JP2017130356A - 導電性ペーストの硬化体の製造方法 - Google Patents

導電性ペーストの硬化体の製造方法 Download PDF

Info

Publication number
JP2017130356A
JP2017130356A JP2016009119A JP2016009119A JP2017130356A JP 2017130356 A JP2017130356 A JP 2017130356A JP 2016009119 A JP2016009119 A JP 2016009119A JP 2016009119 A JP2016009119 A JP 2016009119A JP 2017130356 A JP2017130356 A JP 2017130356A
Authority
JP
Japan
Prior art keywords
resin
conductive paste
meth
acrylate
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016009119A
Other languages
English (en)
Inventor
俊佑 望月
Shunsuke Mochizuki
俊佑 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2016009119A priority Critical patent/JP2017130356A/ja
Publication of JP2017130356A publication Critical patent/JP2017130356A/ja
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/8184Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering

Landscapes

  • Manufacturing Of Electric Cables (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Wire Bonding (AREA)
  • Die Bonding (AREA)

Abstract

【課題】低抵抗かつ密着性に優れた導電性ペーストの硬化体を提供する。【解決手段】導電性ペーストの硬化体の製造方法は、金属粒子と樹脂とを含む導電性ペーストを基材上で熱処理して硬化体を得る工程を含む。ここで、樹脂の硬化後の比重をD1、前記樹脂の硬化前の比重をD2としたとき、(D1−D2)/D1×100[%]が0.1%以上15%以下である。さらに、基材の線膨張係数が75ppm/℃以下である。【選択図】図2

Description

本発明は導電性ペーストの硬化体の製造方法に関する。
これまでのダイボンド方法においては、基板に半導体素子を接合する接合材として、金属ペーストが用いられてきた。この種の技術としては、例えば、特許文献1に記載されたものがある。同文献には、金属ペーストとして、金属粒子が有機溶剤に分散したものが記載されている。また、接合工程としては、基板と半導体素子との間に金属ペーストを塗布し、加熱させることにより、金属粒子を焼結せしめて、基板と半導体素子とを接合することになる。かかる工程において、有機溶剤は、焼結時に揮発することになり、接合部分には残存していない。有機溶剤が揮発する点は、特許文献2に記載されている。
また、特許文献3の記載の金属ペーストは、有機溶剤への金属粒子の分散性を高めることを目的として、有機溶剤の他に分散材を有している。この分散材は、有機溶剤と同様に、接合部分に残存しないことが要求される、と記載されている。
特開2014−67917号公報 特開2012−9703号公報 特開2010−257880号公報
発明者が検討した結果、上記文献記載の金属ペーストは、低抵抗と密着性の両立という点で改善の余地を有していた。
本発明は、低抵抗かつ密着性に優れた導電性ペーストの硬化体を提供する。
本願発明者らはさらに検討したところ、金属ペーストにおいて、密着性を高める目的で、エポキシ樹脂を大量に入れると、低抵抗が得られなくなってしまう場合があることを見出した。そしてさらに、金属ペーストのみならず、基材との相乗的な効果に着目して鋭意研究したところ、特定の条件を満たす金属ペーストと基材の組み合わせにより、低抵抗と密着性が両立することを見出し、本発明を完成するに至った。
本発明によれば、
金属粒子と樹脂とを含む導電性ペーストを基材上で熱処理して硬化体を得る工程を含み、
前記樹脂の硬化後の比重をD1、前記樹脂の硬化前の比重をD2としたとき、(D1−D2)/D1×100が0.1%以上15%以下であり、
前記基材の線膨張係数が75ppm/℃以下である
導電性ペーストの硬化体の製造方法
が提供される。
本発明によれば、低抵抗かつ密着性に優れた導電性ペーストの硬化体を提供できる。
実施形態に係る導電性ペーストの硬化体を含む電子装置を例示する図である。 実施例2の銀粒子の均一なシンタリング構造を示す断面図である。 実施例13の銀粒子の焼結部と非焼結部が共存するシンタリング構造を示す断面図である。
以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
なお、「〜」は特に断りがなければ、以上から以下を表す。
なお、本実施形態において、「樹脂の固形分」とは、樹脂中における不揮発分を指し、水や溶媒等の揮発成分を除いた残部を指す。また、本実施形態において、樹脂全体に対する含有量とは、樹脂が溶媒を含む場合には、樹脂のうちの溶媒を除く成分全体に対する含有量を指す。
本実施形態に係る導電性ペーストの硬化体の製造方法は、金属粒子と樹脂とを含む導電性ペーストを基材上で熱処理して硬化体を得る工程を含む。ここで、樹脂の硬化後の比重をD1、前記樹脂の硬化前の比重をD2としたとき、(D1−D2)/D1×100が0.1%以上15%以下である。さらに、基材の線膨張係数が75ppm/℃以下である。
本実施形態において、(D1−D2)/D1×100[%]の値は、樹脂の反応収縮の大きさを意味する。すなわち、(D1−D2)/D1×100をある程度大きくすることで、硬化前と比較して樹脂の硬化後の収縮率を大きくすることが可能になる。詳細なメカニズムは定かではないが、これにより、シンタリングの時に、収縮している樹脂が金属粒子同士を押しつける状態を生み出すことができるので、シンタリングを促進することが可能になると考えられる。
また、熱処理により導電性ペーストを硬化させる際、導電性ペーストが収縮する一方、基材は膨張する。このような加熱時の挙動の違いは、硬化体と基材の界面における密着性の低減や界面応力の蓄積の原因となる。本実施形態においては、(D1−D2)/D1×100と基材の線膨張係数とをそれぞれ特定の値以下とすることにより、密着性の低減や界面応力の蓄積を抑制することができる。
本実施形態に係る導電性ペーストの硬化体の製造方法では、(D1−D2)/D1×100の値と、基材の線膨張係数とをそれぞれ特定の範囲内とすることにより、上記の現象が良好にバランスされ、高い導電性と密着性との両立が可能となると考えられる。
なお、導電性向上の観点から、(D1−D2)/D1×100の値は0.5%以上であることがより好ましく、1.0%以上であることがさらに好ましい。一方、(D1−D2)/D1×100の値は密着性向上の観点から10%以下であることがより好ましく、5.0%以下であることがさらに好ましい。
本実施形態において、樹脂の比重を測定する方法としては、例えばアルキメデス法が挙げられる。例えば、アルファミラージュ社製高精度比重計SD−200Lを用いて比重を測定できる。測定サンプルの準備は、導電性ペーストに含まれる金属粒子を除いた樹脂を用いて実施する。サンプル準備方法は特に限定されないが、例えばMEKなどの溶剤を用いて溶解させたそれぞれの樹脂を混合し、自転公転ミキサー等で脱泡し、ワニスを準備する。その後90℃、4時間などの穏やかな条件で、ワニス中から溶剤を乾燥させる。このようにして得られた樹脂板を用い、比重計を用いて測定する。また、測定する樹脂が硬化前において常温で液状の場合には、たとえばマイクロピペットを用いて1mLの樹脂を秤量し、その重量を精密天秤によって量り、硬化前の比重を算出することができる。
この場合、樹脂とは、導電性ペーストから金属粒子および溶剤を除いた残りの全成分とすることができる。ただし、溶剤を乾燥させて除くとき、完全に溶剤が除かれた状態が好ましいが、作業プロセス上、不可避に残存する溶剤は許容できる。また、導電性ペーストが充填材を含む場合、かかる充填材を除いたものを、評価するための上記樹脂とする。
本実施形態に係る硬化体の体積抵抗率は、たとえば20.0μΩ・cm以下であり、より好ましくは15.0μΩ・cm以下であり、さらに好ましくは10.0μΩ・cm以下である。一方、当該体積抵抗率はたとえば4.0μΩ・cm以上である。硬化体の体積抵抗率は、たとえば4端子法で測定できる。
以下、本実施形態に係る導電性ペーストの各成分について説明する。
[金属粒子]
本実施形態に係る金属粒子について説明する。
本実施形態の金属粒子は、熱処理によりシンタリングを起こして粒子連結構造を形成するものである。
本実施形態において、金属粒子の主成分としては、たとえば銀、銅、白金、ニッケル、金、パラジウムが挙げられる。中でも、コストと導電性の観点から金属粒子は銀粒子であることが好ましい。銀粒子とは、Ag原子から構成される金属粒子を意味する。金属粒子の純度は特に限定されないが、純度の高いものが好ましく、例えば、95%以上が好ましく、98%以上がより好ましく、99%以上がさらに好ましい。本実施形態の金属粒子は、本発明の目的を損なわない限りであれば、主成分以外の金属を微量に含んでもよい。たとえば、金属粒子が銀粒子である場合、主成分以外の金属としては、銅、鉄、アルミニウム、亜鉛、錫、金、ニッケル等が挙げられる。また、金属粒子は、シンタリングを促進する、あるいは低コスト化等の目的で、例えば、非金属成分を含むことが可能である。なお、本実施形態の金属粒子は、その製造工程において不可避に混入する不純物が含有されていることを許容する。
導電性ペーストの硬化体には、金属粒子を構成する金属が互いに結合されて含まれることとなる。たとえば導電性ペーストに含まれる金属粒子が銀粒子である場合、その導電性ペーストの硬化体には銀が含まれる。
本実施形態の金属粒子は、非金属成分として、例えば炭素を含有することができる。金属粒子に含まれる炭素は、金属粒子にシンタリングが生じる際の焼結助剤として機能する。このため、金属粒子の焼結性を向上させることが可能となる。ここで、金属粒子が炭素を含有するとは、金属粒子の内部に含有される場合や、金属粒子の表面に物理的または化学的に吸着されている場合を含む。
金属粒子が炭素を含有する場合の一例として、金属粒子に炭素を含む滑剤を付着させる態様が挙げられる。このような滑剤としては、たとえば高級脂肪酸、高級脂肪酸金属塩、高級脂肪酸アミド、および高級脂肪酸エステルが挙げられる。滑剤の含有量は、金属粒子全体に対してたとえば0.01質量%以上5質量%以下であることが好ましい。これにより、炭素を焼結助剤として効果的に機能させつつ、熱伝導性の低下を抑制することが可能となる。
本実施形態の金属粒子のメディアン径(D50)は、例えば、0.5μm以上が好ましく、0.6μm以上がより好ましく、0.8μm以上がさらに好ましい。一方、金属粒子のメディアン径(D50)は、例えば、10μm以下が好ましく、8μm以下がより好ましく、5μm以下がさらに好ましい。本実施形態において、金属粒子のメディアン径を上記下限値以上とすることにより、ペーストにした時の過度なチキソ性を防ぐことができる。
また、金属粒子のメディアン径を上記上限値以下とすることにより、金属粒子間における焼結性を向上させることが可能となる。また、導電性ペーストのディスペンス性を向上させる観点からは、金属粒子のメディアン径(D50)が0.6μm以上6.0μm以下であることがより好ましく、0.8μm以上5.0μm以下であることがさらに好ましい。本実施形態において、導電性ペーストは、メディアン径(D50)が異なる金属粒子を2種以上有していてもよい。
本実施形態において、金属粒子のメディアン径(D50)は、たとえば市販のレーザー式粒度分布計(たとえば、(株)島津製作所製、SALD−7000等)を用いて測定することができる。
本実施形態に係る金属粒子のタップ密度は2.50g/cm以上であることが好ましく、3.50g/cm以上であることがより好ましく、4.30g/cm以上であることがさらに好ましい。一方、当該タップ密度は、7.00g/cm以下であることが好ましく、5.30g/cm以下であることがより好ましい。金属粒子のタップ密度が上記上限以下、下限以上であれば、導電性ペーストの硬化体の導電性を向上させることができる。タップ密度は、JIS Z 2512:2012の方法に準拠して測定することができる。
本実施形態において、金属粒子の体積の下限値は、樹脂の固形分と金属粒子との合計体積(100体積%)に対して、特に限定されないが、例えば、40体積%以上であることが好ましく、45体積%以上であることがより好ましい。これにより、金属粒子の焼結性を向上させ、熱伝導性と導電性の向上に寄与することが可能となる。一方で、金属粒子の体積の上限値は、上記合計体積に対して、例えば、95体積%以下であることが好ましく、90体積%以下であることがとくに好ましい。これにより、導電性ペースト全体の塗布作業性や、接着剤層の機械強度等の向上に寄与することができる。
本実施形態に係る金属粒子の形状は、とくに限定されないが、たとえば球状、多角形状(角に丸みがある略球状を含む)、フレーク状、樹枝状、および鱗片状等を挙げることができる。
本実施形態において、金属粒子は球状粒子、多角形状粒子またはフレーク状粒子を含むことがより好ましい。
これにより、金属粒子の充填性を高めることができるので、焼結性を向上させることができる。また、シンタリングの均一性の向上にも寄与することができる。また、焼結性に優れ、コストを低減させる観点からは、金属粒子がフレーク状粒子を含む態様を採用することもできる。さらには、コストの低減とシンタリングの均一性とのバランスを向上させる観点から、金属粒子が球状粒子または多角形状粒子とフレーク状粒子の双方を含んでいてもよい。
本実施形態においては、球状粒子およびフレーク状粒子を合計した金属粒子の含有量は、金属粒子全体100重量%に対して、たとえば、90重量%以上であることが好ましく、95重量%以上であることが好ましい。かかる含有量の上限値は、特に限定されないが、例えば、100重量%以下である。これにより、シンタリングの均一性をより効果的に向上させることができる。また、シンタリングの均一性をさらに向上させる観点からは、球状粒子の金属粒子の含有量は、金属粒子全体100重量%に対して、たとえば、90重量%以上であることが好ましく、95重量%以上であることが好ましい。かかる含有量の上限値は、特に限定されないが、例えば、100重量%以下である。
本実施形態に係る金属粒子は熱処理によりシンタリングを起こして粒子連結構造を形成する。粒子連結構造は、例えば、走査電子顕微鏡で得られた断面図から判断してもよいが、X線回折を用いた手法により判断することができる。具体的には、銀粉を有機溶剤(ブチルカルビトール)に濃度90wt%で分散させたペーストを用いて塗膜を作成し、100℃10分で溶剤を乾燥させた後の銀粒子の結晶子径をd1、この塗膜を250℃60分熱処理した後の結晶子径をd2とする。これらの結晶子径の比(d2/d1)が、1.1以上であり、かつd1が15.0nm以上である場合、銀粒子が硬化体においても上記粒子連結構造を有していると判断できる。ここで、上記結晶子径は、例えばX線回折装置(XRD)を用いて評価を行うことができ、銀に由来する回折チャートの2Θ=38°±0.2のピークを用いて測定する事ができる。また、塗膜を形成する基材としてはスライドガラスを用いることができる。
[樹脂]
本実施形態に係る樹脂について以下に説明する。
本実施形態の導電性ペーストは、下記の樹脂を含むことができる。ここで樹脂とは、熱で重合し得るモノマー、およびモノマーが重合したポリマーを含む。
本実施形態において、樹脂の固形分の体積は、特に限定されないが、樹脂の固形分と金属粒子との合計体積(100体積%)に対して、例えば、5体積%以上であることが好ましく、7体積%以上であることがより好ましく、10体積%以上であることがさらに好ましい。一方、樹脂の固形分の体積は、特に限定されないが、当該合計体積に対して、例えば、70体積%以下であることが好ましく、55体積%以下であることがより好ましく、50体積%以下であることがさらに好ましい。
本実施形態において、樹脂の固形分の体積を上記下限値以上とすることにより、導電性ペーストの密着性を高めることができる。一方、樹脂の固形分の体積を上記上限値以下とすることにより、金属粒子のシンタリングの妨げを抑制でき、導電性ペーストの抵抗を低くすることができる。本実施形態において、導電性ペーストが発揮する密着性としては、無機材料に対して密着するだけでなく、有機材料に対しても密着することが好ましい。
本実施形態において、樹脂の固形分の体積の測定方法としては、例えば、配合重量と当該樹脂固有の比重から求めることが出来る。一方、金属粒子の体積の測定方法としては、例えば、金属粒子の比重から算出できる。
本実施形態において、120℃における上記樹脂の溶融粘度は、特に限定されないが、例えば、0.1Pa・s以上が好ましく、5Pa・s以上がより好ましく、10Pa・s以上がさらに好ましい。一方、120℃における上記樹脂の溶融粘度の上限値は、特に限定されないが、例えば、1,000,000,000Pa・s以下が好ましく、100,000,000Pa・s以下がより好ましく、10,000,000Pa・s以下がさらに好ましい。これにより、導電性ペースト中の金属粒子同士の焼結がより発生し易い状態とすることができる。
この場合、樹脂とは、上記導電性ペーストから金属粒子および溶剤を除いた残りの全成分とすることができる。ただし、溶剤を乾燥させて除くとき、完全に溶剤が除かれた状態が好ましいが、作業プロセス上、不可避に残存する溶剤は許容できる。また、上記導電性ペーストが充填材を含む場合、かかる充填材を除いたものを、評価するための上記樹脂とする。
本実施形態において、溶融粘度を測定する方法としては、例えば、レオメーターが用いられる。測定サンプルの準備は、導電性ペーストに含まれる金属粒子を除いた樹脂を用いて実施する。サンプル準備方法は特に限定されないが、例えばMEKなどの溶剤を用いて溶解させたそれぞれの樹脂を混合し、自転公転ミキサー等で脱泡し、ワニスを準備する。その後90℃、4時間などの穏やかな条件でワニス中から溶剤を乾燥させる。このようにして得られた樹脂板を用い、レオメーターで溶融粘度を測定する。レオメーターでの測定条件は特に限定されないが、例えばひずみ0.2%、周波数1Hz、ノーマルフォース4Nの条件で、100℃〜250℃を5℃/分の昇温速度で測定する。
また、本実施形態において、樹脂の硬化物のガラス転移温度(Tg)の下限値は、特に限定されないが、例えば、当該ガラス転移温度(Tg)は60℃以上としてもよく、65℃以上としてもよく、70℃以上としてもよい。かかるガラス転移温度(Tg)の上限値は、特に限定されないが、例えば、当該ガラス転移温度(Tg)は300℃以下としてもよく、290℃以下としてもよく、280℃以下としてもよい。これにより、耐熱性が得られる。
本実施形態において、ガラス転移温度を測定する方法としては、例えば、熱機械分析装置(DSC2920 TAインスツルメント社製)等が用いられる。
本実施形態に係る樹脂は、たとえば熱可塑性樹脂および熱硬化性樹脂のうち少なくともいずれかを含む。本実施形態の樹脂は、これらの樹脂から適宜選択できるが、熱硬化性樹脂を含むのが好ましい。
本実施形態に係る熱硬化性樹脂としては、加熱により3次元的網目構造を形成する樹脂である。当該熱硬化性樹脂としては、特に限定されないが、例えば、フェノール樹脂、ベンゾオキサジン環を有する樹脂、エポキシ樹脂、アクリル樹脂、メラミン樹脂、不飽和ポリエステル樹脂、マレイミド樹脂、ポリウレタン樹脂、ジアリルフタレート樹脂、シリコーン樹脂、シアネート樹脂、メタクリロイル基を有する樹脂等が挙げられる。例えば、熱硬化性樹脂が、室温で液状である液状樹脂であってもよい。これらは、1種又は2種以上を組み合わせて用いることができる。
本実施形態に係るフェノール樹脂としては、特に限定されないが、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールAノボラック樹脂等のノボラック型フェノール樹脂、およびレゾール型フェノール樹脂等が挙げられる。この中でも、熱硬化収縮が大きく、また密着性が高い観点から、レゾール型フェノール樹脂がより好ましい。レゾール型フェノール樹脂は、例えば、アルカリ触媒下でフェノール類とアルデヒド類を反応させて得られる。
本実施形態に係るベンゾオキサジン系樹脂(ベンゾオキサジン環を有する樹脂)は、オキサジン環がベンゼン環に隣接した構造を有する熱硬化性樹脂である。当該ベンゾオキサジン系樹脂としては、特に限定されないが、例えば、フェノール化合物、アミン化合物、アルデヒド化合物を反応させることにより製造できる。
本実施形態に係るエポキシ樹脂としては、1分子中にエポキシ基が2個以上であるものを使用することができる。たとえば、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、クレゾールナフトール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、フェノキシ樹脂、ナフタレン骨格型エポキシ樹脂、ジアリルビスフェノールA型エポキシ樹脂、ビスフェノールAジグリシジルエーテル型エポキシ樹脂、ビスフェノールFジグリシジルエーテル型エポキシ樹脂、ビスフェノールSジグリシジルエーテル型エポキシ樹脂、o−アリルビスフェノールA型ジグリシジルエーテル、3,3',5,5'−テトラメチル−4,4'−ジヒドロキシビフェニルジグリシジルエーテル型エポキシ樹脂、1,1,2,2−テトラキス(ヒドロキシフェニル)エタン型エポキシ樹脂、4,4'−ジヒドロキシビフェニルジグリシジルエーテル型エポキシ樹脂、臭素型クレゾールノボラック型エポキシ樹脂、ビスフェノールDジグリシジルエーテル型エポキシ樹脂、1,6−ナフタレンジオールのグリシジルエーテル、アミノフェノール類のトリグリシジルエーテルなどのエポキシ樹脂が挙げられる。これらは単独で用いても複数組み合わせて用いても良い。
また、エポキシ樹脂は25℃にて固形状のもの、液状のもののどちらも使用することができる。
本実施形態に係るアクリル樹脂としては、たとえば、単官能(メタ)アクリレート、2官能(メタ)アクリレート、3官能以上の多官能(メタ)アクリレート、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレートが挙げられる。
単官能(メタ)アクリレートとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、s−ブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチルヘプチル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、テトラデシル(メタ)アクリレート、ペンタデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、ベヘニル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、3−クロロ−2−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレートのような脂肪族(メタ)アクリレート、シクロペンチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、シクロペンチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、3−メチル−3−オキセタニルメチル(メタ)アクリレート、1−アダマンチル(メタ)アクリレートのような脂環式(メタ)アクリレート、フェニル(メタ)アクリレート、ノニルフェニル(メタ)アクリレート、p−クミルフェニル(メタ)アクリレート、o−ビフェニル(メタ)アクリレート、1−ナフチル(メタ)アクリレート、2−ナフチル(メタ)アクリレート、ベンジル(メタ)アクリレート、2−ヒドロキシ−3−フェノキシプロピル(メタ)アクリレート、2−ヒドロキシ−3−(o−フェニルフェノキシ)プロピル(メタ)アクリレート、2−ヒドロキシ−3−(1−ナフトキシ)プロピル(メタ)アクリレート、2−ヒドロキシ−3−(2−ナフトキシ)プロピル(メタ)アクリレートのような芳香族(メタ)アクリレート、2−テトラヒドロフルフリル(メタ)アクリレート、N−(メタ)アクリロイルオキシエチルヘキサヒドロフタルイミド、2−(メタ)アクリロイルオキシエチル−N−カルバゾールのような複素環式(メタ)アクリレートが挙げられる。
また、2官能(メタ)アクリレートとしては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、テトラプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、1,3−ブタンジオールジ(メタ)アクリレート、2−メチル−1,3−プロパンジオールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、3−メチル−1,5−ペンタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、2−ブチル−2−エチル−1,3−プロパンジオールジ(メタ)アクリレート、1,9−ノナンジオールジ(メタ)アクリレート、1,10−デカンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、トリシクロデカンジメタノール(メタ)アクリレートのような脂肪族(メタ)アクリレート、シクロヘキサンジメタノール(メタ)アクリレート、トリシクロデカンジメタノール(メタ)アクリレート、水添ビスフェノールAジ(メタ)アクリレート、水添ビスフェノールFジ(メタ)アクリレートのような脂環式(メタ)アクリレート、ビスフェノールAジ(メタ)アクリレート、ビスフェノールFジ(メタ)アクリレート、ビスフェノールAFジ(メタ)アクリレート、フルオレン型ジ(メタ)アクリレートのような芳香族(メタ)アクリレート、イソシアヌル酸ジ(メタ)アクリレートのような複素環式(メタ)アクリレートが挙げられる。
また、3官能以上の多官能(メタ)アクリレートとしては、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレートのような脂肪族(メタ)アクリレート、イソシアヌル酸トリ(メタ)アクリレートのような複素環式(メタ)アクリレートが挙げられる。
エポキシ(メタ)アクリレートとしては、エポキシ樹脂のエポキシ基と、カルボキシル基及び(メタ)アクリロイル基を有する化合物のカルボキシル基とを反応させてエステル結合を形成させて得られる化合物が挙げられる。
ウレタン(メタ)アクリレートとしては、たとえば、ポリエステル型またはポリエーテル型等のポリオール化合物と、多価イソシアナート化合物を反応させて得られる末端イソシアナートウレタンプレポリマーに、ヒドロキシル基を有する(メタ)アクリレートを反応させて得られたものが挙げられる。ここで、多価イソシアナート化合物としては、たとえば、2,4−トリレンジイソシアナート、2,6−トリレンジイソシアナート、1,3−キシリレンジイソシアナート、1,4−キシリレンジイソシアナート、ジフェニルメタン−4,4−ジイソシアナートが挙げられる。また、ヒドロキシル基を有する(メタ)アクリレートとしては、たとえば、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレートが挙げられる。
本実施形態において、エポキシ樹脂の含有量の下限値は、特に限定されないが、例えば、樹脂の固形分全量に対してエポキシ樹脂を1質量%以上含ませてもよく、3質量%以上含ませてもよく、5質量%以上含ませてもよい。これにより、硬化物としての適度な機械特性を発揮することができる。
また、エポキシ樹脂の含有量の上限値は、特に限定されないが、例えば、樹脂の固形分全量に対してエポキシ樹脂を20質量%以下含ませてもよく、15質量%以下含ませてもよく、10質量%以下含ませてもよい。
本実施形態にかかる樹脂は、たとえば硬化剤を含むことができる。硬化剤としては、熱硬化性樹脂(例えば、エポキシ樹脂)の重合反応を促進させるものであればとくに限定されない。これにより、上記熱硬化性樹脂の重合反応を促進させて、導電性ペーストを用いて得られる機械特性の向上に寄与することができる。
一方で、本実施形態においては、シンタリングの均一性、熱伝導性、導電性等のバランスを向上させる観点から、たとえば、樹脂中に硬化剤を含まない態様を採用することもできる。樹脂中に硬化剤を含まないとは、たとえば熱硬化性樹脂100重量部に対する硬化剤の含有量が0.01重量部以下である場合を指す。
本実施形態の硬化剤は、フェノール性水酸基を有する硬化剤を含むことができる。より具体的には、熱硬化性樹脂としてエポキシ樹脂やベンゾオキサジン環を有する樹脂を用いる場合、硬化剤としてフェノール樹脂を用いることができる。上記フェノール樹脂としては、公知のもののなかから適宜選択することができるが、たとえばノボラック型フェノール樹脂、レゾール型フェノール樹脂、トリスフェニルメタン型フェノール樹脂、アリールアルキレン型フェノール樹脂を用いることができる。
ノボラック型フェノール樹脂は、例えば、フェノール類とアルデヒド類とを酸性触媒のもとで反応させることにより得ることができる。
ノボラック型フェノール樹脂を製造する際に用いるフェノール類としては、例えば、フェノール、クレゾール、キシレノール、エチルフェノール、p−フェニルフェノール、p−tert−ブチルフェノール、p−tert−アミルフェノール、p−オクチルフェノール、p−ノニルフェノール、p−クミルフェノール、ビスフェノールA、ビスフェノールF、レゾルシノールなどが挙げられる。なお、これらフェノール類を単独または2種類以上併用して用いてもよい。
また、ノボラック型フェノール樹脂の製造に用いるアルデヒド類としては、例えば、ホルムアルデヒド、アセトアルデヒド、プロピルアルデヒド、ブチルアルデヒド等のアルキルアルデヒド、ベンズアルデヒド、サリチルアルデヒド等の芳香族アルデヒド等が挙げられる。ホルムアルデヒド源としては、ホルマリン(水溶液)、パラホルムアルデヒド、アルコール類とのヘミホルマール、トリオキサン等が挙げられる。なお、これらアルデヒド類を単独または2種類以上併用して用いてもよい。
ノボラック型フェノール樹脂を合成する際、フェノール類とアルデヒド類との反応モル比率は、通常、フェノール類1モルに対して、アルデヒド類が0.3〜1.0モルであり、特に0.6〜0.9モルとすることが好ましい。
また、ノボラック型フェノール樹脂の製造に用いる酸性触媒としては、例えば、蓚酸、酢酸等の有機カルボン酸、ベンゼンスルホン酸、パラトルエンスルホン酸、メタンスルホン酸等の有機スルホン酸、1−ヒドロキシエチリデン−1,1'−ジホスホン酸、2−ホスホノブタン−1,2,4−トリカルボン酸等の有機ホスホン酸、塩酸、硫酸、リン酸等の無機酸が挙げられる。なお、これらの酸性触媒を単独、または2種類以上併用して使用してもよい。
レゾール型フェノール樹脂は、例えば、フェノール類とアルデヒド類をアルカリ金属やアミン類、二価金属塩などの触媒の存在下で反応させることによって得ることができる。
レゾール型フェノール樹脂の製造に用いるフェノール類としては、例えば、フェノール、o−クレゾール、m−クレゾール、p−クレゾール等のクレゾール類、2,3−キシレノール、2,4−キシレノール、2,5−キシレノール、2,6−キシレノール、3,4−キシレノール、3,5−キシレノール等のキシレノール類、o−エチルフェノール、m−エチルフェノール、p−エチルフェノール等のエチルフェノール類、イソプロピルフェノール、ブチルフェノール、p−tert−ブチルフェノール等のブチルフェノール類、p−tert−アミルフェノール、p−オクチルフェノール、p−ノニルフェノール、p−クミルフェノール等のアルキルフェノール類、フルオロフェノール、クロロフェノール、ブロモフェノール、ヨードフェノール等のハロゲン化フェノール類、p−フェニルフェノール、アミノフェノール、ニトロフェノール、ジニトロフェノール、トリニトロフェノール等の1価フェノール置換体、及び、1−ナフトール、2−ナフトール等の1価のフェノール類、レゾルシン、アルキルレゾルシン、ピロガロール、カテコール、アルキルカテコール、ハイドロキノン、アルキルハイドロキノン、フロログルシン、ビスフェノールA、ビスフェノールF、ビスフェノールS、ジヒドロキシナフタリン等の多価フェノール類が挙げられる。なお、これらフェノール類を単独あるいは2種以上を混合して使用してもよい。
また、レゾール型フェノール樹脂の製造に用いるアルデヒド類としては、例えば、ホルムアルデヒド、パラホルムアルデヒド、トリオキサン、アセトアルデヒド、プロピオンアルデヒド、ポリオキシメチレン、クロラール、ヘキサメチレンテトラミン、フルフラール、グリオキザール、n−ブチルアルデヒド、カプロアルデヒド、アリルアルデヒド、ベンズアルデヒド、クロトンアルデヒド、アクロレイン、テトラオキシメチレン、フェニルアセトアルデヒド、o−トルアルデヒド、サリチルアルデヒドが挙げられる。これらアルデヒド類を、単独または2種類以上組み合わせて使用してもよい。なお、これらのアルデヒド類の中でも、反応性が優れ、安価であるという観点から、ホルムアルデヒド、パラホルムアルデヒドを選択して用いることが好ましい。
また、レゾール型フェノール樹脂の製造に用いる触媒としては、例えば、水酸化ナトリウム、水酸化リチウム、水酸化カリウムなどのアルカリ金属の水酸化物、カルシウム、マグネシウム、バリウムなどアルカリ土類金属の酸化物及び水酸化物、炭酸ナトリウム、アンモニア水、トリエチルアミン、ヘキサメチレンテトラミンなどのアミン類、酢酸マグネシウムや酢酸亜鉛などの二価金属塩が挙げられる。これら触媒は、単独または2種類以上併用してもよい。
なお、レゾール型フェノール樹脂を製造する際、フェノール類とアルデヒド類との反応モル比としては、好ましくはフェノール類1モルに対して、アルデヒド類0.80〜2.50モルであり、さらに好ましくは、アルデヒド類1.00〜2.30モルである。
アリールアルキレン型フェノール樹脂は、繰り返し単位中に一つ以上のアリールアルキレン基を有するフェノール樹脂を示す。このようなアリールアルキレン型フェノール樹脂としては、例えば、キシリレン型フェノール樹脂、ビフェニルジメチレン型フェノール樹脂が挙げられる。
また硬化剤は、たとえば3級アミノ基を有する化合物を含むことができる。3級アミノ基を有する化合物は、例えば、ベンジルジメチルアミン(BDMA)等の3級アミン類、2−メチルイミダゾール、2−エチル−4−メチルイミダゾール(EMI24)等のイミダゾール類、ピラゾール、3,5−ジメチルピラゾール、ピラゾリン等のピラゾール類、トリアゾール、1,2,3−トリアゾール、1,2,4−トリアゾール、1,2,3−ベンゾトリアゾール等のトリアゾール類、イミダゾリン、2−メチル−2−イミダゾリン、2−フェニルイミダゾリン等のイミダゾリン類が挙げられ、これらから選択される一種または二種以上を含むことができる。これらの中でも、シンタリングの均一性、熱伝導性、導電性等のバランスを向上させる観点からは、イミダゾール類を少なくとも含むことが好ましい態様の一例として挙げられる。
本実施形態に係る樹脂中に含まれる硬化剤の含有量の上限値は、特に限定されないが、例えば、熱硬化性樹脂100重量部に対して、硬化剤の含有量は25重量部以下が好ましく、5重量部以下がより好ましく、3重量部以下がさらに好ましく、1重量部以下がとくに好ましい。かかる硬化剤の含有量の下限値は、特に限定されないが、例えば、当該含有量は0重量部以上が好ましく、導電性ペーストの機械特性を向上させる観点からは、0.1重量部以上がより好ましい。
本実施形態に係る樹脂はさらに硬化促進剤を含んでも良い。本実施形態の硬化促進剤としては、特に限定されないが、例えば、イミダゾール類、トリフェニルホスフィンまたはテトラフェニルホスフィンの塩類、ジアザビシクロウンデセンなどのアミン系化合物およびその塩類が挙げられる。
また、樹脂としては、硬化時の収縮がある程度大きいものが好ましい。詳細なメカニズムは定かではないが、本実施形態に係る導電ペーストにおいて、樹脂成分はシンタリングの時に、収縮して金属粒子同士を押しつける状態を生み出すことができるので、シンタリングを促進することが可能になると考えられる。
[溶剤]
本実施形態に係る導電性ペーストは、たとえば溶剤をさらに含むことができる。本実施形態において、溶剤とは、樹脂と反応せず、熱処理により揮発して残存しないものを意味する(ただし、不可避に残存する微量は許容する)。これにより、導電性ペーストの流動性を向上させ、作業性の向上に寄与することができる。また、導電性ペーストの粘度を制御することができるので、所望の粘度の導電性ペーストを得ることができる。
本実施形態に係る溶剤としては、とくに限定されないが、例えば、メチルカルビトール、エチルカルビトール、ブチルカルビトール、メチルカルビトールアセテート、エチルカルビトールアセテート、ブチルカルビトールアセテート、アセチルアセトン、メチルイソブチルケトン(MIBK)、アノン、ジアセトンアルコール、エチルセロソルブ、メチルセロソルブ、ブチルセロソルブ、エチルセロソルブアセテート、メチルセロソルブアセテート、ブチルセロソルブアセテート、エチルアルコール、プロピルアルコール、ブチルアルコール、ペンチルアルコール、ヘキシルアルコール、ヘプチルアルコール、オクチルアルコール、ノニルアルコール、デシルアルコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、メチルメトキシブタノール、α−ターピネオール、β−ターピネオール、γ−ターピネオール、ターピネオール(α、β、γの混合物)、ジヒドロターピネオール、へキシレングリコール、ベンジルアルコール、2−フェニルエチルアルコール、イソパルミチルアルコール、イソステアリルアルコール、ラウリルアルコール、エチレングリコール、プロピレングリコールもしくはグリセリン等のアルコール類、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、ジアセトンアルコール(4−ヒドロキシ−4−メチル−2−ペンタノン)、2−オクタノン、イソホロン(3,5,5−トリメチル−2−シクロヘキセン−1−オン)もしくはジイソブチルケトン(2,6−ジメチル−4−ヘプタノン)等のケトン類、酢酸エチル、酢酸ブチル、ジエチルフタレート、ジブチルフタレート、アセトキシエタン、酪酸メチル、ヘキサン酸メチル、オクタン酸メチル、デカン酸メチル、メチルセロソルブアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、1,2−ジアセトキシエタン、リン酸トリブチル、リン酸トリクレジルもしくはリン酸トリペンチル等のエステル類、テトラヒドロフラン、ジプロピルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、プロピレングリコールジメチルエーテル、エトキシエチルエーテル、1,2−ビス(2−ジエトキシ)エタンもしくは1,2−ビス(2−メトキシエトキシ)エタン等のエーテル類、酢酸2−(2−ブトキシエトキシ)エタン等のエステルエーテル類、2−(2−メトキシエトキシ)エタノール等のエーテルアルコール類、トルエン、キシレン、n−パラフィン、イソパラフィン、ドデシルベンゼン、テレピン油、ケロシンもしくは軽油等の炭化水素類、アセトニトリルもしくはプロピオニトリル等のニトリル類、アセトアミドもしくはN,N−ジメチルホルムアミド等のアミド類、低分子量の揮発性シリコンオイル、または揮発性有機変成シリコンオイルが用いられる。この中でも、作業性や揮発性の観点から、例えば、メチルカルビトール、エチルカルビトール、ブチルカルビトール、メチルカルビトールアセテート、エチルカルビトールアセテート、ブチルカルビトールアセテート、アセチルアセトン、メチルイソブチルケトン(MIBK)、アノン、ジアセトンアルコール、ターピネオール、ジヒドロターピネオール等がより好ましく、ブチルカルビトール、ターピネオール、ジヒドロターピネオールがさらに好ましい。
また、これらは、二種以上を組み合わせた混合溶剤として使用することもできる。
(その他の成分)
本実施形態に係る導電性ペーストには、必要に応じて酸化防止剤、分散剤、シリカ、アルミナ等の無機充填材、シリコーン樹脂やブタジエンゴム等の他のエラストマー、カップリング剤、消泡剤、レベリング剤、微細シリカ(チキソ調整剤)等の成分を添加することもできる。これらの成分の含有量は、導電性ペーストを適用する用途に合わせて適宜設定することができる。
[導電性ペーストの用途]
本実施形態の導電性ペーストは、様々な用途に用いることができる。例えば、導電性ペーストはダイアタッチ材として用いることができる。ダイアタッチ材としては、例えば、電子装置に用いられてもよいし、より好ましくは半導体装置に用いられてもよい。その他の用途例としては、プリント回路基板のジャンパー回路やスルーホール導体、アディティブ回路、タッチパネルの導体回路、抵抗端子、太陽電池の電極、タンタルコンデンサの電極、フィルムコンデンサの電極、チップ型セラミック電子部品の外部電極や内部電極等の形成、電磁波シールドとしての使用等が挙げられる。また、はんだの代替として、半導体素子や電子部品を基板に実装するための導電性接着剤としての使用のほか、太陽電池の高温焼成した銀電極の表面をはんだで被覆するタイプのグリッド電極の、はんだ部分の代替として使用することもできる。
本実施形態の導電性ペーストは、硬化させることで硬化体とすることができる。本実施形態の硬化体は、様々な用途に利用できる。例えば、電子装置に使用される。すなわち、本実施形態に係る電子装置は、本実施形態の導電性ペーストの硬化体と、当該硬化体が接着された電子部品と、を備えている。
本実施形態の硬化体は、硬化体中に金属粒子が含まれるため、電極や配線が形成されている様々な電子機器の部品に適用することができる。また、プリント配線基板のスルーホールやビアホールに充填する用途としても好ましく用いることができる。
もちろん、ここで挙げた用途は、実施形態の一例であり、これ以外の用途であっても、導電性ペーストの組成を調整しつつ、適用を行うことができるのは言うまでもない。
図1は、本実施形態に係る導電性ペーストの硬化体30を含む電子装置10を例示する図である。電子装置10は基板40、硬化体30および電子部品20を含む。電子部品20に形成された電極22は、基板40に形成された配線42と、硬化体30により接続されている。また、配線42は、図示しない電源や他の電子装置と電気的に接続されている。
[導電性ペーストの製造方法]
次に、本実施形態に係る導電性ペーストの製造方法について説明する。
本実施形態の導電性ペーストは、上述した各成分を混練混合することで製造することができる。この混合は、たとえばニーダー、三本ロール、ライカイ機等の混練装置や、各種撹拌装置等を用いて行えばよい。
[導電性ペーストの硬化体の製造方法]
本実施形態に係る導電性ペーストの硬化体の製造方法について以下に説明する。本実施形態に係る導電性ペーストの硬化体は、たとえば上述した導電性ペーストを用いて得られる。本実施形態では、まず、金属粒子と樹脂とを含む導電性ペーストを基材上に塗布する。次いで、導電性ペーストを基材上で熱処理して硬化体を得る。具体的には、基材上に接して形成された導電性ペーストの硬化体が得られる。
ここで、基材はその線膨張係数(CTE)が75ppm/℃以下であれば特に限定されないが、たとえば、ソーダ石灰ガラス、石英ガラス等のガラス、ポリイミド樹脂、エポキシ樹脂硬化物等の樹脂、金属が挙げられる。
基材の線膨張係数は導電性と密着性向上の両立の観点から、70ppm/℃以下であることがより好ましく、20ppm/℃以下であることがさらに好ましい。一方、基材の線膨張係数は、たとえば1ppm/℃以上である。
基材の線膨張係数は、たとえば以下の様に得られる190〜210℃における平均線膨張係数である。すなわち、TMA(熱機械的分析)装置(TAインスツルメント社製、Q400)を用いて、温度範囲30〜300℃、10℃/分、荷重5gの条件でTMAを測定する。そして、2サイクル目の190〜210℃における平面方向の平均線膨張係数(CTE)を算出する。
本実施形態において、シンタリング温度(熱処理の加熱温度)は特に限定されないが、230℃以下が好ましく、200℃以下がより好ましい。また、当該シンタリング温度は、例えば、160℃以上が好ましく、180℃以上がさらに好ましい。
シンタリング温度としては、焼結を完結させる目的として、200℃より高い温度が好ましいと一般的には考えられている。これに対して、本実施形態に係る導電性ペーストは、200℃以下、160℃以上の熱処理でシンタリングさせることが可能である。
また、本実施形態において、シンタリングの時間(熱処理の加熱時間)の下限値は、特に限定されないが、当該時間は例えば、密着性向上の観点から15分以上が好ましく、18分以上がより好ましく、20分以上がさらに好ましい。当該シンタリングの時間の上限値としては、特に限定されないが、当該時間は例えば、60分以下が好ましく、55分以下がより好ましく、50分以下がとくに好ましい。
次に、本実施形態の作用および効果について説明する。
本実施形態によれば、低抵抗かつ密着性に優れた導電性ペーストおよびその硬化体を実現することができる。ひいては、それを用いて製造する電子装置等の信頼性を向上させると共に、省エネルギー化を図ることができる。
[部分シンタリング構造]
本実施形態の銀ペーストの硬化体は、銀粒子の粒子連結構造が形成された焼結部を有しているが、さらに、銀粒子の粒子連結構造が形成されていない非焼結部を有していてもよい。言い換えると、本実施形態の硬化体は、シンタリングが全体に形成されている全体シンタリング構造を有してもよいが、シンタリングが部分的にしか形成されていない部分シンタリング構造を有していてもよい。かかる非焼結部には、本実施形態の樹脂が残存している。
本実施形態では、焼結部と非焼結部とを次の手法により確認することができる。例えば、硬化した銀ペーストの断面を走査電子顕微鏡等の各種顕微鏡で観察し、観察像から銀粒子のシンタリング構造を判定する。
本実施形態の粒子連結構造を形成する工程は、粒子連結構造が形成された焼結部と、粒子連結構造が形成されていない非焼結部と、を形成する工程を有してもよい。本実施形態において、部分シンタリング構造を形成するためには、例えば、樹脂の含有量、シンタリング温度や時間等を適宜選択することが挙げられる。
本実施形態において、部分シンタリングの効果としては、低抵抗導電性と被着体への高い密着力の両立を実現することができる。その他、製造プロセスの短時間化、低温硬化も挙げられる。例えば、完全シンタリングが可能な系に対して温度が低い条件や時間が短い条件を適用する場合でも、完全な全体シンタリングが可能な系に極めて近いときには、部分シンタリングは、実用上問題ないレベルまでシンタリングされていると言える。また、種々適正な樹脂を配合することができるので、用途による適正なペーストとしての粘弾性特性(粘度、チキソ、ダイラタンシーなど)が調整し易くなる。さらには、樹脂が残存しているので硬化物の脆さが改善される。その結果、構造上の強度を高めることや、接続信頼性を向上させることが可能になる。
以下、本実施形態を、実施例を参照して詳細に説明する。なお、本実施形態は、これらの実施例の記載に何ら限定されるものではない。
(導電性ペーストの調製)
各実施例1〜23および比較例1〜4について、導電性ペーストを調製した。この調製は、表1および2に示す配合に従い各成分を均一に混合することにより行った。なお、表1、2に示す成分の詳細は以下のとおりである。また、表1、2中における各成分は、配合部数(重量部)で示されている。表中の「-」は測定不能を示す。表1、2には、配合した成分及び配分から導出した樹脂の固形分[体積%]の値および熱処理条件等も合わせて示している。
[金属粒子]
銀粒子1:球状銀粉(タップ密度4.80g/cm、メディアン径D50=0.98μm)
銀粒子2:フレーク状銀粉(タップ密度5.1g/cm、メディアン径D50=2.76μm)
銀粒子3:フレーク状銀粉(タップ密度3.60g/cm、メディアン径D50=4.74μm)
銀粒子4:球状銀粉(タップ密度5.3g/cm、メディアン径D50=2.44μm)
[樹脂]
熱硬化性樹脂1:レゾール型フェノール樹脂(PR−53703(製品名)、住友ベークライト(株)製)
熱硬化性樹脂2:レゾール型フェノール樹脂(PR−54463(製品名)、住友ベークライト(株)製、RC55wt%のブチルカルビトール溶液)
熱硬化性樹脂3:ビスフェノールA型液状エポキシ樹脂(828(製品名)、三菱化学(株)製)
熱硬化性樹脂4:P−d型ベンゾオキサジン(RC60wt%のブチルカルビトール溶液)
熱硬化性樹脂5:ビスフェノールA型エポキシ樹脂(834(製品名)、三菱化学(株)製)
熱硬化性樹脂6:テトラキスフェノールエタン型エポキシ樹脂(1031S(製品名)、三菱化学(株)製、RC65wt%のブチルカルビトール溶液)
熱硬化性樹脂7:トリメチロールプロパントリメタクリレート(NKエステル TMPT(製品名)、新中村化学(株)製)
熱硬化性樹脂8:ビフェニルアラルキル型エポキシ樹脂(NC−3000(製品名)、日本化薬(株)製、RC66wt%のブチルカルビトール溶液)
熱可塑性樹脂1:ブチラール樹脂(BH−3(製品名)、積水化学工業(株)製、RC20wt%のブチルカルビトール溶液)
(硬化剤)
硬化剤1:ノボラック型フェノール樹脂(PR−51470(製品名)、住友ベークライト(株)製、RC66wt%のブチルカルビトール溶液)
[溶剤]
溶剤1:ブチルカルビトール
(導電性ペーストの硬化体の作製)
各実施例および比較例で調整した導電性ペーストを用いて、以下の様に硬化体を作製した。まず、表1、2にそれぞれ示す基材上に導電性ペーストを塗布して幅4mm、長さ40mm、厚さ40μmの塗布膜を形成した。そして、得られた塗布膜を、大気雰囲気下、100℃で10分の条件で乾燥させた後、引き続き、表1、2にそれぞれ示す温度および時間で熱処理をして硬化体を得た。なお、表1、2に示す基材の詳細は以下のとおりである。
[基材]
Glass:スライドガラス(松波硝子工業社製、S1225、CTE:8ppm/℃)
PI:ポリイミド樹脂(CTE:40ppm/℃)
ER:以下の様にして得られるER(Cured epoxy resin)基材(CTE:170ppm/℃)
三菱化学社製ビスフェノールA型液状エポキシ樹脂828 10.0重量部、住友ベークライト社製フェノールノボラック樹脂PR−51470のMEK溶液(RC60wt%)9.1重量部、三菱化学社製ビスフェノールA型フェノキシ樹脂1256B40(RC40wt%のMEK溶解品)26重量部、四国化成社製 硬化触媒イミダゾール2PHZ 0.05重量部を混合してエポキシ樹脂ワニスを作成した。得られたエポキシ樹脂ワニスを住友ベークライト社製ガラスエポキシ積層板El−3762(1.0mm厚)上にアプリケータを用いて、約50μm厚み(dry)で塗布した。次いで120℃10分で乾燥した後、180℃1時間で硬化させ、ER基材を得た。
ここで、各基材の線膨張係数(CTE)は、以下の方法で測定した値である。すなわち、TMA(熱機械的分析)装置(TAインスツルメント社製、Q400)を用いて、温度範囲30〜300℃、10℃/分、荷重5gの条件でTMAを測定した。そして、2サイクル目の190〜210℃における平面方向の平均線膨張係数(CTE)を算出した。
(体積抵抗率の測定)
各実施例および比較例について、得られた硬化体の平面方向の体積抵抗率(膜比抵抗率[μΩ・cm])を、4端子法にて測定した。結果を表1、2に示す。
(樹脂の収縮性の評価)
各実施例および各比較例について、(D1−D2)/D1×100[%]の値を測定した。測定する樹脂が硬化前において常温で固体の場合、樹脂の比重の測定はアルキメデス法を用いて次の手順で行った。すなわち、アルファミラージュ社製高精度比重計SD−200Lを用いて比重を測定した。導電性ペーストに含まれる金属粒子を除いた樹脂を測定サンプルとした。まず、MEK(溶剤)に溶解させた樹脂を混合し、自転公転ミキサー等で脱泡して、ワニスを準備した。その後90℃4時間の穏やかな条件で、ワニス中のMEKを乾燥させた。このようにして得られた樹脂板を用い、上記比重計を用いて、硬化前後の比重を測定した。また、測定する樹脂(溶剤を揮発させたもの)が硬化前において常温で液状の場合、たとえばマイクロピペットを用いて1mLの樹脂を秤量し、その重量を精密天秤によって量り、硬化前の比重を求めた。この場合においても硬化後の樹脂は常温で固体であるため、アルキメデス法を用いて硬化後の比重を測定した。硬化の条件は表1、2に示した熱処理条件と同様にした。結果を表1、2に示す。なお、表中、D1は、樹脂の硬化後の比重、D2は樹脂の硬化前の比重を表す。
(密着性評価)
各実施例および比較例について、密着性の評価を行った。表1、2に示す各基材上に、各実施例および比較例の導電性ペーストを塗布し、上方からシリコンウェハを2mmに切断したチップを搭載した。箱型オーブンを用い、導電性ペーストを表1、2に示す熱処理条件で硬化させた。このようにして得られたサンプルのシェア強度を、デイジジャパン社製シリーズ4000を用いて測定した。それぞれ8個で測定を行い、得られた値の平均値[N]を求めた。そして、求められた平均値が20N以上である場合を「◎」、20N未満5N以上である場合を「○」、5N未満である場合を「×」として評価した。結果を表1、2に示す。
(焼結性評価)
X線回折を用いて金属粒子の結晶子径を測定した。具体的には、金属粒子を有機溶剤(ブチルカルビトール)に濃度90wt%で分散させたペーストを用いて塗膜を作成し、100℃10分で溶剤を乾燥させた後の金属粒子の結晶子径をd1、この塗膜を250℃60分熱処理した後の結晶子径をd2とした。結晶子径は、X線回折装置(XRD)を用いて評価を行った。銀に由来する回折チャートの2Θ=38°±0.2のピークを用いて測定した。また、塗膜を形成する基材としてはスライドガラスを用いた。表1、2に示す結果から、銀粒子1〜4のいずれも、結晶子径の比(d2/d1)が、1.1以上であり、かつd1が15.0nm以上であることが確認された。すなわち、銀粒子が粒子連結構造を形成すると判断できる。
(溶融粘度の測定)
各実施例および比較例について、溶融粘度の測定を次の手順で行った。導電性ペーストに含まれる金属粒子を除いた樹脂を測定サンプルとした。まず、MEK(溶剤)に溶解させた樹脂を混合し、自転公転ミキサー等で脱泡して、ワニスを準備した。その後90℃4時間の穏やかな条件で、ワニス中のMEKを乾燥させた。このようにして得られた樹脂板を用い、レオメーターで120℃における溶融粘度を測定した。レオメーターでの測定条件は、ひずみ0.2%、周波数1Hz、ノーマルフォース4Nの条件で、100℃〜250℃を5℃/分の昇温速度で測定した。結果を表1、2に示す。
表1、2に示した結果より、(D1−D2)/D1×100が0.1%以上15%以下であり、かつ、基材の線膨張係数が75ppm/℃以下である実施例1〜23において、導電性と密着性が共に優れることが確かめられた。一方、比較例では導電性と密着性が両立しなかった。
また、電子顕微鏡を用いて硬化体の断面観察を行ったところ、図2に示すように、実施例2の銀粒子の断面図(7,000倍)から、均一なシンタリング構造が形成されていることが分かった。また、図3に示すように、実施例13の銀粒子の断面図(10,000倍)から、焼結部と非焼結部が共存するシンタリング構造が形成されていることが分かった。
以上、実施例に基づいて本発明をさらに具体的に説明したが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
10 電子装置
20 電子部品
22 電極
30 硬化体
40 基板
42 配線

Claims (7)

  1. 金属粒子と樹脂とを含む導電性ペーストを基材上で熱処理して硬化体を得る工程を含み、
    前記樹脂の硬化後の比重をD1、前記樹脂の硬化前の比重をD2としたとき、(D1−D2)/D1×100が0.1%以上15%以下であり、
    前記基材の線膨張係数が75ppm/℃以下である
    導電性ペーストの硬化体の製造方法。
  2. 請求項1に記載の導電性ペーストの硬化体の製造方法において、
    当該硬化体の体積抵抗率が20.0μΩ・cm以下である
    導電性ペーストの硬化体の製造方法。
  3. 請求項1または2に記載の導電性ペーストの硬化体の製造方法において、
    前記樹脂の120℃における溶融粘度が0.1Pa・s以上1,000,000,000Pa・s以下である
    導電性ペーストの硬化体の製造方法。
  4. 請求項1から3のいずれか一項に記載の導電性ペーストの硬化体の製造方法において、
    当該導電性ペーストはさらに溶剤を含む
    導電性ペーストの硬化体の製造方法。
  5. 請求項1から4のいずれか一項に記載の導電性ペーストの硬化体の製造方法において、
    前記樹脂は、熱硬化性樹脂を含む
    導電性ペーストの硬化体の製造方法。
  6. 請求項1から5のいずれか一項に記載の導電性ペーストの硬化体の製造方法において、
    前記硬化体を得る工程では、160℃以上200℃以下で熱処理する
    導電性ペーストの硬化体の製造方法。
  7. 請求項1から6のいずれか一項に記載の導電性ペーストの硬化体の製造方法において、
    前記金属粒子は銀粒子である
    導電性ペーストの硬化体の製造方法。
JP2016009119A 2016-01-20 2016-01-20 導電性ペーストの硬化体の製造方法 Pending JP2017130356A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016009119A JP2017130356A (ja) 2016-01-20 2016-01-20 導電性ペーストの硬化体の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016009119A JP2017130356A (ja) 2016-01-20 2016-01-20 導電性ペーストの硬化体の製造方法

Publications (1)

Publication Number Publication Date
JP2017130356A true JP2017130356A (ja) 2017-07-27

Family

ID=59395775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016009119A Pending JP2017130356A (ja) 2016-01-20 2016-01-20 導電性ペーストの硬化体の製造方法

Country Status (1)

Country Link
JP (1) JP2017130356A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022137552A1 (ja) * 2020-12-25 2022-06-30 昭和電工マテリアルズ株式会社 フィルム状接着剤及びその製造方法、ダイシング・ダイボンディング一体型フィルム及びその製造方法、並びに半導体装置及びその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022137552A1 (ja) * 2020-12-25 2022-06-30 昭和電工マテリアルズ株式会社 フィルム状接着剤及びその製造方法、ダイシング・ダイボンディング一体型フィルム及びその製造方法、並びに半導体装置及びその製造方法

Similar Documents

Publication Publication Date Title
JP5761639B2 (ja) 接着剤樹脂組成物、その硬化物、及び接着剤フィルム
JP4890063B2 (ja) 樹脂組成物、並びにこの樹脂組成物を用いて得たワニス、フィルム状接着剤及びフィルム状接着剤付き銅箔
KR100832628B1 (ko) 도전 페이스트
EP3279261A1 (en) Resin composition, electroconductive resin composition, adhesive, electroconductive adhesive, paste for forming electrodes, and semiconductor device
KR102305674B1 (ko) 필름용 수지 조성물, 필름, 기재 부착 필름, 금속/수지 적층체, 수지 경화물, 반도체 장치 및 필름 제조 방법
JP5293292B2 (ja) 導電性接着ペースト及び電子部品搭載基板
JP2017228363A (ja) 導電性ペースト
WO2014051149A1 (ja) 導電性接着剤
JP4780041B2 (ja) 半導体用樹脂ペースト及び半導体装置
JP2017022033A (ja) 銀ペーストおよび銀ペーストの硬化体の製造方法
JP5622267B2 (ja) 接着剤樹脂組成物、その硬化物、及び接着剤フィルム
JP2017130358A (ja) 導電性ペースト、および導電性ペーストの硬化体の製造方法
JP2020205245A (ja) 導電性ペースト組成物
JP2017188667A (ja) 絶縁材料及び電子部品
JP2017130356A (ja) 導電性ペーストの硬化体の製造方法
JP2017130357A (ja) 導電性ペースト、および導電性ペーストの硬化体の製造方法
JP2001064484A (ja) 導電性樹脂組成物
JP2017130355A (ja) 導電性ペースト、導電性ペーストの硬化体、および導電性ペーストの硬化体の製造方法
JP2004168870A (ja) 接着剤組成物、これを用いた接着フィルムおよび半導体装置
JP2008189815A (ja) 分散剤、フィラー、熱伝導性樹脂組成物ならび熱伝導性シート
WO2020250675A1 (ja) 導電性ペースト組成物
JPH11134939A (ja) 硬化性導電組成物
JP6838939B2 (ja) 金属ベース板回路基板用の絶縁性樹脂組成物及びその製造方法、並びにその絶縁性樹脂硬化体、それを用いた金属ベース板回路基板
JP2020180216A (ja) 樹脂組成物および電子部品構造体
JP2005317491A (ja) 導電ペーストおよびそれを用いた電子部品搭載基板