JP2017105683A - 積層基板用フォルステライト磁器組成物、フォルステライト磁器組成物の積層基板、積層基板用フォルステライト磁器組成物の製造方法、及び積層基板用フォルステライト磁器組成物の積層基板の製造方法 - Google Patents

積層基板用フォルステライト磁器組成物、フォルステライト磁器組成物の積層基板、積層基板用フォルステライト磁器組成物の製造方法、及び積層基板用フォルステライト磁器組成物の積層基板の製造方法 Download PDF

Info

Publication number
JP2017105683A
JP2017105683A JP2015242265A JP2015242265A JP2017105683A JP 2017105683 A JP2017105683 A JP 2017105683A JP 2015242265 A JP2015242265 A JP 2015242265A JP 2015242265 A JP2015242265 A JP 2015242265A JP 2017105683 A JP2017105683 A JP 2017105683A
Authority
JP
Japan
Prior art keywords
porcelain composition
forsterite
sio
laminate substrate
forsterite porcelain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015242265A
Other languages
English (en)
Other versions
JP7064279B2 (ja
Inventor
小川 宏隆
Hirotaka Ogawa
宏隆 小川
菅 章紀
Akinori Suga
章紀 菅
亮介 平林
Ryosuke Hirabayashi
亮介 平林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meijo University
Original Assignee
Meijo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meijo University filed Critical Meijo University
Priority to JP2015242265A priority Critical patent/JP7064279B2/ja
Publication of JP2017105683A publication Critical patent/JP2017105683A/ja
Application granted granted Critical
Publication of JP7064279B2 publication Critical patent/JP7064279B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

【課題】品質の良好な積層基板を容易に製造することができる積層基板用フォルステライト磁器組成物、フォルステライト磁器組成物の積層基板、積層基板用フォルステライト磁器組成物の製造方法、及び積層基板用フォルステライト磁器組成物の積層基板の製造方法の提供。【解決手段】MgOとSiO2を2:1モル比で混合し、更に該混合物とLiFとを(1−X):X(但し、Xは0.03以上)モル比で混合したものを、850〜900℃で、0.5時間〜50時間焼成することにより得られる積層基板用フォルステライト磁器組成物。前記混合工程において、有機バインダも合わせて混合し、前記工程により混合した混合物を平板状に成形し、得られた平板状の前記混合物パターンを形成し、形成された複数の平板状の前記混合物を積層し、積層した前記混合物を焼成する積層基板の製造方法。【選択図】図1

Description

本発明は積層基板用フォルステライト磁器組成物、フォルステライト磁器組成物の積層基板、積層基板用フォルステライト磁器組成物の製造方法、及び積層基板用フォルステライト磁器組成物の積層基板の製造方法に関するものである。
回路を形成する電極と誘電体基板から成る伝送回路基板において、同種の電極材料と用いた場合、電気信号を高速かつ高効率に伝送するためには、小さい比誘電率(ε)と大きい品質係数(Q・f、Q=1/tanδ、tanδ:誘電正接,f:周波数)を持つ誘電体材料が必要である。つまり、比誘電率(ε)をより小さくし、品質係数より大きくすることによって回路上に流れる電気信号の減衰をより小さくすることができる。回路上に流れる電気信号の減衰の大きさは減衰係数に依存する。減衰係数とは回路上に電気信号が流れた際に、電気信号の減衰のしやすさを表す係数であり、通信に利用される電気信号の周波数fと比誘電率(ε)との平方根に比例し、Q値に反比例する。例えば、減衰係数が小さい誘電体材料の場合、回路上に流れる電気信号が減衰し難い。また、減衰係数が大きい誘電体材料の場合、回路上に流れる電気信号が減衰し易い。このため、ミリ波等の高周波帯域での通信には、低い比誘電率と高い品質係数を兼ね備えた誘電体材料が必要となる。さらに、スマートフォンなどの移動体通信機器の小型化・高機能化に伴い、通信機器に内蔵されるモジュールにおいて、ICチップ等の素子の高密度実装が進んでいる。これにより、通信機器に内蔵されるモジュールは回路の積層化が進んでいる。このため、ミリ波通信等に適した上述の高周波特性を有し、回路となる電極材料(例えばAg(銀)やAu(金))と基板となる誘電体材料とが同時に焼成することができる低温同時焼成セラミックス(Low temperature co-fired ceramics:LTCC)の開発が重要となってきている。
特許文献1は従来の高周波用低温焼成磁器組成物を開示している。この高周波用低温焼成磁器組成物は主材料として、MgO(酸化マグネシウム)、MnO(酸化マンガン)、及びSiO2(酸化ケイ素)を用いている。この高周波用低温焼成磁器組成物は焼結助剤としてBi23(酸化ビスマス)、及びLi2O(酸化リチウム)を用いている。この高周波用低温焼成磁器組成物は、先ず、主材料から複合酸化物であるMg2SiO4(フォルステライト)を得る。そして、このMg2SiO4(フォルステライト)に焼結助剤の質量%を2%以上にして主材料及び焼結助剤を混合する。次に、混合したMg2SiO4(フォルステライト)及び焼結助剤を850℃〜900℃の焼成温度で焼成する。こうして、1×104GHz以上のQ・f値を有する高周波用低温焼成磁器組成物を得ることができる。
特開2008−63161号公報
しかし、特許文献1の高周波用低温焼成磁器組成物は焼結助剤として用いられるLi2O(酸化リチウム)が吸湿性を有している。これにより、この高周波用低温焼成磁器組成物は主材料が凝集し易い。このため、仮に、この高周波用低温焼成磁器組成物を平板状に形成しようとすると、均一な厚さに形成することが難しい。また、この高周波用低温焼成磁器組成物は、主材料から複合酸化物であるMg2SiO4(フォルステライト)を得た後、このMg2SiO4(フォルステライト)に焼結助剤を混合して、さらに焼成している。このため、この高周波用低温焼成磁器組成物は製造するのに手間がかかる。
本発明は、上記従来の実情に鑑みてなされたものであって、品質の良好な積層基板用フォルステライト磁器組成物を容易に提供することを解決すべき課題としている。
本発明の積層基板用フォルステライト磁器組成物は、Q・f値が1.5×104GHz以上であることを特徴とする。
本発明の積層基板用フォルステライト磁器組成物は減衰係数をより小さくすることができる。これにより、この積層基板用フォルステライト磁器組成物を用いて積層基板を製造した場合、積層基板の回路上に高い周波数の電気信号を流しても、電気信号が減衰することを抑えることができる。
また、本発明のフォルステライト磁器組成物の積層基板は請求項1又は2に記載の積層基板用フォルステライト磁器組成物にAg(銀)の回路パターンが形成されていることを特徴とする。このため、このフォルステライト磁器組成物の積層基板は他の元素に比べて電気抵抗率が低いAg(銀)で回路パターンを形成するため、積層基板の回路上に流れる電気信号が減衰することを抑えることができる。
また、本発明の積層基板用フォルステライト磁器組成物の製造方法は、2:1のモル比で混合した単体の酸化物であるMgO(酸化マグネシウム)、及びSiO2(酸化ケイ素)と、LiF(フッ化リチウム)とのモル比を(1−x):xとして、このxの値を0.03以上で混合する混合工程と、前記混合工程を実行して混合された混合物を850℃〜900℃で0.5時間〜50時間焼成する焼成工程とを備えていることを特徴とする。このため、この積層基板用フォルステライト磁器組成物の製造方法は主材料である2:1のモル比で混合した単体の酸化物であるMgO(酸化マグネシウム)、及びSiO2(酸化ケイ素)と焼結助剤であるLiF(フッ化リチウム)とを混合して焼成するだけでMg2SiO4(フォルステライト)を容易に得ることができる。また、この積層基板用フォルステライト磁器組成物の製造方法は主材料である2:1のモル比で混合した単体の酸化物であるMgO(酸化マグネシウム)、及びSiO2(酸化ケイ素)に対する焼結助剤であるLiF(フッ化リチウム)のモル比が小さいため、結晶品質の良好な積層基板用フォルステライト磁器組成物を製造することができる。また、この積層基板用フォルステライト磁器組成物の製造方法は、焼結助剤を用いないでフォルステライト磁器組成物を焼成する場合に比べて焼成温度が低い。これにより、この積層基板用フォルステライト磁器組成物の製造方法を用いて積層基板を製造する際、Ag(銀)を用いて回路パターンを形成して焼成することができる。このため、この積層基板用フォルステライト磁器組成物の製造方法は、積層基板を容易に製造することができる積層基板用フォルステライト磁器組成物を製造することができる。
また、本発明の積層基板用フォルステライト磁器組成物の積層基板の製造方法は、請求項4に記載の混合工程において、有機バインダも合わせて混合し、請求項4に記載の焼成工程を実行する前に、前記混合工程を実行して混合された前記混合物を平板状に成形する成形工程と、前記成形工程を実行して成形された平板状の前記混合物に回路パターンを形成するパターン形成工程と、前記パターン形成工程を実行して形成された複数の平板状の前記混合物を積層する積層工程とを実行することを特徴とする。このため、この積層基板用フォルステライト磁器組成物の積層基板の製造方法は1回の焼成で積層基板を製造することができる。つまり、この積層基板用フォルステライト磁器組成物の積層基板の製造方法は積層基板を容易に製造することができる。
したがって、本発明の積層基板用フォルステライト磁器組成物、フォルステライト磁器組成物の積層基板、積層基板用フォルステライト磁器組成物の製造方法、及び積層基板用フォルステライト磁器組成物の積層基板の製造方法は品質の良好な積層基板を容易に製造することができる。
実施例1〜5、8、9、11、及び比較例1のサンプルをXRD(X線回折)で測定した結果である。 実施例1〜12のサンプルのLiF(フッ化リチウム)の添加量に対する密度を示したグラフである。 実施例1〜12のサンプルのLiF(フッ化リチウム)の添加量に対する比誘電率(ε)を示したグラフである。 実施例1〜12のサンプルのLiF(フッ化リチウム)の添加量に対するQ・f値を示したグラフである。 実施例13〜15のサンプルをXRD(X線回折)で測定した結果である。 実施例14〜17のサンプルの焼成時間に対する比誘電率(ε)を示したグラフである。 実施例14〜17のサンプルの焼成時間に対するQ・f値を示したグラフである。 実施例18〜22、及び比較例2のサンプルをXRD(X線回折)で測定した結果である。 実施例18〜24のサンプルの焼成時間に対する比誘電率(ε)を示したグラフである。 実施例18〜24のサンプルの焼成時間に対するQ・f値を示したグラフである。 実施例25の積層基板を示す模式図である。
本発明における好ましい実施の形態を説明する。
本発明の積層基板用フォルステライト磁器組成物は比誘電率(ε)が7以下であり得る。この場合、この積層基板用フォルステライト磁器組成物は減衰係数をさらに小さくすることができる。これにより、この積層基板用フォルステライト磁器組成物を用いて積層基板を製造した場合、積層基板の回路上に高い周波数の電気信号を流しても、電気信号が減衰することをさらに抑えることができる。
次に、本発明の積層基板用フォルステライト磁器組成物を具体化した実施例1〜24について、図面を参照しつつ説明する。
<実施例1〜24、比較例1、2>
単体の酸化物であるMgO(酸化マグネシウム)とSiO2(酸化ケイ素)とを混合した粉末状の混合物を1100℃以上の温度で焼成すると、単相のMg2SiO4(フォルステライト)が得られることが分かっている。また、焼成する温度が1100℃未満の場合、単体の酸化物であるMgO(酸化マグネシウム)とSiO2(酸化ケイ素)とを混合した粉末状の混合物から単相のMg2SiO4(フォルステライト)を得ることが難しいことが分かっている。また、MgO(酸化マグネシウム)、及びSiO2(酸化ケイ素)は一般的な材料であり原料コストが安価である。また、MgO(酸化マグネシウム)、及びSiO2(酸化ケイ素)は人体への影響が小さい。つまり、MgO(酸化マグネシウム)、及びSiO2(酸化ケイ素)は容易に取り扱うことができる。
先ず、MgO(酸化マグネシウム)、及びSiO2(酸化ケイ素)に対して焼結助剤としてLiF(フッ化リチウム)を添加した混合物を焼成した際に生成されるMg2SiO4(フォルステライト)にLiF(フッ化リチウム)が及ぼす効果について検討する実験を実施した。この実験を実施するため、実施例1〜12、及び比較例1のサンプルを用意した。
実施例1〜12サンプルは、表1に示すように、2:1のモル比で混合した単体の酸化物であるMgO(酸化マグネシウム)、及びSiO2(酸化ケイ素)と、LiF(フッ化リチウム)とのモル比を(1−x):xとして、このxの値をそれぞれ変更している。実施例1〜12のサンプルはそれぞれが900℃で4時間焼成されている。
Figure 2017105683
図1に実施例1〜5、8、9、11、及び比較例1のサンプルのXRD(X線回折)評価結果を示す。なお、比較例1のサンプルは2:1のモル比で混合した単体の酸化物であるMgO(酸化マグネシウム)、及びSiO2(酸化ケイ素)と、LiF(フッ化リチウム)とのモル比を(1−x):xとして、このxの値を0としている。つまり、比較例1のサンプルはLiF(フッ化リチウム)が添加されていない。
実施例1〜5、8、9、11のサンプルは、Mg2SiO4(フォルステライト)に由来するピークが現れている。これは、LiF(フッ化リチウム)が焼結助剤として作用して、MgO(酸化マグネシウム)及びSiO2(酸化ケイ素)からMg2SiO4(フォルステライト)が生成する反応を促進しているものと考えられる。比較例1のサンプルはMgO(酸化マグネシウム)及びSiO2(酸化ケイ素)に由来するピークが現れている。また、比較例1のサンプルは、Mg2SiO4(フォルステライト)に由来するピークが現れていない。つまり、比較例1のサンプルは焼結助剤としてLiF(フッ化リチウム)が添加されていないため、900℃の焼成温度で焼成しても単体の酸化物であるMgO(酸化マグネシウム)、及びSiO2(酸化ケイ素)からMg2SiO4(フォルステライト)が生成する反応が生じない。これらの結果は、LiF(フッ化リチウム)を添加することによって、850℃〜900℃の焼成温度で焼成してMg2SiO4(フォルステライト)が生成できることを示しており、LiF(フッ化リチウム)を添加した効果である。
図2に、実施例1〜12のサンプルのLiF(フッ化リチウム)の添加量に対する密度の変化を示す。実施例5のサンプルの密度は3.1g/cm3である。これは、MgO(酸化マグネシウム)及びSiO2(酸化ケイ素)を1100℃以上である1400℃で焼成して得られたMg2SiO4(フォルステライト)の密度とほぼ同じである(図示せず。)。このことから、MgO(酸化マグネシウム)及びSiO2(酸化ケイ素)にLiF(フッ化リチウム)を添加して900℃で焼成することによって、1400℃で焼成した際に得られるMg2SiO4(フォルステライト)とほぼ同じ密度のMg2SiO4(フォルステライト)を得られることが分かった。つまり、実施例5のサンプルは従来に比べておよそ500℃低い焼成温度で焼成することによって従来のMg2SiO4(フォルステライト)とほぼ同じ密度のMg2SiO4(フォルステライト)が生成されていることが分かった。これにより、融点が960.5℃であるAg(銀)を電極に用いて積層基板を形成することができる。
図3に実施例1〜12のサンプルのLiF(フッ化リチウム)の添加量に対する比誘電率(ε)の変化を示す。実施例1〜12のサンプルは比誘電率(ε)がおよそ5〜6.8である。つまり、実施例1〜12のサンプルは比誘電率(ε)が7以下である。この値はMgO(酸化マグネシウム)及びSiO2(酸化ケイ素)を1100℃以上である1400℃で焼成して得られたMg2SiO4(フォルステライト)の比誘電率(ε)とほぼ同じ値である(図示せず。)。これは、焼結助剤として添加されたLiF(フッ化リチウム)の量がMgO(酸化マグネシウム)及びSiO2(酸化ケイ素)の量に対してとても少ないため、Mg2SiO4(フォルステライト)の生成の反応が主要な部分を占めているためと考えられる。
図4に実施例1〜12のサンプルのLiF(フッ化リチウム)の添加量に対するQ・f値の変化を示す。1400℃で焼成して得られたMg2SiO4(フォルステライト)のQ・f値は2.4×105GHzである(図示せず。)。これに対して、実施例1〜12のサンプルのQ・f値は小さい。これは、焼結助剤として添加されたLiF(フッ化リチウム)による影響であると考えられる。しかし、実施例1〜12のサンプルは、MgO(酸化マグネシウム)及びSiO2(酸化ケイ素)の量に対して焼結助剤であるLiF(フッ化リチウム)の添加される量がとても少ない。このため、実施例1〜12のサンプルは、1400℃で焼成して得られたMg2SiO4(フォルステライト)に比べてQ・f値が極端に小さくなることが抑えられていると考えられる。また、実施例1〜12のサンプルはQ・f値が1.5×104GHz以上の値である。さらに、実施例9、11、12のサンプルはQ・f値が1×105GHz以上の値である。つまり、実施例9、11、12のサンプルはミリ波通信等に適した高周波特性を有している。
次に、MgO(酸化マグネシウム)、及びSiO2(酸化ケイ素)に対して焼結助剤としてLiF(フッ化リチウム)を添加した混合物を850℃の焼成温度で焼成時間を変更して焼成した際に生成されるMg2SiO4(フォルステライト)について検討する実験を実施した。この実験を実施するため、実施例13〜17のサンプルを用意した。
実施例13〜17のサンプルは、表2に示すように、それぞれが850℃の焼成温度で焼成されている。実施例13〜17のサンプルはそれぞれの焼成時間を0.5〜50時間に変更している。また、実施例13〜17のサンプルは2:1のモル比で混合した単体の酸化物であるMgO(酸化マグネシウム)、及びSiO2(酸化ケイ素)と、LiF(フッ化リチウム)とのモル比を(1−x):xとして、このxの値を0.09としている。
Figure 2017105683
図5に実施例13〜15のサンプルのXRD(X線回折)評価結果を示す。実施例13〜15のサンプルはMg2SiO4(フォルステライト)に由来するピークが現れている。これは、LiF(フッ化リチウム)が焼結助剤として作用して、MgO(酸化マグネシウム)及びSiO2(酸化ケイ素)からMg2SiO4(フォルステライト)が生成する反応を促進しているものと考えられる。また、焼成時間が4時間以上である実施例14、15のサンプルにおいて、Mg2SiO4(フォルステライト)が主相となっていることが分かった。
図6に実施例14〜17のサンプルの焼成時間に対する比誘電率(ε)の変化を示す。実施例14〜17のサンプルは比誘電率(ε)がおよそ6.3〜6.7である。つまり、実施例14〜17のサンプルは比誘電率(ε)が7以下である。この値はMgO(酸化マグネシウム)及びSiO2(酸化ケイ素)を1100℃以上である1400℃で焼成して得られたMg2SiO4(フォルステライト)の比誘電率(ε)とほぼ同じ値である(図示せず。)。これは、焼結助剤として添加されたLiF(フッ化リチウム)の量がMgO(酸化マグネシウム)及びSiO2(酸化ケイ素)の量に対してとても少ないため、Mg2SiO4(フォルステライト)の生成の反応が主要な部分を占めているためと考えられる。
図7に実施例14〜17のサンプルの焼成時間に対するQ・f値の変化を示す。1400℃で焼成して得られたMg2SiO4(フォルステライト)のQ・f値は2.4×105GHzである(図示せず。)。これに対して、実施例14〜17のサンプルのQ・f値は小さい。これは、焼結助剤として添加されたLiF(フッ化リチウム)による影響であると考えられる。しかし、実施例14〜17のサンプルは、MgO(酸化マグネシウム)及びSiO2(酸化ケイ素)の量に対して焼結助剤であるLiF(フッ化リチウム)の添加される量がとても少ない。このため、実施例14〜17のサンプルは、1400℃で焼成して得られたMg2SiO4(フォルステライト)に比べてQ・f値が極端に小さくなることが抑えられていると考えられる。また、実施例14〜17のサンプルはQ・f値が1×105GHz以上の値である。つまり、実施例14〜17のサンプルはミリ波通信等に適した高周波特性を有している。
次に、MgO(酸化マグネシウム)、及びSiO2(酸化ケイ素)に対して焼結助剤としてLiF(フッ化リチウム)を添加した混合物を900℃の焼成温度で焼成時間を変更して焼成した際に生成されるMg2SiO4(フォルステライト)について検討する実験を実施した。この実験を実施するため、実施例18〜24及び、比較例2のサンプルを用意した。
実施例18〜24のサンプルは、表3に示すように、それぞれが900℃の焼成温度で焼成されている。実施例18〜24のサンプルはそれぞれの焼成時間を0.5〜50時間に変更している。また、実施例18〜24のサンプルは2:1のモル比で混合した単体の酸化物であるMgO(酸化マグネシウム)、及びSiO2(酸化ケイ素)と、LiF(フッ化リチウム)とのモル比を(1−x):xとして、このxの値を0.09としている。
Figure 2017105683
図8に実施例18〜22、及び比較例2のサンプルのXRD(X線回折)評価結果を示す。なお、比較例2のサンプルは900℃の焼成温度で焼成時間が10分で焼成されている。また、比較例2のサンプルは2:1のモル比で混合した単体の酸化物であるMgO(酸化マグネシウム)、及びSiO2(酸化ケイ素)と、LiF(フッ化リチウム)とのモル比を(1−x):xとして、このxの値を0.09としている。
実施例18〜22、及び比較例2のサンプルは、Mg2SiO4(フォルステライト)に由来するピークが現れている。これは、LiF(フッ化リチウム)が焼結助剤として作用して、MgO(酸化マグネシウム)及びSiO2(酸化ケイ素)からMg2SiO4(フォルステライト)が生成する反応を促進しているものと考えられる。また、焼成時間が0.5時間以上である実施例18〜22のサンプルにおいて、Mg2SiO4(フォルステライト)が主相となっていることが分かった。
図9に実施例18〜24のサンプルの焼成時間に対する比誘電率(ε)の変化を示す。実施例18〜24のサンプルは比誘電率(ε)がおよそ6.4〜6.8である。つまり、実施例18〜24のサンプルは比誘電率(ε)が7以下である。この値はMgO(酸化マグネシウム)及びSiO2(酸化ケイ素)を1100℃以上である1400℃で焼成して得られたMg2SiO4(フォルステライト)の比誘電率(ε)とほぼ同じ値である(図示せず。)。これは、焼結助剤として添加されたLiF(フッ化リチウム)の量がMgO(酸化マグネシウム)及びSiO2(酸化ケイ素)の量に対してとても少ないため、Mg2SiO4(フォルステライト)の生成の反応が主要な部分を占めているためと考えられる。
図10に実施例18〜24のサンプルの焼成時間に対するQ・f値の変化を示す。1400℃で焼成して得られたMg2SiO4(フォルステライト)のQ・f値は2.4×105GHzである(図示せず。)。これに対して、実施例18〜24のサンプルのQ・f値は小さい。これは、焼結助剤として添加されたLiF(フッ化リチウム)による影響であると考えられる。しかし、実施例18〜24のサンプルは、MgO(酸化マグネシウム)及びSiO2(酸化ケイ素)の量に対して焼結助剤であるLiF(フッ化リチウム)の添加される量がとても少ない。このため、実施例18〜24のサンプルは、1400℃で焼成して得られたMg2SiO4(フォルステライト)に比べてQ・f値が極端に小さくなることが抑えられていると考えられる。また、実施例18〜23のサンプルはQ・f値が1.5×104GHz以上の値である。さらに、実施例19〜22のサンプルはQ・f値が1×105GHz以上の値である。つまり、実施例19〜22のサンプルはミリ波通信等に適した高周波特性を有している。
次に、本発明の積層基板用フォルステライト磁器組成物の積層基板の製造方法を具体化した実施例25について、図面を参照しつつ説明する。
<実施例25>
積層基板1である実施例25のサンプルは、図11に示すように、複数の基板10、複数の回路パターン11、及び複数の半導体素子12を有している。
先ず、2:1のモル比で混合した単体の酸化物であるMgO(酸化マグネシウム)及びSiO2(酸化ケイ素)と、LiF(フッ化リチウム)とを所定の割合で混合する(混合工程。)。詳しくは、2:1のモル比で混合した単体の酸化物であるMgO(酸化マグネシウム)及びSiO2(酸化ケイ素)と、LiF(フッ化リチウム)とのモル比を(1−x):xとして、このxの値を0.03以上で混合する。また、混合工程において有機バインダも合わせて混合する。こうして混合工程を終了する。
次に、混合工程を実行して混合された混合物を平板状に成形する(成形工程。)。詳しくは、混合工程を実行して混合された混合物を合成樹脂製の平板状をなした膜の表面に平板状に延ばして乾燥させる。平板状に延ばして成形された混合物をグリーンシート14という。また、グリーンシート14は後述する焼成工程を実行することによってMgO(酸化マグネシウム)及びSiO2(酸化ケイ素)からMg2SiO4(フォルステライト)が生成され基板10を形成する。こうして成形工程を終了する。
次に、ビアホール13を形成する。ビアホール13はグリーンシート14に板厚方向に貫通して設けられる貫通孔である。ビアホール13は積層される複数のグリーンシート14のそれぞれに形成された回路パターン11を互いに電気的に接続するために用いられる。
次に、成形工程を実行して成形されたグリーンシート14に複数の回路パターン11を形成する(パターン形成工程。)。詳しくは、グリーンシート14の表面にペースト状のAg(銀)をスクリーン印刷等で複数の回路パターン11の形状に形成する。このとき、ビアホール13内にペースト状のAg(銀)が充填される。また、複数の回路パターン11は素子と素子とを電気的に接続する配線構造を形成するだけでなく、形成する形状によってコンデンサ、インダクタ、及びフィルタ等として動作する素子構造を形成することもできる(図示せず。)。つまり、Q・f値が1.5×104GHz以上であり、比誘電率(ε)が7以下である実施例25のサンプルはAg(銀)の回路パターン11が形成されている。こうしてパターン形成工程を終了する。
次に、パターン形成工程を実行して形成された複数のグリーンシート14を積層する(積層工程。)。詳しくは、表面にペースト状のAg(銀)の複数の回路パターン11を印刷して形成されたグリーンシート14を複数積層する。そして、積層された複数のグリーンシート14に対して、グリーンシート14の板厚方向に所定の圧力を加える。これにより、積層されたグリーンシート14を互いに密着させる。このとき、ビアホール13内に充填されたペースト状のAg(銀)の下端が、1層下に積層されたグリーンシート14に形成された回路パターン11の表面に当接して密着する。こうして積層工程を終了する。そして、積層されて密着した複数のグリーンシート14の最も表面に複数の半導体素子12を載置する。このとき、半導体素子12の足12A(リード)はペースト状のAg(銀)が印刷されて形成された複数の回路パターン11の表面に当接している。つまり、後述する焼成工程を実行する前に、成形工程、パターン形成工程、及び積層工程を実行する。
次に、こうして形成され積層された複数のグリーンシート14を焼成する(焼成工程。)。詳しくは、積層されて密着した複数のグリーンシート14、及び複数のグリーンシート14の最も表面に載置された複数の半導体素子12を所定の温度に設定されたリフロー炉内にセットする。このとき、リフロー炉内の温度は850℃〜900℃である。そして、リフロー炉内に0.5時間〜50時間放置して焼成する。つまり、混合工程を実行して混合された混合物であるグリーンシート14を850℃〜900℃で0.5時間〜50時間焼成する。これにより、焼成された複数のグリーンシート14はMgO(酸化マグネシウム)及びSiO2(酸化ケイ素)からMg2SiO4(フォルステライト)が生成され基板10を形成し、複数の回路パターン11の形状に形成されたペースト状のAg(銀)は溶融して複数の回路パターン11として導電性を示す。また、このとき、ペースト状のAg(銀)が印刷されて形成された複数の回路パターン11の表面に当接した半導体素子12の足12A(リード)は、ペースト状のAg(銀)が溶融するのに伴い、Ag(銀)と電気的に結合する。また、ビアホール13内に充填されたペースト状のAg(銀)が溶融して、1層下に積層されたグリーンシート14に形成された回路パターン11に電気的に結合する。また、このとき、複数のグリーンシート14にそれぞれ設けられたビアホール13の位置を合わせることによって、積層された複数のグリーンシート14を貫通して直接的に隣接して積層されていないグリーンシート14に形成された複数の回路パターン11を互いに電気的に結合することができる。こうして焼成工程を終了して積層基板1を製造することができる。
このように、この積層基板用フォルステライト磁器組成物は減衰係数をより小さくすることができる。これにより、この積層基板用フォルステライト磁器組成物を用いて積層基板1を製造した場合、積層基板1の回路上に高い周波数の電気信号を流しても、電気信号が減衰することを抑えることができる。
また、このフォルステライト磁器組成物の積層基板1は請求項1又は2に記載の積層基板用フォルステライト磁器組成物にAg(銀)の回路パターン11が形成されている。このため、このフォルステライト磁器組成物の積層基板1は他の元素に比べて電気抵抗率が低いAg(銀)で回路パターン11を形成するため、積層基板1の回路上に流れる電気信号が減衰することを抑えることができる。
また、この積層基板用フォルステライト磁器組成物の製造方法は、2:1のモル比で混合した単体の酸化物であるMgO(酸化マグネシウム)及びSiO2(酸化ケイ素)と、LiF(フッ化リチウム)とのモル比を(1−x):xとして、このxの値を0.03以上で混合する混合工程と、混合工程を実行して混合された混合物を850℃〜900℃で0.5時間〜50時間焼成する焼成工程とを備えている。このため、この積層基板用フォルステライト磁器組成物の製造方法は主材料である2:1のモル比で混合した単体の酸化物であるMgO(酸化マグネシウム)、及びSiO2(酸化ケイ素)と焼結助剤であるLiF(フッ化リチウム)とを混合して焼成するだけでMg2SiO4(フォルステライト)を容易に得ることができる。また、この積層基板用フォルステライト磁器組成物の製造方法は主材料である2:1のモル比で混合した単体の酸化物であるMgO(酸化マグネシウム)、及びSiO2(酸化ケイ素)に対する焼結助剤であるLiF(フッ化リチウム)のモル比が小さいため、結晶品質の良好な積層基板用フォルステライト磁器組成物を製造することができる。また、この積層基板用フォルステライト磁器組成物の製造方法は、焼結助剤を用いないでフォルステライト磁器組成物を焼成する場合に比べて焼成温度が低い。これにより、この積層基板用フォルステライト磁器組成物の製造方法を用いて積層基板1を製造する際、Ag(銀)を用いて回路パターン11を形成して焼成することができる。このため、この積層基板用フォルステライト磁器組成物の製造方法は、積層基板1を容易に製造することができる積層基板用フォルステライト磁器組成物を製造することができる。
また、この積層基板用フォルステライト磁器組成物の積層基板の製造方法は、請求項4に記載の混合工程において、有機バインダも合わせて混合し、請求項4に記載の焼成工程を実行する前に、混合工程を実行して混合された混合物を平板状に成形する成形工程と、成形工程を実行して成形された平板状の混合物に回路パターン11を形成するパターン形成工程と、パターン形成工程を実行して形成された複数の平板状の混合物を積層する積層工程とを実行する。このため、この積層基板用フォルステライト磁器組成物の積層基板の製造方法は1回の焼成で積層基板1を製造することができる。つまり、この積層基板用フォルステライト磁器組成物の積層基板の製造方法は積層基板1を容易に製造することができる。
したがって、本発明の積層基板用フォルステライト磁器組成物、フォルステライト磁器組成物の積層基板、積層基板用フォルステライト磁器組成物の製造方法、及び積層基板用フォルステライト磁器組成物の積層基板の製造方法も品質の良好な積層基板1を容易に製造することができる。
また、この積層基板用フォルステライト磁器組成物は比誘電率(ε)が7以下である。このため、この積層基板用フォルステライト磁器組成物は減衰係数をさらに小さくすることができる。これにより、この積層基板用フォルステライト磁器組成物を用いて積層基板1を製造した場合、積層基板1の回路上に高い周波数の電気信号を流しても、電気信号が減衰することをさらに抑えることができる。
本発明は上記記述及び図面によって説明した実施例1〜25に限定されるものではなく、例えば次のような実施例も本発明の技術的範囲に含まれる。
(1)実施例1〜12、18〜24では、焼成温度を900℃とし、実施例13〜17では、焼成温度を850℃として焼成しているが、これに限らず、焼成温度を850℃〜950℃として焼成しても良い。
(2)実施例25では、回路パターンにAg(銀)を用いているが、これに限らず、回路パターンにAu(金)やCu(銅)を用いても良い。
(3)実施例25では、グリーンシートの表面にペースト状のAg(銀)をスクリーン印刷等で回路パターンの形状に形成しているが、これに限らず、グリーンシートの表面及び裏面にペースト状のAg(銀)をスクリーン印刷等で回路パターンの形状に形成しても良い。
(4)実施例25では、グリーンシートを4枚積層しているが、これに限らず、グリーンシートの枚数を3枚以下積層しても良く、5枚以上積層しても良い。
本発明は、WiFi(2.4GHz、5GHz通信)の次世代規格であるWiGig(60GHz通信)等に用いられる高周波モジュールに利用できる可能性がある。
1…積層基板
11…回路パターン

Claims (5)

  1. Q・f値が1.5×104GHz以上であることを特徴とする積層基板用フォルステライト磁器組成物。
  2. 比誘電率(ε)が7以下であることを特徴とする請求項1に記載の積層基板用フォルステライト磁器組成物。
  3. 請求項1又は2に記載の積層基板用フォルステライト磁器組成物にAg(銀)の回路パターンが形成されていることを特徴とするフォルステライト磁器組成物の積層基板。
  4. 2:1のモル比で混合した単体の酸化物であるMgO(酸化マグネシウム)及びSiO2(酸化ケイ素)と、LiF(フッ化リチウム)とのモル比を(1−x):xとして、このxの値を0.03以上で混合する混合工程と、
    前記混合工程を実行して混合された混合物を850℃〜900℃で0.5時間〜50時間焼成する焼成工程と、
    を備えていることを特徴とする積層基板用フォルステライト磁器組成物の製造方法。
  5. 請求項4に記載の混合工程において、有機バインダも合わせて混合し、
    請求項4に記載の焼成工程を実行する前に、
    前記混合工程を実行して混合された前記混合物を平板状に成形する成形工程と、
    前記成形工程を実行して成形された平板状の前記混合物に回路パターンを形成するパターン形成工程と、
    前記パターン形成工程を実行して形成された複数の平板状の前記混合物を積層する積層工程と、
    を実行することを特徴とする積層基板用フォルステライト磁器組成物の積層基板の製造方法。
JP2015242265A 2015-12-11 2015-12-11 積層基板用フォルステライト磁器組成物、フォルステライト磁器組成物の積層基板、積層基板用フォルステライト磁器組成物の製造方法、及び積層基板用フォルステライト磁器組成物の積層基板の製造方法 Active JP7064279B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015242265A JP7064279B2 (ja) 2015-12-11 2015-12-11 積層基板用フォルステライト磁器組成物、フォルステライト磁器組成物の積層基板、積層基板用フォルステライト磁器組成物の製造方法、及び積層基板用フォルステライト磁器組成物の積層基板の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015242265A JP7064279B2 (ja) 2015-12-11 2015-12-11 積層基板用フォルステライト磁器組成物、フォルステライト磁器組成物の積層基板、積層基板用フォルステライト磁器組成物の製造方法、及び積層基板用フォルステライト磁器組成物の積層基板の製造方法

Publications (2)

Publication Number Publication Date
JP2017105683A true JP2017105683A (ja) 2017-06-15
JP7064279B2 JP7064279B2 (ja) 2022-05-10

Family

ID=59058879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015242265A Active JP7064279B2 (ja) 2015-12-11 2015-12-11 積層基板用フォルステライト磁器組成物、フォルステライト磁器組成物の積層基板、積層基板用フォルステライト磁器組成物の製造方法、及び積層基板用フォルステライト磁器組成物の積層基板の製造方法

Country Status (1)

Country Link
JP (1) JP7064279B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113498406A (zh) * 2020-02-05 2021-10-12 费罗公司 用于高频应用的m7 ltcc-银系统和相关介电组合物

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10158058A (ja) * 1996-11-27 1998-06-16 Kyocera Corp 磁器焼結体
JPH11147756A (ja) * 1997-08-28 1999-06-02 Kyocera Corp 着色磁器焼結体とその製造方法
WO2005082806A1 (ja) * 2004-03-01 2005-09-09 Murata Manufacturing Co., Ltd. 絶縁体セラミック組成物、絶縁性セラミック焼結体および積層型セラミック電子部品
JP2005335986A (ja) * 2004-05-25 2005-12-08 Murata Mfg Co Ltd セラミック原料組成物、セラミック基板およびその製造方法
JP2006056762A (ja) * 2004-08-23 2006-03-02 Murata Mfg Co Ltd セラミック原料組成物、セラミック基板およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10158058A (ja) * 1996-11-27 1998-06-16 Kyocera Corp 磁器焼結体
JPH11147756A (ja) * 1997-08-28 1999-06-02 Kyocera Corp 着色磁器焼結体とその製造方法
WO2005082806A1 (ja) * 2004-03-01 2005-09-09 Murata Manufacturing Co., Ltd. 絶縁体セラミック組成物、絶縁性セラミック焼結体および積層型セラミック電子部品
JP2005335986A (ja) * 2004-05-25 2005-12-08 Murata Mfg Co Ltd セラミック原料組成物、セラミック基板およびその製造方法
JP2006056762A (ja) * 2004-08-23 2006-03-02 Murata Mfg Co Ltd セラミック原料組成物、セラミック基板およびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113498406A (zh) * 2020-02-05 2021-10-12 费罗公司 用于高频应用的m7 ltcc-银系统和相关介电组合物

Also Published As

Publication number Publication date
JP7064279B2 (ja) 2022-05-10

Similar Documents

Publication Publication Date Title
JP5056528B2 (ja) 絶縁体セラミック組成物およびそれを用いた絶縁体セラミック
CN102365249B (zh) 介电陶瓷组合物、多层介电基板、电子部件和介电陶瓷组合物的制备方法
JP4883224B2 (ja) 低温焼結セラミック材料およびセラミック基板
JP6458863B2 (ja) 低温焼結セラミック材料、セラミック焼結体およびセラミック電子部品
WO2012157299A1 (ja) ガラスセラミック組成物
WO2010092969A1 (ja) 低温焼結セラミック材料およびセラミック基板
JP2001114554A (ja) 低温焼成セラミック組成物及びセラミック多層基板
CN104144898A (zh) 复合层叠陶瓷电子部件
JP2010226038A (ja) セラミック電子部品
JP6728859B2 (ja) セラミック基板およびその製造方法
JP5120406B2 (ja) セラミック電子部品及びセラミック電子部品の製造方法
JP7064279B2 (ja) 積層基板用フォルステライト磁器組成物、フォルステライト磁器組成物の積層基板、積層基板用フォルステライト磁器組成物の製造方法、及び積層基板用フォルステライト磁器組成物の積層基板の製造方法
JP5527053B2 (ja) 誘電体磁器、誘電体磁器の製造方法及び電子部品
JP2004256384A (ja) 酸化物セラミックス材料、これを用いたセラミック基板、セラミック積層デバイスとパワーアンプモジュール
JP5527116B2 (ja) 誘電体磁器組成物および積層型セラミック電子部品
JP4619173B2 (ja) 複合電子部品材料
JP4714986B2 (ja) 誘電体磁器組成物及びそれを用いた多層基板
JP2021153105A (ja) 積層電子部品
JP2020196635A (ja) アルミナ質焼結体及び配線基板
JP2006260895A (ja) 複合誘電体材料及びこれを用いたプリプレグ、金属箔塗工物、成形体、複合誘電体基板、多層基板
JP2012156314A (ja) 多層配線基板
JP5527052B2 (ja) 誘電体磁器、誘電体磁器の製造方法及び電子部品
JP2005015284A (ja) 低温焼成磁器およびその製造方法、並びに配線基板
JP2004231453A (ja) ガラスセラミック組成物、ガラスセラミック焼結体並びにそれを用いた配線基板と、その実装構造
JP2004172342A (ja) セラミック積層基板の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191008

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200629

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200629

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200706

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200707

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20200821

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20200825

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210527

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210902

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20211223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220207

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220303

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220331

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220422

R150 Certificate of patent or registration of utility model

Ref document number: 7064279

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150