JP2017139313A - 熱処理用サセプタおよび熱処理装置 - Google Patents

熱処理用サセプタおよび熱処理装置 Download PDF

Info

Publication number
JP2017139313A
JP2017139313A JP2016018807A JP2016018807A JP2017139313A JP 2017139313 A JP2017139313 A JP 2017139313A JP 2016018807 A JP2016018807 A JP 2016018807A JP 2016018807 A JP2016018807 A JP 2016018807A JP 2017139313 A JP2017139313 A JP 2017139313A
Authority
JP
Japan
Prior art keywords
semiconductor wafer
heat treatment
susceptor
substrate support
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016018807A
Other languages
English (en)
Other versions
JP6637321B2 (ja
Inventor
信彦 西出
Nobuhiko Nishide
信彦 西出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Screen Holdings Co Ltd
Original Assignee
Screen Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Screen Holdings Co Ltd filed Critical Screen Holdings Co Ltd
Priority to JP2016018807A priority Critical patent/JP6637321B2/ja
Priority to TW105143658A priority patent/TW201729330A/zh
Priority to US15/411,119 priority patent/US20170221736A1/en
Publication of JP2017139313A publication Critical patent/JP2017139313A/ja
Priority to US16/562,231 priority patent/US20190393055A1/en
Application granted granted Critical
Publication of JP6637321B2 publication Critical patent/JP6637321B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D11/00Arrangement of elements for electric heating in or on furnaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • H01L21/3242Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering for the formation of PN junctions without addition of impurities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68735Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by edge profile or support profile

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

【課題】簡易な構成にて基板支持体の破損を防止することができる熱処理用サセプタおよび熱処理装置を提供する。【解決手段】サセプタに設けられた複数の基板支持部77のそれぞれが球面の頂上部に保持プレート75の保持面75aと平行な平面である支持面77aを形成した外周面を有する。フラッシュ光照射によって半導体ウェハーが表面を凸面とするように急激に反ったときにも、半導体ウェハーの裏面が複数の基板支持部77に対して滑らかに擦れることとなり、基板支持部77の欠けや破損を防止することができるとともに、半導体ウェハーの裏面に傷が生じるのを防止することもできる。また、かかる形状の外周面を有する基板支持部77であれば、保持プレート75に如何なる向きに設けても良いため、基板支持部77に関するサセプタの製作、検査、管理は容易なものとなる。【選択図】図9

Description

本発明は、フラッシュランプから半導体ウェハー等の薄板状精密電子基板(以下、単に「基板」と称する)にフラッシュ光を照射することによって該基板の熱処理を行うときにその処理対象となる基板を保持する熱処理用サセプタおよびその熱処理用サセプタを備えた熱処理装置に関する。
半導体デバイスの製造プロセスにおいて、不純物導入は半導体ウェハー内にpn接合を形成するための必須の工程である。現在、不純物導入は、イオン打ち込み法とその後のアニール法によってなされるのが一般的である。イオン打ち込み法は、ボロン(B)、ヒ素(As)、リン(P)といった不純物の元素をイオン化させて高加速電圧で半導体ウェハーに衝突させて物理的に不純物注入を行う技術である。注入された不純物はアニール処理によって活性化される。この際に、アニール時間が数秒程度以上であると、打ち込まれた不純物が熱によって深く拡散し、その結果接合深さが要求よりも深くなり過ぎて良好なデバイス形成に支障が生じるおそれがある。
そこで、極めて短時間で半導体ウェハーを加熱するアニール技術として、近年フラッシュランプアニール(FLA)が注目されている。フラッシュランプアニールは、キセノンフラッシュランプ(以下、単に「フラッシュランプ」とするときにはキセノンフラッシュランプを意味する)を使用して半導体ウェハーの表面にフラッシュ光を照射することにより、不純物が注入された半導体ウェハーの表面のみを極めて短時間(数ミリ秒以下)に昇温させる熱処理技術である。
キセノンフラッシュランプの放射分光分布は紫外域から近赤外域であり、従来のハロゲンランプよりも波長が短く、シリコンの半導体ウェハーの基礎吸収帯とほぼ一致している。よって、キセノンフラッシュランプから半導体ウェハーにフラッシュ光を照射したときには、透過光が少なく半導体ウェハーを急速に昇温することが可能である。また、数ミリ秒以下の極めて短時間のフラッシュ光照射であれば、半導体ウェハーの表面近傍のみを選択的に昇温できることも判明している。このため、キセノンフラッシュランプによる極短時間の昇温であれば、不純物を深く拡散させることなく、不純物活性化のみを実行することができるのである。
フラッシュランプを使用した熱処理装置においては、典型的には、サセプタに立設した複数の支持ピンによって半導体ウェハーを支持した状態でフラッシュランプからフラッシュ光を照射する。フラッシュランプは極めて高いエネルギーを有するフラッシュ光を瞬間的に半導体ウェハーの表面に照射するため、一瞬で半導体ウェハーの表面温度が急速に上昇する一方で裏面温度はそれ程には上昇しない。このため、半導体ウェハーの表面のみに急激な熱膨張が生じて半導体ウェハーが表面を凸として反るように変形する。このとき、急激に変形する半導体ウェハーの裏面と当該半導体ウェハーを支持する支持ピンとが強く擦り合わされることとなり、支持ピンが破損したり、或いは半導体ウェハーの裏面に傷が生じることがあった。このため、特許文献1には、半導体ウェハーを支持する支持ピンの先端に傾斜面を形成し、変形する半導体ウェハーの裏面と支持ピンとが擦れないようにすることが提案されている。
特開2011−210763号公報
しかしながら、特許文献1に提案される技術では、傾斜面が正確に半導体ウェハーの径方向に沿うように支持ピンをサセプタに設置しなければならず、サセプタの製作、検査、管理が煩雑なものとなっていた。また、傾斜面が正確に半導体ウェハーの径方向に沿うように複数の支持ピンを設けたとしても、傾斜面の上側両端の角部が半導体ウェハーの裏面と擦れることは避けられず、それに起因した支持ピンの破損を十分に防止することができないという問題が残っていた。
本発明は、上記課題に鑑みてなされたものであり、簡易な構成にて基板支持体の破損を防止することができる熱処理用サセプタおよび熱処理装置を提供することを目的とする。
上記課題を解決するため、請求項1の発明は、フラッシュランプから基板にフラッシュ光を照射することによって該基板の熱処理を行うときに該基板を保持する熱処理用サセプタにおいて、平面状の保持面を有する保持プレートと、前記保持面上に立設された複数の基板支持体と、を備え、前記複数の基板支持体のそれぞれは、曲面の頂上部に前記保持面と平行な平面を形成した外周面を有することを特徴とする。
また、請求項2の発明は、請求項1の発明に係る熱処理用サセプタにおいて、前記曲面は球面であること特徴とする。
また、請求項3の発明は、請求項1の発明に係る熱処理用サセプタにおいて、前記曲面は楕円面であることを特徴とする。
また、請求項4の発明は、請求項1から請求項3のいずれかの発明に係る熱処理用サセプタにおいて、前記複数の基板支持体は、同一の円周上に沿って30°間隔で12個設けられることを特徴とする。
また、請求項5の発明は、基板にフラッシュ光を照射することによって該基板を加熱する熱処理装置において、基板を収容するチャンバーと、請求項1から請求項4のいずれかに記載の熱処理用サセプタと、前記熱処理用サセプタに保持された基板にフラッシュ光を照射するフラッシュランプと、を備えることを特徴とする。
請求項1から請求項4の発明によれば、複数の基板支持体のそれぞれは、曲面の頂上部に保持プレートの保持面と平行な平面を形成した外周面を有するため、フラッシュ光照射によって基板が表面を急激に反ったときにも、基板の裏面が基板支持体に対して滑らかに擦れることとなり、簡易な構成にて基板支持体の破損を防止することができる。
また、請求項5の発明によれば、熱処理装置が請求項1から請求項4のいずれかの発明に係る熱処理用サセプタを備えるため、該熱処理装置にてフラッシュ光照射により熱処理を行うときの基板支持体の破損を防止することができる。
本発明に係る熱処理装置の構成を示す縦断面図である。 保持部の全体外観を示す斜視図である。 サセプタの平面図である。 サセプタの断面図である。 移載機構の平面図である。 移載機構の側面図である。 複数のハロゲンランプの配置を示す平面図である。 基板支持部の斜視図である。 基板支持部が設けられた部位を拡大した図である。 基板支持部の他の形状の一例を示す図である。
以下、図面を参照しつつ本発明の実施の形態について詳細に説明する。
図1は、本発明に係る熱処理装置1の構成を示す縦断面図である。本実施形態の熱処理装置1は、基板として円板形状の半導体ウェハーWに対してフラッシュ光照射を行うことによってその半導体ウェハーWを加熱するフラッシュランプアニール装置である。処理対象となる半導体ウェハーWのサイズは特に限定されるものではないが、例えばφ300mmやφ450mmである。熱処理装置1に搬入される前の半導体ウェハーWには不純物が注入されており、熱処理装置1による加熱処理によって注入された不純物の活性化処理が実行される。なお、図1および以降の各図においては、理解容易のため、必要に応じて各部の寸法や数を誇張または簡略化して描いている。
熱処理装置1は、半導体ウェハーWを収容するチャンバー6と、複数のフラッシュランプFLを内蔵するフラッシュ加熱部5と、複数のハロゲンランプHLを内蔵するハロゲン加熱部4と、を備える。チャンバー6の上側にフラッシュ加熱部5が設けられるとともに、下側にハロゲン加熱部4が設けられている。また、熱処理装置1は、チャンバー6の内部に、半導体ウェハーWを水平姿勢に保持する保持部7と、保持部7と装置外部との間で半導体ウェハーWの受け渡しを行う移載機構10と、を備える。さらに、熱処理装置1は、ハロゲン加熱部4、フラッシュ加熱部5およびチャンバー6に設けられた各動作機構を制御して半導体ウェハーWの熱処理を実行させる制御部3を備える。
チャンバー6は、筒状のチャンバー側部61の上下に石英製のチャンバー窓を装着して構成されている。チャンバー側部61は上下が開口された概略筒形状を有しており、上側開口には上側チャンバー窓63が装着されて閉塞され、下側開口には下側チャンバー窓64が装着されて閉塞されている。チャンバー6の天井部を構成する上側チャンバー窓63は、石英により形成された円板形状部材であり、フラッシュ加熱部5から出射されたフラッシュ光をチャンバー6内に透過する石英窓として機能する。また、チャンバー6の床部を構成する下側チャンバー窓64も、石英により形成された円板形状部材であり、ハロゲン加熱部4からの光をチャンバー6内に透過する石英窓として機能する。
また、チャンバー側部61の内側の壁面の上部には反射リング68が装着され、下部には反射リング69が装着されている。反射リング68,69は、ともに円環状に形成されている。上側の反射リング68は、チャンバー側部61の上側から嵌め込むことによって装着される。一方、下側の反射リング69は、チャンバー側部61の下側から嵌め込んで図示省略のビスで留めることによって装着される。すなわち、反射リング68,69は、ともに着脱自在にチャンバー側部61に装着されるものである。チャンバー6の内側空間、すなわち上側チャンバー窓63、下側チャンバー窓64、チャンバー側部61および反射リング68,69によって囲まれる空間が熱処理空間65として規定される。
チャンバー側部61に反射リング68,69が装着されることによって、チャンバー6の内壁面に凹部62が形成される。すなわち、チャンバー側部61の内壁面のうち反射リング68,69が装着されていない中央部分と、反射リング68の下端面と、反射リング69の上端面とで囲まれた凹部62が形成される。凹部62は、チャンバー6の内壁面に水平方向に沿って円環状に形成され、半導体ウェハーWを保持する保持部7を囲繞する。
チャンバー側部61および反射リング68,69は、強度と耐熱性に優れた金属材料(例えば、ステンレススチール)にて形成されている。また、反射リング68,69の内周面は電解ニッケルメッキによって鏡面とされている。
また、チャンバー側部61には、チャンバー6に対して半導体ウェハーWの搬入および搬出を行うための搬送開口部(炉口)66が形設されている。搬送開口部66は、ゲートバルブ185によって開閉可能とされている。搬送開口部66は凹部62の外周面に連通接続されている。このため、ゲートバルブ185が搬送開口部66を開放しているときには、搬送開口部66から凹部62を通過して熱処理空間65への半導体ウェハーWの搬入および熱処理空間65からの半導体ウェハーWの搬出を行うことができる。また、ゲートバルブ185が搬送開口部66を閉鎖するとチャンバー6内の熱処理空間65が密閉空間とされる。
また、チャンバー6の内壁上部には熱処理空間65に処理ガス(本実施形態では窒素ガス(N))を供給するガス供給孔81が形設されている。ガス供給孔81は、凹部62よりも上側位置に形設されており、反射リング68に設けられていても良い。ガス供給孔81はチャンバー6の側壁内部に円環状に形成された緩衝空間82を介してガス供給管83に連通接続されている。ガス供給管83は窒素ガス供給源85に接続されている。また、ガス供給管83の経路途中にはバルブ84が介挿されている。バルブ84が開放されると、窒素ガス供給源85から緩衝空間82に窒素ガスが送給される。緩衝空間82に流入した窒素ガスは、ガス供給孔81よりも流体抵抗の小さい緩衝空間82内を拡がるように流れてガス供給孔81から熱処理空間65内へと供給される。なお、処理ガスは窒素ガスに限定されるものではなく、アルゴン(Ar)、ヘリウム(He)などの不活性ガス、または、酸素(O)、水素(H)、塩素(Cl)、塩化水素(HCl)、オゾン(O)、アンモニア(NH)などの反応性ガスであっても良い。
一方、チャンバー6の内壁下部には熱処理空間65内の気体を排気するガス排気孔86が形設されている。ガス排気孔86は、凹部62よりも下側位置に形設されており、反射リング69に設けられていても良い。ガス排気孔86はチャンバー6の側壁内部に円環状に形成された緩衝空間87を介してガス排気管88に連通接続されている。ガス排気管88は排気部190に接続されている。また、ガス排気管88の経路途中にはバルブ89が介挿されている。バルブ89が開放されると、熱処理空間65の気体がガス排気孔86から緩衝空間87を経てガス排気管88へと排出される。なお、ガス供給孔81およびガス排気孔86は、チャンバー6の周方向に沿って複数設けられていても良いし、スリット状のものであっても良い。また、窒素ガス供給源85および排気部190は、熱処理装置1に設けられた機構であっても良いし、熱処理装置1が設置される工場のユーティリティであっても良い。
また、搬送開口部66の先端にも熱処理空間65内の気体を排出するガス排気管191が接続されている。ガス排気管191はバルブ192を介して排気部190に接続されている。バルブ192を開放することによって、搬送開口部66を介してチャンバー6内の気体が排気される。
図2は、保持部7の全体外観を示す斜視図である。保持部7は、基台リング71、連結部72およびサセプタ74を備えて構成される。基台リング71、連結部72およびサセプタ74はいずれも石英にて形成されている。すなわち、保持部7の全体が石英にて形成されている。
基台リング71は円環形状から一部が欠落した円弧形状の石英部材である。この欠落部分は、後述する移載機構10の移載アーム11と基台リング71との干渉を防ぐために設けられている。基台リング71は凹部62の底面に載置されることによって、チャンバー6の壁面に支持されることとなる(図1参照)。基台リング71の上面に、その円環形状の周方向に沿って複数の連結部72(本実施形態では4個)が立設される。連結部72も石英の部材であり、溶接によって基台リング71に固着される。
サセプタ74は基台リング71に設けられた4個の連結部72によって支持される。図3は、サセプタ74の平面図である。また、図4は、サセプタ74の断面図である。サセプタ74は、保持プレート75、ガイドリング76および複数の基板支持部77を備える。保持プレート75は、石英にて形成された略円形の平板状部材である。保持プレート75の直径は半導体ウェハーWの直径よりも大きい。すなわち、保持プレート75は、半導体ウェハーWよりも大きな平面サイズを有する。
保持プレート75の上面周縁部にガイドリング76が設置されている。ガイドリング76は、半導体ウェハーWの直径よりも大きな内径を有する円環形状の部材である。例えば、半導体ウェハーWの直径がφ300mmの場合、ガイドリング76の内径はφ320mmである。ガイドリング76の内周は、保持プレート75から上方に向けて広くなるようなテーパ面とされている。ガイドリング76は、保持プレート75と同様の石英にて形成される。ガイドリング76は、保持プレート75の上面に溶着するようにしても良いし、別途加工したピンなどによって保持プレート75に固定するようにしても良い。或いは、保持プレート75とガイドリング76とを一体の部材として加工するようにしても良い。
保持プレート75の上面のうちガイドリング76よりも内側の領域が半導体ウェハーWを保持する平面状の保持面75aとされる。保持プレート75の保持面75aには、複数の基板支持部77が立設されている。本実施形態においては、保持面75aの外周円(ガイドリング76の内周円)と同心円の周上に沿って30°毎に計12個の基板支持部77が立設されている。12個の基板支持部77を配置した円の径(対向する基板支持部77間の距離)は半導体ウェハーWの径よりも小さく、φ270mm〜φ280mm(本実施形態ではφ280mm)である。それぞれの基板支持部77は石英にて形成されている。複数の基板支持部77は、保持プレート75の上面に溶接によって設けるようにしても良いし、保持プレート75と一体に加工するようにしても良い。
図8は、基板支持部77の斜視図である。また、図9は、基板支持部77が設けられた部位を拡大した図である。複数の基板支持部77のそれぞれは、石英の球体を割平面で切り取った一部(球欠)に支持面77aを形設した形状を有する。支持面77aは、保持プレート75の保持面75aと平行な微小平面である。すなわち、各基板支持部77は、球面の頂上部に保持面75aと平行な平面である支持面77aを形成した外周面を有する。
図2に戻り、基台リング71に立設された4個の連結部72とサセプタ74の保持プレート75の周縁部とが溶接によって固着される。すなわち、サセプタ74と基台リング71とは連結部72によって固定的に連結されている。このような保持部7の基台リング71がチャンバー6の壁面に支持されることによって、保持部7がチャンバー6に装着される。保持部7がチャンバー6に装着された状態においては、サセプタ74の保持プレート75は水平姿勢(法線が鉛直方向と一致する姿勢)となる。すなわち、保持プレート75の保持面75aは水平面となる。
チャンバー6に搬入された半導体ウェハーWは、チャンバー6に装着された保持部7のサセプタ74の上に水平姿勢にて載置されて保持される。このとき、半導体ウェハーWは保持プレート75上に立設された12個の基板支持部77によって支持されてサセプタ74に保持される。より厳密には、12個の基板支持部77の支持面77aが半導体ウェハーWの下面に接触して当該半導体ウェハーWを支持する。12個の支持面77aのそれぞれは保持プレート75の保持面75aと平行な平面、つまり水平面である。このため、12個の基板支持部77によって半導体ウェハーWを水平姿勢に支持することができる。
また、半導体ウェハーWは複数の基板支持部77によって保持プレート75の保持面75aから所定の間隔を隔てて支持されることとなる。基板支持部77の高さ(保持プレート75の保持面75aと基板支持部77の支持面77aとの間隔)よりもガイドリング76の厚さの方が大きい。従って、複数の基板支持部77によって支持された半導体ウェハーWの水平方向の位置ずれはガイドリング76によって防止される。
また、図2および図3に示すように、サセプタ74の保持プレート75には、上下に貫通して開口部78が形成されている。開口部78は、放射温度計120(図1参照)がサセプタ74に保持された半導体ウェハーWの下面から放射される放射光(赤外光)を受光するために設けられている。すなわち、放射温度計120が開口部78を介してサセプタ74に保持された半導体ウェハーWの裏面から放射された光を受光し、別置のディテクタによってその半導体ウェハーWの温度が測定される。さらに、サセプタ74の保持プレート75には、後述する移載機構10のリフトピン12が半導体ウェハーWの受け渡しのために貫通する4個の貫通孔79が穿設されている。
図5は、移載機構10の平面図である。また、図6は、移載機構10の側面図である。移載機構10は、2本の移載アーム11を備える。移載アーム11は、概ね円環状の凹部62に沿うような円弧形状とされている。それぞれの移載アーム11には2本のリフトピン12が立設されている。各移載アーム11は水平移動機構13によって回動可能とされている。水平移動機構13は、一対の移載アーム11を保持部7に対して半導体ウェハーWの移載を行う移載動作位置(図5の実線位置)と保持部7に保持された半導体ウェハーWと平面視で重ならない退避位置(図5の二点鎖線位置)との間で水平移動させる。水平移動機構13としては、個別のモータによって各移載アーム11をそれぞれ回動させるものであっても良いし、リンク機構を用いて1個のモータによって一対の移載アーム11を連動させて回動させるものであっても良い。
また、一対の移載アーム11は、昇降機構14によって水平移動機構13とともに昇降移動される。昇降機構14が一対の移載アーム11を移載動作位置にて上昇させると、計4本のリフトピン12がサセプタ74に穿設された貫通孔79(図2,3参照)を通過し、リフトピン12の上端がサセプタ74の上面から突き出る。一方、昇降機構14が一対の移載アーム11を移載動作位置にて下降させてリフトピン12を貫通孔79から抜き取り、水平移動機構13が一対の移載アーム11を開くように移動させると各移載アーム11が退避位置に移動する。一対の移載アーム11の退避位置は、保持部7の基台リング71の直上である。基台リング71は凹部62の底面に載置されているため、移載アーム11の退避位置は凹部62の内側となる。なお、移載機構10の駆動部(水平移動機構13および昇降機構14)が設けられている部位の近傍にも図示省略の排気機構が設けられており、移載機構10の駆動部周辺の雰囲気がチャンバー6の外部に排出されるように構成されている。
図1に戻り、チャンバー6の上方に設けられたフラッシュ加熱部5は、筐体51の内側に、複数本(本実施形態では30本)のキセノンフラッシュランプFLからなる光源と、その光源の上方を覆うように設けられたリフレクタ52と、を備えて構成される。また、フラッシュ加熱部5の筐体51の底部にはランプ光放射窓53が装着されている。フラッシュ加熱部5の床部を構成するランプ光放射窓53は、石英により形成された板状の石英窓である。フラッシュ加熱部5がチャンバー6の上方に設置されることにより、ランプ光放射窓53が上側チャンバー窓63と相対向することとなる。フラッシュランプFLはチャンバー6の上方からランプ光放射窓53および上側チャンバー窓63を介して熱処理空間65にフラッシュ光を照射する。
複数のフラッシュランプFLは、それぞれが長尺の円筒形状を有する棒状ランプであり、それぞれの長手方向が保持部7に保持される半導体ウェハーWの主面に沿って(つまり水平方向に沿って)互いに平行となるように平面状に配列されている。よって、フラッシュランプFLの配列によって形成される平面も水平面である。
キセノンフラッシュランプFLは、その内部にキセノンガスが封入されその両端部にコンデンサーに接続された陽極および陰極が配設された棒状のガラス管(放電管)と、該ガラス管の外周面上に付設されたトリガー電極とを備える。キセノンガスは電気的には絶縁体であることから、コンデンサーに電荷が蓄積されていたとしても通常の状態ではガラス管内に電気は流れない。しかしながら、トリガー電極に高電圧を印加して絶縁を破壊した場合には、コンデンサーに蓄えられた電気がガラス管内に瞬時に流れ、そのときのキセノンの原子あるいは分子の励起によって光が放出される。このようなキセノンフラッシュランプFLにおいては、予めコンデンサーに蓄えられていた静電エネルギーが0.1ミリセカンドないし100ミリセカンドという極めて短い光パルスに変換されることから、ハロゲンランプHLの如き連続点灯の光源に比べて極めて強い光を照射し得るという特徴を有する。すなわち、フラッシュランプFLは、1秒未満の極めて短い時間で瞬間的に発光するパルス発光ランプである。なお、フラッシュランプFLの発光時間は、フラッシュランプFLに電力供給を行うランプ電源のコイル定数によって調整することができる。
また、リフレクタ52は、複数のフラッシュランプFLの上方にそれら全体を覆うように設けられている。リフレクタ52の基本的な機能は、複数のフラッシュランプFLから出射されたフラッシュ光を熱処理空間65の側に反射するというものである。リフレクタ52はアルミニウム合金板にて形成されており、その表面(フラッシュランプFLに臨む側の面)はブラスト処理により粗面化加工が施されている。
チャンバー6の下方に設けられたハロゲン加熱部4は、筐体41の内側に複数本(本実施形態では40本)のハロゲンランプHLを内蔵している。ハロゲン加熱部4は、複数のハロゲンランプHLによってチャンバー6の下方から下側チャンバー窓64を介して熱処理空間65への光照射を行って半導体ウェハーWを加熱する光照射部である。
図7は、複数のハロゲンランプHLの配置を示す平面図である。40本のハロゲンランプHLは上下2段に分けて配置されている。保持部7に近い上段に20本のハロゲンランプHLが配設されるとともに、上段よりも保持部7から遠い下段にも20本のハロゲンランプHLが配設されている。各ハロゲンランプHLは、長尺の円筒形状を有する棒状ランプである。上段、下段ともに20本のハロゲンランプHLは、それぞれの長手方向が保持部7に保持される半導体ウェハーWの主面に沿って(つまり水平方向に沿って)互いに平行となるように配列されている。よって、上段、下段ともにハロゲンランプHLの配列によって形成される平面は水平面である。
また、図7に示すように、上段、下段ともに保持部7に保持される半導体ウェハーWの中央部に対向する領域よりも周縁部に対向する領域におけるハロゲンランプHLの配設密度が高くなっている。すなわち、上下段ともに、ランプ配列の中央部よりも周縁部の方がハロゲンランプHLの配設ピッチが短い。このため、ハロゲン加熱部4からの光照射による加熱時に温度低下が生じやすい半導体ウェハーWの周縁部により多い光量の照射を行うことができる。
また、上段のハロゲンランプHLからなるランプ群と下段のハロゲンランプHLからなるランプ群とが格子状に交差するように配列されている。すなわち、上段に配置された20本のハロゲンランプHLの長手方向と下段に配置された20本のハロゲンランプHLの長手方向とが互いに直交するように計40本のハロゲンランプHLが配設されている。
ハロゲンランプHLは、ガラス管内部に配設されたフィラメントに通電することでフィラメントを白熱化させて発光させるフィラメント方式の光源である。ガラス管の内部には、窒素やアルゴン等の不活性ガスにハロゲン元素(ヨウ素、臭素等)を微量導入した気体が封入されている。ハロゲン元素を導入することによって、フィラメントの折損を抑制しつつフィラメントの温度を高温に設定することが可能となる。したがって、ハロゲンランプHLは、通常の白熱電球に比べて寿命が長くかつ強い光を連続的に照射できるという特性を有する。すなわち、ハロゲンランプHLは少なくとも1秒以上連続して発光する連続点灯ランプである。また、ハロゲンランプHLは棒状ランプであるため長寿命であり、ハロゲンランプHLを水平方向に沿わせて配置することにより上方の半導体ウェハーWへの放射効率が優れたものとなる。
また、ハロゲン加熱部4の筐体41内にも、2段のハロゲンランプHLの下側にリフレクタ43が設けられている(図1)。リフレクタ43は、複数のハロゲンランプHLから出射された光を熱処理空間65の側に反射する。
制御部3は、熱処理装置1に設けられた上記の種々の動作機構を制御する。制御部3のハードウェアとしての構成は一般的なコンピュータと同様である。すなわち、制御部3は、各種演算処理を行う回路であるCPU、基本プログラムを記憶する読み出し専用のメモリであるROM、各種情報を記憶する読み書き自在のメモリであるRAMおよび制御用ソフトウェアやデータなどを記憶しておく磁気ディスクを備えている。制御部3のCPUが所定の処理プログラムを実行することによって熱処理装置1における処理が進行する。
上記の構成以外にも熱処理装置1は、半導体ウェハーWの熱処理時にハロゲンランプHLおよびフラッシュランプFLから発生する熱エネルギーによるハロゲン加熱部4、フラッシュ加熱部5およびチャンバー6の過剰な温度上昇を防止するため、様々な冷却用の構造を備えている。例えば、チャンバー6の壁体には水冷管(図示省略)が設けられている。また、ハロゲン加熱部4およびフラッシュ加熱部5は、内部に気体流を形成して排熱する空冷構造とされている。また、上側チャンバー窓63とランプ光放射窓53との間隙にも空気が供給され、フラッシュ加熱部5および上側チャンバー窓63を冷却する。
次に、熱処理装置1における半導体ウェハーWの処理手順について説明する。ここで処理対象となる半導体ウェハーWはイオン注入法により不純物(イオン)が添加された半導体基板である。その不純物の活性化が熱処理装置1によるフラッシュ光照射加熱処理(アニール)により実行される。以下に説明する熱処理装置1の処理手順は、制御部3が熱処理装置1の各動作機構を制御することにより進行する。
まず、給気のためのバルブ84が開放されるとともに、排気用のバルブ89,192が開放されてチャンバー6内に対する給排気が開始される。バルブ84が開放されると、ガス供給孔81から熱処理空間65に窒素ガスが供給される。また、バルブ89が開放されると、ガス排気孔86からチャンバー6内の気体が排気される。これにより、チャンバー6内の熱処理空間65の上部から供給された窒素ガスが下方へと流れ、熱処理空間65の下部から排気される。
また、バルブ192が開放されることによって、搬送開口部66からもチャンバー6内の気体が排気される。さらに、図示省略の排気機構によって移載機構10の駆動部周辺の雰囲気も排気される。なお、熱処理装置1における半導体ウェハーWの熱処理時には窒素ガスが熱処理空間65に継続的に供給されており、その供給量は処理工程に応じて適宜変更される。
続いて、ゲートバルブ185が開いて搬送開口部66が開放され、装置外部の搬送ロボットにより搬送開口部66を介してイオン注入後の半導体ウェハーWがチャンバー6内の熱処理空間65に搬入される。搬送ロボットによって搬入された半導体ウェハーWは保持部7の直上位置まで進出して停止する。そして、移載機構10の一対の移載アーム11が退避位置から移載動作位置に水平移動して上昇することにより、リフトピン12が貫通孔79を通ってサセプタ74の保持プレート75の上面から突き出て半導体ウェハーWを受け取る。このとき、リフトピン12は基板支持部77の支持面77aよりも上方にまで上昇する。
半導体ウェハーWがリフトピン12に載置された後、搬送ロボットが熱処理空間65から退出し、ゲートバルブ185によって搬送開口部66が閉鎖される。そして、一対の移載アーム11が下降することにより、半導体ウェハーWは移載機構10から保持部7のサセプタ74に受け渡されて水平姿勢にて下方より保持される。半導体ウェハーWは、保持プレート75上に立設された複数の基板支持部77によって支持されてサセプタ74に保持される。また、半導体ウェハーWは、パターン形成がなされて不純物が注入された表面を上面として保持部7に保持される。複数の基板支持部77によって支持された半導体ウェハーWの裏面(表面とは反対側の主面)と保持プレート75の保持面75aとの間には所定の間隔が形成される。サセプタ74の下方にまで下降した一対の移載アーム11は水平移動機構13によって退避位置、すなわち凹部62の内側に退避する。
半導体ウェハーWが保持部7のサセプタ74によって水平姿勢にて下方より保持された後、ハロゲン加熱部4の40本のハロゲンランプHLが一斉に点灯して予備加熱(アシスト加熱)が開始される。ハロゲンランプHLから出射されたハロゲン光は、石英にて形成された下側チャンバー窓64およびサセプタ74を透過して半導体ウェハーWの裏面から照射される。ハロゲンランプHLからの光照射を受けることによって半導体ウェハーWが予備加熱されて温度が上昇する。なお、移載機構10の移載アーム11は凹部62の内側に退避しているため、ハロゲンランプHLによる加熱の障害となることは無い。
ハロゲンランプHLによる予備加熱を行うときには、半導体ウェハーWの温度が放射温度計120によって測定されている。すなわち、サセプタ74に保持された半導体ウェハーWの裏面から開口部78を介して放射された赤外光を放射温度計120が受光して昇温中のウェハー温度を測定する。測定された半導体ウェハーWの温度は制御部3に伝達される。制御部3は、ハロゲンランプHLからの光照射によって昇温する半導体ウェハーWの温度が所定の予備加熱温度T1に到達したか否かを監視しつつ、ハロゲンランプHLの出力を制御する。すなわち、制御部3は、放射温度計120による測定値に基づいて、半導体ウェハーWの温度が予備加熱温度T1となるようにハロゲンランプHLの出力をフィードバック制御する。予備加熱温度T1は、半導体ウェハーWに添加された不純物が熱により拡散する恐れのない、200℃ないし800℃程度、好ましくは350℃ないし600℃程度とされる(本実施の形態では600℃)。
半導体ウェハーWの温度が予備加熱温度T1に到達した後、制御部3は半導体ウェハーWをその予備加熱温度T1に暫時維持する。具体的には、放射温度計120によって測定される半導体ウェハーWの温度が予備加熱温度T1に到達した時点にて制御部3がハロゲンランプHLの出力を調整し、半導体ウェハーWの温度をほぼ予備加熱温度T1に維持している。
このようなハロゲンランプHLによる予備加熱を行うことによって、半導体ウェハーWの全体を予備加熱温度T1に均一に昇温している。ハロゲンランプHLによる予備加熱の段階においては、より放熱が生じやすい半導体ウェハーWの周縁部の温度が中央部よりも低下する傾向にあるが、ハロゲン加熱部4におけるハロゲンランプHLの配設密度は、半導体ウェハーWの中央部に対向する領域よりも周縁部に対向する領域の方が高くなっている。このため、放熱が生じやすい半導体ウェハーWの周縁部に照射される光量が多くなり、予備加熱段階における半導体ウェハーWの面内温度分布を均一なものとすることができる。さらに、チャンバー側部61に装着された反射リング69の内周面は鏡面とされているため、この反射リング69の内周面によって半導体ウェハーWの周縁部に向けて反射する光量が多くなり、予備加熱段階における半導体ウェハーWの面内温度分布をより均一なものとすることができる。
ハロゲンランプHLからの光照射によって半導体ウェハーWの温度が予備加熱温度T1に到達して所定時間が経過した時点にてフラッシュ加熱部5のフラッシュランプFLが半導体ウェハーWの表面にフラッシュ光照射を行う。このとき、フラッシュランプFLから放射されるフラッシュ光の一部は直接にチャンバー6内へと向かい、他の一部は一旦リフレクタ52により反射されてからチャンバー6内へと向かい、これらのフラッシュ光の照射により半導体ウェハーWのフラッシュ加熱が行われる。
フラッシュ加熱は、フラッシュランプFLからのフラッシュ光(閃光)照射により行われるため、半導体ウェハーWの表面温度を短時間で上昇することができる。すなわち、フラッシュランプFLから照射されるフラッシュ光は、予めコンデンサーに蓄えられていた静電エネルギーが極めて短い光パルスに変換された、照射時間が0.1ミリセカンド以上100ミリセカンド以下程度の極めて短く強い閃光である。そして、フラッシュランプFLからのフラッシュ光照射によりフラッシュ加熱される半導体ウェハーWの表面温度は、瞬間的に1000℃以上の処理温度T2まで上昇し、半導体ウェハーWに注入された不純物が活性化された後、表面温度が急速に下降する。このように、熱処理装置1では、半導体ウェハーWの表面温度を極めて短時間で昇降することができるため、半導体ウェハーWに注入された不純物の熱による拡散を抑制しつつ不純物の活性化を行うことができる。なお、不純物の活性化に必要な時間はその熱拡散に必要な時間に比較して極めて短いため、0.1ミリセカンドないし100ミリセカンド程度の拡散が生じない短時間であっても活性化は完了する。
ところで、このフラッシュ光照射によって、半導体ウェハーWの表面温度は瞬間的に1000℃以上の処理温度T2にまで上昇する一方、その瞬間の裏面温度は予備加熱温度T1からさほどには上昇しない。すなわち、半導体ウェハーWの表面と裏面とに瞬間的に温度差が発生するのである。その結果、半導体ウェハーWの表面のみに急激な熱膨張が生じ、裏面はほとんど熱膨張しないために、半導体ウェハーWが表面を凸面とするように瞬間的に反る。このような表面を凸面とする瞬間的な反りが発生したとしても、半導体ウェハーWの裏面を支持する複数の基板支持部77のそれぞれは、球面の頂上部に保持面75aと平行な平面である支持面77aを形成した外周面を有するため、半導体ウェハーWの裏面が複数の基板支持部77に対して滑らかに擦れることとなり、基板支持部77の欠けや破損を防止することができる。また、半導体ウェハーWの裏面に傷が付くことも防止される。
フラッシュ加熱処理が終了した後、所定時間経過後にハロゲンランプHLが消灯する。これにより、半導体ウェハーWが予備加熱温度T1から急速に降温する。降温中の半導体ウェハーWの温度は放射温度計120によって測定され、その測定結果は制御部3に伝達される。制御部3は、放射温度計120の測定結果より半導体ウェハーWの温度が所定温度まで降温したか否かを監視する。そして、半導体ウェハーWの温度が所定以下にまで降温した後、移載機構10の一対の移載アーム11が再び退避位置から移載動作位置に水平移動して上昇することにより、リフトピン12がサセプタ74の上面から突き出て熱処理後の半導体ウェハーWをサセプタ74から受け取る。続いて、ゲートバルブ185により閉鎖されていた搬送開口部66が開放され、リフトピン12上に載置された半導体ウェハーWが装置外部の搬送ロボットにより搬出され、熱処理装置1における半導体ウェハーWの加熱処理が完了する。
本実施形態においては、サセプタ74に設けられた複数の基板支持部77のそれぞれが球面の頂上部に保持面75aと平行な平面である支持面77aを形成した外周面を有する。このため、フラッシュランプFLからのフラッシュ光照射によって半導体ウェハーWが表面を凸面とするように急激に反ったときにも、半導体ウェハーWの裏面が複数の基板支持部77に対して滑らかに擦れることとなり、基板支持部77の欠けや破損を防止することができるとともに、半導体ウェハーWの裏面に傷が生じるのを防止することもできる。
また、かかる形状の外周面を有する基板支持部77であれば、サセプタ74の保持プレート75に設ける向きは問題とならず、如何なる向きに立設しても良いため(線対称な形状であるため如何なる向きに設けても同じ)、基板支持部77に関するサセプタ74の製作、検査、管理は容易なものとなる。すなわち、上記実施形態のような基板支持部77の構成とすれば、簡易な構成にて基板支持部74の破損を防止することができるのである。
なお、設置の向きが問題となることなく基板支持部77の破損を防止する目的のみであれば、基板支持部77の外周面は単純な球面であっても良いように考えられる。しかし、基板支持部77の外周面が単純な球面であると、複数の基板支持部77の頂上部の高さ位置を揃えることが困難となり、その結果複数の基板支持部77のうちの一部のみが半導体ウェハーWの裏面に接触するおそれがある。このため、基板支持部77の外周面は、球面の頂上部に保持面75aと平行な支持面77aを形成した形状としている。
以上、本発明の実施の形態について説明したが、この発明はその趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。例えば、上記実施形態においては、基板支持部77の外周面を球面に平面を形成した形状としていたが、これに限定されるものではなく、図10に示すような形状であっても良い。図10に示す例では、基板支持部77は、楕円面の頂上部に保持面75aと平行な平面である支持面77aを形成した外周面を有する。基板支持部77の外周面が図10に示すような形状であっても、上記実施形態と同様に、フラッシュ光照射によって半導体ウェハーWが表面を凸面とするように急激に反ったときに、半導体ウェハーWの裏面が複数の基板支持部77に対して滑らかに擦れることとなり、基板支持部77の欠けや破損を防止することができるとともに、半導体ウェハーWの裏面に傷が生じるのを防止することもできる。
また、基板支持部77の外周面は、球面や楕円面以外の曲面に平面を形成した形状であっても良い。すなわち、複数の基板支持部77のそれぞれは、曲面の頂上部に保持プレート75の保持面75aと平行な平面である支持面77aを形成した外周面を有するものであれば良い。
また、上記実施形態においては、フラッシュ加熱部5に30本のフラッシュランプFLを備えるようにしていたが、これに限定されるものではなく、フラッシュランプFLの本数は任意の数とすることができる。また、フラッシュランプFLはキセノンフラッシュランプに限定されるものではなく、クリプトンフラッシュランプであっても良い。また、ハロゲン加熱部4に備えるハロゲンランプHLの本数も40本に限定されるものではなく、任意の数とすることができる。
また、上記実施形態においては、ハロゲンランプHLからのハロゲン光照射によって半導体ウェハーWを予備加熱するようにしていたが、予備加熱の手法はこれに限定されるものではなく、ホットプレートに載置することによって半導体ウェハーWを予備加熱するようにしても良い。
また、本発明に係る熱処理装置によって処理対象となる基板は半導体ウェハーに限定されるものではなく、液晶表示装置などのフラットパネルディスプレイに用いるガラス基板や太陽電池用の基板であっても良い。また、本発明に係る技術は、高誘電率ゲート絶縁膜(High-k膜)の熱処理、金属とシリコンとの接合、或いはポリシリコンの結晶化に適用するようにしても良い。
1 熱処理装置
3 制御部
4 ハロゲン加熱部
5 フラッシュ加熱部
6 チャンバー
7 保持部
65 熱処理空間
71 基台リング
72 連結部
74 サセプタ
75 保持プレート
75a 保持面
76 ガイドリング
77 基板支持部
77a 支持面
120 放射温度計
FL フラッシュランプ
HL ハロゲンランプ
W 半導体ウェハー

Claims (5)

  1. フラッシュランプから基板にフラッシュ光を照射することによって該基板の熱処理を行うときに該基板を保持する熱処理用サセプタであって、
    平面状の保持面を有する保持プレートと、
    前記保持面上に立設された複数の基板支持体と、
    を備え、
    前記複数の基板支持体のそれぞれは、曲面の頂上部に前記保持面と平行な平面を形成した外周面を有することを特徴とする熱処理用サセプタ。
  2. 請求項1記載の熱処理用サセプタにおいて、
    前記曲面は球面であること特徴とする熱処理用サセプタ。
  3. 請求項1記載の熱処理用サセプタにおいて、
    前記曲面は楕円面であることを特徴とする熱処理用サセプタ。
  4. 請求項1から請求項3のいずれかに記載の熱処理用サセプタにおいて、
    前記複数の基板支持体は、同一の円周上に沿って30°間隔で12個設けられることを特徴とする熱処理用サセプタ。
  5. 基板にフラッシュ光を照射することによって該基板を加熱する熱処理装置であって、
    基板を収容するチャンバーと、
    請求項1から請求項4のいずれかに記載の熱処理用サセプタと、
    前記熱処理用サセプタに保持された基板にフラッシュ光を照射するフラッシュランプと、
    を備えることを特徴とする熱処理装置。
JP2016018807A 2016-02-03 2016-02-03 熱処理用サセプタおよび熱処理装置 Active JP6637321B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016018807A JP6637321B2 (ja) 2016-02-03 2016-02-03 熱処理用サセプタおよび熱処理装置
TW105143658A TW201729330A (zh) 2016-02-03 2016-12-28 熱處理用承載體及熱處理裝置
US15/411,119 US20170221736A1 (en) 2016-02-03 2017-01-20 Heat treatment susceptor and heat treatment apparatus
US16/562,231 US20190393055A1 (en) 2016-02-03 2019-09-05 Heat treatment susceptor and heat treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016018807A JP6637321B2 (ja) 2016-02-03 2016-02-03 熱処理用サセプタおよび熱処理装置

Publications (2)

Publication Number Publication Date
JP2017139313A true JP2017139313A (ja) 2017-08-10
JP6637321B2 JP6637321B2 (ja) 2020-01-29

Family

ID=59387139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016018807A Active JP6637321B2 (ja) 2016-02-03 2016-02-03 熱処理用サセプタおよび熱処理装置

Country Status (3)

Country Link
US (2) US20170221736A1 (ja)
JP (1) JP6637321B2 (ja)
TW (1) TW201729330A (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6847610B2 (ja) * 2016-09-14 2021-03-24 株式会社Screenホールディングス 熱処理装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004001835A1 (ja) * 2002-06-21 2003-12-31 Hitachi Kokusai Electric Inc. 熱処理装置、基板の製造方法及び半導体デバイスの製造方法
WO2004086496A1 (ja) * 2003-03-26 2004-10-07 Shin-Etsu Handotai Co., Ltd. 熱処理用ウェーハ支持具及び熱処理装置
JP2008028235A (ja) * 2006-07-24 2008-02-07 Dainippon Screen Mfg Co Ltd 冷却処理装置
JP2008166763A (ja) * 2006-12-27 2008-07-17 Siltron Inc ウェハーの熱処理時のスリップ転位を防止することができるウェハー支持ピン及びウェハーの熱処理方法
JP2010509780A (ja) * 2006-11-15 2010-03-25 マトソン テクノロジー カナダ インコーポレイテッド 熱処理中の被加工物を支持するシステムおよび方法
JP2011510488A (ja) * 2008-01-15 2011-03-31 アプライド マテリアルズ インコーポレイテッド 高温真空チャックアセンブリ
JP2011210763A (ja) * 2010-03-29 2011-10-20 Dainippon Screen Mfg Co Ltd 基板熱処理装置
JP2014157968A (ja) * 2013-02-18 2014-08-28 Dainippon Screen Mfg Co Ltd 熱処理方法、熱処理装置およびサセプター

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100294062B1 (ko) * 1992-10-27 2001-10-24 조셉 제이. 스위니 웨이퍼 처리 챔버에서의 돔형 페데스탈용 클램프 링
US7184657B1 (en) * 2005-09-17 2007-02-27 Mattson Technology, Inc. Enhanced rapid thermal processing apparatus and method
CN101622789B (zh) * 2007-01-30 2015-04-15 英特赛尔美国有限公司 共模不灵敏采样器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004001835A1 (ja) * 2002-06-21 2003-12-31 Hitachi Kokusai Electric Inc. 熱処理装置、基板の製造方法及び半導体デバイスの製造方法
WO2004086496A1 (ja) * 2003-03-26 2004-10-07 Shin-Etsu Handotai Co., Ltd. 熱処理用ウェーハ支持具及び熱処理装置
JP2008028235A (ja) * 2006-07-24 2008-02-07 Dainippon Screen Mfg Co Ltd 冷却処理装置
JP2010509780A (ja) * 2006-11-15 2010-03-25 マトソン テクノロジー カナダ インコーポレイテッド 熱処理中の被加工物を支持するシステムおよび方法
JP2008166763A (ja) * 2006-12-27 2008-07-17 Siltron Inc ウェハーの熱処理時のスリップ転位を防止することができるウェハー支持ピン及びウェハーの熱処理方法
JP2011510488A (ja) * 2008-01-15 2011-03-31 アプライド マテリアルズ インコーポレイテッド 高温真空チャックアセンブリ
JP2011210763A (ja) * 2010-03-29 2011-10-20 Dainippon Screen Mfg Co Ltd 基板熱処理装置
JP2014157968A (ja) * 2013-02-18 2014-08-28 Dainippon Screen Mfg Co Ltd 熱処理方法、熱処理装置およびサセプター

Also Published As

Publication number Publication date
US20190393055A1 (en) 2019-12-26
US20170221736A1 (en) 2017-08-03
TW201729330A (zh) 2017-08-16
JP6637321B2 (ja) 2020-01-29

Similar Documents

Publication Publication Date Title
JP2017017277A (ja) 熱処理装置および熱処理方法
JP6587955B2 (ja) 熱処理装置
JP2014120497A (ja) 熱処理装置
JP2018148178A (ja) 熱処理方法
JP2016225429A (ja) 熱処理装置
JP2018207067A (ja) 熱処理方法
TWI638389B (zh) 熱處理用承載器及熱處理裝置
JP7191504B2 (ja) 熱処理装置
JP6622617B2 (ja) 熱処理装置
JP6138610B2 (ja) 熱処理装置
JP2019021828A (ja) 熱処理装置
JP5964630B2 (ja) 熱処理装置
JP6960344B2 (ja) 熱処理方法および熱処理装置
JP6770915B2 (ja) 熱処理装置
JP7319894B2 (ja) 熱処理装置
JP6982446B2 (ja) 熱処理装置
WO2018037630A1 (ja) 熱処理装置
JP2019140268A (ja) 熱処理方法
JP6469479B2 (ja) 基板温度調整方法
JP6637321B2 (ja) 熱処理用サセプタおよび熱処理装置
JP6899248B2 (ja) 熱処理装置
JP6438326B2 (ja) 熱処理装置
JP2018133424A (ja) 熱処理装置
JP7300365B2 (ja) 熱処理装置
JP7377653B2 (ja) 熱処理方法および熱処理装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191220

R150 Certificate of patent or registration of utility model

Ref document number: 6637321

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250