・リミテッド 回折格子導光板用モールドの製造方法および回折格子導光板の製造方法

Also Published As

Publication number Publication date
CN107180753B (zh) 2023-05-23
CN107180753A (zh) 2017-09-19
US20170263462A1 (en) 2017-09-14
US10037891B2 (en) 2018-07-31
JP6524534B2 (ja) 2019-06-05

Similar Documents

Publication Publication Date Title
JP6524534B2 (ja) 素子チップの製造方法
JP6524562B2 (ja) 素子チップおよびその製造方法
JP6575874B2 (ja) 素子チップの製造方法
US10049933B2 (en) Element chip manufacturing method
JP2019125723A (ja) 素子チップの製造方法
JP2017168766A (ja) プラズマ処理方法およびプラズマ処理装置
JP6650593B2 (ja) プラズマ処理装置およびプラズマ処理方法
US10236266B2 (en) Element chip manufacturing method
JP6555656B2 (ja) プラズマ処理装置および電子部品の製造方法
CN107180754B (zh) 等离子体处理方法
JP6485702B2 (ja) プラズマ処理方法および電子部品の製造方法
JP6573231B2 (ja) プラズマ処理方法
US10714356B2 (en) Plasma processing method
US9779986B2 (en) Plasma treatment method and method of manufacturing electronic component
JP7209247B2 (ja) 素子チップの製造方法
JP2016195155A (ja) プラズマ処理装置およびプラズマ処理方法
JP7170261B2 (ja) 素子チップの製造方法
JP7209246B2 (ja) 素子チップの製造方法
JP6440120B2 (ja) プラズマ処理装置およびプラズマ処理方法
JP7213477B2 (ja) 素子チップの製造方法
JP7296601B2 (ja) 素子チップの洗浄方法および素子チップの製造方法
JP6516125B2 (ja) プラズマ処理方法および電子部品の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180223

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190417

R151 Written notification of patent or utility model registration

Ref document number: 6524534

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151