JP2017130355A - 導電性ペースト、導電性ペーストの硬化体、および導電性ペーストの硬化体の製造方法 - Google Patents
導電性ペースト、導電性ペーストの硬化体、および導電性ペーストの硬化体の製造方法 Download PDFInfo
- Publication number
- JP2017130355A JP2017130355A JP2016009118A JP2016009118A JP2017130355A JP 2017130355 A JP2017130355 A JP 2017130355A JP 2016009118 A JP2016009118 A JP 2016009118A JP 2016009118 A JP2016009118 A JP 2016009118A JP 2017130355 A JP2017130355 A JP 2017130355A
- Authority
- JP
- Japan
- Prior art keywords
- conductive paste
- resin
- luminance
- sectional image
- cross
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
- H01L2224/818—Bonding techniques
- H01L2224/8184—Sintering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/838—Bonding techniques
- H01L2224/8384—Sintering
Landscapes
- Wire Bonding (AREA)
- Die Bonding (AREA)
- Conductive Materials (AREA)
- Non-Insulated Conductors (AREA)
- Manufacturing Of Electric Cables (AREA)
- Parts Printed On Printed Circuit Boards (AREA)
Abstract
【課題】低抵抗かつ密着性に優れた導電性ペーストを提供する。【解決手段】導電性ペーストは、金属粒子と、樹脂とを含む。そして、当該導電性ペーストをガラス基材上にて200℃45分で熱処理して硬化体を得たとき、その硬化体は次の構成Aを備える。構成A:硬化体の13μm×17μmの観察領域の断面画像を電子顕微鏡で取得し、断面画像全体の面積をSa、複数の島状領域の平均面積をSiとしたとき、Si/Sa×100[%]の値が0.015%以上0.125%以下である。ここで、島状領域は、断面画像において、観察領域内の最低輝度から最大輝度までを256段階で表した輝度のうち低い順で1段階目から50段階目までの輝度範囲に含まれる輝度が占める島状の領域である。【選択図】図1
Description
本発明は導電性ペースト、導電性ペーストの硬化体、および導電性ペーストの硬化体の製造方法に関する。
これまでのダイボンド方法においては、基板に半導体素子を接合する接合材として、金属ペーストが用いられてきた。この種の技術としては、例えば、特許文献1に記載されたものがある。同文献には、金属ペーストとして、金属粒子が有機溶剤に分散したものが記載されている。また、接合工程としては、基板と半導体素子との間に金属ペーストを塗布し、加熱させることにより、金属粒子を焼結せしめて、基板と半導体素子とを接合することになる。かかる工程において、有機溶剤は、焼結時に揮発することになり、接合部分には残存していない。有機溶剤が揮発する点は、特許文献2に記載されている。
また、特許文献3の記載の金属ペーストは、有機溶剤への金属粒子の分散性を高めることを目的として、有機溶剤の他に分散材を有している。この分散材は、有機溶剤と同様に、接合部分に残存しないことが要求される、と記載されている。
発明者が検討した結果、上記文献記載の金属ペーストは、低抵抗と密着性の両立という点で改善の余地を有していた。
本発明は、低抵抗かつ密着性に優れた導電性ペーストを提供する。
本願発明者らはさらに検討したところ、金属ペーストにおいて、密着性を高める目的で、エポキシ樹脂を大量に入れると、低抵抗が得られなくなってしまう場合があることを見出した。そしてこのような知見に基づきさらに鋭意研究したところ、金属ペーストを硬化させた際の断面形態が特定の条件を満たすようにすることにより、低抵抗と密着性が両立することを見出し、本発明を完成するに至った。
本発明によれば、
金属粒子と樹脂とを含む導電性ペーストであって、
当該導電性ペーストをガラス基材上で200℃45分で熱処理して得られる硬化体の、13μm×17μmの観察領域の断面画像を電子顕微鏡で取得し、前記断面画像全体の面積をSaとし、前記断面画像において、前記観察領域内の最低輝度から最大輝度までを256段階で表した輝度のうち低い順で1段階目から50段階目までの輝度範囲に含まれる輝度が占める複数の島状領域の平均面積をSiとしたとき、Si/Sa×100[%]の値が0.015%以上0.125%以下である
導電性ペースト
が提供される。
金属粒子と樹脂とを含む導電性ペーストであって、
当該導電性ペーストをガラス基材上で200℃45分で熱処理して得られる硬化体の、13μm×17μmの観察領域の断面画像を電子顕微鏡で取得し、前記断面画像全体の面積をSaとし、前記断面画像において、前記観察領域内の最低輝度から最大輝度までを256段階で表した輝度のうち低い順で1段階目から50段階目までの輝度範囲に含まれる輝度が占める複数の島状領域の平均面積をSiとしたとき、Si/Sa×100[%]の値が0.015%以上0.125%以下である
導電性ペースト
が提供される。
本発明によれば、
金属と樹脂とを含む導電性ペーストの硬化体であって、
当該硬化体の13μm×17μmの観察領域の断面画像を電子顕微鏡で取得し、前記断面画像全体の面積をSaとし、前記断面画像において、前記観察領域内の最低輝度から最大輝度までを256段階で表した輝度のうち低い順で1段階目から50段階目までの輝度範囲に含まれる輝度が占める複数の島状領域の平均面積をSiとしたとき、Si/Sa×100[%]の値が0.015%以上0.125%以下である
導電性ペーストの硬化体
が提供される。
金属と樹脂とを含む導電性ペーストの硬化体であって、
当該硬化体の13μm×17μmの観察領域の断面画像を電子顕微鏡で取得し、前記断面画像全体の面積をSaとし、前記断面画像において、前記観察領域内の最低輝度から最大輝度までを256段階で表した輝度のうち低い順で1段階目から50段階目までの輝度範囲に含まれる輝度が占める複数の島状領域の平均面積をSiとしたとき、Si/Sa×100[%]の値が0.015%以上0.125%以下である
導電性ペーストの硬化体
が提供される。
本発明によれば、
金属粒子と樹脂とを含む導電性ペーストに対して熱処理を行って硬化体を得る工程を含み、
前記硬化体の13μm×17μmの観察領域の断面画像を電子顕微鏡で取得し、前記断面画像全体の面積をSaとし、前記断面画像において、前記観察領域内の最低輝度から最大輝度までを256段階で表した輝度のうち低い順で1段階目から50段階目までの輝度範囲に含まれる輝度が占める複数の島状領域の平均面積をSiとしたとき、Si/Sa×100[%]の値が0.015%以上0.125%以下である
導電性ペーストの硬化体の製造方法
が提供される。
金属粒子と樹脂とを含む導電性ペーストに対して熱処理を行って硬化体を得る工程を含み、
前記硬化体の13μm×17μmの観察領域の断面画像を電子顕微鏡で取得し、前記断面画像全体の面積をSaとし、前記断面画像において、前記観察領域内の最低輝度から最大輝度までを256段階で表した輝度のうち低い順で1段階目から50段階目までの輝度範囲に含まれる輝度が占める複数の島状領域の平均面積をSiとしたとき、Si/Sa×100[%]の値が0.015%以上0.125%以下である
導電性ペーストの硬化体の製造方法
が提供される。
本発明によれば、低抵抗かつ密着性に優れた導電性ペーストを提供できる。
以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
なお、「〜」は特に断りがなければ、以上から以下を表す。
なお、本実施形態において、「樹脂の固形分」とは、樹脂中における不揮発分を指し、水や溶媒等の揮発成分を除いた残部を指す。また、本実施形態において、樹脂全体に対する含有量とは、樹脂が溶媒を含む場合には、樹脂のうちの溶媒を除く成分全体に対する含有量を指す。
[導電性ペースト]
本実施形態に係る導電性ペーストの概要について以下に説明する。
本実施形態に係る導電性ペーストは、金属粒子と、樹脂とを含む。そして、当該導電性ペーストをガラス基材上にて200℃45分で熱処理して硬化体を得たとき、その硬化体は次の構成Aを備える。
本実施形態に係る導電性ペーストの概要について以下に説明する。
本実施形態に係る導電性ペーストは、金属粒子と、樹脂とを含む。そして、当該導電性ペーストをガラス基材上にて200℃45分で熱処理して硬化体を得たとき、その硬化体は次の構成Aを備える。
構成A:硬化体の13μm×17μmの観察領域の断面画像を電子顕微鏡で取得し、断面画像全体の面積をSa、複数の島状領域の平均面積をSiとしたとき、Si/Sa×100[%]の値が0.015%以上0.125%以下である。ここで、島状領域は、断面画像において、観察領域内の最低輝度から最大輝度までを256段階で表した輝度のうち低い順で1段階目から50段階目までの輝度範囲に含まれる輝度が占める島状の領域である。
本実施形態に係る導電性ペーストは、特定の条件で硬化させた硬化体が構成Aを備える。ここで、特定の条件とは以下の通りである。まず、導電性ペーストを基材としてのスライドガラス上におよそ均一に塗布して幅4mm、長さ40mm、厚さ40μmの塗布膜を形成する。スライドガラスはたとえばソーダ石灰ガラスからなり、特に表面コート等がされていないものである。具体的にはたとえば松波硝子工業社製のスライドガラスS1225(76mm×26mm、1.2〜1.5mm厚、水ガラス)を用いることができる。そして、得られた塗布膜を、大気雰囲気下、100℃で10分の条件で乾燥させた後、引き続き、200℃、45分の硬化条件で熱処理をする。以下において、特に説明しない限り、「特定の条件で硬化させた硬化体」とは、本条件で得られる硬化体をいう。
構成Aについて以下に説明する。まず、硬化体をグラインドソーまたはガラスカッター等を用いて切断した後、研磨装置等を用いて断面観察用試料として形を整える。その後、平滑な断面試料を得るため、たとえば日本電子社製クロスセクションポリッシャIB−09020CP等を用いて当該試料を研磨する。露出した平滑な断面を走査型電子顕微鏡(たとえば日本電子社製、JSM−7401F)で観察する。切断位置は、たとえば硬化体の中心付近を通るようにする。走査型電子顕微鏡の加速電圧はたとえば4.0kV、WD(Work Distance)はたとえば12.1mmとすることができる。観察領域は実際の寸法で13μm×17μmの範囲とし、その範囲の二次電子像を断面画像として取得する。断面画像は例えば24ビットのビットマップ形式とし、画像において白飛び等がしていないものとする。断面画像の画素数(ピクセル数)はたとえば20万画素以上40万画素以下である。
観察領域は、硬化体の断面のうち任意の位置とすることができるが、硬化体の中心部付近が好ましい。但し、硬化体の断面の全ての位置で、得られる断面画像Si/Sa×100[%]の値が上記範囲にある必要は無く、少なくとも一部の領域で得られる断面画像について、Si/Sa×100[%]の値が上記範囲にあればよい。たとえば硬化体は、その外周付近等の特異的な位置において様子の異なる構造を含んでも良く、観察領域はそのような特異的な位置を特に避けて取得できる。また、全体としてSi/Sa×100[%]の値が上記範囲にあれば、観察領域内には、一部に焼結していない金属粒子を含んでいても良い。
図1は、本実施形態に係る導電性ペーストの硬化体の断面画像の例である。断面画像からSaおよびSiの値を得る方法について以下に説明する。
まず、断面画像全体の面積をSaとする。
一方、断面画像から、輝度ヒストグラムを得る。輝度ヒストグラムは、断面画像について輝度毎の画素の数を示す。
図2は、図1の断面画像の輝度ヒストグラムである。ここで、断面画像は256階調の画像であり、断面画像は256段階の輝度の分布として表される。また、256段階のうち輝度が低い順で1段階目が最低輝度であり、観察領域内において測定された最低二次電子強度に対応する輝度である。そして一方、256段階のうち輝度が低い順で、256段階目が最大輝度であり、観察領域内において測定された最大二次電子強度に対応する輝度である。この輝度ヒストグラムから、観察領域内の最低輝度から最大輝度までを256段階で表した輝度のうち、輝度の低い順で1段階目から50段階目までの輝度範囲(以下「最低輝度域」と呼ぶ。)を求める。
一方、断面画像から、輝度ヒストグラムを得る。輝度ヒストグラムは、断面画像について輝度毎の画素の数を示す。
図2は、図1の断面画像の輝度ヒストグラムである。ここで、断面画像は256階調の画像であり、断面画像は256段階の輝度の分布として表される。また、256段階のうち輝度が低い順で1段階目が最低輝度であり、観察領域内において測定された最低二次電子強度に対応する輝度である。そして一方、256段階のうち輝度が低い順で、256段階目が最大輝度であり、観察領域内において測定された最大二次電子強度に対応する輝度である。この輝度ヒストグラムから、観察領域内の最低輝度から最大輝度までを256段階で表した輝度のうち、輝度の低い順で1段階目から50段階目までの輝度範囲(以下「最低輝度域」と呼ぶ。)を求める。
次いで、断面画像のうち、最低輝度域に含まれる輝度が占める領域を抽出する。
図3は、図1の断面画像において最低輝度域に含まれる輝度が占める領域を抽出した図である。図3のうち、黒い部分が最低輝度域に含まれる輝度が占める領域である。なお、後述するSdは、この黒い領域の総面積として得られる。
図3は、図1の断面画像において最低輝度域に含まれる輝度が占める領域を抽出した図である。図3のうち、黒い部分が最低輝度域に含まれる輝度が占める領域である。なお、後述するSdは、この黒い領域の総面積として得られる。
本図の例では、この黒い領域は、断面画像の全体にわたって複数の島状の領域を形成している。次いで、黒い領域とその他の領域の境界を境界線として抽出する。そして、境界線が閉曲線を成して囲う領域を、各島状領域として抽出する。また、抽出した島状領域の面積をそれぞれ算出し、断面画像内の全ての島状領域の面積の平均値を求めてSiとする。なお、当該閉曲線は断面画像の外枠を一部に含んでも良い。
本実施形態において、電子顕微鏡で取得した断面画像は導電性ペーストの硬化体の内部構造を反映している。そして、断面画像は輝度の二次元分布として現され、輝度は主に観察表面からの深さを示す。発明者は、断面画像のうち、特に輝度の低い島状の領域の面積に着目することで、多孔性の焼結体における空洞部の深さと幅の状態を定量的に評価することを可能とし、さらに導電性および密着性とよい相関があることを見出した。
Si/Sa×100[%]の値が上述の範囲であることにより良好な導電性および密着性を得られる理由は定かではないが、推測するに、樹脂を含む導電性ペーストにおいて、金属粒子の移動が樹脂によりある程度阻害されつつもシンタリングが進み、硬化体中に比較的大きな孔が生じる適度な状態を反映していると考えられる。すなわち、Si/Sa×100[%]の値が樹脂の影響とシンタリングの進行とのバランスを示すよい指標となると考えられる。さらに言い換えれば、Si/Sa×100[%]の値を上述の範囲とすることで、樹脂の密着性向上の効果と、十分なシンタリングによる導電性とがともに発揮される状態を実現できるものと考えられる。また、代表的な熱処理条件である200℃45分にて得られる硬化体の焼結部について、Si/Sa×100[%]が上述の範囲を満たすような導電性ペーストにすることで、樹脂の密着性向上の効果と、十分なシンタリングによる導電性とがともに発揮可能な導電性ペーストを実現できる。
本実施形態に係る導電性ペーストは、金属粒子や樹脂の種類および含有量を適切に選択することにより、特定の条件で硬化させた硬化体が構成Aを有するようにすることができる。そして、低抵抗と密着性の両立を実現することができる。
なお、導電性および密着性向上の観点から、Si/Sa×100[%]の値は0.02%以上であることがより好ましく、0.05%以上であることがさらに好ましい。一方、Si/Sa×100[%]の値は同様の観点から0.10%以下であることがより好ましく、0.075%以下であることがさらに好ましい。
また、本実施形態に係る導電性ペーストをガラス基材上にて200℃45分で熱処理して硬化体を得たとき、その硬化体は次の構成Bを有することが好ましい。すなわち、本実施形態に係る導電性ペーストを特定の条件で硬化させた硬化体は、構成Bを有することが好ましい。
構成B:硬化体の13μm×17μmの観察領域の断面画像を電子顕微鏡で取得し、断面画像において、観察領域内の最低輝度から最大輝度までを256段階で表した輝度のうち低い順で1段階目から50段階目までの輝度範囲に含まれる輝度が占める領域の面積をSdとしたとき、Sd/Sa×100[%]の値が10%以上20%以下である。なお、Saは、上述した通り断面画像全体の面積である。
なお、導電性および密着性向上の観点から、Sd/Sa×100[%]の値は10.3%以上であることがより好ましく、13%以上であることがさらに好ましい。一方、Sd/Sa×100[%]の値は同様の観点から18%以下であることがより好ましく、16%以下であることがさらに好ましい。
本実施形態に係る導電性ペーストを特定の条件で硬化させた硬化体は、少なくとも構成Aを有していればよいが、導電性および密着性向上の観点から、構成Aおよび構成Bの両方を有することが好ましい。
また、本実施形態の導電性ペーストを特定の条件で硬化させた硬化体は、その体積抵抗率が15.0μΩ・cm以下であることが好ましく、10.0μΩ・cm以下であることがより好ましい。一方、当該体積抵抗率はたとえば4.0μΩ・cm以上である。硬化体の体積抵抗率は、たとえば以下の方法で測定できる。まず、導電性ペーストを、基材としてスライドガラス上に塗布して幅4mm、長さ40mm、厚さ約40μmの塗布膜を得る。そして、得られた塗布膜を、大気雰囲気下、100℃で10分の条件で乾燥させた後、引き続き、200℃、45分の硬化条件で熱処理をして硬化体を得る。得られた硬化体を4端子法にて測定し、体積抵抗率を算出する。
以下、本実施形態に係る導電性ペーストの各成分について説明する。
本実施形態に係る導電性ペーストは、特定の条件で硬化させた硬化体が構成Aを有するものであれば特に限定されないが、以下はそのような導電性ペーストの一例に関する。
本実施形態に係る導電性ペーストは、特定の条件で硬化させた硬化体が構成Aを有するものであれば特に限定されないが、以下はそのような導電性ペーストの一例に関する。
[金属粒子]
本実施形態に係る金属粒子について説明する。
本実施形態の金属粒子は、熱処理によりシンタリングを起こして粒子連結構造を形成するものである。
本実施形態に係る金属粒子について説明する。
本実施形態の金属粒子は、熱処理によりシンタリングを起こして粒子連結構造を形成するものである。
本実施形態において、金属粒子の主成分としては、たとえば銀、銅、白金、ニッケル、金、パラジウムが挙げられる。中でも、コストと導電性の観点から金属粒子は銀粒子であることが好ましい。銀粒子とは、Ag原子から構成される金属粒子を意味する。金属粒子の純度は特に限定されないが、純度の高いものが好ましく、例えば、95%以上が好ましく、98%以上がより好ましく、99%以上がさらに好ましい。本実施形態の金属粒子は、本発明の目的を損なわない限りであれば、主成分以外の金属を微量に含んでもよい。たとえば、金属粒子が銀粒子である場合、主成分以外の金属としては、銅、鉄、アルミニウム、亜鉛、錫、金、ニッケル等が挙げられる。また、金属粒子は、シンタリングを促進する、あるいは低コスト化等の目的で、例えば、非金属成分を含むことが可能である。なお、本実施形態の金属粒子は、その製造工程において不可避に混入する不純物が含有されていることを許容する。
導電性ペーストの硬化体には、金属粒子を構成する金属が互いに結合されて含まれることとなる。たとえば導電性ペーストに含まれる金属粒子が銀粒子である場合、その導電性ペーストの硬化体には銀が含まれる。
本実施形態の金属粒子は、非金属成分として、例えば炭素を含有することができる。金属粒子に含まれる炭素は、金属粒子にシンタリングが生じる際の焼結助剤として機能する。このため、金属粒子の焼結性を向上させることが可能となる。ここで、金属粒子が炭素を含有するとは、金属粒子の内部に含有される場合や、金属粒子の表面に物理的または化学的に吸着されている場合を含む。
金属粒子が炭素を含有する場合の一例として、金属粒子に炭素を含む滑剤を付着させる態様が挙げられる。このような滑剤としては、たとえば高級脂肪酸、高級脂肪酸金属塩、高級脂肪酸アミド、および高級脂肪酸エステルが挙げられる。滑剤の含有量は、金属粒子全体に対してたとえば0.01質量%以上5質量%以下であることが好ましい。これにより、炭素を焼結助剤として効果的に機能させつつ、熱伝導性の低下を抑制することが可能となる。
本実施形態の金属粒子のメディアン径(D50)は、例えば、0.5μm以上が好ましく、0.6μm以上がより好ましく、0.8μm以上がさらに好ましい。一方、金属粒子のメディアン径(D50)は、例えば、10μm以下が好ましく、8μm以下がより好ましく、5μm以下がさらに好ましい。本実施形態において、金属粒子のメディアン径を上記下限値以上とすることにより、ペーストにした時の過度なチキソ性を防ぐことができる。
また、金属粒子のメディアン径を上記上限値以下とすることにより、金属粒子間における焼結性を向上させることが可能となる。また、導電性ペーストのディスペンス性を向上させる観点からは、金属粒子のメディアン径(D50)が0.6μm以上6.0μm以下であることがより好ましく、0.8μm以上5.0μm以下であることがさらに好ましい。本実施形態において、導電性ペーストは、メディアン径(D50)が異なる金属粒子を2種以上有していてもよい。
また、金属粒子のメディアン径を上記上限値以下とすることにより、金属粒子間における焼結性を向上させることが可能となる。また、導電性ペーストのディスペンス性を向上させる観点からは、金属粒子のメディアン径(D50)が0.6μm以上6.0μm以下であることがより好ましく、0.8μm以上5.0μm以下であることがさらに好ましい。本実施形態において、導電性ペーストは、メディアン径(D50)が異なる金属粒子を2種以上有していてもよい。
本実施形態において、金属粒子のメディアン径(D50)は、たとえば市販のレーザー式粒度分布計(たとえば、(株)島津製作所製、SALD−7000等)を用いて測定することができる。
本実施形態に係る金属粒子のタップ密度は2.50g/cm3以上であることが好ましく、3.50g/cm3以上であることがより好ましく、4.30g/cm3以上であることがさらに好ましい。一方、当該タップ密度は、7.00g/cm3以下であることが好ましく、5.20g/cm3以下であることがより好ましい。金属粒子のタップ密度が上記上限以下、下限以上であれば、導電性ペーストの硬化体が構成AおよびBを有しやすくなる。タップ密度は、JIS Z 2512:2012の方法に準拠して測定することができる。
本実施形態において、金属粒子の体積の下限値は、樹脂の固形分と金属粒子との合計体積(100体積%)に対して、特に限定されないが、例えば、40体積%以上であることが好ましく、45体積%以上であることがより好ましい。これにより、金属粒子の焼結性を向上させ、熱伝導性と導電性の向上に寄与することが可能となる。一方で、金属粒子の体積の上限値は、上記合計体積に対して、例えば、95体積%以下であることが好ましく、90体積%以下であることがとくに好ましい。これにより、導電性ペースト全体の塗布作業性や、接着剤層の機械強度等の向上に寄与することができる。
本実施形態に係る金属粒子の形状は、とくに限定されないが、たとえば球状、多角形状(角に丸みがある略球状を含む)、フレーク状、樹枝状、および鱗片状等を挙げることができる。
本実施形態において、金属粒子は球状粒子、多角形状粒子またはフレーク状粒子を含むことがより好ましい。
これにより、金属粒子の充填性を高めることができるので、焼結性を向上させることができる。また、シンタリングの均一性の向上にも寄与することができる。また、焼結性に優れ、コストを低減させる観点からは、金属粒子がフレーク状粒子を含む態様を採用することもできる。さらには、コストの低減とシンタリングの均一性とのバランスを向上させる観点から、金属粒子が球状粒子または多角形状粒子とフレーク状粒子の双方を含んでいてもよい。
本実施形態において、金属粒子は球状粒子、多角形状粒子またはフレーク状粒子を含むことがより好ましい。
これにより、金属粒子の充填性を高めることができるので、焼結性を向上させることができる。また、シンタリングの均一性の向上にも寄与することができる。また、焼結性に優れ、コストを低減させる観点からは、金属粒子がフレーク状粒子を含む態様を採用することもできる。さらには、コストの低減とシンタリングの均一性とのバランスを向上させる観点から、金属粒子が球状粒子または多角形状粒子とフレーク状粒子の双方を含んでいてもよい。
本実施形態においては、球状粒子およびフレーク状粒子を合計した金属粒子の含有量は、金属粒子全体100重量%に対して、たとえば、90重量%以上であることが好ましく、95重量%以上であることが好ましい。かかる含有量の上限値は、特に限定されないが、例えば、100重量%以下である。これにより、シンタリングの均一性をより効果的に向上させることができる。また、シンタリングの均一性をさらに向上させる観点からは、球状粒子の金属粒子の含有量は、金属粒子全体100重量%に対して、たとえば、90重量%以上であることが好ましく、95重量%以上であることが好ましい。かかる含有量の上限値は、特に限定されないが、例えば、100重量%以下である。
[樹脂]
本実施形態に係る樹脂について以下に説明する。
本実施形態の導電性ペーストは、下記の樹脂を含むことができる。ここで樹脂とは、熱で重合し得るモノマー、およびモノマーが重合したポリマーを含む。
本実施形態において、樹脂の固形分の体積は、特に限定されないが、樹脂の固形分と金属粒子との合計体積(100体積%)に対して、例えば、5体積%以上であることが好ましく、7体積%以上であることがより好ましく、10体積%以上であることがさらに好ましい。一方、樹脂の固形分の体積は、特に限定されないが、当該合計体積に対して、例えば、70体積%以下であることが好ましく、55体積%以下であることがより好ましく、38体積%以下であることがさらに好ましい。
本実施形態に係る樹脂について以下に説明する。
本実施形態の導電性ペーストは、下記の樹脂を含むことができる。ここで樹脂とは、熱で重合し得るモノマー、およびモノマーが重合したポリマーを含む。
本実施形態において、樹脂の固形分の体積は、特に限定されないが、樹脂の固形分と金属粒子との合計体積(100体積%)に対して、例えば、5体積%以上であることが好ましく、7体積%以上であることがより好ましく、10体積%以上であることがさらに好ましい。一方、樹脂の固形分の体積は、特に限定されないが、当該合計体積に対して、例えば、70体積%以下であることが好ましく、55体積%以下であることがより好ましく、38体積%以下であることがさらに好ましい。
本実施形態において、樹脂の固形分の体積を上記下限値以上とすることにより、導電性ペーストの密着性を高めることができる。一方、樹脂の固形分の体積を上記上限値以下とすることにより、金属粒子のシンタリングの妨げを抑制でき、導電性ペーストの抵抗を低くすることができる。本実施形態において、導電性ペーストが発揮する密着性としては、無機材料に対して密着するだけでなく、有機材料に対しても密着することが好ましい。
本実施形態において、樹脂の固形分の体積の測定方法としては、例えば、配合重量と当該樹脂固有の比重から求めることが出来る。一方、金属粒子の体積の測定方法としては、例えば、金属粒子の比重から算出できる。
本実施形態において、120℃における上記樹脂の溶融粘度は、特に限定されないが、例えば、1Pa・s以上が好ましく、5Pa・s以上がより好ましく、10Pa・s以上がさらに好ましい。一方、120℃における上記樹脂の溶融粘度の上限値は、特に限定されないが、例えば、1,000,000,000Pa・s以下が好ましく、100,000,000Pa・s以下がより好ましく、10,000,000Pa・s以下がさらに好ましい。これにより、導電性ペースト中の金属粒子同士の焼結がより発生し易い状態とすることができる。
この場合、樹脂とは、上記導電性ペーストから金属粒子および溶剤を除いた残りの全成分とすることができる。ただし、溶剤を乾燥させて除くとき、完全に溶剤が除かれた状態が好ましいが、作業プロセス上、不可避に残存する溶剤は許容できる。また、上記導電性ペーストが充填材を含む場合、かかる充填材を除いたものを、評価するための上記樹脂とする。
本実施形態において、溶融粘度を測定する方法としては、例えば、レオメーターが用いられる。測定サンプルの準備は、導電性ペーストに含まれる金属粒子を除いた樹脂を用いて実施する。サンプル準備方法は特に限定されないが、例えばMEKなどの溶剤を用いて溶解させたそれぞれの樹脂を混合し、自転公転ミキサー等で脱泡し、ワニスを準備する。その後90℃、4時間などの穏やかな条件でワニス中から溶剤を乾燥させる。このようにして得られた樹脂板を用い、レオメーターで溶融粘度を測定する。レオメーターでの測定条件は特に限定されないが、例えばひずみ0.2%、周波数1Hz、ノーマルフォース4Nの条件で、100℃〜250℃を5℃/分の昇温速度で測定する。
また、本実施形態において、樹脂の硬化物のガラス転移温度(Tg)の下限値は、特に限定されないが、例えば、当該ガラス転移温度(Tg)は60℃以上としてもよく、65℃以上としてもよく、70℃以上としてもよい。かかるガラス転移温度(Tg)の上限値は、特に限定されないが、例えば、当該ガラス転移温度(Tg)は300℃以下としてもよく、290℃以下としてもよく、280℃以下としてもよい。これにより、耐熱性が得られる。
本実施形態において、ガラス転移温度を測定する方法としては、例えば、熱機械分析装置(DSC2920 TAインスツルメント社製)等が用いられる。
本実施形態に係る樹脂は、たとえば熱可塑性樹脂および熱硬化性樹脂のうち少なくともいずれかを含む。本実施形態の樹脂は、これらの樹脂から適宜選択できるが、熱硬化性樹脂を含むのが好ましい。
本実施形態に係る熱硬化性樹脂としては、加熱により3次元的網目構造を形成する樹脂である。当該熱硬化性樹脂としては、特に限定されないが、例えば、フェノール樹脂、ベンゾオキサジン環を有する樹脂、エポキシ樹脂、アクリル樹脂、メラミン樹脂、不飽和ポリエステル樹脂、マレイミド樹脂、ポリウレタン樹脂、ジアリルフタレート樹脂、シリコーン樹脂、シアネート樹脂、メタクリロイル基を有する樹脂等が挙げられる。例えば、熱硬化性樹脂が、室温で液状である液状樹脂であってもよい。これらは、1種又は2種以上を組み合わせて用いることができる。
本実施形態に係るフェノール樹脂としては、特に限定されないが、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールAノボラック樹脂等のノボラック型フェノール樹脂、およびレゾール型フェノール樹脂等が挙げられる。この中でも、熱硬化収縮が大きく、また密着性が高い観点から、レゾール型フェノール樹脂がより好ましい。レゾール型フェノール樹脂は、例えば、アルカリ触媒下でフェノール類とアルデヒド類を反応させて得られる。
本実施形態に係るベンゾオキサジン系樹脂(ベンゾオキサジン環を有する樹脂)は、オキサジン環がベンゼン環に隣接した構造を有する熱硬化性樹脂である。当該ベンゾオキサジン系樹脂としては、特に限定されないが、例えば、フェノール化合物、アミン化合物、アルデヒド化合物を反応させることにより製造できる。
本実施形態に係るエポキシ樹脂としては、1分子中にエポキシ基が2個以上であるものを使用することができる。たとえば、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、クレゾールナフトール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、フェノキシ樹脂、ナフタレン骨格型エポキシ樹脂、ジアリルビスフェノールA型エポキシ樹脂、ビスフェノールAジグリシジルエーテル型エポキシ樹脂、ビスフェノールFジグリシジルエーテル型エポキシ樹脂、ビスフェノールSジグリシジルエーテル型エポキシ樹脂、o−アリルビスフェノールA型ジグリシジルエーテル、3,3',5,5'−テトラメチル−4,4'−ジヒドロキシビフェニルジグリシジルエーテル型エポキシ樹脂、1,1,2,2−テトラキス(ヒドロキシフェニル)エタン型エポキシ樹脂、4,4'−ジヒドロキシビフェニルジグリシジルエーテル型エポキシ樹脂、臭素型クレゾールノボラック型エポキシ樹脂、ビスフェノールDジグリシジルエーテル型エポキシ樹脂、1,6−ナフタレンジオールのグリシジルエーテル、アミノフェノール類のトリグリシジルエーテルなどのエポキシ樹脂が挙げられる。これらは単独で用いても複数組み合わせて用いても良い。
また、エポキシ樹脂は25℃にて固形状のもの、液状のもののどちらも使用することができる。
また、エポキシ樹脂は25℃にて固形状のもの、液状のもののどちらも使用することができる。
本実施形態に係るアクリル樹脂としては、たとえば、単官能(メタ)アクリレート、2官能(メタ)アクリレート、3官能以上の多官能(メタ)アクリレート、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレートが挙げられる。
単官能(メタ)アクリレートとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、s−ブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチルヘプチル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、テトラデシル(メタ)アクリレート、ペンタデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、ベヘニル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、3−クロロ−2−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレートのような脂肪族(メタ)アクリレート、シクロペンチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、シクロペンチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、3−メチル−3−オキセタニルメチル(メタ)アクリレート、1−アダマンチル(メタ)アクリレートのような脂環式(メタ)アクリレート、フェニル(メタ)アクリレート、ノニルフェニル(メタ)アクリレート、p−クミルフェニル(メタ)アクリレート、o−ビフェニル(メタ)アクリレート、1−ナフチル(メタ)アクリレート、2−ナフチル(メタ)アクリレート、ベンジル(メタ)アクリレート、2−ヒドロキシ−3−フェノキシプロピル(メタ)アクリレート、2−ヒドロキシ−3−(o−フェニルフェノキシ)プロピル(メタ)アクリレート、2−ヒドロキシ−3−(1−ナフトキシ)プロピル(メタ)アクリレート、2−ヒドロキシ−3−(2−ナフトキシ)プロピル(メタ)アクリレートのような芳香族(メタ)アクリレート、2−テトラヒドロフルフリル(メタ)アクリレート、N−(メタ)アクリロイルオキシエチルヘキサヒドロフタルイミド、2−(メタ)アクリロイルオキシエチル−N−カルバゾールのような複素環式(メタ)アクリレートが挙げられる。
また、2官能(メタ)アクリレートとしては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、テトラプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、1,3−ブタンジオールジ(メタ)アクリレート、2−メチル−1,3−プロパンジオールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、3−メチル−1,5−ペンタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、2−ブチル−2−エチル−1,3−プロパンジオールジ(メタ)アクリレート、1,9−ノナンジオールジ(メタ)アクリレート、1,10−デカンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、トリシクロデカンジメタノール(メタ)アクリレートのような脂肪族(メタ)アクリレート、シクロヘキサンジメタノール(メタ)アクリレート、トリシクロデカンジメタノール(メタ)アクリレート、水添ビスフェノールAジ(メタ)アクリレート、水添ビスフェノールFジ(メタ)アクリレートのような脂環式(メタ)アクリレート、ビスフェノールAジ(メタ)アクリレート、ビスフェノールFジ(メタ)アクリレート、ビスフェノールAFジ(メタ)アクリレート、フルオレン型ジ(メタ)アクリレートのような芳香族(メタ)アクリレート、イソシアヌル酸ジ(メタ)アクリレートのような複素環式(メタ)アクリレートが挙げられる。
また、3官能以上の多官能(メタ)アクリレートとしては、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレートのような脂肪族(メタ)アクリレート、イソシアヌル酸トリ(メタ)アクリレートのような複素環式(メタ)アクリレートが挙げられる。
エポキシ(メタ)アクリレートとしては、エポキシ樹脂のエポキシ基と、カルボキシル基及び(メタ)アクリロイル基を有する化合物のカルボキシル基とを反応させてエステル結合を形成させて得られる化合物が挙げられる。
ウレタン(メタ)アクリレートとしては、たとえば、ポリエステル型またはポリエーテル型等のポリオール化合物と、多価イソシアナート化合物を反応させて得られる末端イソシアナートウレタンプレポリマーに、ヒドロキシル基を有する(メタ)アクリレートを反応させて得られたものが挙げられる。ここで、多価イソシアナート化合物としては、たとえば、2,4−トリレンジイソシアナート、2,6−トリレンジイソシアナート、1,3−キシリレンジイソシアナート、1,4−キシリレンジイソシアナート、ジフェニルメタン−4,4−ジイソシアナートが挙げられる。また、ヒドロキシル基を有する(メタ)アクリレートとしては、たとえば、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレートが挙げられる。
本実施形態において、エポキシ樹脂の含有量の下限値は、特に限定されないが、例えば、樹脂の固形分全量に対してエポキシ樹脂を1質量%以上含ませてもよく、3質量%以上含ませてもよく、5質量%以上含ませてもよい。これにより、硬化物としての適度な機械特性を発揮することができる。
また、エポキシ樹脂の含有量の上限値は、特に限定されないが、例えば、樹脂の固形分全量に対してエポキシ樹脂を20質量%以下含ませてもよく、15質量%以下含ませてもよく、10質量%以下含ませてもよい。
また、エポキシ樹脂の含有量の上限値は、特に限定されないが、例えば、樹脂の固形分全量に対してエポキシ樹脂を20質量%以下含ませてもよく、15質量%以下含ませてもよく、10質量%以下含ませてもよい。
本実施形態にかかる樹脂は、たとえば硬化剤を含むことができる。硬化剤としては、熱硬化性樹脂(例えば、エポキシ樹脂)の重合反応を促進させるものであればとくに限定されない。これにより、上記熱硬化性樹脂の重合反応を促進させて、導電性ペーストを用いて得られる機械特性の向上に寄与することができる。
一方で、本実施形態においては、シンタリングの均一性、熱伝導性、導電性等のバランスを向上させる観点から、たとえば、樹脂中に硬化剤を含まない態様を採用することもできる。樹脂中に硬化剤を含まないとは、たとえば熱硬化性樹脂100重量部に対する硬化剤の含有量が0.01重量部以下である場合を指す。
本実施形態の硬化剤は、フェノール性水酸基を有する硬化剤を含むことができる。より具体的には、熱硬化性樹脂としてエポキシ樹脂やベンゾオキサジン環を有する樹脂を用いる場合、硬化剤としてフェノール樹脂を用いることができる。上記フェノール樹脂としては、公知のもののなかから適宜選択することができるが、たとえばノボラック型フェノール樹脂、レゾール型フェノール樹脂、トリスフェニルメタン型フェノール樹脂、アリールアルキレン型フェノール樹脂を用いることができる。
ノボラック型フェノール樹脂は、例えば、フェノール類とアルデヒド類とを酸性触媒のもとで反応させることにより得ることができる。
ノボラック型フェノール樹脂を製造する際に用いるフェノール類としては、例えば、フェノール、クレゾール、キシレノール、エチルフェノール、p−フェニルフェノール、p−tert−ブチルフェノール、p−tert−アミルフェノール、p−オクチルフェノール、p−ノニルフェノール、p−クミルフェノール、ビスフェノールA、ビスフェノールF、レゾルシノールなどが挙げられる。なお、これらフェノール類を単独または2種類以上併用して用いてもよい。
ノボラック型フェノール樹脂を製造する際に用いるフェノール類としては、例えば、フェノール、クレゾール、キシレノール、エチルフェノール、p−フェニルフェノール、p−tert−ブチルフェノール、p−tert−アミルフェノール、p−オクチルフェノール、p−ノニルフェノール、p−クミルフェノール、ビスフェノールA、ビスフェノールF、レゾルシノールなどが挙げられる。なお、これらフェノール類を単独または2種類以上併用して用いてもよい。
また、ノボラック型フェノール樹脂の製造に用いるアルデヒド類としては、例えば、ホルムアルデヒド、アセトアルデヒド、プロピルアルデヒド、ブチルアルデヒド等のアルキルアルデヒド、ベンズアルデヒド、サリチルアルデヒド等の芳香族アルデヒド等が挙げられる。ホルムアルデヒド源としては、ホルマリン(水溶液)、パラホルムアルデヒド、アルコール類とのヘミホルマール、トリオキサン等が挙げられる。なお、これらアルデヒド類を単独または2種類以上併用して用いてもよい。
ノボラック型フェノール樹脂を合成する際、フェノール類とアルデヒド類との反応モル比率は、通常、フェノール類1モルに対して、アルデヒド類が0.3〜1.0モルであり、特に0.6〜0.9モルとすることが好ましい。
また、ノボラック型フェノール樹脂の製造に用いる酸性触媒としては、例えば、蓚酸、酢酸等の有機カルボン酸、ベンゼンスルホン酸、パラトルエンスルホン酸、メタンスルホン酸等の有機スルホン酸、1−ヒドロキシエチリデン−1,1'−ジホスホン酸、2−ホスホノブタン−1,2,4−トリカルボン酸等の有機ホスホン酸、塩酸、硫酸、リン酸等の無機酸が挙げられる。なお、これらの酸性触媒を単独、または2種類以上併用して使用してもよい。
レゾール型フェノール樹脂は、例えば、フェノール類とアルデヒド類をアルカリ金属やアミン類、二価金属塩などの触媒の存在下で反応させることによって得ることができる。
レゾール型フェノール樹脂の製造に用いるフェノール類としては、例えば、フェノール、o−クレゾール、m−クレゾール、p−クレゾール等のクレゾール類、2,3−キシレノール、2,4−キシレノール、2,5−キシレノール、2,6−キシレノール、3,4−キシレノール、3,5−キシレノール等のキシレノール類、o−エチルフェノール、m−エチルフェノール、p−エチルフェノール等のエチルフェノール類、イソプロピルフェノール、ブチルフェノール、p−tert−ブチルフェノール等のブチルフェノール類、p−tert−アミルフェノール、p−オクチルフェノール、p−ノニルフェノール、p−クミルフェノール等のアルキルフェノール類、フルオロフェノール、クロロフェノール、ブロモフェノール、ヨードフェノール等のハロゲン化フェノール類、p−フェニルフェノール、アミノフェノール、ニトロフェノール、ジニトロフェノール、トリニトロフェノール等の1価フェノール置換体、及び、1−ナフトール、2−ナフトール等の1価のフェノール類、レゾルシン、アルキルレゾルシン、ピロガロール、カテコール、アルキルカテコール、ハイドロキノン、アルキルハイドロキノン、フロログルシン、ビスフェノールA、ビスフェノールF、ビスフェノールS、ジヒドロキシナフタリン等の多価フェノール類が挙げられる。なお、これらフェノール類を単独あるいは2種以上を混合して使用してもよい。
また、レゾール型フェノール樹脂の製造に用いるアルデヒド類としては、例えば、ホルムアルデヒド、パラホルムアルデヒド、トリオキサン、アセトアルデヒド、プロピオンアルデヒド、ポリオキシメチレン、クロラール、ヘキサメチレンテトラミン、フルフラール、グリオキザール、n−ブチルアルデヒド、カプロアルデヒド、アリルアルデヒド、ベンズアルデヒド、クロトンアルデヒド、アクロレイン、テトラオキシメチレン、フェニルアセトアルデヒド、o−トルアルデヒド、サリチルアルデヒドが挙げられる。これらアルデヒド類を、単独または2種類以上組み合わせて使用してもよい。なお、これらのアルデヒド類の中でも、反応性が優れ、安価であるという観点から、ホルムアルデヒド、パラホルムアルデヒドを選択して用いることが好ましい。
また、レゾール型フェノール樹脂の製造に用いる触媒としては、例えば、水酸化ナトリウム、水酸化リチウム、水酸化カリウムなどのアルカリ金属の水酸化物、カルシウム、マグネシウム、バリウムなどアルカリ土類金属の酸化物及び水酸化物、炭酸ナトリウム、アンモニア水、トリエチルアミン、ヘキサメチレンテトラミンなどのアミン類、酢酸マグネシウムや酢酸亜鉛などの二価金属塩が挙げられる。これら触媒は、単独または2種類以上併用してもよい。
なお、レゾール型フェノール樹脂を製造する際、フェノール類とアルデヒド類との反応モル比としては、好ましくはフェノール類1モルに対して、アルデヒド類0.80〜2.50モルであり、さらに好ましくは、アルデヒド類1.00〜2.30モルである。
アリールアルキレン型フェノール樹脂は、繰り返し単位中に一つ以上のアリールアルキレン基を有するフェノール樹脂を示す。このようなアリールアルキレン型フェノール樹脂としては、例えば、キシリレン型フェノール樹脂、ビフェニルジメチレン型フェノール樹脂が挙げられる。
また硬化剤は、たとえば3級アミノ基を有する化合物を含むことができる。3級アミノ基を有する化合物は、例えば、ベンジルジメチルアミン(BDMA)等の3級アミン類、2−メチルイミダゾール、2−エチル−4−メチルイミダゾール(EMI24)等のイミダゾール類、ピラゾール、3,5−ジメチルピラゾール、ピラゾリン等のピラゾール類、トリアゾール、1,2,3−トリアゾール、1,2,4−トリアゾール、1,2,3−ベンゾトリアゾール等のトリアゾール類、イミダゾリン、2−メチル−2−イミダゾリン、2−フェニルイミダゾリン等のイミダゾリン類が挙げられ、これらから選択される一種または二種以上を含むことができる。これらの中でも、シンタリングの均一性、熱伝導性、導電性等のバランスを向上させる観点からは、イミダゾール類を少なくとも含むことが好ましい態様の一例として挙げられる。
本実施形態に係る樹脂中に含まれる硬化剤の含有量の上限値は、特に限定されないが、例えば、熱硬化性樹脂100重量部に対して、硬化剤の含有量は25重量部以下が好ましく、5重量部以下がより好ましく、3重量部以下がさらに好ましく、1重量部以下がとくに好ましい。かかる硬化剤の含有量の下限値は、特に限定されないが、例えば、当該含有量は0重量部以上が好ましく、導電性ペーストの機械特性を向上させる観点からは、0.1重量部以上がより好ましい。
本実施形態に係る樹脂はさらに硬化促進剤を含んでも良い。本実施形態の硬化促進剤としては、特に限定されないが、例えば、イミダゾール類、トリフェニルホスフィンまたはテトラフェニルホスフィンの塩類、ジアザビシクロウンデセンなどのアミン系化合物およびその塩類が挙げられる。
また、樹脂としては、硬化時の収縮がある程度大きいものが好ましい。詳細なメカニズムは定かではないが、本実施形態に係る導電ペーストにおいて、樹脂成分はシンタリングの時に、収縮して金属粒子同士を押しつける状態を生み出すことができるので、シンタリングを促進することが可能になると考えられる。
[溶剤]
本実施形態に係る導電性ペーストは、たとえば溶剤をさらに含むことができる。本実施形態において、溶剤とは、樹脂と反応せず、シンタリング(焼結)の工程後に揮発して残存しないものを意味する(ただし、不可避に残存する微量は許容する)。これにより、導電性ペーストの流動性を向上させ、作業性の向上に寄与することができる。また、導電性ペーストの粘度を制御することができるので、所望の粘度の導電性ペーストを得ることができる。
本実施形態に係る導電性ペーストは、たとえば溶剤をさらに含むことができる。本実施形態において、溶剤とは、樹脂と反応せず、シンタリング(焼結)の工程後に揮発して残存しないものを意味する(ただし、不可避に残存する微量は許容する)。これにより、導電性ペーストの流動性を向上させ、作業性の向上に寄与することができる。また、導電性ペーストの粘度を制御することができるので、所望の粘度の導電性ペーストを得ることができる。
本実施形態に係る溶剤としては、とくに限定されないが、例えば、メチルカルビトール、エチルカルビトール、ブチルカルビトール、メチルカルビトールアセテート、エチルカルビトールアセテート、ブチルカルビトールアセテート、アセチルアセトン、メチルイソブチルケトン(MIBK)、アノン、ジアセトンアルコール、エチルセロソルブ、メチルセロソルブ、ブチルセロソルブ、エチルセロソルブアセテート、メチルセロソルブアセテート、ブチルセロソルブアセテート、エチルアルコール、プロピルアルコール、ブチルアルコール、ペンチルアルコール、ヘキシルアルコール、ヘプチルアルコール、オクチルアルコール、ノニルアルコール、デシルアルコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、メチルメトキシブタノール、α−ターピネオール、β−ターピネオール、γ−ターピネオール、ターピネオール(α、β、γの混合物)、ジヒドロターピネオール、へキシレングリコール、ベンジルアルコール、2−フェニルエチルアルコール、イソパルミチルアルコール、イソステアリルアルコール、ラウリルアルコール、エチレングリコール、プロピレングリコールもしくはグリセリン等のアルコール類、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、ジアセトンアルコール(4−ヒドロキシ−4−メチル−2−ペンタノン)、2−オクタノン、イソホロン(3,5,5−トリメチル−2−シクロヘキセン−1−オン)もしくはジイソブチルケトン(2,6−ジメチル−4−ヘプタノン)等のケトン類、酢酸エチル、酢酸ブチル、ジエチルフタレート、ジブチルフタレート、アセトキシエタン、酪酸メチル、ヘキサン酸メチル、オクタン酸メチル、デカン酸メチル、メチルセロソルブアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、1,2−ジアセトキシエタン、リン酸トリブチル、リン酸トリクレジルもしくはリン酸トリペンチル等のエステル類、テトラヒドロフラン、ジプロピルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、プロピレングリコールジメチルエーテル、エトキシエチルエーテル、1,2−ビス(2−ジエトキシ)エタンもしくは1,2−ビス(2−メトキシエトキシ)エタン等のエーテル類、酢酸2−(2−ブトキシエトキシ)エタン等のエステルエーテル類、2−(2−メトキシエトキシ)エタノール等のエーテルアルコール類、トルエン、キシレン、n−パラフィン、イソパラフィン、ドデシルベンゼン、テレピン油、ケロシンもしくは軽油等の炭化水素類、アセトニトリルもしくはプロピオニトリル等のニトリル類、アセトアミドもしくはN,N−ジメチルホルムアミド等のアミド類、低分子量の揮発性シリコンオイル、または揮発性有機変成シリコンオイルが用いられる。この中でも、作業性や揮発性の観点から、例えば、メチルカルビトール、エチルカルビトール、ブチルカルビトール、メチルカルビトールアセテート、エチルカルビトールアセテート、ブチルカルビトールアセテート、アセチルアセトン、メチルイソブチルケトン(MIBK)、アノン、ジアセトンアルコール、ターピネオール、ジヒドロターピネオール等がより好ましく、ブチルカルビトール、ターピネオール、ジヒドロターピネオールがさらに好ましい。
また、これらは、二種以上を組み合わせた混合溶剤として使用することもできる。
また、これらは、二種以上を組み合わせた混合溶剤として使用することもできる。
(その他の成分)
本実施形態に係る導電性ペーストには、必要に応じて酸化防止剤、分散剤、シリカ、アルミナ等の無機充填材、シリコーン樹脂やブタジエンゴム等の他のエラストマー、カップリング剤、消泡剤、レベリング剤、微細シリカ(チキソ調整剤)等の成分を添加することもできる。これらの成分の含有量は、導電性ペーストを適用する用途に合わせて適宜設定することができる。
本実施形態に係る導電性ペーストには、必要に応じて酸化防止剤、分散剤、シリカ、アルミナ等の無機充填材、シリコーン樹脂やブタジエンゴム等の他のエラストマー、カップリング剤、消泡剤、レベリング剤、微細シリカ(チキソ調整剤)等の成分を添加することもできる。これらの成分の含有量は、導電性ペーストを適用する用途に合わせて適宜設定することができる。
[導電性ペーストの用途]
本実施形態の導電性ペーストは、様々な用途に用いることができる。例えば、導電性ペーストはダイアタッチ材として用いることができる。ダイアタッチ材としては、例えば、電子装置に用いられてもよいし、より好ましくは半導体装置に用いられてもよい。その他の用途例としては、プリント回路基板のジャンパー回路やスルーホール導体、アディティブ回路、タッチパネルの導体回路、抵抗端子、太陽電池の電極、タンタルコンデンサの電極、フィルムコンデンサの電極、チップ型セラミック電子部品の外部電極や内部電極等の形成、電磁波シールドとしての使用等が挙げられる。また、はんだの代替として、半導体素子や電子部品を基板に実装するための導電性接着剤としての使用のほか、太陽電池の高温焼成した銀電極の表面をはんだで被覆するタイプのグリッド電極の、はんだ部分の代替として使用することもできる。
本実施形態の導電性ペーストは、様々な用途に用いることができる。例えば、導電性ペーストはダイアタッチ材として用いることができる。ダイアタッチ材としては、例えば、電子装置に用いられてもよいし、より好ましくは半導体装置に用いられてもよい。その他の用途例としては、プリント回路基板のジャンパー回路やスルーホール導体、アディティブ回路、タッチパネルの導体回路、抵抗端子、太陽電池の電極、タンタルコンデンサの電極、フィルムコンデンサの電極、チップ型セラミック電子部品の外部電極や内部電極等の形成、電磁波シールドとしての使用等が挙げられる。また、はんだの代替として、半導体素子や電子部品を基板に実装するための導電性接着剤としての使用のほか、太陽電池の高温焼成した銀電極の表面をはんだで被覆するタイプのグリッド電極の、はんだ部分の代替として使用することもできる。
本実施形態の導電性ペーストは、硬化させることで硬化体とすることができる。本実施形態の硬化体は、様々な用途に利用できる。例えば、電子装置に使用される。すなわち、本実施形態に係る電子装置は、本実施形態の導電性ペーストの硬化体と、当該硬化体が接着された電子部品と、を備えている。
本実施形態の硬化体は、硬化体中に金属粒子が含まれるため、電極や配線が形成されている様々な電子機器の部品に適用することができる。また、プリント配線基板のスルーホールやビアホールに充填する用途としても好ましく用いることができる。
もちろん、ここで挙げた用途は、実施形態の一例であり、これ以外の用途であっても、導電性ペーストの組成を調整しつつ、適用を行うことができるのは言うまでもない。
本実施形態の硬化体は、硬化体中に金属粒子が含まれるため、電極や配線が形成されている様々な電子機器の部品に適用することができる。また、プリント配線基板のスルーホールやビアホールに充填する用途としても好ましく用いることができる。
もちろん、ここで挙げた用途は、実施形態の一例であり、これ以外の用途であっても、導電性ペーストの組成を調整しつつ、適用を行うことができるのは言うまでもない。
図4は、本実施形態に係る導電性ペーストの硬化体30を含む電子装置10を例示する図である。電子装置10は基板40、硬化体30および電子部品20を含む。電子部品20に形成された電極22は、基板40に形成された配線42と、硬化体30により接続されている。また、配線42は、図示しない電源や他の電子装置と電気的に接続されている。
[導電性ペーストの製造方法]
次に、本実施形態に係る導電性ペーストの製造方法について説明する。
本実施形態の導電性ペーストは、上述した各成分を混練混合することで製造することができる。この混合は、たとえばニーダー、三本ロール、ライカイ機等の混練装置や、各種撹拌装置等を用いて行えばよい。
次に、本実施形態に係る導電性ペーストの製造方法について説明する。
本実施形態の導電性ペーストは、上述した各成分を混練混合することで製造することができる。この混合は、たとえばニーダー、三本ロール、ライカイ機等の混練装置や、各種撹拌装置等を用いて行えばよい。
[導電性ペーストの硬化体]
本実施形態に係る導電性ペーストの硬化体は、金属と樹脂とを含む。そして、硬化体は、上述の構成Aを有する。すなわち、当該硬化体の13μm×17μmの観察領域の断面画像を電子顕微鏡で取得し、断面画像全体の面積をSaとし、断面画像において、観察領域内の最低輝度から最大輝度までを256段階で表した輝度のうち低い順で1段階目から50段階目までの輝度範囲に含まれる輝度が占める複数の島状領域の平均面積をSiとしたとき、Si/Sa×100[%]の値が0.015%以上0.125%以下である。
本実施形態に係る導電性ペーストの硬化体は、金属と樹脂とを含む。そして、硬化体は、上述の構成Aを有する。すなわち、当該硬化体の13μm×17μmの観察領域の断面画像を電子顕微鏡で取得し、断面画像全体の面積をSaとし、断面画像において、観察領域内の最低輝度から最大輝度までを256段階で表した輝度のうち低い順で1段階目から50段階目までの輝度範囲に含まれる輝度が占める複数の島状領域の平均面積をSiとしたとき、Si/Sa×100[%]の値が0.015%以上0.125%以下である。
また、本実施形態に係る導電性ペーストの硬化体は、上述の構成Bを有することが好ましい。すなわち、断面画像において、観察領域内の最低輝度から最大輝度までを256段階で表した輝度のうち低い順で1段階目から50段階目までの輝度範囲に含まれる輝度が占める領域の面積をSdとしたとき、Sd/Sa×100[%]の値が10%以上20%以下であることが好ましい。
本実施形態に係る導電性ペーストの硬化体に含まれる焼結部は少なくとも構成Aを有していればよいが、導電性および密着性向上の観点から、当該焼結部は構成Aおよび構成Bの両方を有することが好ましい。また、本実施形態に係る導電性ペーストの硬化体は、構成Aを備える限り、硬化条件や基材は特に限定されない。
本実施形態に係る導電性ペーストの硬化体の体積抵抗率は、特に限定されないが、たとえば15.0μΩ・cm以下とすることができ、より好ましくは10.0μΩ・cm以下とすることができる。また、当該体積抵抗率はたとえば4.0μΩ・cm以上である。硬化体の体積抵抗率は、4端子法で測定することで得られる。
本実施形態の導電性ペーストの硬化体は、金属粒子の粒子連結構造が形成された焼結部を有しているが、一部に金属粒子の粒子連結構造が形成されていない非焼結部を有していてもよい。言い換えると、本実施形態の硬化体は、焼結部が全体に形成されていてもよいし、非焼結部を一部に含んでいても良い。なお、かかる非焼結部には、本実施形態の樹脂が焼結部よりも多く残存している。
[導電性ペーストの硬化体の製造方法]
本実施形態に係る導電性ペーストの硬化体の製造方法について以下に説明する。
本実施形態に係る導電性ペーストの硬化体の製造方法について以下に説明する。
本実施形態に係る導電性ペーストの硬化体の製造方法は、金属粒子と樹脂とを含む導電性ペーストに対し熱処理を行って硬化体を得る工程を含む。当該硬化体は上述の構成Aを有する。すなわち、硬化体の13μm×17μmの観察領域の断面画像を電子顕微鏡で取得したとき、Si/Sa×100[%]の値が0.015%以上0.125%以下である。ここで、上述の通り、Saは断面画像全体の面積であり、Siは、断面画像において、観察領域内の最低輝度から最大輝度までを256段階で表した輝度のうち低い順で1段階目から50段階目までの輝度範囲に含まれる輝度が占める複数の島状領域の平均面積である。
本実施形態に係る導電性ペーストの硬化体は、たとえば上述した導電性ペーストを用いて得られる。本実施形態では、まず、導電性ペーストを基材上に塗布する。ここで、基材は特に限定されないが、たとえば、ソーダ石灰ガラス、石英ガラス等のガラス、ポリイミド樹脂、エポキシ樹脂硬化物等の樹脂、金属が挙げられる。中でも、密着性向上の観点から、基材はガラスまたはエポキシ樹脂硬化物からなることが好ましい。
基材の線膨張係数(CTE)[ppm/℃]は特に限定されないが、低抵抗と密着性向上の両立の観点から、200ppm/℃以下であることが好ましく、150ppm/℃以下であることがより好ましく、100ppm/℃以下であることがさらに好ましい。一方、基材の線膨張係数は、同様の観点から、1ppm/℃以上であることが好ましく、5ppm/℃以上であることがより好ましい。基材の線膨張係数は、たとえば以下の様に得られる190〜210℃における平均線膨張係数である。すなわち、TMA(熱機械的分析)装置(TAインスツルメント社製、Q400)を用いて、温度範囲30〜300℃、10℃/分、荷重5gの条件でTMAを測定する。そして、2サイクル目の190〜210℃における平面方向の平均線膨張係数(CTE)を算出する。
次いで、導電性ペーストを熱処理することにより、基材上に接して形成された導電性ペーストの硬化体が得られる。
本実施形態において、シンタリング温度(熱処理の加熱温度)は特に限定されないが、230℃以下が好ましく、200℃以下がより好ましい。また、当該シンタリング温度は、例えば、160℃以上が好ましく、180℃以上がさらに好ましい。
シンタリング温度としては、焼結を完結させる目的として、200℃より高い温度が好ましいと一般的には考えられている。これに対して、本実施形態に係る導電性ペーストは、200℃以下、160℃以上の熱処理でシンタリングさせることが可能である。
シンタリング温度としては、焼結を完結させる目的として、200℃より高い温度が好ましいと一般的には考えられている。これに対して、本実施形態に係る導電性ペーストは、200℃以下、160℃以上の熱処理でシンタリングさせることが可能である。
また、本実施形態において、シンタリングの時間(熱処理の加熱時間)の下限値は、特に限定されないが、当該時間は例えば、15分以上が好ましく、18分以上がより好ましく、20分以上がさらに好ましい。当該シンタリングの時間の上限値としては、特に限定されないが、当該時間は例えば、60分以下が好ましく、55分以下がより好ましく、50分以下がとくに好ましい。
次に、本実施形態の作用および効果について説明する。
本実施形態によれば、低抵抗かつ密着性に優れた導電性ペーストおよびその硬化体を実現することができる。ひいては、それを用いて製造する電子装置等の信頼性を向上させると共に、省エネルギー化を図ることができる。
本実施形態によれば、低抵抗かつ密着性に優れた導電性ペーストおよびその硬化体を実現することができる。ひいては、それを用いて製造する電子装置等の信頼性を向上させると共に、省エネルギー化を図ることができる。
以下、本実施形態を、実施例を参照して詳細に説明する。なお、本実施形態は、これらの実施例の記載に何ら限定されるものではない。
(導電性ペーストの調製)
各実施例1−1、1−2、2−1から2−5、および比較例1−1、1−2、2−1、2−2について、導電性ペーストを調製した。この調製は、表1、2に示す配合に従い各成分を均一に混合することにより行った。また、表1、2には、配合した成分及び配分から導出した樹脂の固形分[体積%]の値も合わせて示している。なお、表1、2に示す成分の詳細は以下のとおりである。
各実施例1−1、1−2、2−1から2−5、および比較例1−1、1−2、2−1、2−2について、導電性ペーストを調製した。この調製は、表1、2に示す配合に従い各成分を均一に混合することにより行った。また、表1、2には、配合した成分及び配分から導出した樹脂の固形分[体積%]の値も合わせて示している。なお、表1、2に示す成分の詳細は以下のとおりである。
[金属粒子]
金属粒子1:球状銀粉(タップ密度4.80g/cm3、メディアン径D50=0.98μm)
金属粒子2:球状銀粉(タップ密度4.17g/cm3、メディアン径D50=1.41μm)
金属粒子3:フレーク状銀粉(タップ密度3.60g/cm3、メディアン径D50=4.74μm)
金属粒子1:球状銀粉(タップ密度4.80g/cm3、メディアン径D50=0.98μm)
金属粒子2:球状銀粉(タップ密度4.17g/cm3、メディアン径D50=1.41μm)
金属粒子3:フレーク状銀粉(タップ密度3.60g/cm3、メディアン径D50=4.74μm)
[樹脂]
樹脂1:レゾール型フェノール樹脂(PR−53703(製品名)、住友ベークライト(株)製)
樹脂2:レゾール型フェノール樹脂(PR−54463(製品名)、住友ベークライト(株)製、RC55wt%のブチルカルビトール溶液)
樹脂3:ビスフェノールA型液状エポキシ樹脂(828(製品名)、三菱化学(株)製)
樹脂4:P−d型ベンゾオキサジン(RC60wt%のブチルカルビトール溶液)
樹脂5:ビスフェノールA型エポキシ樹脂(834(製品名)、三菱化学(株)製)
樹脂6:ブチラール樹脂(BH−3(製品名)、積水化学工業(株)製、RC20wt%のブチルカルビトール溶液)
樹脂7:テトラキスフェノールエタン型エポキシ樹脂(1031S(製品名)、三菱化学(株)製、RC65wt%のブチルカルビトール溶液)
樹脂8:ナフタレン型エポキシ樹脂(HP−4710(製品名)、DIC(株)製、RC66wt%のブチルカルビトール溶液)
樹脂9:ビフェニルアラルキル型エポキシ樹脂(NC−3000、日本化薬(株)製、RC66wt%のブチルカルビトール溶液)
樹脂1:レゾール型フェノール樹脂(PR−53703(製品名)、住友ベークライト(株)製)
樹脂2:レゾール型フェノール樹脂(PR−54463(製品名)、住友ベークライト(株)製、RC55wt%のブチルカルビトール溶液)
樹脂3:ビスフェノールA型液状エポキシ樹脂(828(製品名)、三菱化学(株)製)
樹脂4:P−d型ベンゾオキサジン(RC60wt%のブチルカルビトール溶液)
樹脂5:ビスフェノールA型エポキシ樹脂(834(製品名)、三菱化学(株)製)
樹脂6:ブチラール樹脂(BH−3(製品名)、積水化学工業(株)製、RC20wt%のブチルカルビトール溶液)
樹脂7:テトラキスフェノールエタン型エポキシ樹脂(1031S(製品名)、三菱化学(株)製、RC65wt%のブチルカルビトール溶液)
樹脂8:ナフタレン型エポキシ樹脂(HP−4710(製品名)、DIC(株)製、RC66wt%のブチルカルビトール溶液)
樹脂9:ビフェニルアラルキル型エポキシ樹脂(NC−3000、日本化薬(株)製、RC66wt%のブチルカルビトール溶液)
[溶剤]
溶剤1:ブチルカルビトール
溶剤1:ブチルカルビトール
実施例1−1、1−2および比較例1−1、1−2の各導電性ペーストを以下の通り評価した。
(導電性評価)
各実施例および各比較例について、次のようにして導電性評価を行った。まず、導電性ペーストを、基材としてのスライドガラス(松波硝子工業社製、スライドガラスS1225)上に塗布して幅4mm、長さ40mm、厚さ40μmの塗布膜を得た。そして、得られた塗布膜を、大気雰囲気下、100℃で10分の条件で乾燥させた後、引き続き、200℃、45分の硬化条件で熱処理をして硬化体を得た。そして、得られた硬化体の平面方向の体積抵抗率(膜比抵抗率[μΩ・cm])を、4端子法にて測定した。そして、測定された体積抵抗率が4.0μΩ・cm以上10.0μΩ・cm以下である場合を「◎」、10.0μΩ・cm超過15.0μΩ・cm以下である場合を「○」、15.0μΩ・cm超過である場合を「×」として評価した。結果を表1に示す。
各実施例および各比較例について、次のようにして導電性評価を行った。まず、導電性ペーストを、基材としてのスライドガラス(松波硝子工業社製、スライドガラスS1225)上に塗布して幅4mm、長さ40mm、厚さ40μmの塗布膜を得た。そして、得られた塗布膜を、大気雰囲気下、100℃で10分の条件で乾燥させた後、引き続き、200℃、45分の硬化条件で熱処理をして硬化体を得た。そして、得られた硬化体の平面方向の体積抵抗率(膜比抵抗率[μΩ・cm])を、4端子法にて測定した。そして、測定された体積抵抗率が4.0μΩ・cm以上10.0μΩ・cm以下である場合を「◎」、10.0μΩ・cm超過15.0μΩ・cm以下である場合を「○」、15.0μΩ・cm超過である場合を「×」として評価した。結果を表1に示す。
(断面画像の解析)
また、各実施例および比較例で得られた導電性ペーストについて、以下の様にその硬化体の断面画像を解析した。まず、「導電性評価」と同じ方法で得られた導電性ペーストの硬化体をグラインドソーを用いて切断し、研磨装置を用いて断面観察用試料として形を整えた。次いで、当該試料を日本電子社製クロスセクションポリッシャIB−09020CPを用いて研磨し、平滑な露出断面を得た。露出した断面を走査型電子顕微鏡(日本電子社製、JSM−7401F)を用いて観察した。このようにして得られた断面画像に対し、実施形態で説明したのと同様の方法で解析を行った。解析の結果得られたSi/Sa×100[%]の値およびSd/Sa×100[%]の値を表1に示す。ここでSaは、上述の通り断面画像全体の面積である。また、Siは、断面画像において、観察領域内の最低輝度から最大輝度までを256段階で表した輝度のうち低い順で1段階目から50段階目までの輝度範囲に含まれる輝度が占める複数の島状領域の平均面積である。そして、Sdは、断面画像において、観察領域内の最低輝度から最大輝度までを256段階で表した輝度のうち低い順で1段階目から50段階目までの輝度範囲に含まれる輝度が占める領域の面積である。なお、図1に示した断面画像は、実施例1−1で解析対象とした画像である。
また、各実施例および比較例で得られた導電性ペーストについて、以下の様にその硬化体の断面画像を解析した。まず、「導電性評価」と同じ方法で得られた導電性ペーストの硬化体をグラインドソーを用いて切断し、研磨装置を用いて断面観察用試料として形を整えた。次いで、当該試料を日本電子社製クロスセクションポリッシャIB−09020CPを用いて研磨し、平滑な露出断面を得た。露出した断面を走査型電子顕微鏡(日本電子社製、JSM−7401F)を用いて観察した。このようにして得られた断面画像に対し、実施形態で説明したのと同様の方法で解析を行った。解析の結果得られたSi/Sa×100[%]の値およびSd/Sa×100[%]の値を表1に示す。ここでSaは、上述の通り断面画像全体の面積である。また、Siは、断面画像において、観察領域内の最低輝度から最大輝度までを256段階で表した輝度のうち低い順で1段階目から50段階目までの輝度範囲に含まれる輝度が占める複数の島状領域の平均面積である。そして、Sdは、断面画像において、観察領域内の最低輝度から最大輝度までを256段階で表した輝度のうち低い順で1段階目から50段階目までの輝度範囲に含まれる輝度が占める領域の面積である。なお、図1に示した断面画像は、実施例1−1で解析対象とした画像である。
(密着性評価)
スライドガラス上に、得られた導電性ペーストを塗布し、上方からシリコンウェハを2mmに切断したチップを搭載した。箱型オーブンを用い、導電性ペーストを200℃45分で硬化させた。このようにして得られたサンプルのシェア強度を、デイジジャパン社製シリーズ4000を用いて測定した。それぞれ8個で測定を行い、得られた値の平均値[N]を求めた。そして、求められた平均値が20N以上である場合を「◎」、20N未満5N以上である場合を「○」、5N未満である場合を「×」として評価した。結果を表1に示す。
スライドガラス上に、得られた導電性ペーストを塗布し、上方からシリコンウェハを2mmに切断したチップを搭載した。箱型オーブンを用い、導電性ペーストを200℃45分で硬化させた。このようにして得られたサンプルのシェア強度を、デイジジャパン社製シリーズ4000を用いて測定した。それぞれ8個で測定を行い、得られた値の平均値[N]を求めた。そして、求められた平均値が20N以上である場合を「◎」、20N未満5N以上である場合を「○」、5N未満である場合を「×」として評価した。結果を表1に示す。
表1に示した結果より、ガラス基材上にて200℃45分で熱処理して得た硬化体のSi/Sa×100[%]の値が0.015%以上0.125%以下である実施例1−1および1−2の導電性ペーストにおいて、導電性と密着性が共に優れることが確かめられた。一方、比較例1−1および1−2では導電性と密着性が両立しなかった。
また、各実施例2−1から2−5、および比較例2−1、2−2について得られた導電性ペーストを用いて硬化体を作製し、評価した。
(導電性ペーストの硬化体の作製)
実施例2−1から2−5、および比較例2−1、2−2で得られた各導電性ペーストを用いて、以下の様に硬化体を作製した。まず、表2にそれぞれ示す基材上に導電性ペーストを塗布して幅4mm、長さ40mm、厚さ40μmの塗布膜を形成した。そして、得られた塗布膜を、大気雰囲気下、100℃で10分の条件で乾燥させた後、引き続き、200℃、45分の硬化条件で熱処理をして硬化体を得た。
実施例2−1から2−5、および比較例2−1、2−2で得られた各導電性ペーストを用いて、以下の様に硬化体を作製した。まず、表2にそれぞれ示す基材上に導電性ペーストを塗布して幅4mm、長さ40mm、厚さ40μmの塗布膜を形成した。そして、得られた塗布膜を、大気雰囲気下、100℃で10分の条件で乾燥させた後、引き続き、200℃、45分の硬化条件で熱処理をして硬化体を得た。
表2中の基材はそれぞれ以下の通りである。
Glass:スライドガラス(松波硝子工業社製、S1225、CTE:8ppm/℃)
PI:ポリイミド樹脂(CTE:40ppm/℃)
ER:以下の様にして得られるER(Cured epoxy resin)基材(CTE:170ppm/℃)
Glass:スライドガラス(松波硝子工業社製、S1225、CTE:8ppm/℃)
PI:ポリイミド樹脂(CTE:40ppm/℃)
ER:以下の様にして得られるER(Cured epoxy resin)基材(CTE:170ppm/℃)
三菱化学社製ビスフェノールA型液状エポキシ樹脂828 10.0重量部、住友ベークライト社製フェノールノボラック樹脂PR−51470のMEK溶液(RC60wt%)9.1重量部、三菱化学社製ビスフェノールA型フェノキシ樹脂1256B40(RC40wt%のMEK溶解品)26重量部、四国化成社製 硬化触媒イミダゾール2PHZ 0.05重量部を混合してエポキシ樹脂ワニスを作成した。得られたエポキシ樹脂ワニスを住友ベークライト社製ガラスエポキシ積層板EL−3762(1.0mm厚)上にアプリケータを用いて、約50μm厚み(dry)で塗布した。次いで120℃10分で乾燥した後、180℃1時間で硬化させ、ER基材を得た。
ここで、各基材の線膨張係数(CTE)は、以下の方法で測定した値である。すなわち、TMA(熱機械的分析)装置(TAインスツルメント社製、Q400)を用いて、温度範囲30〜300℃、10℃/分、荷重5gの条件でTMAを測定した。そして、2サイクル目の190〜210℃における平面方向の平均線膨張係数(CTE)を算出した。
(導電性評価)
各実施例および各比較例の硬化体について、硬化体の平面方向の体積抵抗率(膜比抵抗率[μΩ・cm])を、4端子法にて測定した。そして、測定された体積抵抗率が4.0μΩ・cm以上10.0μΩ・cm以下である場合を「◎」、10.0μΩ・cm超過15.0μΩ・cm以下である場合を「○」、15.0μΩ・cm超過である場合を「×」として導電性を評価した。結果を表2に示す。
各実施例および各比較例の硬化体について、硬化体の平面方向の体積抵抗率(膜比抵抗率[μΩ・cm])を、4端子法にて測定した。そして、測定された体積抵抗率が4.0μΩ・cm以上10.0μΩ・cm以下である場合を「◎」、10.0μΩ・cm超過15.0μΩ・cm以下である場合を「○」、15.0μΩ・cm超過である場合を「×」として導電性を評価した。結果を表2に示す。
(断面画像の解析)
各実施例および各比較例の硬化体をグラインドソーを用いて切断し、研磨装置を用いて断面観察用試料として形を整えた。次いで、当該試料を日本電子社製クロスセクションポリッシャIB−09020CPを用いて研磨し、平滑な露出断面を得た。露出した断面を走査型電子顕微鏡(日本電子社製、JSM−7401F)を用いて観察した。このようにして得られた断面画像に対し、実施形態で説明したのと同様の方法で解析を行った。解析の結果得られたSi/Sa×100[%]の値およびSd/Sa×100[%]の値を表2に示す。
各実施例および各比較例の硬化体をグラインドソーを用いて切断し、研磨装置を用いて断面観察用試料として形を整えた。次いで、当該試料を日本電子社製クロスセクションポリッシャIB−09020CPを用いて研磨し、平滑な露出断面を得た。露出した断面を走査型電子顕微鏡(日本電子社製、JSM−7401F)を用いて観察した。このようにして得られた断面画像に対し、実施形態で説明したのと同様の方法で解析を行った。解析の結果得られたSi/Sa×100[%]の値およびSd/Sa×100[%]の値を表2に示す。
(密着性評価)
表2に示す各基材上に、各実施例および比較例の導電性ペーストを塗布し、上方からシリコンウェハを2mmに切断したチップを搭載した。箱型オーブンを用い、導電性ペーストを200℃45分で硬化させた。このようにして得られたサンプルのシェア強度を、デイジジャパン社製シリーズ4000を用いて測定した。それぞれ8個で測定を行い、得られた値の平均値[N]を求めた。そして、求められた平均値が20N以上である場合を「◎」、20N未満5N以上である場合を「○」、5N未満である場合を「×」として評価した。結果を表2に示す。
表2に示す各基材上に、各実施例および比較例の導電性ペーストを塗布し、上方からシリコンウェハを2mmに切断したチップを搭載した。箱型オーブンを用い、導電性ペーストを200℃45分で硬化させた。このようにして得られたサンプルのシェア強度を、デイジジャパン社製シリーズ4000を用いて測定した。それぞれ8個で測定を行い、得られた値の平均値[N]を求めた。そして、求められた平均値が20N以上である場合を「◎」、20N未満5N以上である場合を「○」、5N未満である場合を「×」として評価した。結果を表2に示す。
表2に示した結果より、Si/Sa×100[%]の値が0.015%以上0.125%以下である焼結部を含む、実施例2−1から2−5の硬化体において、導電性と密着性が共に優れることが確かめられた。一方、比較例2−1および2−2では導電性と密着性が両立しなかった。図5は、比較例2−1で解析した断面画像である。比較例2−1の断面には一部に金属粒子が焼結した構造も確認されたが、一方で多数の粒子状の金属が多く見られ、Si/Sa×100[%]の値が0.015%以上0.125%以下を満たす断面画像は得られなかった。
加えて、上記した金属粒子1を770重量部に、溶剤1を120重量部加えて作製した導電性ペーストに対して、上述の密着性評価を行った。なお、基材には上記のER基材を用いた。その結果、サンプル作製後、測定前までのハンドリングでチップが剥がれてしまい、計測できないほどに密着力が小さかった。すなわち、密着性と低抵抗の両立はしないことが確認された。
以上、実施例に基づいて本発明をさらに具体的に説明したが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
10 電子装置
20 電子部品
22 電極
30 硬化体
40 基板
42 配線
20 電子部品
22 電極
30 硬化体
40 基板
42 配線
Claims (20)
- 金属粒子と樹脂とを含む導電性ペーストであって、
当該導電性ペーストをガラス基材上で200℃45分で熱処理して得られる硬化体の、13μm×17μmの観察領域の断面画像を電子顕微鏡で取得し、前記断面画像全体の面積をSaとし、前記断面画像において、前記観察領域内の最低輝度から最大輝度までを256段階で表した輝度のうち低い順で1段階目から50段階目までの輝度範囲に含まれる輝度が占める複数の島状領域の平均面積をSiとしたとき、Si/Sa×100[%]の値が0.015%以上0.125%以下である
導電性ペースト。 - 請求項1に記載の導電性ペーストにおいて、
前記断面画像において、前記観察領域内の最低輝度から最大輝度までを256段階で表した輝度のうち低い順で1段階目から50段階目までの輝度範囲に含まれる輝度が占める領域の面積をSdとしたとき、Sd/Sa×100[%]の値が10%以上20%以下である
導電性ペースト。 - 請求項1または2に記載の導電性ペーストにおいて、
前記硬化体の体積抵抗率が4.0μΩ・cm以上15.0μΩ・cm以下である
導電性ペースト。 - 請求項1から3のいずれか一項に記載の導電性ペーストにおいて、
溶剤をさらに含む
導電性ペースト。 - 請求項1から4のいずれか一項に記載の導電性ペーストにおいて、
前記樹脂は熱硬化性樹脂を含む
導電性ペースト。 - 請求項1から5のいずれか一項に記載の導電性ペーストにおいて、
前記金属粒子は、銀粒子である
導電性ペースト。 - 金属と樹脂とを含む導電性ペーストの硬化体であって、
当該硬化体の13μm×17μmの観察領域の断面画像を電子顕微鏡で取得し、前記断面画像全体の面積をSaとし、前記断面画像において、前記観察領域内の最低輝度から最大輝度までを256段階で表した輝度のうち低い順で1段階目から50段階目までの輝度範囲に含まれる輝度が占める複数の島状領域の平均面積をSiとしたとき、Si/Sa×100[%]の値が0.015%以上0.125%以下である
導電性ペーストの硬化体。 - 請求項7に記載の導電性ペーストの硬化体において、
前記断面画像において、前記観察領域内の最低輝度から最大輝度までを256段階で表した輝度のうち低い順で1段階目から50段階目までの輝度範囲に含まれる輝度が占める領域の面積をSdとしたとき、Sd/Sa×100[%]の値が10%以上20%以下である
導電性ペーストの硬化体。 - 請求項7または8に記載の導電性ペーストの硬化体において、
体積抵抗率が4.0μΩ・cm以上15.0μΩ・cm以下である
導電性ペーストの硬化体。 - 請求項7から9のいずれか一項に記載の導電性ペーストの硬化体において、
前記樹脂は熱硬化性樹脂を含む
導電性ペーストの硬化体。 - 請求項7から10のいずれか一項に記載の導電性ペーストの硬化体において、
前記金属は、銀である
導電性ペーストの硬化体。 - 請求項7から11のいずれか一項に記載の導電性ペーストの硬化体において、
当該硬化体は、ガラスまたはエポキシ樹脂硬化物からなる基材上に形成されている
導電性ペーストの硬化体。 - 金属粒子と樹脂とを含む導電性ペーストに対し熱処理を行って硬化体を得る工程を含み、
前記硬化体の13μm×17μmの観察領域の断面画像を電子顕微鏡で取得し、前記断面画像全体の面積をSaとし、前記断面画像において、前記観察領域内の最低輝度から最大輝度までを256段階で表した輝度のうち低い順で1段階目から50段階目までの輝度範囲に含まれる輝度が占める複数の島状領域の平均面積をSiとしたとき、Si/Sa×100[%]の値が0.015%以上0.125%以下である
導電性ペーストの硬化体の製造方法。 - 請求項13に記載の導電性ペーストの硬化体の製造方法において、
前記断面画像において、前記観察領域内の最低輝度から最大輝度までを256段階で表した輝度のうち低い順で1段階目から50段階目までの輝度範囲に含まれる輝度が占める領域の面積をSdとしたとき、Sd/Sa×100[%]の値が10%以上20%以下である
導電性ペーストの硬化体の製造方法。 - 請求項13または14に記載の導電性ペーストの硬化体の製造方法において、
前記硬化体の体積抵抗率が4.0μΩ・cm以上15.0μΩ・cm以下である
導電性ペーストの硬化体の製造方法。 - 請求項13から15のいずれか一項に記載の導電性ペーストの硬化体の製造方法において、
前記導電性ペーストは溶剤をさらに含む
導電性ペーストの硬化体の製造方法。 - 請求項13から16のいずれか一項に記載の導電性ペーストの硬化体の製造方法において、
前記樹脂は熱硬化性樹脂を含む
導電性ペーストの硬化体の製造方法。 - 請求項13から17のいずれか一項に記載の導電性ペーストの硬化体の製造方法において、
前記金属粒子は、銀粒子である
導電性ペーストの硬化体の製造方法。 - 請求項13から18のいずれか一項に記載の導電性ペーストの硬化体の製造方法において、
前記熱処理の加熱温度は160℃以上200℃以下であり、
前記熱処理の加熱時間は15分以上60分以下である
導電性ペーストの硬化体の製造方法。 - 請求項13から19のいずれか一項に記載の導電性ペーストの硬化体の製造方法において、
当該硬化体を、ガラスまたはエポキシ樹脂硬化物からなる基材上に形成する
導電性ペーストの硬化体の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016009118A JP2017130355A (ja) | 2016-01-20 | 2016-01-20 | 導電性ペースト、導電性ペーストの硬化体、および導電性ペーストの硬化体の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016009118A JP2017130355A (ja) | 2016-01-20 | 2016-01-20 | 導電性ペースト、導電性ペーストの硬化体、および導電性ペーストの硬化体の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017130355A true JP2017130355A (ja) | 2017-07-27 |
Family
ID=59396682
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016009118A Pending JP2017130355A (ja) | 2016-01-20 | 2016-01-20 | 導電性ペースト、導電性ペーストの硬化体、および導電性ペーストの硬化体の製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2017130355A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019175664A (ja) * | 2018-03-28 | 2019-10-10 | ナミックス株式会社 | 導電性ペースト及び焼成体 |
-
2016
- 2016-01-20 JP JP2016009118A patent/JP2017130355A/ja active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019175664A (ja) * | 2018-03-28 | 2019-10-10 | ナミックス株式会社 | 導電性ペースト及び焼成体 |
JP7132591B2 (ja) | 2018-03-28 | 2022-09-07 | ナミックス株式会社 | 導電性ペースト及び焼成体 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4890063B2 (ja) | 樹脂組成物、並びにこの樹脂組成物を用いて得たワニス、フィルム状接着剤及びフィルム状接着剤付き銅箔 | |
JP5761639B2 (ja) | 接着剤樹脂組成物、その硬化物、及び接着剤フィルム | |
KR100832628B1 (ko) | 도전 페이스트 | |
JP2017228363A (ja) | 導電性ペースト | |
WO2020250675A1 (ja) | 導電性ペースト組成物 | |
JP5309352B2 (ja) | 電子部品内蔵モジュール用層間絶縁シート、電子部品内蔵モジュール及び電子部品内蔵モジュールの製造方法 | |
JP6324288B2 (ja) | 導電性ペースト及び電磁波シールド部材 | |
JP2020205245A (ja) | 導電性ペースト組成物 | |
JP5293292B2 (ja) | 導電性接着ペースト及び電子部品搭載基板 | |
WO2014051149A1 (ja) | 導電性接着剤 | |
JP2017022033A (ja) | 銀ペーストおよび銀ペーストの硬化体の製造方法 | |
JP5622267B2 (ja) | 接着剤樹脂組成物、その硬化物、及び接着剤フィルム | |
JP2017130358A (ja) | 導電性ペースト、および導電性ペーストの硬化体の製造方法 | |
CN108986952B (zh) | 一种加热固化型导电浆料、其用途及太阳能电池 | |
JP2017188667A (ja) | 絶縁材料及び電子部品 | |
JP4365053B2 (ja) | 導電性ペースト組成物及びプリント配線板 | |
JP2017130355A (ja) | 導電性ペースト、導電性ペーストの硬化体、および導電性ペーストの硬化体の製造方法 | |
JP2017130357A (ja) | 導電性ペースト、および導電性ペーストの硬化体の製造方法 | |
JP2017130356A (ja) | 導電性ペーストの硬化体の製造方法 | |
JP2020180216A (ja) | 樹脂組成物および電子部品構造体 | |
CN108456501A (zh) | 导电性粘接剂组合物 | |
JP2008189815A (ja) | 分散剤、フィラー、熱伝導性樹脂組成物ならび熱伝導性シート | |
KR102195144B1 (ko) | 도전성 페이스트 및 도전막을 구비한 기재 | |
JPH11134939A (ja) | 硬化性導電組成物 | |
JP7375249B1 (ja) | 導電性接着剤組成物 |