JP2017141212A - 歯科用硬化性組成物 - Google Patents

歯科用硬化性組成物 Download PDF

Info

Publication number
JP2017141212A
JP2017141212A JP2016024967A JP2016024967A JP2017141212A JP 2017141212 A JP2017141212 A JP 2017141212A JP 2016024967 A JP2016024967 A JP 2016024967A JP 2016024967 A JP2016024967 A JP 2016024967A JP 2017141212 A JP2017141212 A JP 2017141212A
Authority
JP
Japan
Prior art keywords
group
polymerizable monomer
mol
curable composition
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016024967A
Other languages
English (en)
Other versions
JP6629089B2 (ja
Inventor
宏伸 秋積
Hironobu Akitsumi
宏伸 秋積
英武 坂田
Hidetake Sakata
英武 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Dental Corp
Original Assignee
Tokuyama Dental Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Dental Corp filed Critical Tokuyama Dental Corp
Priority to JP2016024967A priority Critical patent/JP6629089B2/ja
Publication of JP2017141212A publication Critical patent/JP2017141212A/ja
Application granted granted Critical
Publication of JP6629089B2 publication Critical patent/JP6629089B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Dental Preparations (AREA)

Abstract

【課題】光照射により速やかに重合が完結する歯科用硬化性組成物の提供。【解決手段】(A)一般式(1)で表される重合性単量体、(B)B1)α−ジケトン化合物、B2)光酸発生剤及びB3)芳香族アミン化合物と、光重合開始剤と、を含有してなる歯科用硬化性組成物。〔X;−O−、Ar1、Ar2;2価〜4価の芳香族基、L1、L2;2価〜4価のC2〜60、R1、R2;、水素又はメチル基。m1、m2、n1、n2;1〜3の整数。〕【選択図】なし

Description

本発明は、歯科用材料に有用な新規な重合性単量体、光重合開始剤を配合した歯科用硬化性組成物に関する。さらに詳しくは、環境光に対しては安定であるが、ハロゲンランプやキセノンランプ等の照射器の光照射により、著しく短時間で速やかに重合が完結し、より高い硬化体物性を得られる歯科用硬化性組成物を提供するものである。
(メタ)アクリレート系重合性単量体は、歯科用硬化性組成物あるいは歯科用接着剤といった歯科材料、光学材料、印刷製版、フォトレジスト材料、塗料、接着剤、インク、光造形樹脂等の幅広い分野で利用可能である(例えば、特許文献1〜4)。特に、機械的強度に優れた硬化物が得られる(メタ)アクリレート系重合性単量体としては、特許文献2、3に例示されるビスフェノールAジグリシジルジ(メタ)アクリレート(Bis−GMA)に代表されるビスフェノールA骨格を有する重合性単量体や、特許文献4、5に例示されるビフェニル骨格を有する重合性単量体が知られている。
齲蝕等により欠損を生じた歯質の修復において、該欠損が小さい場合の主流は、歯科充填用コンポジットレジンを充填し、歯牙の形状を付与した後に重合、硬化させる手法である。ここで、歯科充填用コンポジットレジンは、(メタ)アクリレート系の重合性単量体(以下、重合性単量体のことをモノマーとも称す)と金属酸化物等の無機フィラーとを主成分とするペースト状重合性組成物からなる歯牙修復材料である。
歯科分野における、歯牙修復材料の重合方法は、光重合と化学重合に大別される。特に、光重合開始剤を用いた光重合型の修復材料は、光を遮断しておけば重合反応が進むことはほとんどないため、全ての成分を1ペーストの状態で製造、保管しておくことができる。従って、化学重合型のものに必要な使用時の混合・練和が必要なく、また、可使時間が長いなどの利点を有する。そのため、近年では光重合型の修復材料が主流である。
歯科治療分野においては、生体への為害性のために紫外線領域に活性を有する光重合開始剤の使用は困難であり、そのため可視光域に活性を有する光重合開始剤が主に使用されている。該光重合開始剤としては、α−ジケトンやアシルホスフィンオキサイド等の光を吸収し、それ自身が分解して重合活性種を生成する化合物や、さらに、これに第3級アミン化合物などの適当な増感剤を組み合わせた系が広く使用されている。
上記したような歯牙の治療手法においては、光重合型の充填用コンポジットレジンを修復すべき歯牙の窩洞に充填して歯牙の形に成形した後に、専用の可視光照射器を用いて活性光を照射して重合硬化させることで歯の修復が行われている。一般に、このような活性光は、光重合開始剤が前記α−ジケトン化合物を用いるものであれば、360〜500nm程度の波長域(α−ジケトン化合物の主たる吸収域である)を有し、光強度が100〜2000mW/cm程度である光源を用い、0〜10mm程度の距離から照射される。
前記充填用コンポジットレジンは、患者の口腔内に充填した後、活性光の照射を行って重合、硬化させる。そのため、重合のための光照射時間を長く取ると、操作に時間がかかるだけではなく、患者にも多大な負担を強いるという問題があり、光照射時間(硬化時間)の短縮が要望されている。また、近年では、審美性の良好さも要求されており、例えばホワイトニング後の歯牙に対応できる薄い色調(白色)の充填用コンポジットレジンが求められている。
硬化時間を短縮するための手法の一つとして、光重合開始剤の配合量、特にα−ジケトンの配合量を多くすることがある。しかし、α−ジケトンの配合量を多くすると、環境光、即ち、作業者がペーストの形状やペーストの重合により得られる硬化体の色調を視認するため、口腔内を照らすデンタルライトあるいは蛍光灯のような室内灯などの白色光(視認性等を考慮して500〜10000ルクス程度に調整されており、光源にもよるが、α−ジケトン化合物の主たる吸収域である360〜500nmにおける環境光の光強度は1mW/cm以下であり、前記活性光の数%にも満たない)に対する感受性も高くなってしまい、充填や築盛等の操作をしている間に充填用コンポジットレジン(ペースト)の粘度が上昇してしまい、操作が困難になってしまうという問題があった。
このような問題を解決すべく、α−ジケトンの配合量を増加させずに、あるいはα−ジケトンを用いずに硬化時間を短くする、即ち、光照射時間が短くても優れた重合活性を示し、充填用コンポジットレジンの光重合開始剤として好適に用いることができるものとして、α−ジケトン化合物、トリハロメチル基により置換されたs−トリアジン化合物、及びアミン化合物からなる光重合開始剤が提案されている(例えば、特許文献6参照)。
また、前述した波長域の光を吸収しそれ自身が分解して重合活性種を生成する化合物であるアシルホスフィンオキサイド等や、さらにこれに第3級アミン化合物などの適当な増感剤を組み合わせた系も検討されている。
特表2008−534256号公報 特開2007−126417号公報 特開平9−157124号公報 特開平5−170705号公報 特開昭63−297344号公報 特開2005−089729号公報
一方、重合性単量体の取り扱い性を容易とする観点では、重合性単量体は室温環境下において低粘度の液体あるいは液状物質であることが有利である。たとえば、一般的に多くの場合、重合性単量体は、単独で用いるよりも、種々の使用用途に応じて他の成分と混合した混合組成物として用いられることが多い。このような場合に、重合性単量体が低粘度の液体あるいは液状物質であれば、他の成分とのブレンドも極めて容易である。
しかしながら、特許文献2,3に例示されるBis−GMAは室温環境下において極めて高粘度であり、特許文献4に例示される重合性単量体に至っては、室温環境下において固体である上、機械的強度に劣る。また、特許文献5に例示される重合性単量体は比較的低粘度であるものの、やはり機械的強度に劣る。
本発明は、上記事情に鑑みてなされたものであり、硬化物の機械的強度に優れると共に、室温環境下においても低粘度で取扱い性に優れる重合性単量体を用い、更に環境光に対しては安定であるが、ハロゲンランプやキセノンランプ等の照射器の光照射により、著しく短時間で速やかに重合が完結し、より高い硬化体物性を得られる歯科用硬化性組成物を提供するものである。
本発明者らは上記課題を解決すべく、鋭意検討を行った。
その結果、特定の重合性単量体、α−ジケトン化合物、芳香族アミン化合物及び光酸発生剤を組み合わせて使用することにより、これを用いた歯科用硬化性組成物は環境光に対しては安定であり且つ、著しく短時間で重合が完結するようになることを見出し、本発明を完成した。
すなわち、下記一般式(1)で示される(A)重合性単量体、
Figure 2017141212
〔前記一般式(1)中、Xは2価の基を表し、ArおよびArは、各々、2価〜4価から選択されるいずれかの価数を持つ芳香族基を表し、各々同一であっても異なっていてもよく、LおよびLは、各々、主鎖の原子数が2〜60の範囲内であり、かつ、2価〜4価から選択されるいずれかの価数を持つ炭化水素基を表し、各々同一であっても異なっていてもよく、RおよびRは、各々、水素またはメチル基を表す。また、m1、m2、n1およびn2は、各々、1〜3の範囲から選択される整数である。〕
(B)B1)α−ジケトン化合物、B2)光酸発生剤、及びB3)芳香族アミン化合物を含んでなる光重合開始剤を含有してなることを特徴とする歯科用硬化性組成物である。
本発明の歯科用硬化性組成物における(A)重合性単量体の一実施形態は、2価の基Xが、−O−であることが好ましい。
本発明の歯科用硬化性組成物における(A)重合性単量体の他の実施形態は、主鎖の原子数が2〜60の範囲内であり、かつ、2価〜4価から選択されるいずれかの価数を持つ炭化水素基LおよびL少なくともいずれかが水酸基を含むことが好ましい。
本発明の歯科用硬化性組成物における(A)重合性単量体の他の実施形態は、下記一般式(2)で示されることが好ましい。
Figure 2017141212
〔前記一般式(2)中、X、L、L、RおよびRは、前記一般式(1)中に示すものと同様である。〕
本発明の歯科用硬化性組成物における(A)重合性単量体の他の実施形態は、下記一般式(3)で示されることが好ましい。
Figure 2017141212
〔一般式(3)中、Xは、一般式(1)中に示すものと同様であり、ArおよびArは、価数が2価のみを取りえることを除いて一般式(1)中に示すものと同様であり、LおよびLは、各々、主鎖の原子数が1〜8の範囲内の2価の炭化水素基を表し、各々同一であっても異なっていてもよく、RおよびRは、各々、水素またはメチル基を表す。また、jは0、1または2であり、kは0、1または2であり、j+k=2である。〕
本発明の歯科用硬化性組成物における(A)重合性単量体の他の実施形態は、一般式(3)に示す値j、kの組み合わせ(j、k)が、(1、1)および(0、2)からなる群より選択されるいずれかであることが好ましい。
本発明の歯科用硬化性組成物における(A)重合性単量体の他の実施形態は、一般式(3)に示す値j、kの組み合わせ(j、k)が、(2、0)、(1、1)および(0、2)からなる群より選択されるいずれか2種類以上の構造異性体を含むことが好ましい。
本発明の歯科用硬化性組成物における(A)重合性単量体の他の実施形態は、全ての重合性単量体分子における値kの平均値が0.05以上2.0未満であることが好ましい。
本発明の歯科用硬化性組成物における(A)重合性単量体の製造方法は、下記一般式(4)に示す化合物と、下記一般式(5)に示す化合物とを反応させる反応工程を少なくとも経て、下記一般式(6)〜(8)に示す化合物からなる群より選択される2種類以上の構造異性体を含む重合性単量体を製造することを特徴とする。
Figure 2017141212
Figure 2017141212
Figure 2017141212
Figure 2017141212
Figure 2017141212
〔一般式(4)〜(8)中、Xは2価の基を表し、ArおよびArは、各々、2価の芳香族基を表し、各々同一であっても異なっていてもよく、Lは主鎖の原子数が1〜7の2価の炭化水素基を表す。また、pは0または1である。〕
本発明によれば、硬化物の機械的強度に優れると共に、室温環境下においても低粘度で取扱い性に優れる重合性単量体を用い、更に環境光に対しては安定であるが、ハロゲンランプやキセノンランプ等の照射器の光照射により、著しく短時間で速やかに重合が完結し、より高い硬化体物性を得られる歯科用硬化性組成物を提供することができる。
本発明の歯科用硬化性組成物を構成する各成分について順次説明する。
〔(A)重合性単量体〕
(A)重合性単量体は、下記一般式(1)で示されることを特徴とする。
Figure 2017141212
ここで、一般式(1)中、Xは2価の基を表し、ArおよびArは、各々、2価〜4価から選択されるいずれかの価数を持つ芳香族基を表し、各々同一であっても異なっていてもよく、LおよびLは、各々、主鎖の原子数が2〜60の範囲内であり、かつ、2価〜4価から選択されるいずれかの価数を持つ炭化水素基を表し、各々同一であっても異なっていてもよく、RおよびRは、各々、水素またはメチル基を表す。また、m1、m2、n1およびn2は、各々、1〜3の範囲から選択される整数である。なお、一般式(1)に示される重合性単量体は、2種類以上の異性体を含む異性体混合物であってもよい。
(A)重合性単量体は、硬化物の機械的強度に優れると共に、室温環境下においても低粘度であるため取扱い性に優れる。このような効果が得られる理由は定かではないが、本発明者らは以下のように推定している。まず、硬化物の機械的強度に優れる理由は、分子の中心部分に、剛直性の高い芳香族基を含む構造(Ar−X−Ar)を有するためであると考えられる。
また、室温環境下においても低粘度を示す理由としては、まず、分子中心部の構造として、ビフェニル構造などのように、芳香族基Arと芳香族基Arとがσ結合を介して直接結合した構造(Ar−Ar)ではなく、芳香族基Arと芳香族基Arとを2価の基Xを介して結合させた構造(Ar−X−Ar)を採用したことが挙げられる。構造(Ar−Ar)は分子構造の対称性が高いため結晶化し易いものの、このような構造に2価の基Xをさらに導入した構造(Ar−X−Ar)では、分子構造の柔軟性が増大して対称性が低下するため、結果的に結晶性を低下させて低粘度化するものと考えられる。これに加えて、(A)重合性単量体では、芳香族基Ar、Arに接続されたエステル結合が粘度の低下に大幅に寄与しているものと考えられる。
また、上述したように、構造(Ar−Ar)よりも、構造(Ar−X−Ar)がの方が分子構造の柔軟性がより大きい。このため、(A)重合性単量体は、分子中心部に構造(Ar−Ar)を導入した重合性単量体と比べると、硬化物が脆くなり難く、曲げ強度にも優れる。
次に、一般式(1)に示す重合性単量体についてより詳細に説明に説明する。まず、一般式(1)中、ArおよびArは、各々、2価〜4価から選択されるいずれかの価数を持つ芳香族基を表し、各々同一であっても異なっていてもよい。
芳香族基Ar、Arの具体例としては、下記構造式Ar−a1〜Ar−a3に示す2価〜4価のベンゼン、下記構造式Ar−a4〜Ar−a6に示す2価〜4価のナフタレン、あるいは、下記構造式Ar−a7〜Ar−a9に示す2価〜4価のアントセランが挙げられる。なお、これら構造式中、結合手は、芳香族基Ar、Arを構成するベンゼン環の任意の炭素(但し、ベンゼン環とベンゼン環との縮合部を形成する炭素を除く)に設けることができる。たとえば、構造式Ar−a1(2価のベンゼン)であれば、2本の結合手は、オルト位、メタ位、あるいは、パラ位のいずれかに設けることができる。
Figure 2017141212
なお、芳香族基Arの価数は、m1の数に応じて決定され、m1+1で表される。同様に、芳香族基Arの価数は、m2の数に応じて決定され、m2+1で表される。
また、芳香族基Ar、Arは、各々、置換基を有していてもよく、この場合、芳香族基Ar、Arを構成するベンゼン環の水素を他の置換基に置き換えることができる。芳香族基Ar、Arの置換基としてはその末端に一般式(1)の左辺に示される反応性基(すなわち、アクリル基またはメタクリル基)を含まないものであれば特に限定されず、置換基を構成する原子の総数(原子数)が1〜60の範囲内のものを適宜選択できる。具体的には、炭素数1〜20の1価の炭化水素基や、−COOR、−OR、ハロゲン基、アミノ基、ニトロ基、カルボキシル基などを挙げることができる。なお、Rは、炭素数1〜20の1価の炭化水素基と同様である。また、炭素数1〜20の1価の炭化水素基としては、メチル基、エチル基等の直鎖状または分岐状の炭化水素基、シクロヘキシル基等の脂環炭化水素基、フェニル基、1価のフランなどの複素環基などを挙げることができる。
Xは2価の基を表し、具体的には、下記構造式X−1〜X−13に例示されるような芳香族基Arと芳香族基Ar2とを架橋する主鎖の原子数が1〜3の2価の基である。
Figure 2017141212
なお、2価の基Xの主鎖の原子数は1または2がより好ましく、1が最も好ましい。また、2価の基Xは、芳香族基Ar(あるいはAr)とこれに接続されたエステル結合とからなるベンゾエート構造(電子吸引基)に対して電子を供与できる電子供与性基であることが好ましい。このような電子供与性の2価の基Xとしては、−O−、−CH−、−CH(R)−あるいは−S−が挙げられ、これらの中でも−O−あるいは−CH−がより好ましく、−O−が特に好ましい。ここで、Rは、炭素数1〜6のアルキル基である。電子供与性の2価の基Xでは、下記共鳴構造式に例示するような共鳴構造を取り得るため、分子中央部の極性が比較的高くなる。このため、極性の高い親水性材料との親和性をより向上させることができ、結果的に、親水性材料との相溶性を向上させたり、親水性の表面に対する親和性・接着性を向上させることが容易になる。なお、下記共鳴構造式は、2価の基Xが−O−であり、芳香族基Ar、Arがフェニレン基(但し、2本の結合手はパラ位に設けられる)である場合における(A)重合性単量体の分子中央部について示したものである。
Figure 2017141212
およびLは、各々、主鎖の原子数が2〜60の範囲内であり、かつ、2価〜4価から選択されるいずれかの価数を持つ炭化水素基を表し、各々同一であっても異なっていてもよい。なお、主鎖の原子数は2〜12の範囲内が好ましく、2〜10の範囲内がより好ましく、2〜6の範囲内がさらに好ましく、2〜3の範囲内が特に好ましい。特に主鎖の原子数を2〜3の範囲内とした場合には、硬化物の曲げ強度をより高めることが容易になる。
なお、主鎖を構成する原子は、基本的には炭素原子から構成され、全ての原子が炭素原子であってもよいが、主鎖を構成する炭素原子の一部をヘテロ原子に置き換えることもできる。このヘテロ原子としては、酸素原子、窒素原子、硫黄原子、ケイ素原子を挙げることができる。なお、主鎖がヘテロ原子として酸素原子を含む場合、主鎖中には、エーテル結合またはエステル結合を導入することができる。主鎖に導入できるヘテロ原子の数は、主鎖の原子数の約半分以下とすることが好ましく、主鎖の原子数が2の場合、主鎖に導入できるヘテロ原子の数は1つである。
また、主鎖を構成する原子のうち、少なくともいずれか1つの原子(通常は炭素原子)には、置換基が結合していてもよい。このような置換基としては、メチル基等の炭素数1〜3のアルキル基、水酸基、水酸基を有する1価の炭化水素基、ハロゲン、−COOR、−ORなどを挙げることができる。なお、Rは、炭素数1〜3のアルキル基と同様である。また、水酸基を有する1価の炭化水素基は、その炭素数が1〜3の範囲が好ましく、1〜2の範囲がより好ましい。水酸基を有する1価の炭化水素基の具体例としては、−CHOH、−CHCHOH、−CH(CH)OHなどが挙げられる。
なお、親水性材料との相溶性を向上させたり、親水性の表面に対する親和性を向上させたい場合には、LおよびLの少なくともいずれかが水酸基を含む、言い換えれば、LおよびLの少なくともいずれかにおいて、その置換基は水酸基および/または水酸基を有する1価の炭化水素基であることが好ましい。なお、LおよびLの各々に含まれる水酸基の数は、少なくとも1つ以上であればよいが、通常は、1つであることが好ましい。また、水酸基は、LおよびLの各々に1つ含まれることがより好ましく、この場合において、m1、m2=1であれば分子内には2つの水酸基が含まれることになる。
なお、一般的に、分子内に複数の水酸基を有する化合物は、分子間水素結合を形成し、結果として粘度が上昇し易い。それゆえ、本実施形態の重合性単量体が分子内に水酸基を有する場合も、粘度が上昇し易い傾向がある。しかし、芳香族基Ar、Arに直接結合するエステル結合の近傍に水酸基が存在する場合は、比較的粘度の上昇が抑えられるため、より好ましい。ここで、“エステル結合の近傍に水酸基が存在する場合”とは、具体的には、LおよびLのいずれかまたは双方が水酸基を有する場合において、水酸基を有するLまたはLの主鎖の原子数が2〜10の範囲を意味し、主鎖の原子数は特に好ましくは2〜3の範囲である。なお、上述した効果が得られる理由は定かではないが、本発明者らは以下のように推測している。
芳香族基Ar、Arに直接結合するエステル結合の近傍に水酸基が存在する場合、下記にされる構造式に示すように2価の基L、Lに存在する水酸基の水素が芳香族基Ar、Arに直接結合するエステル結合のカルボニル基の酸素との間に分子内水素結合を形成し易いと予想される。なお、下記に例示される構造式は、一般式(1)中において、Ar、Ar=フェニレン基、X=−O−、L、L=−CHCH(OH)CH−、R、R=メチル基、m1、m2、n1およびn2=1とした例である。
Figure 2017141212
すなわち、分子内水素結合が形成された場合、分子間水素結合の形成が抑制されることになる。このため、(A)重合性単量体において、分子内に水酸基が含まれない場合を基準とすると、分子内に水酸基を含む場合には、粘度は増大するものの、従来の分子内に水酸基を有する重合性単量体(Bis−GMAなど)と同程度の粘度まで、粘度が著しく増大することは抑制される。
これに加えて、分子間水素結合が形成されない状態を基準とした場合と比べて、分子内水素結合が形成された場合では、芳香族基Ar、Arを構成するベンゼン環とこれに直接結合するエステル結合とからなるベンゾエート構造に歪みが生じて、分子中心部分の分子構造の対称性が低下する。それゆえ、分子の結晶性が低下して、粘度の著しい増大がさらに抑制されると考えられる。なお、分子内水素結合の形成は、分子間の結合を弱めるため、硬化物の機械的強度の低下を招くおそれもある。しかし、(A)重合性単量体が、芳香族基Ar、Arに直接結合するエステル結合の近傍に水酸基を有する場合、水酸基は、より正確には、分子間水素結合よりも分子内水素結合に寄与する度合いが相対的により高くなっていると考えられ、分子間の緩やかな水素結合ネットワークの形成にも寄与していると考えられる。さらに、LおよびLの双方が水酸基を有する場合などのように、分子内に複数の水酸基が含まれる場合には、分子間で密度の高い水素結合ネットワークを形成し易くなる。この場合、分子内に水酸基を有さない(A)重合性単量体と比べて、硬化物の機械的強度をより高くできると考えられる。
、Lの具体例としては、n1、n2=1の場合(L、Lが2価の炭化水素基の場合)において、下記構造式L−b1〜L−b14を挙げることができる。なお、これらの構造式中に示す2つの結合手のうち、*の付された結合手は、分子中心部のベンゾエート構造を構成するエステル結合の酸素原子に結合する結合手を意味する。ここで、下記構造式L−b1〜L−b14中、aは1〜11の範囲から選択される整数を表し、bは1〜19の範囲から選択される整数を表し、cは0〜11の範囲から選択される整数を表し、dは0〜5の範囲から選択される整数を表し、eは2〜5の範囲から選択される整数を表し、fは1〜6の範囲から選択される整数を表す。なお、a〜fの値は、構造式L−b1〜L−b14において、主鎖の原子数が12以下となる範囲で選択されることが好ましい。
Figure 2017141212
Figure 2017141212
一方、n1、n2=2の場合(L、Lが3価の炭化水素基の場合)は、構造式L−b1〜L−b14において、主鎖を構成する炭素原子のうち、*の付された結合手を持つ炭素原子から最も離れた位置の炭素原子が2本の結合手を有する。また、n1、n2=3の場合(L、Lが4価の炭化水素基の場合)は、構造式L−b1〜L−b2、L−b6〜L−b8、L−b10〜L−b14において、主鎖を構成する炭素原子のうち、*の付された結合手を持つ炭素原子から最も離れた位置の炭素原子が3本の結合手を有する。
なお、一般式(1)で示される(A)重合性単量体は、下記一般式(2)で示される重合性単量体であることが特に好ましい。なお、一般式(2)は、一般式(1)において、m1、m2、n1、n2=1、Ar、Ar=−C−(構造式Ar−a1)とした場合の構造を示すものである。
Figure 2017141212

また、(A)重合性単量体は、下記一般式(3)に示される重合性単量体であることが好ましい。ここで、一般式(3)中、Xは、一般式(1)に示すものと同様であり、ArおよびArは、価数が2価のみを取りえることを除いて一般式(1)中に示すものと同様であり、LおよびLは、各々、主鎖の原子数が1〜8の範囲内の2価の炭化水素基を表し、各々同一であっても異なっていてもよく、RおよびRは、各々、水素またはメチル基を表す。また、jは0、1または2であり、kは0、1または2であり、j+k=2である。なお、一般式(3)は、一般式(1)において、m1、m2、n1、n2=1、L=−L−CH(OH)CH−または−CH(CHOH)−L−、L=−L−CH(OH)CH−または−CH(CHOH)−L−、RはRまたはRに対応し、RはRまたはRに対応する、とした場合の構造(2官能型構造)を示すものである。また、一般式(3)中、左右両側の括弧内に示す基は、中央に示す基;−Ar−X−Ar−の2つの結合手のいずれに対しても結合可能である。すなわち、jおよびkの値に応じて、一般式(3)中の左側の括弧内に示す基が、中央に示す基の両側に結合する場合もあれば、一般式(3)中の右側の括弧内に示す基が、中央に示す基の両側に結合する場合もある。
Figure 2017141212
なお、LおよびLにおいて、主鎖を構成する原子は、基本的には炭素原子から構成され、全ての原子が炭素原子であってもよいが、主鎖を構成する炭素原子の一部をヘテロ原子に置き換えることもできる。このヘテロ原子としては、酸素原子、窒素原子、硫黄原子、ケイ素原子を挙げることができる。なお、主鎖がヘテロ原子として酸素原子を含む場合、主鎖中には、エーテル結合またはエステル結合を導入することができる。主鎖に導入できるヘテロ原子の数は1つまたは2つが好ましい。但し、主鎖の原子数が2の場合、主鎖に導入できるヘテロ原子の数は1つである。
また、LおよびLにおいて主鎖の原子数は、1〜8であればよいが、1〜5がより好ましく、1〜3がさらに好ましく、1が最も好ましい。LおよびLの具体例としては、メチレン基、エチレン基、n−プロピレン基、n−ブチレン基などのような主鎖の炭素数1〜8のアルキレン基や、当該アルキレン基の主鎖の一部または全部をエーテル結合あるいはエステル結合(但し、アルキレン基の主鎖の原子数が2以上の場合に限る)に置換した基などが挙げられる。
一般式(3)に示す値j、kの組み合わせ(j、k)としては、(2、0)、(1、1)および(0、2)が挙げられるが、これらの中でも重合性単量体分子の分解の抑制が期待できる観点から(1、1)および(0、2)がより好ましい。この理由として、本発明者らは以下のように推測している。
ここで、下記に示す式は、一般式(3)において(j、k)=(1、1)、X=−O−、Ar,Ar=−C−、L、L=−CH−、R、R=−CHとした重合性単量体分子における水分子の存在下における反応機構の一例を示したものである。(A)重合性単量体は、分子中央部の芳香族基に直接結合するエステル結合が存在する分子構造を有している。このような分子構造を持つ重合性単量体が分解する反応機能のひとつとして、芳香族基に直接結合するエステル結合への水分子の求核反応(加水分解反応)などが予想される(下記Route B)。しかし、芳香族基に直接結合するエステル結合のすぐ近くに、同一分子内に含まれる1級アルコールが存在する場合、1級アルコールとエステル結合とが分子内で環化反応を起こすことで、一時的に環状構造を形成する(下記Route A)。この環化反応は可逆的であるため、直ぐに元の直鎖構造に戻り易いものの、この環化反応が上述した求核反応(加水分解反応)などを阻害する。このため、重合性単量体分子の分解が阻害されるものと推測される。この場合、重合性単量体あるいはこれを含む組成物の分解劣化が抑制される(言い換えれば保存安定性が向上する)ため、重合性単量体を用いた歯科用硬化性組成物の製造直後の初期性能(例えば、硬化物の機械的強度)を長期に渡って安定して維持できることになる。
Figure 2017141212
また、(A)重合性単量体は、一般式(3)に示す値j、kの組み合わせ(j、k)が、(2、0)、(1、1)および(0、2)からなる群より選択されるいずれか2種類以上の構造異性体を含むものであることが好ましい。重合性単量体が、一般式(3)に示す(j,k)の組み合わせについて、2種類以上の構造異性体を含むものである場合、硬化物の機械的強度と、保存安定性とをバランスよく向上させることが容易となる。この場合、全ての重合性単量体分子における値kの平均値が0.05以上2.0未満の範囲(言い換えれば値jの平均値が0を超え1.95以下の範囲)であることが好ましい。さらに、値kの平均値の下限は0.1以上であることが好ましく、値kの平均値の上限は、1.7以下であることがより好ましく、1.5以下であることがさらに好ましく、0.4以下であることが特に好ましい。なお、硬化物の機械的強度と、保存安定性とをバランスよく向上させるためには、値k=2(構造異性体を含まない状態)も、値kの平均値が0.05以上2.0未満の範囲とした場合と同様に好適である。但し、値k=2(構造異性体を含まない状態)よりも、2種類以上の構造異性体を含む状態の方が、一定の保存期間を経ない初期状態での機械的強度をより高くすることができる。この点では、値kの平均値が0.05未満とならない範囲で、値kの平均値は小さい方がより有利である。
なお、上述した反応機構のみを考慮すると、値kの平均値が大きくなるに従い保存安定性も向上すると予想される。しかしながら、本発明者らが検討したところ値kの平均値が0.1程度(全重合性単量体中、芳香族基に直接結合するエステル結合の近傍に存在する1級アルコールの存在割合が小さい場合)でも顕著な保存安定性向上効果が得られることを確認した。これらの結果からは、保存安定性の向上には、上述した反応機構以外の予期せぬ要因が存在するものと推測される。
(A)重合性単量体は、公知の出発原料および公知の合成反応法を適宜組み合わせて合成することができ、その製造方法は特に限定されるものではない。たとえば、一般式(3)に示す重合性単量体を製造する場合、下記一般式(4)に示す化合物と、下記一般式(5)に示す化合物とを反応させる反応工程を少なくとも含む製造方法を利用してもよい。この場合、下記一般式(6)〜(8)に示す化合物からなる群より選択される2種類以上の構造異性体を含む重合性単量体を製造することができる。
Figure 2017141212
Figure 2017141212
Figure 2017141212
Figure 2017141212
Figure 2017141212
ここで、一般式(4)〜(8)中、X、ArおよびAr、は一般式(3)中に示すものと同様であり、Lは主鎖の原子数が1〜7の2価の炭化水素基を表す。また、pは0または1である。ここで、値kの平均値、言い換えれば、一般式(6)〜(8)に示される構造異性体の存在比率は、合成条件を適宜選択することにより容易に調整することができる。また、必要に応じて合成後に精製処理を行うことで、値kの平均値(一般式(6)〜(8)に示される構造異性体の存在比率)を所望の値により近づくように調整してもよい。
一般式(4)〜(8)に示すLにおいて、主鎖を構成する原子は、基本的には炭素原子から構成され、全ての原子が炭素原子であってもよいが、主鎖を構成する炭素原子の一部をヘテロ原子に置き換えることもできる。このヘテロ原子としては、酸素原子、窒素原子、硫黄原子、ケイ素原子を挙げることができる。なお、主鎖がヘテロ原子として酸素原子を含む場合、主鎖中には、エーテル結合またはエステル結合を導入することができる。主鎖に導入できるヘテロ原子の数は1つまたは2つが好ましい。但し、主鎖の原子数が2の場合、主鎖に導入できるヘテロ原子の数は1つである。
また、Lにおいて主鎖の原子数は、1〜7であればよいが、1〜4が好ましく、1〜2がより好ましい。LおよびLの具体例としては、メチレン基、エチレン基、n−プロピレン基、n−ブチレン基などのような主鎖の炭素数1〜7のアルキレン基や、当該アルキレン基の主鎖の一部または全部をエーテル結合あるいはエステル結合(但し、アルキレン基の主鎖の原子数が2以上の場合に限る)に置換した基などが挙げられる。
一般式(6)において、各々のLは同一であってもよく、異なっていてもよい。これは、一般式(7)および(8)においても同様である。なお、各々のLを互いに異なるものとする場合には、合成に用いる一般式(5)に示す化合物として、Lが互いに異なる2種類以上の化合物を用いることができる。また、pは0であることが好ましい。
なお、必要であれば、上述した製造方法により2種類以上の構造異性体を含む重合性単量体を得た後、構造異性体を実質的に含まない重合性単量体(たとえば、一般式(6)に示す重合性単量体)のみを単離精製してもよい。しかしながら、単離精製して得られる重合性単量体は、単離精製処理前の2種類以上の構造異性体を含む重合性単量体と比べると、硬化物の機械的強度と、保存安定性との両立という点で劣る傾向にある。これに加えて、重合性単量体の製造に際して、さらに単離精製処理が必要となるため、コスト面でも不利になり易い。よって、これらの観点からは、単離精製処理は省略することが好ましい。
およびLの各々の置換基が水酸基および/または水酸基を有する1価の炭化水素基である(A)重合性単量体とBis−GMAとは、a)水酸基を有すること、b)分子の末端の反応性基の構造が同一(メタクリル基とメタクリル基)または実質同一(アクリル基とメタクリル基)であること、および、c)分子中央部分が芳香族基を主体とする分構造であること、以上の3点において類似している。しかしながら、分子中央部分の分子構造に着目すると、(A)重合性単量体は、Bis−GMAの中心骨格を構成するビスフェノールA構造よりも極性の高いベンゾエート構造を有している。このため、LおよびLの各々の置換基が水酸基および/または水酸基を有する1価の炭化水素基である(A)重合性単量体(以下、「水酸基を有する(A)重合性単量体」と称す場合がある)は、Bis−GMAと比較してより親水性が高いと考えられる。また、特許文献4に示す重合性単量体は、水酸基を有していない。すなわち、水酸基を有する(A)重合性単量体が親水性であるのに対して、特許文献4に示す重合性単量体は疎水性である。これに加えて、特許文献4,5に示す重合性単量体は、分子中央部が対称性が高く極性の低いビフェニル構造を有しているが、水酸基を有する(A)重合性単量体では、分子中央部は、ビフェニル構造よりも極性が高くなりやすい2つの芳香族基Ar、Ar間に2価の基Xが導入された構造を有している。したがって分子中央部の構造のみに着目した場合、特に、2価の基Xが電子供与性基からなる場合、特許文献4,5に示す重合性単量体よりも水酸基を有する(A)重合性単量体の方がより親水的であると考えられる。
これらの点を考慮すると、Bis−GMAや特許文献4、特許文献5に示す重合性単量体と比べた場合、水酸基を有する(A)重合性単量体は、より親水性が求められる用途で利用することが好適かつ有利であると言える。シランカップリング剤などで表面処理を行った後でも比較的親水性を示す無機フィラーなどの親水性固体材料と重合性単量体とを混合した混合組成物を作製する場合、Bis−GMAや特許文献4に示す重合性単量体と比べて、(A)重合性単量体では、混合が容易である上に、より多くの親水性固体材料を配合することもでき、配合量の増加に伴う混合組成物の粘度増加を抑制することも容易である。
なお、Bis−GMAや特許文献4、特許文献5に示す重合性単量体と比べて、低粘度で取扱い性に優れる点や、親水性部材表面への接着性にも優れる点では、ペンタエリストールジメタクリレートなどの水酸基を有する非芳香族系の(メタ)アクリレート系重合性単量体も有用である。しかしながら、水酸基を有する非芳香族系の(メタ)アクリレート系重合性単量体では、分子内に芳香族骨格を有さないため、硬化物の機械的強度に劣る。これに加えて、分子内に水酸基を有するため親水性は高いものの耐水性に劣るため、口腔内などのような水中あるいは高湿環境下での長期の使用には適していない。しかしながら、水酸基を有する本実施形態の重合性単量体では、水酸基を有する非芳香族系の(メタ)アクリレート系重合性単量体と比べて、硬化物の機械的強度や耐水性の点でも優れた特性を発揮できる。
また、本発明の歯科用硬化性組成物には、本発明の効果に影響のない範囲でその他の重合性単量体を配合しても良い。その他の重合性単量体としては、公知の重合性単量体を制限なく用いることができる。しかしながら、本発明の歯科用硬化性組成物の成分である(A)重合性単量体が、室温環境下において低粘性であるという特徴を有する点を考慮すれば、その他の重合性単量体も、この特徴を相殺しない程度の比較的低い粘性を有することが好ましい。このような観点では、その他の重合性単量体の粘度は室温(25℃)において150mPa・S以下であることが好ましい。さらに、分子の両末端に設けられた反応性基が同一・類似である点で相溶性が確保し易いことを考慮すると、その他の重合性単量体としては2官能(メタ)アクリレート系重合性単量体が好ましい。
上述した粘度特性を有する2官能(メタ)アクリレート系重合性単量体としては、トリエチレングリコールジメタクリレート(3G)などのポリアルキレングリコールジメタクリレート(より具体的には、アルキレングリコール単位の重合度が1以上14以下のポリエチレングリコールジメタクリレート、アルキレングリコール単位の重合度が1以上7以下のポリプロピレングリコールジメタクリレート、炭素数2〜10ポリメチレングリコールジメタクリレートなど)、ネオペンチルグリコールジメタクリレート、トリシクロデカンジメタノールジメタクリレート(TCD)、1.9−ノナンジオールジメタクリレート(ND)などを挙げることができる。また、相溶性の観点では、その他の重合性単量体は、ポリアルキレングリコール鎖を有するものが好ましく、ポリエチレングリコール鎖を有するものがより好ましい。ポリアルキレングリコール鎖は、(A)重合性単量体の分子中心部を構成するベンゾエート構造(すなわち非水素結合性極性基)と親和性が高いためである。以上に説明した点を考慮すれば、その他の重合性単量体としては、ポリアルキレングリコールジメタクリレート、トリシクロデカンジメタノールジメタクリレート、1.9−ノナンジオールジメタクリレート等が好ましく、トリエチレングリコールジメタクリレートが特に好ましい。なお、(A)重合性単量体とその他の重合性単量体とを混合して用いる場合、全重合性単量体に占める(A)重合性単量体は20質量%以上であることが好ましく30質量%以上であることがより好ましく、60質量%以上であることが特に好ましい。
〔(B)光重合開始剤〕
B1)α−ジケトン化合物、
本発明の歯科用硬化性組成物に用いるB1)α−ジケトン化合物としては公知の化合物が何ら制限なく使用できる。上記α−ジケトン化合物を具体的に例示すると、カンファーキノン、カンファーキノンカルボン酸、カンファーキノンスルホン酸等のカンファーキノン類;ジアセチル、アセチルベンゾイル、2,3−ペンタジオン、2,3−オクタジオン、9,10−フェナンスレンキノン、アセナフテンキノン等を挙げることができる。
使用するα−ジケトン化合物は、重合に用いる光の波長や強度、光照射の時間、あるいは組み合わせる他の成分の種類や量によって適宜選択して使用すればよく、単独または2種以上を混合して使用することもできるが、一般的にはカンファーキノン類が好適に使用され、特にカンファーキノンが好ましい。また、添加量も組み合わせる他の成分や重合性単量体の種類によって異なるが、通常は重合性単量体100重量部に対して0.01〜10重量部、より好ましくは0.03〜5重量部の範囲である。配合量が多いほど照射光による硬化時間が短くなり、他方、少ないほど環境光安定性に優れる。

B2)光酸発生剤
本発明の歯科用硬化性組成物に用いるB2)光酸発生剤は、紫外線等の光照射により直接ブレンステッド酸、あるいはルイス酸を発生しうる化合物であり、公知の化合物がなんら制限なく用いられるが、具体的には、ジアリールヨードニウム塩系化合物、スルホニウム塩系化合物、スルホン酸エステル化合物、およびハロメチル基により置換されたs−トリアジン化合物等が挙げられる。上記ハロメチル置換−s−トリアジン化合物は、s−トリアジン化合物がトリハロメチル基により置換されたものであるのが、重合活性が高い点から好ましい。本発明において、重合活性が特に高い点から最も好適な光酸発生剤は、トリハロメチル基置換−s−トリアジン化合物、及びジアリールヨードニウム塩系化合物から選ばれる少なくとも1種のものである。
代表的なトリハロメチル基置換−s−トリアジン化合物としては、トリクロロメチル基、トリブロモメチル基等のトリハロメチル基を少なくとも一つ有するs−トリアジン化合物であれば公知の化合物が何ら制限なく使用できる。特に好ましいトリハロメチル基置換−s−トリアジン化合物を一般式で示すと下記一般式(9)で表される。
Figure 2017141212
(式中、R及びRは、アルキル基、アリール基、アルケニル基、又はアルコキシ基であり、Xはハロゲン原子である。)
上記一般式(9)中、Xで表されるハロゲン原子は、塩素、臭素、ヨウ素の各ハロゲン原子が好適に使用されるが、塩素原子が置換したトリクロロメチル基を有する化合物を用いるのが一般的である。
及びRで表される、アルキル基、アリール基、アルケニル基、及びアルコキシ基は、それぞれ非置換のものの他、ハロゲンや上記R及びRで列挙の基のうちの異なる基等で置換されたものであっても良い。アルキル基としては、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、n−ヘキシル基、n−オクチル基等の非置換のアルキル基;トリクロロメチル基、トリブロモメチル基、α,α,β−トリクロロエチル基等のハロゲンにより置換されたアルキル基等の炭素数1〜10のものが挙げられる。アリール基としては、フェニル基、p−アルコキシフェニル基(例えば、p−メトキシフェニルキ)、p−アルキルルチオフェニル基(例えば、p−メチルチオフェニル基)、p−ハロフェニル基(例えば、p−クロロフェニル基)、4−ビフェニリル基、ナフチル基、4−アルコキシ−1−ナフチル基(例えば、4−メトキシ−1−ナフチル基)等の炭素数6〜14のものが例示され、アルケニル基としては、ビニル基、アリル基、イソプロペニル基、ブテニル基、2−フェニルエテニル基等の炭素数2〜14のものが、アルコキシ基としては、メトキシ基、エトキシ基、ブトキシ基、ヘキトキシ基、オクトキシ基等の炭素数1〜10のもの等が例示される。
以下、トリハロメチル基により置換されたトリアジン化合物を具体的に例示すると、2,4,6−トリス(トリクロロメチル)−s−トリアジン、2,4,6−トリス(トリブロモメチル)−s−トリアジン、2−メチル−4,6−ビス(トリクロロメチル)−s−トリアジン、2−メチル−4,6−ビス(トリブロモメチル)−s−トリアジン、2−フェニル−4,6−ビス(トリクロロメチル)−s−トリアジン、2−(p−メトキシフェニル)−4,6−ビス(トリクロロメチル)−s−トリアジン、2−(p−メチルチオフェニル)−4,6−ビス(トリクロロメチル)−s−トリアジン、2−(p−クロロフェニル)−4,6−ビス(トリクロロメチル)−s−トリアジン、2−(2,4−ジクロロフェニル)−4,6−ビス(トリクロロメチル)−s−トリアジン、2−(p−ブロモフェニル)−4,6−ビス(トリクロロメチル)−s−トリアジン、2−(p−トリル)−4,6−ビス(トリクロロメチル)−s−トリアジン、2−n−プロピル−4,6−ビス(トリクロロメチル)−s−トリアジン、2−(α,α,β−トリクロロエチル)−4,6−ビス(トリクロロメチル)−s−トリアジン、2−スチリル−4,6−ビス(トリクロロメチル)−s−トリアジン、2−[2−(p−メトキシフェニル)エテニル]−4,6−ビス(トリクロロメチル)−s−トリアジン、2−[2−(o−メトキシフェニル)エテニル]−4,6−ビス(トリクロロメチル)−s−トリアジン、2−[2−(p−ブトキシフェニル)エテニル]−4,6−ビス(トリクロロメチル)−s−トリアジン、2−[2−(3,4−ジメトキシフェニル)エテニル]−4,6−ビス(トリクロロメチル)−s−トリアジン、2−[2−(3,4,5−トリメトキシフェニル)エテニル]−4,6−ビス(トリクロロメチル)−s−トリアジン、2−(1−ナフチル)−4,6−ビス(トリクロロメチル)−s−トリアジン、2−(4−ビフェニリル)−4,6−ビス(トリクロロメチル)−s−トリアジン等を挙げることができる。上記トリアジン化合物は1種または2種以上を混合して用いても構わない。
また、本発明で好適に使用される光酸発生剤である、ジアリールヨードニウム塩化合物(以下、単にヨードニウム塩化合物とも称す)は、公知の化合物が何ら制限なく使用できる。代表的なジアリールヨードニウム塩系化合物としては、下記一般式(10)
Figure 2017141212
(上記式中、R、R、R、及びR10はそれぞれ独立に、水素原子、ハロゲン原子、アルキル基、アリール基、アルケニル基、アルコキシ基、アリールオキシ基、又はニトロ基であり、Mはアニオンである。)
で示されるものが挙げられる。
ここで、R、R、R、及びR10のハロゲン原子としては、フルオロ基、クロロ基、ブロモ基、ヨード基などが挙げられる。また、アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec−ブチル基、ペンチル基、イソペンチル基、ヘキシル基、n−オクチル基等の炭素数1〜10のものが好ましい。また、アリール基としては、フェニル基、p−メチルフェニル基、p−クロロフェニル基、ナフチル基等の炭素数6〜14のものが好ましい。また、アルケニル基としては、ビニル基、アリル基、イソプロペニル基、ブテニル基等の炭素数2〜8のものが好ましい。また、アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、の炭素数1〜6のものが好ましい。さらに、アリールオキシ基としては、フェノキシ等が好ましい。
上記ジアリールヨードニウム塩を具体的に例示すると、ジフェニルヨードニウム、ビス(p−クロロフェニル)ヨードニウム、ジトリルヨードニウム、ビス(p−tert−ブチルフェニル)ヨードニウム、p−イソプロピルフェニル−p−メチルフェニルヨードニウム、ビス(m−ニトロフェニル)ヨードニウム、p−tert−ブチルフェニルフェニルヨードニウム、p−メトキシフェニルフェニルヨードニウム、ビス(p−メトキシフェニル)ヨードニウム、p−オクチルオキシフェニルフェニルヨードニウム等のカチオンと、クロリド、ブロミド、p−トルエンスルホナート、トリフルオロメタンスルホナート、テトラフルオロボレート、テトラキスペンタフルオロフェニルボレート、テトラキスペンタフルオロフェニルガレート、ヘキサフルオロフォスフェート、ヘキサフルオロアルセナート、ヘキサフルオロアンチモネート等のアニオンからなるジフェニルヨードニウム塩を挙げることができる。
これらジアリールヨードニウム塩化合物の中でも、重合性単量体に対する溶解性の点から、p−トルエンスルホナート、トリフルオロメタンスルホナート、テトラフルオロボレート、テトラキスペンタフルオロフェニルボレート、テトラキスペンタフルオロフェニルガレート、ヘキサフルオロフォスフェート、ヘキサフルオロアルセナート、ヘキサフルオロアンチモネート塩が好ましく、さらに保存安定性の観点から、テトラキスペンタフルオロフェニルボレート、テトラキスペンタフルオロフェニルガレート、ヘキサフルオロアンチモネート塩が特に好適である。これらジアリールヨードニウム塩化合物は、1種または2種以上混合して用いても構わない。
また、本発明の光重合性組成物で好適に使用される他の光酸発生剤を具体的に例示すればスルホニウム塩系化合物が挙げられ、ジメチルフェナシルスルホニウム、ジメチルベンジルスルホニウム、ジメチル−4−ヒドロキシフェニルスルホニウム、ジメチル−4−ヒドロキシナフチルスルホニウム、ジメチル−4,7−ジヒドロキシナフチルスルホニウム、ジメチル−4,8−ジヒドロキシナフチルスルホニウム、トリフェニルスルホニウム、p−トリルジフェニルスルホニウム、p−tert−ブチルフェニルジフェニルスルホニウム、ジフェニル−4−フェニルチオフェニルスルホニウム等のクロリド、ブロミド、p−トルエンスルホナート、トリフルオロメタンスルホナート、テトラフルオロボレート、テトラキスペンタフルオロフェニルボレート、テトラキスペンタフルオロフェニルガレート、ヘキサフルオロフォスフェート、ヘキサフルオロアルセナート、ヘキサフルオロアンチモネート塩が挙げられる。
また、スルホン酸エステル化合物の具体例としては、ベンゾイントシレート、α−メチロールベンゾイントシレート、o−ニトロベンジルp−トルエンスルホナート、p−ニトロベンジル−9,10−ジエトキシアントラセン−2−スルホナートなどが挙げることができる。
これら光酸発生剤は1種または複数の種類のものを併用しても良い。
また、その一般的な配合量は、(A)ラジカル重合性単量体100重量部に対して0.005〜10重量部、より好ましくは0.03〜5重量部である。
〔B3)芳香族アミン化合物〕
本発明の歯科用硬化性組成物に用いるB3)芳香族アミン化合物は、窒素原子に結合した有機基のうちの少なくとも一つが芳香族基であるアミン化合物であればよく、公知のものが特に制限なく使用できるが、より重合活性が高く、また揮発性が低いため臭気が少なく、さらには入手が容易な点で、第三級窒素原子に一つの芳香族基と、2つの脂肪族基が結合したアミン化合物(以下、「第三級芳香族アミン化合物」とも称す)であることが好ましい。代表的な第三級芳香族アミン化合物としては下記一般式(11)で表されるものが挙げられる。
Figure 2017141212
(式中、R11及びR12は各々独立に、アルキル基であり、R13は水素原子、アルキル基、アリール基、アルケニル基、アルコキシ基、又はアルキルオキシカルボニル基である。)
11及びR12で表されるアルキル基、又はR13で表されるアルキル基、アリール基、アルケニル基、アルコキシ基及びアルキルオキシカルボニル基は、それぞれ非置換のものの他、前記R及びRの基で説明したような置換基や水酸基で置換されたものであっても良い。上記アルキル基としては、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、n−ヘキシル基、n−オクチル基等の非置換のアルキル基;クロロメチル基、2−クロロエチル基等のハロゲンにより置換されたアルキル基;2−ヒドロキシエチル基等の水酸基により置換されたアルキル基等の炭素数1〜10のものが挙げられる。置換基を有していてもよいアリール基としては、フェニル基、p−アルコキシフェニル(例えば、p−メトキシフェニル)、p−アルキルルチオフェニル基(例えば、p−メチルチオフェニル基)、p−ハロフェニル基(例えば、p−クロロフェニル基)、4−ビフェニリル基等の炭素数6〜12のものが例示され、アルケニル基としては、ビニル基、アリル基、2−フェニルエテニル基等の炭素数2〜12のものが、アルコキシ基としては、メトキシ基、エトキシ基、ブトキシ基、ヘキトキシ基、オクトキシ基等の炭素数1〜10のもの等が例示され、アルキルオキシカルボニル基としては、メトキシカルボニル基、エトキシカルボニル基、ブトキシカルボニル基、アミルオキシカルボニル基、イソアミルオキシカルボニル基等のアルキルオキシ基部分の炭素数が1〜10のものが例示される。
上記R11及びR12としては、炭素数1〜6の置換基を有していても良いアルキル基であることが好ましく、炭素数1〜3の非置換のアルキル基がより好ましい。このようなアルキル基を再度具体的に例示すると、メチル基、エチル基、n−プロピル基等が挙げられる。
また、R13としては、その結合位置がパラ位であることがより好ましく、さらには、アルキルオキシカルボニル基であることが好ましい。このようなアルキルオキシカルボニル基により置換された芳香族基を有するアミン化合物を用いることにより、後述する(B4)成分と組み合わせた場合、より優れた保存安定性が得られる。
このようなR13がパラ位に結合したアルキルオキシカルボニル基である芳香族アミン化合物を具体的に例示すると、p−N,N−ジメチルアミノ安息香酸メチル、p−N,N−ジメチルアミノ安息香酸エチル、p−N,N−ジメチルアミノ安息香酸プロピル、p−N,N−ジメチルアミノ安息香酸アミル、p−N,N−ジメチルアミノ安息香酸イソアミル、p−N,N−ジエチルアミノ安息香酸エチル、p−N,N−ジエチルアミノ安息香酸プロピル等が例示される。
また、一般式(11)で示される他の芳香族アミン化合物を具体的に例示すると、N,N−ジメチルアニリン、N,N−ジベンジルアニリン、N,N−ジメチル−p−トルイジン、N,N−ジエチル−p−トルイジン、N,N−ジ(β−ヒドロキシエチル)−p−トルイジン等が挙げられる。
これら芳香族アミン化合物は、1種または2種以上を混合して用いても構わない。また、その一般的な配合量は、重合性単量体100重量部に対して0.01〜5重量部であり、より好ましくは0.02〜3重量部である。
〔B4)第三級脂肪族アミン化合物〕
本発明の歯科用硬化性組成物における光重合開始剤としては、上記α−ジケトン、光酸発生剤、及び芳香族アミン化合物からなる光重合開始剤でも良いが、さらにB4)第三級脂肪族アミン化合物を併用すると、その重合活性を一層に向上させることができる。
当該第三級脂肪族アミン化合物は、B4)窒素原子に3つの飽和脂肪族基がついた第三級アミン化合物であり、かつ、該飽和脂肪族基のうちの少なくとも2つは電子吸引性基により置換されている飽和脂肪族基である脂肪族アミン化合物であることが必要である。電子吸引性基により置換されている飽和脂肪族基を有すアミン化合物を用いることで、高い重合活性を得ることでき、さらに優れた保存安定性も得ることができる。
当該脂肪族アミン化合物における電子吸引性基は、該基が結合している飽和脂肪族基の炭素原子から電子を引きつけるような誘起効果を持つ基であり、公知の如何なる電子吸引性基でも良いが、化学的な安定性を考慮すると、水酸基;フェニル基、ナフチル基等のアリール基;エテニル基(ビニル基)、1−プロペニル基、エチニル基等の不飽和脂肪族基;フッ素原子;アルコキシル基;カルボニル基;カルボニルオキシ基又はシアノ基が好ましい。これらのなかでも、特に化合物の安定性に優れ、また合成が容易であり、かつラジカル重合性単量体への溶解性に優れる点で、アリール基、不飽和脂肪族基又は水酸基であることが好ましく、水酸基が特に好ましい。
このような電子吸引性基で置換される飽和脂肪族基も特に制限されるものではなく、直鎖状、分枝状、環状のいずれでも良いが、合成や入手の容易さの点で、直鎖状又は分枝状の炭素数1〜6の飽和脂肪族基であることが好ましい。また、上記電子吸引性基が置換(結合)する位置や数も特に制限されるものではないが、アミンの窒素原子に近い炭素原子上で置換している方がより保存安定性に優れる。好ましくは、窒素原子と結合している炭素原子上(飽和脂肪族基の1位)又はその隣の炭素原子上(同2位)で置換していることが好ましい。
このような電子吸引性基により置換されている飽和脂肪族基を具体的に例示すると、2−ヒドロキシエチル基、2−ヒドロキシプロピル基、2−ヒドロキシブチル基、2,3−ジヒドロキシプロピル基等の水酸基により置換されたもの;アリル基(エテニルメチル基)、2−プロピニル基(エチニルメチル基)、2−ブテニル基等の不飽和脂肪族基により置換されたもの;ベンジル基等のアリール基により置換されたもの等が挙げられる。
本発明の光重合性組成物における光重合開始剤においてB4)成分としては、窒素原子に結合している3つの飽和脂肪族基のうち少なくとも2つは、このような電子吸引性基により置換されている飽和脂肪族基であることが必要である。
また、電子吸引性基により置換されていない飽和脂肪族基も特に制限されないが、メチル基、エチル基、プロピル基、ブチル基等の直鎖状又は分枝状の炭素数1〜6のアルキル基が好ましいものとして挙げられる。
このような、電子吸引性基により置換されている飽和脂肪族基を少なくとも2つの有す第三級脂肪族アミン化合物を具体的に例示すると、N−メチルジエタノールアミン、N−エチルジエタノールアミン、N−プロピルジエタノールアミン、N−エチルジアリルアミン、N−エチルジベンジルアミン等の電子吸引性基により置換されている飽和脂肪族基を2つ有す化合物;トリエタノールアミン、トリ(イソプロパノール)アミン、トリ(2−ヒドロキシブチル)アミン、トリアリルアミン、トリベンジルアミン等の電子吸引性基により置換されている飽和脂肪族基を3つ有す化合物が挙げられる。
これらB4)成分の第三級脂肪族アミン化合物は、1種または2種以上を混合して用いても構わない。また、その一般的な配合量は、(A)ラジカル重合性単量体100重量部に対して0.005〜5重量部であり、より好ましくは0.01〜3重量部である。
さらに、本発明の歯科用硬化性組成物の光重合開始剤において、前記B3)成分の芳香族アミン化合物と、上記B4)成分の第三級脂肪族アミン化合物は、両者の合計で、重合性単量体100質量部に対して0.015〜10質量部の範囲で配合することが好ましく、0.03〜6質量部とすることがより好ましく、さらにその質量比がB3)成分:B4)成分=3:97〜97:3の範囲とすることが好適である。
特に好ましくは、光重合開始剤の量、即ち、光重合開始剤の成分として配合される全成分の合計量を、重合性単量体100質量部に対して0.03〜20質量部、さらには0.05〜10質量部、特に好ましくは0.1〜3質量部の範囲とする。
さらに、歯牙の色調に合わせるために顔料、蛍光顔料、染料、紫外線に対する変色防止のために紫外線吸収剤を添加してもよいし、その他、歯科用硬化性組成物の成分として公知の添加剤を、本発明の効果に影響のない範囲で配合しても良い。
本発明の歯科用硬化性組成物には、フィラーを添加することも好適である。フィラーを用いることで、重合収縮の抑制効果をより大きくすることができる。また、フィラーを用いることにより、硬化前の組成物あるいは硬化性組成物の操作性を改良したり、あるいは、硬化後の機械的物性の向上を図ることができる。フィラーとしては、歯牙修復材料の充填材として公知の無機充填材が何ら制限なく用いられる。
無機充填材の材質は、特に制限が無く、従来の歯牙修復材料に充填材として使用されているものは、何れも用いることができる。具体的には、周期律第I、II、III、IV族、遷移金属から選ばれる金属の単体;これらの金属の酸化物や複合酸化物;これら金属のフッ化物、炭酸塩、硫酸塩、珪酸塩、水酸化物、塩化物、亜硫酸塩、燐酸塩等からなる金属塩;これらの金属塩の複合物等が挙げられる。好適には、非晶質シリカ、石英、アルミナ、チタニア、ジルコニア、酸化バリウム、酸化イットリウム、酸化ランタン、酸化イッテルビウム等の金属酸化物;シリカ‐ジルコニア、シリカ‐チタニア、シリカ‐チタニア‐酸化バリウム、シリカ‐チタニア‐ジルコニア等のシリカ系複合酸化物、ホウ珪酸ガラス、アルミノシリケートガラス、フルオロアルミノシリケートガラス等のガラス;フッ化バリウム、フッ化ストロンチウム、フッ化イットリウム、フッ化ランタン、フッ化イッテルビウム等の金属フッ化物;炭酸カルシウム、炭酸マグネシウム、炭酸ストロンチウム、炭酸バリウム等の無機炭酸塩;硫酸マグネシウム、硫酸バリウム等の金属硫酸塩等が採用される。
上記例示した、シリカ‐ジルコニア、シリカ‐チタニア、シリカ‐チタニア‐酸化バリウム、シリカ‐チタニア‐ジルコニア等の粒子は、強いX線造影性を有しているので、好適である。更には、より耐摩耗性に優れた硬化体が得られるので、シリカ−ジルコニア粒子が最も好ましい。
これら充填材の粒径は特に限定されず、一般的に歯牙修復材料として使用されている0.01μm〜100μm(特に好ましくは0.01〜5μm)の平均粒径の充填材が目的に応じて適宜使用できる。また、該充填材の屈折率も特に制限されず、一般的な歯科用の無機充填材が有する1.4〜1.7の範囲のものが制限なく使用でき、目的に合わせて適宜設定すればよい。粒径範囲や、屈折率の異なる複数の無機充填材を併用しても良い。
さらに、上記充填材の中でもとりわけ球状の無機充填材を用いると、得られる硬化体の表面滑沢性が増し、優れた歯牙修復材料となり得る。
上記無機充填材は、シランカップリング剤に代表される表面処理剤で処理することが、重合性単量体とのなじみを良くし、機械的強度や耐水性を向上させる上で望ましい。表面処理の方法は公知の方法で行えばよく、シランカップリング剤としては、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリクロロシラン、ジメチルジクロロシラン、トリメチルクロロシラン、ビニルトリクロロシラン、ビニルトリエトキシシラン、ビニルトリス(β−メトキシエトキシ)シラン、γ−メタクリロイルオキシプロピルトリメトキシシラン、γ−クロロプロピルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、ヘキサメチルジシラザン等が好適に用いられる。
これらの充填材の割合は、使用目的に応じて、重合性単量体と混合したときの粘度(操作性)や硬化体の機械的物性を考慮して適宜決定すればよいが、一般的には重合性単量体100重量部に対して50〜1500重量部、好ましくは70〜1000重量部の範囲で用いられる。
さらに、歯牙の色調に合わせるために顔料、蛍光顔料、染料、紫外線に対する変色防止のために紫外線吸収剤を添加してもよいし、その他、歯科用硬化性組成物の成分として公知の添加剤を、本発明の効果に影響のない範囲で配合しても良い。
また、本発明の歯科用硬化性組成物には、本発明の効果を損なわない範囲で他の公知の重合開始剤を配合しても良い。当該他の重合開始剤成分としては、過酸化ベンゾイル、クメンハイドロパーオキサイド等の有機過酸化物類;酸化バナジウム(IV)アセチルアセトナート、ビス(マルトラート)オキソバナジウム(IV)等の+IV価又は+V価のバナジウム化合物類;テトラフェニルホウ素ナトリウム、テトラフェニルホウ素トリエタノールアミン塩、テトラフェニルホウ素ジメチル−p−トルイジン塩、テトラキス(p−フルオロフェニル)ホウ素ナトリウム、ブチルトリ(p−フルオロフェニル)ホウ素ナトリウム等のアリールボレート化合物類;3,3’−カルボニルビス(7−ジエチルアミノ)クマリン、7−ヒドロキシ−4−メチル−クマリン等のクマリン系色素類;ビス(2,4,6−トリメチルベンゾイル)−フェニルホスフィンオキサイド、ビス(2,6−ジメトキシベンソイル)−2,4,4−トリメチルペンチルホスフィンオキサイド等のアシルフォスフィンオキサイド類;ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル等のベンゾインアルキルエーテル類;2,4−ジエトキシチオキサンソン、2−クロロチオキサンソン、メチルチオキサンソン等のチオキサンソン誘導体;ベンゾフェノン、p,p’−ビス(ジメチルアミノ)ベンゾフェノン、p,p’−ジメトキシベンゾフェノン等のベンゾフェノン誘導体類等が挙げられる。但し、高い環境光安定性を得るためには、アリールボレート化合物類及び有機過酸化物はできる限り少量にした方が良い。また、クマリン系色素類等の色素類は、重合開始剤として作用するほどの量を配合すると、光重合性組成物の色調に大きな影響を与え、高い審美性を要求される歯科用コンポジットレジンにおいては、歯と異なる色調となってしまう傾向がある。
また、本発明の歯科用硬化性組成物には、目的に応じその性能を低下させない範囲で水、有機溶媒や増粘剤等を添加することも可能である。当該有機溶媒としては、ヘキサン、ヘプタン、オクタン、トルエン、ジクロロメタン、メタノール、エタノール、酢酸エチル等があり、増粘剤としてはポリビニルピロリドン、カルボキシメチルセルロース、ポリビニルアルコール等の高分子化合物や高分散性シリカが例示される。
本発明の歯科用硬化性組成物を硬化させる際には、α−ジケトン系の光重合開始剤を硬化させるために用いられるのと同じ公知の光源を用いればよいが、低強度の光照射に対しては比較的安定で、他方、ある一定以上の高強度の光照射により急速に硬化するという本発明の光重合開始剤の特徴を生かすため、カーボンアーク、キセノンランプ、メタルハライドランプ、タングステンランプ、LED、ハロゲンランプ、ヘリウムカドミウムレーザー、アルゴンレーザー等の可視光線の光源が何ら制限なく使用される。照射時間は、光源の波長、強度、硬化体の形状や材質によって異なるため、予備的な実験によって予め決定しておけばよい。
以下、本発明を具体的に説明するために、実施例および比較例を挙げて説明するが、本発明はこれらにより何等制限されるものではない。以下に、各実施例および比較例のサンプルの作製に用いた物質の略称・略号およびその構造式または物質名と、各種サンプルの調整方法と、各種の評価方法とについて説明する。
(1)略称・略号およびその構造式または物質名
(A)重合性単量体
Figure 2017141212
Figure 2017141212
Figure 2017141212
Figure 2017141212
Figure 2017141212
Figure 2017141212
Figure 2017141212
なお、上記構造式中、単位構造の繰り返し数r、sは個々の分子においては0以上の整数値を取り得るものであり、上記構造式は、整数値(r、s)の組み合わせが異なる2種類以上の重合性単量体分子の混合物である。
Figure 2017141212
Figure 2017141212
Figure 2017141212
Figure 2017141212
Figure 2017141212
Figure 2017141212
Figure 2017141212
Figure 2017141212
Figure 2017141212
Figure 2017141212
なお、4−DPEGMAは下記化合物(a)、(b)、(c)の混合物として得られ、その比率はモル比で65:30:5である。また、上記構造式と共に示す値g、hは化合物(a)、(b)、(c)の混合物の平均値である。なお、上記構造式および以下に示す構造式と共に示す値g、hは平均値を意味するが、個々の分子においてはg、hの値は0、1または2の整数値を取り得るものである。また、値gおよびhの平均値が0または2である場合を除き、値g,hの平均値が示される構造式は、整数値(g、h)の組み合わせが異なる2種類または3種類の構造異性体の混合物を意味する。さらに、一般式(3)において、Ar=Ar=フェニレン基である場合、値gは、一般式(3)中に示す値jに対応する値であり、値hは、一般式(3)中に示す値kに対応する値である。
Figure 2017141212
Figure 2017141212
Figure 2017141212
Figure 2017141212
Figure 2017141212
Figure 2017141212
Figure 2017141212
Figure 2017141212
Figure 2017141212
Figure 2017141212
Figure 2017141212
Figure 2017141212
Figure 2017141212
Figure 2017141212
Figure 2017141212
[(A)重合性単量体(一般式(1)以外の分子構造を持つ重合性単量体)]
Figure 2017141212
Figure 2017141212
Figure 2017141212
Figure 2017141212
Figure 2017141212
3G:トリエチレングリコールジメタクリレート
(B)光重合開始剤
B1)
CQ:カンファーキノン
B2)
TCT:2,4,6−トリス(トリクロロメチル)−s−トリアジン
IP:ジフェニルヨードニウムヘキサフルオロリン酸
IB:4−イソプロピル−4‘メチルジフェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボラート
B3)
DMBE:p−N,N−ジメチルアミノ安息香酸エチル
DMBI:p−N,N−ジメチルアミノ安息香酸イソアミル
DMPT:N,N−ジメチル−p−トルイジン
B4)
TEOA:トリエタノールアミン
MDEOA:N−メチルジエタノールアミン
[重合禁止剤]
HQME:ハイドロキノンモノメチルエーテル
[無機フィラー]
F1:球状シリカジルコニアフィラー;一次粒子の平均粒子径=0.4μm、γ−メタクリロイルオキシプロピルトリメトキシシラン表面処理物
F2:球状シリカジルコニアフィラー;一次粒子の平均粒子径=0.07μm、γ−メタクリロイルオキシプロピルトリメトキシシラン表面処理物
(2)粘度測定
重合性単量体の粘度は、CSレオメーターを用いて測定した。測定装置としてはコーン/プレートジオメトリ4cm/2°及び温度制御システムを具備した粘弾性測定装置CSレオメーター「CVO120HR」(ボーリン社製)を用いた。そして、測定温度(プレート温度)25℃、ずり速度1rpsの測定条件にて、3回の測定を行い、3回の測定値の平均値を粘度とした。
(3)歯科用硬化性組成物の調製方法
重合性単量体に対し各々所定量の光重合開始剤と無機充填材、及びその他の配合成分を加え、赤色光下で均一になるまで攪拌、脱泡して調整した。
(4)曲げ強さ
ステンレス製型枠に硬化性組成物を充填し、ポリプロピレンで圧接した状態で、一方の面から10秒×3回、全体に光が当たるように場所を変えて可視光線照射器「トクソーパワーライト 株式会社トクヤマ社製」の照射口をポリプロピレンに密着させて光照射を行なった。ついで、反対の面からも同様にポリプロピレンに密着させて10秒×3回光照射を行ない硬化体を得た。#800の耐水研磨紙にて、硬化体を2×2×25mmの角柱状に整え、この試料片を試験機(島津製作所製、オートグラフAG5000D)に装着し、支点間距離20mm、クロスヘッドスピード1mm/分で3点曲げ破壊強度を測定した。
(5)環境光安定性試験
ペースト状の硬化性組成物試料の表面が10000ルックスになるように光源と試料との距離を設定した。光源にはデンタルライト(光源:ハロゲン光、タカラベルモント社製)を用い、照度計にて測定される照度が上記照度になるように距離を調整した。作製した歯科用硬化性組成物のペーストをポリプロピレンフィルムに0.03g量り採り、上記の光を所定時間時間照射した後、試料を押しつぶし、試料内部が固まり始めた時間を計測した。なお、照射時間は5秒間隔とした。この時間が長いほど環境光安定性に優れ、よって良好な操作余裕時間を得ることができる。なお照度計は東京硝子器械社、デジタルルックスメーターFLX−1330を用いた。なお、この照度計は400〜700nmに感度を有する。
(6)重合性単量体の合成手順
マトリックスモノマーサンプルの調整に際して用いた、一般式(1)に示される重合性単量体に該当するものについては、以下の手順で合成した。
<酸クロライド物(A)の合成>
4,4’−ジフェニルエーテルジカルボン酸25.3g(0.096mol)、ジメチルホルムアミド0.85g(0.012mol)およびトルエン80mlの第一の混合液を作製した。攪拌状態の第一の混合液に対して、塩化チオニル58.4g(0.46mol)およびトルエン20mlからなる第二の混合液を室温下で徐々に滴下した。滴下終了後に得られた液体を95℃に昇温し、3h還流した。そして加温・還流後に得られた黄色透明液体を放冷することで、下記に示す分子構造を有する4,4’−ジフェニルエーテルジカルボン酸クロライド(以下、「酸クロライド物(A)」と称す場合がある)のトルエン溶液を得た。さらに、このトルエン溶液をロータリーエバポレーターにかけ、40℃でトルエン、塩化チオニルおよび塩化水素を除去し、4,4’−ジフェニルエーテルジカルボン酸クロライドの固体26.9g(0.091mol、収率95%)を得た。
Figure 2017141212
<4−DPEHEの合成>
酸クロライド物(A)15.3g(0.052mol)に塩化メチレン120mlを加えることで、酸クロライド物(A)を含む分散液を得た。2−ヒドロキシエチルメタクリレート16.9g(0.13mol)、トリエチルアミン7.7g(0.13mol)、4−ジメチルアミノピリジン0.16g(0.0013mol)、BHT0.002gおよび塩化メチレン10mlを混合した混合液を滴下ロートを利用して上記の酸クロライド物(A)の分散液に−78℃で徐々に滴下し、さらに5時間攪拌した。滴下・撹拌後に得られた液体に水を加え、ロータリーエバポレーターを用いて、溶媒を除去した。溶媒除去後に得られた残さを100mlのトルエンに溶解し、0.5規定塩酸溶液で洗浄、飽和食塩水で洗浄し、硫酸マグネシウムで乾燥後、ろ別した。得られたろ液をロータリーエバポレーターで濃縮後、濃縮液をさらに真空乾燥して、4−DPEHE(収量19.0g、収率76%、HPLC純度97%)を得た。なお、得られた4−DPEHEのH NMRスペクトルのデータは、次の通りであった。
H NMR δ1.93(s,6H),4.58(t,4H),4.63(t,4H),5.59(s,2H),6.14(s,2H),7.06(d,4H),7.96(d,4H)
<2−DPEHEの合成>
4,4’−ジフェニルエーテルジカルボン酸25.3gの代わりに2,2’−ジフェニルエーテルジカルボン酸25.3g(0.096mol)を用いた以外は酸クロライド物(A)を合成する場合と同様の方法で、2,2’−ジフェニルエーテルジカルボン酸クロライド27.8g(0.094mol、収率98%)を得た。
酸クロライド物(A)15.3g(0.052mol)の代わりに2,2’−ジフェニルエーテルジカルボン酸クロライド15.3g(0.052mol)を用いた以外は4−DPEHEを合成する場合と同様の方法で、2−DPEHE(19.5g、収率78%、HPLC純度97%)を得た。なお、得られた2−DPEHEのH NMRスペクトルのデータは、次の通りであった。
H NMR δ1.93(s,6H),4.54(t,4H),4.62(t,4H),5.58(s,2H),6.16(s,2H),7.06(d,4H),7.45(d,2H),7.96(d,2H)。
<4−DPEHPの合成>
メタクリル酸8.6g(0.1mol)、1,3−プロパンジオール15.2g(0.2mol)、p−トルエンスルホン酸0.86g(0.005mol)、および、重合禁止剤としてBHT0.1gをガラス容器に入れ、85℃に加熱、攪拌する。この加熱撹拌状態の反応系中を減圧状態にし、反応系中から水分を除去しながら5時間攪拌を続けた。その後、得られた液体を冷却し、シリカゲルカラムクロマトグラフィーを用いて精製、濃縮後、3−ヒドロキシプロピルメタクリレート6.3g(収率44%)を得た。
次に、別のガラス容器に酸クロライド物(A)3.0g(0.01mol)、塩化メチレン70ml、ジ−tertブチルメチルフェノール0.001gを入れた溶液を攪拌しながら、この溶液に対して、上記の3−ヒドロキシプロピルメタクリレート3.2g(0.022mol)、トリエチルアミン2.0g(0.02mol)および4−ジメチルアミノピリジン0.025g(0.0002mol)を10ml塩化メチレンに溶解させた溶液を1時間かけて、ゆっくり滴下した。滴下終了後に得られた溶液を、室温で1時間撹拌した後に、水を加え、ロータリーエバポレーターを用いて、溶媒を除去した。溶媒除去後に得られた残さを100mlのトルエンに溶解し、0.5規定塩酸溶液で洗浄、飽和食塩水で洗浄し、硫酸マグネシウムで乾燥後、ろ別した。得られたろ液を再びロータリーエバポレーターで濃縮後、濃縮液をさらに真空乾燥して、4−DPEHPを得た(収量4.1g、収率76%、HPLC純度97%)を得た。なお、得られた4−DPEHBのH NMRスペクトルのデータは、次の通りであった。
H NMR δ1.93(s,6H),2.10(m,4H),4.18(t,4H),4.27(t,4H),5.59(s,2H),6.13(s,2H),7.05(d,4H),7.93(d,4H)。
<4−DPEHBの合成>
−プロセス1−
メタクリル酸8.6g(0.1mol)、1,4−ブタンジオール18.0g(0.2mol)、p−トルエンスルホン酸0.86g(0.005mol)、および、重合禁止剤としてBHT0.1gをガラス容器に入れ、85℃に加熱、攪拌した。次に、この加熱撹拌状態の反応系中を減圧状態にし、反応系中から水分を除去しながら5時間攪拌を続けた。その後、得られた液体を冷却し、シリカゲルカラムクロマトグラフィーを用いて精製、濃縮後、4−ヒドロキシブチルメタクリレート6.7g(収率42%)を得た。
−プロセス2−
次に、別のガラス容器に酸クロライド物(A)3.0g(0.01mol)、塩化メチレン70ml、ジ−tertブチルメチルフェノール0.001gを入れた溶液を攪拌しながら、この溶液に対して、上記の4−ヒドロキシブチルメタクリレート3.5g(0.022mol)、トリエチルアミン2.0g(0.02mol)、4−ジメチルアミノピリジン0.025g(0.0002mol)を10ml塩化メチレンに溶解させた溶液を1時間かけて、ゆっくり滴下した。滴下終了後に得られた溶液を、室温で1時間撹拌した後に、水を加え、ロータリーエバポレーターを用いて、溶媒を除去した。溶媒除去後に得られた残さを100mlのトルエンに溶解し、0.5規定塩酸溶液で洗浄、飽和食塩水で洗浄し、硫酸マグネシウムで乾燥後、ろ別した。得られたろ液を再びロータリーエバポレーターで濃縮後、濃縮液をさらに真空乾燥して、4−DPEHBを得た(収量4.1g、収率76%、HPLC純度97%)を得た。なお、得られた4−DPEHBのH NMRスペクトルのデータは、次の通りであった。
H NMR δ1.52−1.63(m,8H),1.93(s,6H),4.14(t,4H),4.27(t,4H),5.59(s,2H),6.13(s,2H),7.05(d,4H),7.93(d,4H)。
<4−DPEHHの合成>
1,4−ブタンジオール18.0gの代わりに1,6−ヘキサンジオール23.6gを用いた以外は<4−DPEHBの合成>のプロセス1に示す合成方法に従って、6−ヒドロキシヘキシルメタクリレート19.7g(収率53%)16.0g(収率43%)を得た。
次いで4−ヒドロキシブチルメタクリレートの代わりに6−ヒドロキシヘキシルメタクリレート4.1gを用いた以外は、<4−DPEHBの合成>のプロセス2に示す合成方法に従い、6−ヒドロキシヘキシルメタクリレートと酸クロライド物(A)との反応により、4−DPEHHを得た(収量4.6g、収率78%、HPLC純度98%)を得た。なお、得られた4−DPEHHのH NMRスペクトルのデータは、次の通りであった。
H NMR δ1.29(m,8H),1.57(t,4H),1.77(t,4H),1.93(s,6H),4.16(t,4H),4.22(t,4H),5.58(s,2H),6.14(s,2H),7.04(d,4H),7.96(d,4H)。
<4−DPEHIP>
2−ヒドロキシエチルメタクリレート16.9gの代わりに2−ヒドロキシプロピルメタクリレートを18.7g(0.13mol)を用いた以外は、4−DPEHEの合成方法と同様の方法で、4−DPEHP(収量19.9g、収率75%、HPLC純度97%)を合成した。なお、得られた4−DPEHPのH NMRスペクトルのデータは、次の通りであった。
H NMR δ1.40(d,6H),1.93(s,6H),4.61(d,4H),4.74(t,2H),5.56(s,2H),6.13(s,2H),7.01(d,4H),7.92(d,4H)。
<4−DPEPE>
2−ヒドロキシエチルメタクリレート16.9gの代わりにポリエチレングリコールモノメタクリレート(エチレングリコール鎖(−CHCHO−)nの繰り返し数nの平均≒2)を22.6g(0.13mol)を用いた以外は、4−DPEHEの合成方法と同様の方法で、4−DPEPE(収量22.5g、収率78%、HPLC純度97%)を合成した。なお、得られた4−DPEPEのH NMRスペクトルのデータは、次の通りであった。
H NMR δ1.93(s,6H),3.64−3.82(m,8H),4.36−4.42(m,8H),5.58(s,2H),6.17(s,2H),7.04(d,4H),7.99(d,4H)。
<4−DPEGAMの合成>
2−ヒドロキシエチルメタクリレート16.9gの代わりにグリセロールジメタクリレート29.6g(0.13mol)を用いた以外は、4−DPEHEの合成方法と同様の方法で、4−DPEGAM(収量25.7g、収率73%,HPLC純度92%)を合成した。なお、得られた4−DPEGAMのH NMRスペクトルのデータは、次の通りであった。
H NMR δ1.93(s,12H),4.58(d,8H),5.20(m,2H),5.52(s,4H),6.10(s,4H),7.01(d,4H),7.92(d,4H)。
<4−DPEUの合成>
エチレングリコール50.0g(0.8mol)、トリエチルアミン40.5g(0.4mol)、N,N−ジメチルアミノピリジン0.49g(4mol)を100ml塩化メチレンに溶解して得られた溶液を撹拌しながら、0℃に冷却した。次に、この溶液に対して、酸クロライド物(A)44.8g(0.2mol)を塩化メチレン(200ml)に溶解した溶液を2時間かけてゆっくり滴下した。滴下後に得られた溶液をさらに1時間撹拌した後に、水を加え、ロータリーエバポレーターを用いて、溶媒を除去した。溶媒除去後に得られた残さを100mlのトルエンに溶解し、0.5規定塩酸溶液で洗浄、飽和食塩水で洗浄し、硫酸マグネシウムで乾燥後、ろ別した。得られたろ液を再びロータリーエバポレーターで濃縮後、濃縮液をシリカゲルカラムクロマトグラフィーで精製することで4,4’−ビス(2−ヒドロキシエトキシカルボニル)ジフェニルエーテル41.6g(収率60%)を得た。
得られた4,4’−ビス(2−ヒドロキシエトキシカルボニル)ジフェニルエーテル34.6g(0.1mol)およびジブチルチンジラウレート3.2g(5mmol)を100mlの無水ジメチルホルムアミドに溶解して得られた溶液に、2−メタクリロイルオキシエチルイソシアネート31.0g(0.2mol)をさらに加え、室温で3時間撹拌した。撹拌後の溶液に、塩化メチレン100mlを加えて、分液ロートを用いて蒸留水で3回洗浄し、塩化メチレン層を硫酸マグネシウムを用いて乾燥した。乾燥後、硫酸マグネシウムをろ別し、ろ液をロータリーエバポレーターで濃縮し、濃縮物をさらに真空乾燥して、4−DPEU(収量63.7g、収率97%、HPLC純度94%)を得た。なお、得られた4−DPEUのH NMRスペクトルのデータは、次の通りであった。
H NMR δ1.93(s,6H),3.30(t,4H),4.40−4.56(m,12H),5.60(s,2H),6.17(s,2H),7.06(d,4H),7.98(d,4H),8.03(s,2H)。
<4−DPEUEの合成>
2−メタクリロイルオキシエチルイソシアネート31.0gの代わりに2−(2−メタクリロイルオキシエチルオキシ)エチルイソシアネート39.8g(0.2mol)を用いた以外は、4−DPEUの合成方法と同様の方法で、4−DPEUE(収量70.3g、収率95%、HPLC純度96%)を得た。なお、得られた4−DPEUEのH NMRスペクトルのデータは、次の通りであった。
H NMR δ1.93(s,6H),3.10(m,4H),3.66(m,8H),4.33(t,4H),4.54(m,8H),5.58(s,2H),6.14(s,2H),7.06(d,4H),7.96(d,4H),8.02(s,2H)。
<4−DPSHEの合成>
t−ブタノール200mlおよび水50mlに対して、特開2005−154379号公報に記載の合成方法により合成した4,4−ジホルミルジフェニルスルフィド48.4g(0.2mol)を溶解させた後、リン酸水素ナトリウム水溶液50mlおよび2−メチル−2−ブテン140g(2mol)加え、さらに亜塩素酸ナトリウム36g(0.4mol)を加えることで反応溶液を準備した。次に、この反応溶液を5時間撹拌後、1規定塩酸溶液を用いて、反応溶液を酸性にすることで、固体を析出させた。続いて固体が析出した反応溶液を、吸引ろ過後、水を用いて、析出した固体を洗浄した。洗浄後に得られた固体(化合物)を真空乾燥することにより、4,4’−ジカルボキシジフェニルスルフィド(収量45.5g,収率83%)を得た。
次に、4,4’−ジフェニルエーテルジカルボン酸25.3g(0.096mol)の代わりに4,4’−ジカルボキシジフェニルスルフィド26.4g(0.096mol)を用いた以外は、酸クロライド物(A)の合成方法と同様の方法で、4,4’−ジフェニルスルフィドジカルボン酸クロライド28.4g(0.091mol)を合成した。
次いで、酸クロライド物(A)15.3gの代わりに4,4’−ジフェニルスルフィドジカルボン酸クロライド16.1g(0.052mol)を用いた以外は4−DPEHEの合成方法と同様の方法で、4−DPSHE(収量18.9g、収率73%、HPLC純度91%)を得た。なお、得られた4−DPSHEのH NMRスペクトルのデータは、次の通りであった。
H NMR δ1.93(s,6H),4.52(t,4H),4.63(t,4H),5.58(s,2H),6.11(s,2H),7.30(d,4H),7.81(d,4H)。
<4−DPSOHEの合成>
4,4’−ジフェニルエーテルジカルボン酸25.3g(0.096mol)の代わりに4,4’−ジカルボキシジフェニルスルホン29.4g(0.096mol)を用いた以外は、酸クロライド物(A)の合成方法と同様の方法で、4,4’−ジフェニルスルホンジカルボン酸クロライド31.6g(0.092mol)を合成した。
次いで、酸クロライド物(A)15.3gの代わりに4,4’−ジフェニルスルホンジカルボン酸クロライド17.8g(0.052mol)を用いた以外は4−DPEHEの合成方法と同様の方法で、4−DPSOHE(収量20.4g、収率74%、HPLC純度92%)を得た。なお、得られた4−DPSOHEのH NMRスペクトルのデータは、次の通りであった。
H NMR δ1.93(s,6H),4.58(t,4H),4.63(t,4H),5.59(s,2H),6.14(s,2H),8.06(d,4H),8.20(d,4H)。
<4−DPFHEの合成>
t−ブタノール200mlおよび水50mlに対して、特開2005−154379号公報に記載の合成方法により合成された4,4’−ジホルミルジフェニルメタン44.8g(0.2mol)を溶解させた後、リン酸水素ナトリウム水溶液50mlおよび2−メチル−2−ブテン140g(2mol)加え、さらに、亜塩素酸ナトリウム36g(0.4mol)を加えることで反応溶液を得た。次に、この反応溶液を5時間撹拌後、1規定塩酸溶液を用いて、反応溶液を酸性にすることで、固体を析出させた。続いて固体が析出した反応溶液を、吸引ろ過後、水を用いて、析出した固体を洗浄した。得られた固体(化合物)を真空乾燥することにより、4,4’−ジカルボキシジフェニルメタン39.8g(収率83%)を得た。
次に、4,4’−ジフェニルエーテルジカルボン酸25.3g(0.096mol)の代わりに4,4’−ジカルボキシジフェニルメタン23.0g(0.096mol)を用いた以外は、酸クロライド物(A)の合成方法と同様の方法で、4,4’−ジフェニルメタンジカルボン酸クロライド25.2g(0.091mol)を合成した。
次いで、酸クロライド物(A)15.3gの代わりに4,4’−ジフェニルメタンジカルボン酸クロライド14.4g(0.052mol)を用いた以外は4−DPEHEの合成方法と同様の方法で、4−DPFHE(収量18.7g、収率75%、HPLC純度94%)を得た。なお、得られた4−DPFHEのH NMRスペクトルのデータは、次の通りであった。
H NMR δ1.93(s,6H),3.85(s,2H),4.52−4.63(m,8H),5.58(s,2H),6.12(s,2H),7.15(d,4H),7.86(d,4H)。
<4−DPAHEの合成>
4,4’−ジフェニルエーテルジカルボン酸25.3gの代わりに英国特許GB753384に記載の合成方法により合成された2,2−ビス(4−カルボキシフェニル)プロパン27.2g(0.096mol)を用いた以外は、酸クロライド(A)の合成方法と同様の方法で2,2−ビス(4−クロロカルボニルフェニル)プロパン29.6g(収率96%)を得た。
次いで、酸クロライド物(A)15.3gの代わりに2,2’−ビス(4−クロロカルボニルフェニル)プロパン16.7g(0.052mol)を用いた以外は4−DPEHEの合成方法と同様の方法で、4−DPAHE(収量19.3g、収率73%、HPLC純度92%)を得た。なお、得られた、4−DPAHEのH NMRスペクトルのデータは、次の通りであった。
H NMR δ1.64(s,6H),1.93(s,6H),4.53−4.64(m,8H),5.59(s,2H),6.12(s,2H),7.22(d,4H),7.90(d,4H)。
<4−DPBHEの合成>
t−ブタノール200mlおよび水50mlに対して、特開2007−106779号公報に記載の合成方法により合成された4−ホルミルフェニル−4’−ホルミルベンゾエート50.8g(0.2mol)を溶解させた後、リン酸水素ナトリウム水溶液50mlおよび2−メチル−2−ブテン140g(2mol)加え、さらに、亜塩素酸ナトリウム36g(0.4mol)を加えることで反応溶液を得た。次に、この反応溶液を5時間撹拌後、1規定塩酸溶液を用いて、反応溶液を酸性にすることで、固体を析出させた。続いて固体が析出した反応溶液を、吸引ろ過後、水を用いて、析出した固体を洗浄した。得られた固体(化合物)を真空乾燥することにより、4−カルボキシフェニル−4’−カルボキシベンゾエート45.4g(収率84%)を得た。
次に、4,4’−ジフェニルエーテルジカルボン酸25.3gの代わりに、上記の4−カルボキシフェニル−4’−カルボキシベンゾエート25.9g(0.096mol)を用いた以外は、酸クロライド(A)の合成方法と同様の方法で4−クロロカルボニルフェニル−4’−クロロカルボニルフェニルベンゾエート29.8g(収率96%)を得た。
次いで、酸クロライド物(A)15.3gの代わりに4−クロロカルボニルフェニル−4’−クロロカルボニルフェニルベンゾエート16.8g(0.052mol)を用いた以外は4−DPEHEの合成方法と同様の方法で、4−DPBHE(収量20.2g、収率76%、HPLC純度94%)を得た。なお、得られた4−DPBHEのH NMRスペクトルのデータは、次の通りであった。
H NMR δ1.93(d,6H),4.51(m,4H),4.61(t,4H),5.58(d,2H),6.13(d,2H),7.25(d,2H),8.02(d,2H),8.12(d,2H),8.272(d,2H)。
<4−DPALHEの合成>
t−ブタノール200mlおよび水50mlに対して、特許第3076603号に記載の合成方法により合成された1,1−ビス(4−ホルミルフェニル)シクロヘキサン58.4g(0.2mol)を溶解させた後に、リン酸水素ナトリウム水溶液50mlおよび2−メチル−2−ブテン140g(2mol)加え、さらに、亜塩素酸ナトリウム36g(0.4mol)を加えることで反応溶液を得た。次に、この反応溶液を5時間撹拌後、1規定塩酸溶液を用いて、反応溶液を酸性にすることで、固体を析出させた。続いて固体が析出した反応溶液を、吸引ろ過後、水を用いて、析出した固体を洗浄した。得られた固体(化合物)を真空乾燥することにより、1,1−ビス(4−カルボキシルフェニル)シクロヘキサン54.4g(収率84%)を得た。
次に、4,4’−ジフェニルエーテルジカルボン酸25.3gの代わりに、上記の1,1−ビス(4−カルボキシルフェニル)シクロヘキサン31.1g(0.096mol)を用いた以外は、酸クロライド(A)の合成方法と同様の方法で1,1−ビス(4−クロロカルボニルフェニル)シクロヘキサン33.3g(収率96%)を得た。
次いで、酸クロライド物(A)15.3gの代わりに1,1−ビス(4−クロロカルボニルフェニル)シクロヘキサン18.8g(0.052mol)を用いた以外は4−DPEHEの合成方法と同様の方法で、4−DPALHE(収量24.3g、収率85%。HPLC純度92%)を得た。なお、得られた4−DPALHEのH NMRスペクトルのデータは、次の通りであった。
H NMR δ1.45(m,6H),1.93(s,6H),2.01(m,4H),4.53−4.64(m,4H),5.58(s,2H),6.13(s,2H),7.23(d,4H),7.90(d,4H)。
<4−DPEGMAの合成>
12.8gのメタクリル酸グリシジル(0.09モル)に4,4’−ジフェニルエーテルジカルボン酸12.9g(0.05モル)、ベンジルトリエチルアンモニウムクロリド0.02g(0.00009モル)、BHT0.02g(0.00009モル)、ジメチルホルムアミド20gを加えた混合液を、100℃で4時間反応させた。反応により得られた液体に酢酸エチル40mlを加えて、均一な溶液にした。次に、この溶液を分液ロートに移し、10wt%炭酸カリウム水溶液40mlで3回洗浄し、さらに蒸留水で3回洗浄した後、酢酸エチル層を回収した。その後、回収した酢酸エチル層に硫酸マグネシウムを加えて、酢酸エチル層中に含まれる水分を除去した。続いて、酢酸エチル層から硫酸マグネシウムをろ別し、ろ液をロータリーエバポレーターで濃縮して濃縮物を得た。この濃縮物を更に真空乾燥して、4−DPEGMA(収量22.8g、収率84%、HPLC純度95%)を得た。なお、得られた4−DPEGMAのH NMRスペクトルのデータは、次の通りであった。
H NMR δ1.93(s,6H),3.90(d,0.8H),4.30〜4.70(m,9.2H),5.59(s,2H),6.16(s,2H),7.07(d,4H),8.07(d,4H)。
<4−DPEGMAIの合成>
固体状の酸クロライド物(A)15.3g(0.052モル)を塩化メチレン30mlに溶解させた塩化メチレン溶液を作製した。
別途モノメタクリル酸グリセロール−1−イル33.3g(0.208モル)テトラメチルエチレンジアミン12.1g(0.104モル)、BHT0.002gと塩化メチレン20mlを混合した溶液を作製した。この溶液を上記の酸クロライドAを溶解させた塩化メチレン溶液に−78℃で徐々に滴下し、さらに5時間攪拌した。滴下・撹拌後に得られた液体を0.4mol/L塩酸水60mlで3回洗浄し、次に、10wt%炭酸カリウム水溶液60mlで3回洗浄し、さらに蒸留水で3回洗浄した後、塩化メチレン層を回収した。その後、回収した塩化メチレン層に硫酸マグネシウムを加え、塩化メチレン層中に含まれる水分を除去した。次に、塩化メチレン層から硫酸マグネシウムをろ別し、ろ液をロータリーエバポレーターで濃縮することで濃縮物を得た。濃縮物をシリカゲルカラムクロマトグラフィーにより精製し、4−DPEGMAI(収量25.9g、収率92%、HPLC純度97%)を得た。なお、得られた4−DPEGMAIのH NMRスペクトルのデータは、次の通りであった。
H NMR δ1.93(s,6H),3.90(d,0.2H),4.30〜4.70(m,9.8H),5.59(s,2H),6.16(s,2H),7.07(d,4H),8.07(d,4H)。
<4−DPEGMAIIの合成>
12.8gのメタクリル酸グリシジル(0.09モル)に4,4’−ジフェニルエーテルジカルボン酸12.9g(0.05モル)、テトラブチルアンモニウムブロミド0.02g(0.00009モル)、BHT0.02g(0.00009モル)、ジメチルアセトアミド20gを加えた混合液を、100℃で4時間反応させた。反応により得られた液体に酢酸エチル40mlを加えて、均一な溶液にした。次に、この溶液を分液ロートに移し、10wt%炭酸カリウム水溶液40mlで3回洗浄し、さらに蒸留水で3回洗浄した後、酢酸エチル層を回収した。その後、回収した酢酸エチル層に硫酸マグネシウムを加えて、酢酸エチル層中に含まれる水分を除去した。続いて、酢酸エチル層から硫酸マグネシウムをろ別し、ろ液をロータリーエバポレーターで濃縮して濃縮物を得た。この濃縮物を更に真空乾燥して、4−DPEGMAII(収量25.3g、収率90%、HPLC純度95%)を得た。なお、得られた4−DPEGMAIIのH NMRスペクトルのデータは、次の通りであった。
H NMR δ1.93(s,6H),3.90(d,0.4H),4.30〜4.70(m,9.6H),5.62(s,2H),6.16(s,2H),7.07(d,4H),8.07(d,4H)。
<4−DPEGMAIIIの合成>
上記の方法で4−DPEGMAIIを合成後、シリカゲルカラムクロマトグラフィー(充填剤:SiO、展開溶媒:酢酸エチル/ヘキサン=3/1〜2/1)によって、精製することで、4−DPEGMAIII(収量18.7g、収率69%、HPLC純度99%)を得た。なお、得られた4−DPEGMAIIIのH NMRスペクトルのデータは、次の通りであった。
H NMR δ1.93(s,6H),4.30〜4.41(m,10H),5.62(s,2H),6.16(s,2H),7.07(d,4H),8.07(d,4H)。
<4−DPEGMIVの合成>
上記の方法で4−DPEGMAを合成後、シリカゲルカラムクロマトグラフィー(充填剤:SiO、展開溶媒:酢酸エチル/ヘキサン=3/1〜2/1)によって、精製することで、4−DPEGMAIV(収量2.2g、収率8%、HPLC純度99%)を得た。なお、得られた4−DPEGMAIVのH NMRスペクトルのデータは、次の通りであった。
H NMR δ1.93(s,6H),3.90(d,3.2H),4.30〜4.70(m,7.8H),5.62(s,2H),6.16(s,2H),7.07(d,4H),8.07(d,4H)。
<4−DPEGAの合成>
メタクリル酸グリシジル12.8g(0.09mol)の代わりにアクリル酸グリシジル11.5g(0.09mol)を用いた以外は、4−DPEGMAの合成方法と同様の方法で、4−DPEGA(収量21.8g、収率85%、HPLC純度96%)を得た。なお、得られた4−DPEGAのH NMRスペクトルのデータは、次の通りであった。
H NMR δ1.93(s,6H),3.84(d,2H),4.00〜4.65(m,8H),5.83(t,2H),6.12(d,2H),6.43(d,2H),7.09(d,4H),7.99(d,4H)。
<2−DPEGMAの合成>
4,4’−ジフェニルエーテルジカルボン酸12.9g(0.05mol)の代わりに2,2’−ジフェニルエーテルジカルボン酸12.9g(0.05mol)を用いた以外は、4−DPEGMAの合成方法と同様の方法で、2−DPEGMA(収量23.0g、収率85%、HPLC純度95%)を得た。なお、得られた2−DPEGMAのH NMRスペクトルのデータは、次の通りであった。
H NMR δ1.93(s,6H),3.80(d,1.8H),4.00〜4.65(m,8.2H),5.59(s,2H),6.16(s,2H),7.07(d,2H),7.42(d,4H),8.17(d,2H)。
<4−DPEHGMAの合成>
5−ヘキセン−1−オール(30.1g,0.3mol)を塩化メチレン100mlに溶解後、トリエチルアミン33.4g(0.33mol)、N,N−ジメチルアミノピリジン1.8g(0.015mol)を加えた溶液を調整し、さらにこの溶液を氷冷した。次に、氷冷した溶液に対して、メタクリル酸クロライド31.4g(0.3mol)を塩化メチレン(50ml)に溶解させた塩化メチレン溶液を滴下した。滴下終了後に得られた溶液を、室温で3時間撹拌した後に、蒸留水100mlを加え、さらに塩化メチレンで3回抽出した。抽出により得られた塩化メチレン層をロータリーエバポレーターを用いて溶媒を除去することで残さを得た。さらに、得られた残さを100mlトルエンで溶解した。得られたトルエン溶液を0.5規定塩酸溶液で3回洗浄後、飽和食塩水溶液で3回洗浄し、硫酸マグネシウム溶液で乾燥した。乾燥後、硫酸マグネシウム溶液をろ別し、ろ液をロータリーエバポレーターで濃縮、濃縮物をさらに真空乾燥して、メタクリル酸5−ヘキセン−1−イル46.4g(収率92%)を得た。
得られたメタクリル酸5−ヘキセン−1−イル45.4g(0.27mol)を塩化メチレン100mlに溶解後、60質量%メタクロロ過安息香酸/水混合物196g(0.675mol相当)を加え、室温で10時間撹拌した。撹拌後、副生成物のメタクロロ安息香酸をろ別し、ろ液を15質量%亜硫酸ナトリウム水溶液150mlで還元処理を行った。還元処理後のろ液から分液した塩化メチレン層を、5質量%炭酸カリウム水溶液で2回洗浄し、硫酸マグネシウムで乾燥後、ロータリーエバポレーターで濃縮して濃縮物を得た。そしてこの濃縮物をさらに真空乾燥して、メタクリル酸5,6−エポキシヘキサン−1−イル44.8g(収率90%)を得た。
得られたメタクリル酸5,6−エポキシヘキサン−1−イル23.0g(0.125mol)、4,4’−ジフェニルエーテルジカルボン酸12.9g(0.05mol)、ベンジルトリエチルアンモウニウムクロライド0.045g(0.2mmol)、及びp−メトキシフェノール0.03gを混合した混合液を90℃で4時間撹拌した。加熱撹拌後の混合液を、室温まで放冷した後、水50mlを加え、塩化メチレンで抽出した。得られた塩化メチレン層を硫酸マグネシウムで乾燥後、ロータリーエバポレーターで濃縮して濃縮物を得た。さらに、この濃縮物を真空乾燥することで、4−DPEHGMA(収量29.0g,0.046mol,収率93%、HPLC純度95%)を得た。なお、得られた4−DPEHGMAのH NMRスペクトルのデータは、次の通りであった。
H NMR δ1.29(t,4H),1.44(m,4H),1.57(t,4H),1.93(s,6H),3.85(d,1.9H),4.15〜4.70(m,8.1H),5.59(s,2H),6.16(s,2H),7.05(d,4H),7.95(d,4H)。
<4−DPEEGMAの合成>
塩化メチレン100mlに、アリルオキシエタノール30.6g(0.3mol)を溶解した後、さらにトリエチルアミン33.4g(0.33mol)およびN,N−ジメチルアミノピリジン1.8g(0.015mol)を加えた溶液を準備した。次に、得られた溶液を氷冷し、この溶液に、メタクリル酸クロライド31.4g(0.3mol)を塩化メチレン50mlに溶解させた溶液を滴下した。滴下終了後に得られた溶液を、室温で3時間撹拌した後に、蒸留水100mlを加え、塩化メチレンで3回抽出した。次に、得られた塩化メチレン層をロータリーエバポレーターを用いて溶媒を除去することにより得られた残渣を100mlのトルエンに溶解することでトルエン溶液を得た。そして、このトルエン溶液を0.5規定塩酸溶液で3回洗浄後、飽和食塩水溶液で3回洗浄し、硫酸マグネシウム溶液で乾燥した。乾燥後硫酸マグネシウム溶液をろ別し、ろ液をロータリーエバポレーターで濃縮することで濃縮物を得た。さらに、この濃縮物を真空乾燥して、メタクリル酸−アリルオキシエチル46.0g(収率90%)で得た。
塩化メチレン100mlに、得られたメタクリル酸アリルオキシエチル46.0g(0.27mol)を溶解させ、さらに60質量%メタクロロ過安息香酸/水混合物196g(0.675mol相当)を加えて調製した溶液を、室温で10時間撹拌した。撹拌後の溶液から、副生成物のメタクロロ安息香酸をろ別し、ろ液を15質量%亜硫酸ナトリウム水溶液150mlで還元処理を行った。続いて還元処理されたろ液から分液した塩化メチレン層を、5質量%炭酸カリウム水溶液で2回洗浄し、硫酸マグネシウムで乾燥後、ロータリーエバポレーターにより濃縮することで濃縮物を得た。さらに、この濃縮物を真空乾燥して、メタクリル酸グリシジルオキシエチル47.3g(収率94%)を得た。
得られたメタクリル酸−グリシジルオキシエチル23.3g(0.125mol)、4,4’−ジフェニルエーテルジカルボン酸12.9g(0.05mol)、ベンジルトリエチルアンモウニウムクロライド0.045g(0.2mmol)、及びp−メトキシフェノール0.03gを混合した混合液を90℃で4時間撹拌した。加熱撹拌後の混合液を、室温まで放冷し、水50mlを加え、塩化メチレンで抽出した。得られた塩化メチレン層を硫酸マグネシウムで乾燥後、ロータリーエバポレーターで濃縮することで濃縮物を得た。最後に、この濃縮物を真空乾燥して、4−DPEEGMA(収量29.0g,収率92%,HPLC純度94%)を得た。なお、得られた4−DPEHGMAのH NMRスペクトルのデータは、次の通りであった。
H NMR δ1.93(s,6H),3.50〜4.50(m,18H),4.15〜4.70(m,8.1H),5.59(s,2H),6.16(s,2H),7.02(d,4H),8.02(d,4H)。
<4−DPSGMAの合成>
t−ブタノール200mlおよび水50mlに対して、特開2005−154379号公報に記載の合成方法により合成された4,4−ジホルミルジフェニルスルフィド48.4g(0.2mol)を溶解させた後、リン酸水素ナトリウム水溶液50ml、2−メチル−2−ブテン140g(2mol)加え、さらに、亜塩素酸ナトリウム36g(0.4mol)を加えることで反応溶液を準備した。次に、この反応溶液を5時間撹拌後、1規定塩酸溶液を用いて、反応溶液を酸性にすることで、固体を析出させた。続いて固体が析出した反応溶液を、吸引ろ過後、水を用いて、析出した固体を洗浄した。洗浄後に得られた固体(化合物)を真空乾燥することにより、4,4’−ジカルボキシジフェニルスルフィド45.5g(収率83%)を得た。
次いで、4,4’−ジフェニルエーテルジカルボン酸12.9gの代わりに、上記の4,4’−ジカルボキシジフェニルスルフィド13.7g(0.05mol)を用いた以外は、4−DPEGMAの合成方法と同様の方法により4−DPSGMA(収量22.3g、収率80%、HPLC純度95%)を得た。なお、得られた4−DPSGMAのH NMRスペクトルのデータは、次の通りであった。
H NMR δ1.93(s,6H),3.62(d,2H),3.90〜4.70(m,8H),5.58(s,2H),6.14(s,2H),7.33(d,4H),7.78(d,4H)。
<4−DPSOGMAの合成>
4,4’−ジフェニルエーテルジカルボン酸12.9gの代わりに4,4’−ジカルボキシジフェニルスルホン15.3g(0.05mol)を用いた以外は、4−DPEGMAの合成方法と同様の方法で、4−DPSOGMA(収量24.5g、収率83%、HPLC純度97%)を得た。なお、得られた4−DPSOGMAのH NMRスペクトルのデータは、次の通りであった。
H NMR δ1.93(s,6H),3.70(d,2H),3.90〜4.70(m,8H),5.58(s,2H),6.14(s,2H),8.04(d,4H),8.20(d,4H)。
<4−DPFGMAの合成>
t−ブタノール200mlと水50mlに対して、特開2005−154379号公報に記載の合成方法により合成された4,4’−ジホルミルジフェニルメタン44.8g(0.2mol)を溶解させた後、リン酸水素ナトリウム水溶液50ml、2−メチル−2−ブテン140g(2mol)加え、さらに、亜塩素酸ナトリウム36g(0.4mol)を加えることで反応溶液を準備した。次に、この反応溶液を5時間撹拌後、1規定塩酸溶液を用いて、反応溶液を酸性にすることで、固体を析出させた。続いて固体が析出した反応溶液を、吸引ろ過後、水を用いて、析出した固体を洗浄した。洗浄後に得られた固体(化合物)を真空乾燥することにより、4,4’−ジカルボキシジフェニルメタン39.8g(収率78%)を得た。
次いで、4,4’−ジフェニルエーテルジカルボン酸12.9gの代わりに、上記で得た4,4’−ジカルボキシジフェニルメタン12.8g(0.05mol)を用いた以外は、4−DPEGMAの合成方法と同様の方法で4−DPFGMA(収量22.1g、収率82%、HPLC純度94%)を得た。なお、得られた4−DPFGMAのH NMRスペクトルのデータは、次の通りであった。
H NMR δ1.93(s,6H),3.78(s,2H),3.90(d,2H),4.00〜4.70(m,8H),5.58(s,2H),6.14(s,2H),7.20(d,4H),7.87(d,4H)。
<4−DPAGMAの合成>
4,4’−ジフェニルエーテルジカルボン酸12.9gの代わりに英国特許GB753384に記載の合成方法により合成された2,2−ビス(4−カルボキシフェニル)プロパン14.2(0.05mol)を用いた以外は、4−DPEGMAの合成方法と同様の方法で、4−DPAGMA(収量22.7g、収率80%、HPLC純度93%)を得た。なお、得られた4−DPAGMAのH NMRスペクトルのデータは、次の通りであった。
H NMR δ1.65(s,6H),1.93(s,6H),3.85(d,2H),3.90〜4.65(m,8H),5.57(s,2H),6.12(s,2H),7.23(d,4H),7.90(d,4H)。
<4−DPBGMAの合成>
t−ブタノール200mlおよび水50mlに対して、特開2007−106779号公報に記載の合成方法により合成された4−ホルミルフェニル−4’−ホルミルベンゾエート50.8g(0.2mol)を溶解させた後、リン酸水素ナトリウム水溶液50ml、2−メチル−2−ブテン140g(2mol)加え、さらに、亜塩素酸ナトリウム36g(0.4mol)を加えることで反応溶液を準備した。次に、この反応溶液を5時間撹拌後、1規定塩酸溶液を用いて、反応溶液を酸性にすることで、固体を析出させた。続いて固体が析出した反応溶液を、吸引ろ過後、水を用いて、析出した固体を洗浄した。洗浄後に得られた固体(化合物)を真空乾燥することにより、4−カルボキシフェニル−4’−カルボキシベンゾエート45.4g(収率79%)を得た。
次いで、4,4’−ジフェニルエーテルジカルボン酸12.9gの代わりに、上記の4−カルボキシフェニル−4’−カルボキシベンゾエート14.3g(0.05mol)を用いた以外は、4−DPEGMAの合成方法と同様の方法で4−DPBGMA(収量22.8g、収率80%、HPLC純度94%)を得た。なお、得られた4−DPBGMAのH NMRスペクトルのデータは、次の通りであった。
H NMR δ1.93(s,6H),3.87(d,2H),3.90〜4.65(m,8H),5.60(s,2H),6.14(s,2H),7.25(d,2H),8.10(d,2H),8.15(d,2H),8.27(d,2H)。
<4−DPALGMAの合成>
t−ブタノール200mlおよび水50mlに対して、特許第3076603号に記載の合成方法により合成された1,1−ビス(4−ホルミルフェニル)シクロヘキサン(58.4g,0.2mol)を溶解させた後、リン酸水素ナトリウム水溶液50ml、2−メチル−2−ブテン140g(2mol)加え、さらに亜塩素酸ナトリウム36g(0.4mol)を加えることで反応溶液を準備した。次に、この反応溶液を5時間撹拌後、1規定塩酸溶液を用いて、反応溶液を酸性にすることで、固体を析出させた。続いて固体が析出した反応溶液を、吸引ろ過後、水を用いて、析出した固体を洗浄した。洗浄後に得られた固体(化合物)を真空乾燥することにより、1,1−ビス(4−カルボキシルフェニル)シクロヘキサン54.4g(収率84%)を得た。
次いで、4,4’−ジフェニルエーテルジカルボン酸12.9gの代わりに、1,1−ビス(4−カルボキシルフェニル)シクロヘキサン16.2g(0.05mol)を用いた以外は、4−DPEGMAの合成方法と同様の方法で4−DPALGMA(収量23.7g、収率78%、HPLC純度92%)を得た。なお、得られた4−DPALGMAのH NMRスペクトルのデータは、次の通りであった。
H NMR δ1.42(t,6H),1.93(s,6H),2.10(t,4H),3.77(d,2H),3.85〜4.60(m,8H),5.61(s,2H),6.15(s,2H),7.24(d,4H),7.90(d,4H)。
<実施例1>
4−DPEHE(60質量部)、3G(40質量部)、重合禁止剤としてHQMEを0.15質量部、及び表1に示す光重合開始剤、フィラーからなる歯科用硬化性組成物を暗所下、メノウ乳鉢を用いて撹拌混合してペースト状の組成物を調製した。上記ペーストについて、前記した曲げ強さ及び環境光安定性の評価方法に従って、曲げ強さと環境光安定性を測定した。結果を表1に示した。
<実施例2〜50>
重合性単量体及び光重合開始剤を表2に示す組成に変更した以外は、実施例1と同様にペーストを調製し、得られたペーストについて、曲げ強さと環境光安定性を測定した。結果を表1、表2に示した。
<比較例1〜7>
重合性単量体及び光重合開始剤を表3に示す組成に変更した以外は、実施例1と同様にペーストを調製し、得られたペーストについて、曲げ強さと環境光安定性を測定した。結果を表3に示した。
Figure 2017141212
Figure 2017141212
Figure 2017141212
実施例1〜50に示した結果から理解されるように、本発明の歯科用硬化性組成物の構成を満足する実施例1〜50は、(A)重合性単量体が低粘度であるため混合が容易であり、かつ得られた歯科用硬化性組成物は曲げ強さが高く、さらに環境光に対して安定であった。一方、比較例1〜8に示した結果から理解されるように、本発明の(A)重合性単量体以外の重合性単量体は、粘度が高いため混合が困難であった。得られた歯科用硬化性組成物は、比較例1〜4に示したように曲げ強さが低いが環境光に対して安定である組成物、比較例5〜7に示したように環境光に対する安定性が低い組成物であり、曲げ強さと環境光安定性の双方を両立するものではなかった。また、比較例8は曲げ強さと環境光安定性の双方を両立しているが、用いている重合性単量体は、粘度が高いため混合が困難であった。

Claims (6)

  1. (A)下記一般式(1)で示される重合性単量体、
    Figure 2017141212
    〔前記一般式(1)中、Xは2価の基を表し、ArおよびArは、各々、2価〜4価から選択されるいずれかの価数を持つ芳香族基を表し、各々同一であっても異なっていてもよく、LおよびLは、各々、主鎖の原子数が2〜60の範囲内であり、かつ、2価〜4価から選択されるいずれかの価数を持つ炭化水素基を表し、各々同一であっても異なっていてもよく、RおよびRは、各々、水素またはメチル基を表す。また、m1、m2、n1およびn2は、各々、1〜3の範囲から選択される整数である。〕
    (B)B1)α−ジケトン化合物、B2)光酸発生剤、及びB3)芳香族アミン化合物を含んでなる光重合開始剤、を含有してなる歯科用硬化性組成物。
  2. (A)重合性単量体の2価の基Xが、−O−である請求項1記載の歯科用硬化性組成物。
  3. (A)重合性単量体の主鎖の原子数が2〜60の範囲内であり、かつ、2価〜4価から選択されるいずれかの価数を持つ炭化水素基LおよびLの少なくともいずれかが水酸基を含んでなる請求項1または2に記載の歯科用硬化性組成物。
  4. (A)重合性単量体が下記一般式(2)
    Figure 2017141212
    〔前記一般式(2)中、X、L、L、RおよびRは、前記一般式(1)中に示すものと同様である。〕
    である、請求項1〜3のいずれかに記載の歯科用硬化性組成物
  5. (B)光重合開始剤におけるB2)光酸発生剤が、トリハロメチル基により置換されたs−トリアジン化合物、及びジアリールヨードニウム塩系化合物から選ばれる少なくとも1種である請求項1〜4のいずれかに記載の歯科用硬化性組成物。
  6. (B)光重合開始剤として、さらにB4)3つの飽和脂肪族基が窒素原子に結合している第三級アミノ基を有しており、かつ、該飽和脂肪族基のうち少なくとも2つは電子吸引性基を置換基として有している第三級脂肪族アミン化合物を含んでなる請求項1〜5のいずれかに記載の歯科用硬化性組成物。
JP2016024967A 2016-02-12 2016-02-12 歯科用硬化性組成物 Active JP6629089B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016024967A JP6629089B2 (ja) 2016-02-12 2016-02-12 歯科用硬化性組成物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016024967A JP6629089B2 (ja) 2016-02-12 2016-02-12 歯科用硬化性組成物

Publications (2)

Publication Number Publication Date
JP2017141212A true JP2017141212A (ja) 2017-08-17
JP6629089B2 JP6629089B2 (ja) 2020-01-15

Family

ID=59627791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016024967A Active JP6629089B2 (ja) 2016-02-12 2016-02-12 歯科用硬化性組成物

Country Status (1)

Country Link
JP (1) JP6629089B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11097239B2 (en) 2019-01-02 2021-08-24 Petrochina Company Limited Core-shell structured non-ionic nanoemulsion system and preparation and use thereof
US11505734B2 (en) 2019-01-02 2022-11-22 Petrochina Company Limited Nonionic Gemini surfactant of (octylphenol polyoxyethylene ether disubstituted) dicarboxylic acid diphenyl ether and its synthesis method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0258244B2 (ja) * 1983-07-25 1990-12-07 Amerikan Dentaru Asosheishon Herusu Fuaundeishon
JPH037781A (ja) * 1989-03-24 1991-01-14 Canon Inc インクジェット記録ヘッド、インクジェット記録ヘッドの表面処理方法、及びインクジェット記録装置
JPH069327A (ja) * 1992-04-28 1994-01-18 Mitsui Petrochem Ind Ltd 歯質の接着性組成物および接着方法
JP2005089729A (ja) * 2003-03-13 2005-04-07 Tokuyama Corp 光重合開始剤及び該光重合開始剤を含む歯科用コンポジットレジン
US20110275035A1 (en) * 2010-05-03 2011-11-10 Dentsply International Inc. Dental compositions
CN102276468A (zh) * 2011-05-04 2011-12-14 常州大学 含金刚烷类的树脂、制备方法及其应用
WO2014168221A1 (ja) * 2013-04-11 2014-10-16 富士フイルム株式会社 近赤外線吸収性組成物、これを用いた近赤外線カットフィルタ及びその製造方法、並びに、カメラモジュール及びその製造方法
WO2016031831A1 (ja) * 2014-08-26 2016-03-03 株式会社トクヤマデンタル 重合性単量体、硬化性組成物および樹脂部材
JP2017110162A (ja) * 2015-12-18 2017-06-22 株式会社トクヤマデンタル ポリアリールエーテルケトン樹脂材料用接着性組成物

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0258244B2 (ja) * 1983-07-25 1990-12-07 Amerikan Dentaru Asosheishon Herusu Fuaundeishon
JPH037781A (ja) * 1989-03-24 1991-01-14 Canon Inc インクジェット記録ヘッド、インクジェット記録ヘッドの表面処理方法、及びインクジェット記録装置
JPH069327A (ja) * 1992-04-28 1994-01-18 Mitsui Petrochem Ind Ltd 歯質の接着性組成物および接着方法
JP2005089729A (ja) * 2003-03-13 2005-04-07 Tokuyama Corp 光重合開始剤及び該光重合開始剤を含む歯科用コンポジットレジン
US20110275035A1 (en) * 2010-05-03 2011-11-10 Dentsply International Inc. Dental compositions
CN102276468A (zh) * 2011-05-04 2011-12-14 常州大学 含金刚烷类的树脂、制备方法及其应用
WO2014168221A1 (ja) * 2013-04-11 2014-10-16 富士フイルム株式会社 近赤外線吸収性組成物、これを用いた近赤外線カットフィルタ及びその製造方法、並びに、カメラモジュール及びその製造方法
WO2016031831A1 (ja) * 2014-08-26 2016-03-03 株式会社トクヤマデンタル 重合性単量体、硬化性組成物および樹脂部材
JP2017110162A (ja) * 2015-12-18 2017-06-22 株式会社トクヤマデンタル ポリアリールエーテルケトン樹脂材料用接着性組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J.BIOMEDICAL SCIENCE AND ENGINEERING, vol. 4, JPN6019038336, 2011, pages 147 - 157, ISSN: 0004129532 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11097239B2 (en) 2019-01-02 2021-08-24 Petrochina Company Limited Core-shell structured non-ionic nanoemulsion system and preparation and use thereof
US11505734B2 (en) 2019-01-02 2022-11-22 Petrochina Company Limited Nonionic Gemini surfactant of (octylphenol polyoxyethylene ether disubstituted) dicarboxylic acid diphenyl ether and its synthesis method

Also Published As

Publication number Publication date
JP6629089B2 (ja) 2020-01-15

Similar Documents

Publication Publication Date Title
JP5918229B2 (ja) 歯科用組成物、キットオブパーツ、及びその使用
JP4030422B2 (ja) 光重合開始剤組成物および光重合組成物
JP5435892B2 (ja) 光重合性組成物
JP6821199B2 (ja) 光重合開始剤及び光硬化性組成物
JP6441132B2 (ja) 歯科用光重合性組成物
JP2007217447A (ja) 水酸基含有重合性化合物及びその製造方法
EP1879544B1 (en) Materials and dental composites made therefrom
JPWO2016031831A1 (ja) 重合性単量体、重合性単量体の製造方法、硬化性組成物および樹脂部材
JP4841973B2 (ja) 光ラジカル重合開始剤、及びこれを配合した光ラジカル重合性組成物
JP5968128B2 (ja) 歯科用光重合性組成物
JP6629089B2 (ja) 歯科用硬化性組成物
JP6614998B2 (ja) 歯科用硬化性組成物
US7560500B2 (en) Materials leading to improved dental composites and dental composites made therefrom
JP6615000B2 (ja) 歯科用接着性組成物
WO2005090281A1 (ja) (メタ)アクリル化合物及びその用途
JPH06345614A (ja) 歯科用充填修復材料及び義歯床用樹脂組成物
JP2018145097A (ja) 歯科用硬化性組成物
JP5574945B2 (ja) 光硬化性組成物
JP2017141213A (ja) 粉液型歯科用硬化性材料
US7495038B2 (en) Materials leading to improved dental composites and dental composites made therefrom
KR100341142B1 (ko) 신규 메타(아)크릴레이트 단량체, 이의 제조방법 및 이를 함유하는 치아 수복용 조성물
KR100404233B1 (ko) 3작용성 메타(아)크릴레이트 단량체 및 그를 함유하는치아 수복용 조성물
JP6624944B2 (ja) 接着性組成物
JP2004300066A (ja) 歯科用材料および歯科用組成物
KR100556526B1 (ko) 3작용성 메타(아)크릴레이트 에스터 단량체 및 그를함유하는 치아 수복용 조성물

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191204

R150 Certificate of patent or registration of utility model

Ref document number: 6629089

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250