JP2017098868A - ノイズ検出装置、ノイズ低減装置及びノイズ検出方法 - Google Patents

ノイズ検出装置、ノイズ低減装置及びノイズ検出方法 Download PDF

Info

Publication number
JP2017098868A
JP2017098868A JP2015231573A JP2015231573A JP2017098868A JP 2017098868 A JP2017098868 A JP 2017098868A JP 2015231573 A JP2015231573 A JP 2015231573A JP 2015231573 A JP2015231573 A JP 2015231573A JP 2017098868 A JP2017098868 A JP 2017098868A
Authority
JP
Japan
Prior art keywords
noise
unit
frequency
detection
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015231573A
Other languages
English (en)
Inventor
俊人 市川
Toshihito Ichikawa
俊人 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Electronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Electronic Corp filed Critical Pioneer Electronic Corp
Priority to JP2015231573A priority Critical patent/JP2017098868A/ja
Publication of JP2017098868A publication Critical patent/JP2017098868A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Noise Elimination (AREA)

Abstract

【課題】ビート変動が発生しても、最近のビートノイズ成分が含まれるノイズ周波数帯域を適切に検出する。【解決手段】推定ユニット152が、音声信号である検波信号DTDに対して行われたN1回の周波数解析の結果を時間平均化処理した時間平均スペクトルFASに基づいて、最近のビートノイズ成分を含む第1周波数領域FRGを推定する。引き続き、検出ユニット153が、当該N1回の周波数解析における最新の周波数解析の結果を含むN2(<N1)回の周波数解析における第1周波数領域FRG内の周波数解析結果から、第1周波数領域FRGよりも狭い第2周波数領域SRGをノイズ周波数領域NRGとして検出する。【選択図】 図2

Description

本発明は、ノイズ検出装置、ノイズ低減装置、ノイズ検出方法及びノイズ検出プログラム、並びに、当該ノイズ検出プログラムが記録された記録媒体に関する。
従来から、音声放送波を受信して処理し、放送音声を出力する放送受信装置が広く普及している。こうした放送受信装置による出力音声に含まれることがあるノイズ音の一つとして、いわゆるビートノイズ音がある。
かかるビートノイズ音の原因となるビートノイズ成分が音声信号の帯域内にあると、音声成分とビートノイズ成分との識別が難しい。固定的に配置された周囲の電子装置等に由来するビートノイズ成分であれば、ビートノイズ成分の周波数を予め調べておき、その周波数成分だけを低減させることによりビートノイズ音を低減させることができる。しかしながら、この方法では、様々な周波数を有するビートノイズ成分が周囲環境から混入してくる場合には、ビートノイズ音を低減させることができなかった。
そこで、音声信号である検波信号のパワースペクトルを時間平均して得られる時間平均スペクトルに基づいて、検波信号に含まれるビートノイズ成分を検出する技術が提案されている(特許文献1参照:以下、「従来例」と呼ぶ)。この従来例の技術においては、検波信号の時間平均スペクトルでは、ビートノイズ成分が強調されることを利用している。そして、時間平均スペクトルにおいて所定閾値以上のエネルギ量となる周波数領域を、ノイズ周波数領域として検出するようになっている。
特開2015−156577号公報
従来例の技術では、時間平均スペクトルにおいてビートノイズ成分が十分に強調されることを前提としている。かかるビートノイズ成分の十分な強調のためには、時間平均の対象となる期間長が長いことが好ましい。
ところで、実際には、ゆっくりとはであるが、ビートノイズ成分の周波数であるビート周波数の変動(以下、「ビート変動」ともいう)が発生することがある。かかるビート変動が発生していると、平均化の期間長を長くした場合には、従来例の技術による検出では、当該ビート変動に追従できない事態が発生し得る。一方、ビート変動に追従するために時間平均の期間長を短くすると、ビートノイズ成分の強調が十分にできなくなってしまう可能性がある。
このため、ビート変動が発生しても、最近のビートノイズ成分が含まれるノイズ周波数帯域を適切に検出することができる技術が望まれている。かかる要請に応えることが、本発明が解決すべき課題の一つとして挙げられる。
請求項1に記載の発明は、入力した信号に対する所定回数の周波数解析の結果を時間平均化処理した結果から、ノイズ成分を含む第1周波数領域を推定する推定部と;前記所定回数の周波数解析のうち最新となる最新周波数解析の結果を含み、前記第1周波数領域に対する前記所定回数未満の回数の周波数解析の結果から、前記第1周波数領域より狭い第2周波数領域をノイズ周波数領域として検出する検出部と;を備えることを特徴とするノイズ検出装置である。
請求項6に記載の発明は、請求項1〜5のいずれか一項に記載のノイズ検出装置と;
前記ノイズ検出装置により検出されたノイズ周波数領域の成分を低減させる低減部と;を備えるノイズ低減装置である。
請求項7に記載の発明は、推定部と、検出部とを備えるノイズ検出装置において使用されるノイズ検出方法であって、前記推定部が、入力した信号に対する所定回数の周波数解析の結果を時間平均化処理した結果から、ノイズ成分を含む第1周波数領域を推定する推定工程と;前記検出部が、前記所定回数の周波数解析のうち最新となる最新周波数解析の結果を含み、前記第1周波数領域に対する前記所定回数未満の回数の周波数解析の結果から、前記第1周波数領域より狭い第2周波数領域をノイズ周波数領域として検出する検出工程と;を備えることを特徴とするノイズ検出方法である。
請求項8に記載の発明は、ノイズ検出装置が有するコンピュータに、請求項7に記載のノイズ検出方法を実行させる、ことを特徴とするノイズ検出プログラムである。
請求項9に記載の発明は、ノイズ検出装置が有するコンピュータにより読み取り可能に、請求項8に記載のノイズ検出プログラムが記録されている、ことを特徴とする記録媒体である。
本発明の第1実施形態に係るノイズ低減装置を備える放送受信装置の構成を概略的に示すブロック図である。 図1のノイズ検出装置の構成を示すブロック図である。 図2のFFTユニットによるフーリエ変換結果におけるサブバンドを説明するための図である。 図2の推定ユニットの構成を示すブロック図である。 図2の検出ユニットの構成を示すブロック図である。 図2のノイズ検出装置における信号処理を説明するための図(その1)である。 図2のノイズ検出装置における信号処理を説明するための図(その2)である。 本発明の第2実施形態に係るノイズ低減装置を備える放送受信装置の構成を概略的に示すブロック図である。 図8のノイズ検出装置の構成を示すブロック図である。 本発明の第3実施形態に係るノイズ低減装置を備える放送受信装置の構成を概略的に示すブロック図である。 図10の低減ユニットの構成を示すブロック図である。
以下、本発明の実施形態を、添付図面を参照して説明する。なお、以下の説明及び図面においては、同一又は同等の要素には同一の符号を付し、重複する説明を省略する。
[第1実施形態]
まず、本発明の第1実施形態を、図1〜図7を参照して説明する。なお、第1実施形態に係るノイズ低減装置として、放送受信装置が備えるノイズ低減装置を例示して説明する。
<構成>
図1には、本発明の第1実施形態に係るノイズ低減装置140Aを備える放送受信装置100Aの概略的な構成がブロック図にて示されている。
図1に示されるように、放送受信装置100Aは、ノイズ低減装置140Aに加えて、アンテナ110と、RF処理ユニット120と、検波ユニット130とを備えている。また、放送受信装置100Aは、アナログ処理ユニット160と、スピーカユニット170と、入力ユニット180と、制御ユニット190とを備えている。
上記のアンテナ110は、放送波を受信する。アンテナ110による受信結果は、信号RFSとして、RF処理ユニット120へ送られる。
上記のRF処理ユニット120は、制御ユニット190から送られた選局指令CSLに従って、選局すべき希望局の信号を信号RFSから抽出する選局処理を行い、所定の中間周波数帯の成分を有する中間周波信号IFDを生成する。そして、RF処理ユニット120は、生成された中間周波信号IFDを、検波ユニット130へ送る。このRF処理ユニット120は、入力フィルタと、高周波増幅器(RF−AMP:Radio Frequency-Amplifier)と、バンドパスフィルタ(以下、「RFフィルタ」とも呼ぶ)とを備えている。また、RF処理ユニット120は、ミキサ(混合器)と、中間周波フィルタ(以下、「IFフィルタ」とも呼ぶ)と、AD(Analogue to Digital)変換器と、局部発振回路(OSC)とを備えている。
ここで、入力フィルタは、アンテナ110から送られた信号RFSの低周波成分を遮断するハイパスフィルタである。高周波増幅器は、入力フィルタを通過した信号を増幅する。RFフィルタは、高周波増幅器から出力された信号のうち、高周波帯の信号を選択的に通過させる。ミキサは、RFフィルタを通過した信号と、局部発振回路から供給された局部発振信号とを混合する。
IFフィルタは、ミキサから出力された信号のうち、予め定められた中間周波数範囲の信号を選択して通過させる。AD変換器は、IFフィルタを通過した信号をデジタル信号に変換する。この変換結果は、中間周波信号IFDとして、検波ユニット130へ送られる。
なお、局部発振回路は、電圧制御等により発振周波数の制御が可能な発振器等を備えて構成される。この局部発振回路は、制御ユニット190から送られた選局指令CSLに従って、選局すべき希望局に対応する周波数の局部発振信号を生成し、ミキサへ供給する。
上記の検波ユニット130は、RF処理ユニット120から送られた中間周波信号IFDを受ける。そして、検波ユニット130は、中間周波信号IFDに対して検波処理を施し、検波結果を検波信号DTDとして、ノイズ低減装置140Aへ送る。ここで、検波信号DTDは、音声帯域の信号(音声信号)となっている。
上記のノイズ低減装置140Aは、ノイズ検出装置150Aと、低減ユニット156Aとを備えている。
上記のノイズ検出装置150Aは、検波ユニット130から送られた検波信号DTDを受ける。そして、ノイズ検出装置150Aは、検波信号DTDにおけるビートノイズ成分
が含まれる周波数領域であるノイズ周波数領域NRG(後述する図7参照)を検出する。ノイズ検出装置150Aによる検出結果は、ノイズ周波数領域情報NRIとして低減ユニット156Aへ送られる。
なお、ノイズ検出装置150Aの構成の詳細については、後述する。
上記の低減ユニット156Aは、検波ユニット130から送られた検波信号DTD、及び、ノイズ検出装置150Aから送られたノイズ周波数領域情報NRIを受ける。そして、低減ユニット156Aは、検波信号DTDにおけるノイズ周波数領域情報NRIにより示されたノイズ周波数領域NRGの成分を低減させる。この結果、検波信号DTDにおけるビートノイズ成分が低減される。低減ユニット156Aによるビートノイズ成分の低減結果は、信号AODとして、アナログ処理ユニット160へ送られる。
なお、第1実施形態では、低減ユニット156Aは、ノイズ周波数領域情報NRIに応じて、低減領域が変化する可変ノッチフィルタを備えて構成されている。
上記のアナログ処理ユニット160は、ノイズ低減装置140Aから送られた信号AODを受ける。そして、アナログ処理ユニット160は、制御ユニット190による制御のもとで、出力音声信号AOSを生成し、生成された出力音声信号AOSをスピーカユニット170へ送る。
かかる機能を有するアナログ処理ユニット160は、DA(Digital to Analogue)変換部と、音量調整部と、パワー増幅部とを備えて構成されている。ここで、DA変換部は、ノイズ低減装置140Aから送られた信号AODを受ける。そして、DA変換部は、信号AODをアナログ信号に変換する。DA変換部によるアナログ変換結果は音量調整部へ送られる。
音量調整部は、DA変換部から送られたアナログ変換結果の信号を受ける。そして、音量調整部は、制御ユニット190からの音量調整指令VLCに従って、アナログ変換結果の信号に対して音量調整処理を施す。なお、音量調整部は、第1実施形態では、電子ボリューム素子等を備えて構成されている。音量調整部による音量調整結果の信号は、パワー増幅部へ送られる。
パワー増幅部は、音量調整部から送られた音量調整結果の信号を受ける。そして、パワー増幅部は、音量調整結果の信号をパワー増幅する。なお、パワー増幅部は、パワー増幅器を備えている。パワー増幅部による増幅結果である出力音声信号AOSは、スピーカユニット170へ送られる。
上記のスピーカユニット170は、スピーカを備えている。このスピーカユニット170は、アナログ処理ユニット160から送られた出力音声信号AOSに従って、音声を再生出力する。
上記の入力ユニット180は、放送受信装置100Aの本体部に設けられたキー部、あるいはキー部を備えるリモート入力装置等により構成される。ここで、本体部に設けられたキー部としては、不図示の表示ユニットに設けられたタッチパネルを用いることができる。また、キー部を有する構成に代えて、音声入力する構成を採用することもできる。入力ユニット180への入力結果は、入力データIPDとして制御ユニット190へ送られる。
上記の制御ユニット190は、入力ユニット180から送られた入力データIPDを受ける。この入力データIPDの内容が選局指定であった場合には、制御ユニット190は、指定された希望局に対応する選局指令CSLを生成して、RF処理ユニット120へ送る。また、入力データIPDの内容が音量調整指定であった場合には、制御ユニット190は、指定された音量調整指定に対応する音量調整指令VLCを生成して、アナログ処理ユニット160へ送る。
《ノイズ検出装置150Aの構成》
次に、上記のノイズ検出装置150Aの構成について説明する。
ノイズ検出装置150Aは、図2に示されるように、フーリエ変換ユニット(FFTユニット)151を備えている。また、ノイズ検出装置150Aは、推定ユニット152と、検出ユニット153とを備えている。
上記のFFTユニット151は、検波ユニット130から送られた検波信号DTDを受ける。そして、FFTユニット151は、検波信号DTDにフーリエ変換を施す。かかるフーリエ変換の結果(スペクトル)は、フーリエ変換結果SP(T)(T:変換時刻)として、推定ユニット152へ送られる。
ここで、フーリエ変換結果SP(T)におけるサブバンドSBj(j=1〜N)について、図3を参照して説明する。この図3に示されるように、FFTユニット151によるフーリエ変換の対象となる音声帯域ABDは、FFTユニット151の周波数分解能FRの幅のサブバンドSB1〜SBNから構成されている。そして、フーリエ変換結果SP(T)は、サブバンドSBjごとのエネルギ値として構成されるようになっている。
なお、以下の説明においては、フーリエ変換結果SP(T)を「スペクトルSP(T)」と呼ぶものとする。
図2に戻り、上記の推定ユニット152は、FFTユニット151から順次送られたスペクトルSP(T)を受ける。そして、推定ユニット152は、時間的に連続する最近のN1個のスペクトルSP(T)に基づいて、ビートノイズ成分が含まれる第1周波数領域FRG(後述する図6参照)を推定する。こうして推定された第1周波数領域FRGの情報は、第1周波数領域情報FRIとして、検出ユニット153へ送られる。
なお、推定ユニット152の構成及び動作の詳細については、後述する。
上記の検出ユニット153は、FFTユニット151から順次送られたスペクトルSP(T)、及び、推定ユニット152から送られた第1周波数領域情報FRIを受ける。そして、検出ユニット153は、時間的に連続する最近のN2個のスペクトルSP(T)、及び、第1周波数領域情報FRIに基づいて、上述した第1周波数領域FRGよりも幅が狭く、かつ、最近のビートノイズ成分が含まれる第2周波数領域SRG(後述する図7参照)を検出する。かかる第2周波数領域SRGに関する情報が、ノイズ周波数領域情報NRIとして、低減ユニット156Aへ送られる。
なお、検出ユニット153の構成及び動作の詳細については、後述する。
(推定ユニット152の構成)
次に、上記の推定ユニット152の構成について説明する。この推定ユニット152は、図4に示されるように、第1平均化部211と、第1領域決定部212とを備えている。
上記の第1平均化部211は、FFTユニット151から順次送られたスペクトルSP(T)を受ける。そして、第1平均化部211は、時間的に連続するN1個のスペクトルSP(T)の新たな組が揃うたびに、当該N1個のスペクトルSP(T)の時間平均スペクトルFASを算出する。こうして算出された時間平均スペクトルFASは、第1領域決定部212へ送られる。
上記の第1領域決定部212は、第1平均化部211から送られた時間平均スペクトルFASを受ける。引き続き、第1領域決定部212は、時間平均スペクトルFASに基づいて、最近のビートノイズ成分の周波数が含まれていると推定される第1周波数領域FRGを決定する。そして、第1領域決定部212は、決定された第1周波数領域FRGの情報を、第1周波数領域情報FRIとして、検出ユニット153へ送る。
なお、第1領域決定部212による処理の詳細については、後述する。
(検出ユニット153の構成)
次に、上記の検出ユニット153の構成について説明する。この検出ユニット153は、図5に示されるように、第2平均化部221と、第2領域決定部222とを備えている。
上記の第2平均化部221は、FFTユニット151から順次送られたスペクトルSP(T)を受ける。そして、第2平均化部221は、時間的に連続するN2(<N1)個のスペクトルSP(T)の新たな組が揃うたびに、当該N2個のスペクトルSP(T)の時間平均スペクトルSASを算出する。
すなわち、第2平均化部221は、上述した第1平均化部211による平均化の対象となったN1個のスペクトルSP(T)のうちの最新の当該N2個の平均を行うことにより、時間平均スペクトルSASを算出する。こうして算出された時間平均スペクトルSASは、第2領域決定部222へ送られる。
上記の第2領域決定部222は、第2平均化部221から送られた時間平均スペクトルSAS、及び、推定ユニット152から送られた第1周波数領域情報FRIを受ける。そして、第2領域決定部222は、時間平均スペクトルSAS及び第1周波数領域情報FRIに基づいて、上述した第1周波数領域FRGよりも幅が狭く、かつ、最近のビートノイズ成分が含まれる第2周波数領域SRGを決定する。こうして決定された第2周波数領域SRGの情報は、ノイズ周波数領域情報NRIとして、低減ユニット156Aへ送られる。
なお、第2領域決定部222による処理の詳細については、後述する。
<動作>
次に、以上のように構成された放送受信装置100Aの動作について、ノイズ検出装置150Aにおけるノイズ検出処理に主に着目して説明する。
前提として、入力ユニット180には既に利用者により選局指定が入力されており、指定された希望局に対応する選局指令CSLが、RF処理ユニット120へ送られているものとする。また、入力ユニット180には既に利用者により音量調整指定が入力されており、指定された音量調整態様に対応する音量調整指令VLCが、アナログ処理ユニット160へ送られているものとする(図1参照)。
こうした状態で、アンテナ110で放送波を受信すると、信号RFSが、アンテナ110からRF処理ユニット120へ送られる。そして、RF処理ユニット120において、選局すべき希望局の信号が中間周波数帯の信号に変換された後、AD変換が行われる。RF処理ユニット120は、このAD変換の結果を、中間周波信号IFDとして、検波ユニット130へ送る(図1参照)。
中間周波信号IFDを受けると、検波ユニット130が、中間周波信号IFDに対して検波処理を施す。そして、検波ユニット130は、検波結果を、検波信号DTDとして、ノイズ低減装置140Aにおけるノイズ検出装置150Aへ送る(図1参照)。
ノイズ検出装置150Aでは、FFTユニット151が検波信号DTDを受ける。引き続き、FFTユニット151は、検波信号DTDにフーリエ変換を施す。そして、FFTユニット151は、フーリエ変換の結果であるスペクトルSP(T)を推定ユニット152及び検出ユニット153へ送る(図2参照)。
《推定ユニット152における処理》
推定ユニット152では、第1平均化部211がスペクトルSP(T)を受ける。引き続き、第1平均化部211は、時間的に連続するN1個のスペクトルSP(T)の新たな組が揃うたびに、当該N1個のスペクトルSP(T)の時間平均スペクトルFASを算出する。そして、第1平均化部211は、算出された時間平均スペクトルFASを、第1領域決定部212へ送る(図4参照)。
第1実施形態では、図6に示されるように、値N1を「5」として、時間平均スペクトルFASを算出するようになっている。
新たな時間平均スペクトルFASを受けると、第1領域決定部212は、時間平均スペクトルFASが示しているエネルギの周波数分布に基づいて、ビートノイズ成分が多く含まれるサブバンドであれば、そのサブバンドのエネルギ量が上回ると推定される閾値エネルギ量ETHを設定する。そして、第1領域決定部212は、当該閾値エネルギ量ETHを上回るエネルギ量となっているサブバンドを含むピークを抽出する。
次に、第1領域決定部212は、抽出されたピークにおいて最大エネルギ量となっているサブバンドを中心サブバンドSBXとして、当該中心サブバンドSBXと中心とする第1周波数領域FRG(=[SBX-n1〜SBX+n1])を決定する。そして、第1領域決定部212は、決定された第1周波数領域FRGの情報である((X−n1),(X+n1))を、第1周波数領域情報FRIとして、検出ユニット153へ送る。ここで、閾値エネルギ量ETHを上回るエネルギ量となっているサブバンドを含むピークを抽出できなかった場合には、第1領域決定部212は、第1周波数領域情報FRIとして、(0,0)を検出ユニット153へ送る(図4参照)。
第1実施形態では、図6(B)に示されるように、値n1を「2」として、第1周波数領域FRGを決定するようになっている。
なお、値N1は、従来例よりも迅速なノイズ周波数領域NRGの検出の観点から、実験、シミュレーション、経験等に基づいて、予め定められる。また、値n1は、ビート変動が発生していても、最近のビートノイズ成分の周波数領域を含むようにするとの観点から、実験、シミュレーション、経験等に基づいて、予め定められる。
《検出ユニット153における処理》
検出ユニット153では、第2平均化部221がスペクトルSP(T)を受ける。引き続き、第2平均化部221は、時間的に連続するN2(<N1)個のスペクトルSP(T)の新たな組が揃うたびに、当該N2個のスペクトルSP(T)の時間平均スペクトルSASを算出する。そして、第2平均化部221は、算出された時間平均スペクトルSASを第2領域決定部222へ送る(図5参照)。
第1実施形態では、図7に示されるように、値N2を「2」として、時間平均スペクトルSASを算出するようになっている。すなわち、上述した図6に示されるように、第1平均化部211による時間平均化の対象がスペクトルSP(T1)〜SP(T5)である場合には、第2平均化部221による時間平均化の対象がスペクトルSP(T4),SP(T5)となるようになっている。
新たな時間平均スペクトルSAS及び第1周波数領域情報FRIを受けると、第2領域決定部222は、時間平均スペクトルSAS及び第1周波数領域情報FRIに基づいて、第2周波数領域SRGを決定する。この第2周波数領域SRGは、上述した第1周波数領域FRGよりも幅が狭く、かつ、最近のビートノイズ成分が含まれる周波数領域である。
第2周波数領域SRGの決定に際して、第2領域決定部222は、まず、第1周波数領域情報FRIにより示された第1周波数領域FRGにおける時間平均スペクトルSASの部分を抽出する。引き続き、第2領域決定部222は、抽出された時間平均スペクトルSASの部分において最大エネルギ量となっているサブバンドSBYを抽出する。
次に、第2領域決定部222は、周波数領域[SBY-n2〜SBY+n2](n<n1)を第2周波数領域SRGに決定する。そして、第2領域決定部222は、決定された第2周波数領域SRGの情報である((Y−n2),(Y+n2))を、ノイズ周波数領域情報NRIとして、低減ユニット156Aへ送る。ここで、新たに受けた第1周波数領域情報FRIが(0,0)であった場合、すなわち、推定ユニット152により、ビートノイズ成分を含む第1周波数領域FRGが存在しないと推定された場合には、第2領域決定部222は、第2周波数領域情報SRIとして、(0,0)を低減ユニット156Aへ送る(図5参照)。
第1実施形態では、図7(B)に示されるように、値n2を「1」として、第2周波数領域SRGを決定するようになっている。
なお、値N2は、最近のビートノイズ成分が存在する周波数領域を特定するとの観点から、実験、シミュレーション、経験等に基づいて、予め定められる。また、値n2は、ビートノイズ成分を低減しつつ、音声成分に与える悪影響を最小化するとの観点から、実験、シミュレーション、経験等に基づいて、予め定められる。
《低減ユニット156Aによる処理》
ノイズ周波数領域情報NRIを受けると、低減ユニット156Aは、内部の可変ノッチフィルタを、ノイズ周波数領域情報NRIで示されるノイズ周波数領域NRGの成分を低減させるように設定する。かかる設定のもとで、検波ユニット130から送られた検波信号DTDを受けると、低減ユニット156Aは、検波信号DTDにおけるノイズ周波数領域NRGの成分を低減させて、信号AODを生成する。そして、低減ユニット156Aは、生成された信号AODをアナログ処理ユニット160へ送る。
なお、ノイズ周波数領域情報NRIが(0,0)であった場合には、低減ユニット156Aは、低減処理を行わないようになっている。
ノイズ低減装置140Aから送られた信号AODを受けると、アナログ処理ユニット160では、DA変換部、音量調整部及びパワー増幅部による信号処理が順次施され、出力音声信号AOSが生成される。そして、アナログ処理ユニット160は、生成された出力音声信号AOSをスピーカユニット170へ送る(図1参照)。この結果、スピーカユニット170が、出力音声信号AOSに従って、音声を再生出力する。
以上説明したように、第1実施形態では、推定ユニット152が、音声信号である検波信号DTDに対して行われたN1回の周波数解析の結果を時間平均化処理した時間平均スペクトルFASに基づいて、最近のビートノイズ成分を含む第1周波数領域FRGを推定する。引き続き、検出ユニット153が、当該N1回の周波数解析のうち最新となる最新周波数解析の結果を含むN2(<N1)回の周波数解析における第1周波数領域FRG内の周波数解析結果から、第1周波数領域FRGより狭い第2周波数領域SRGをノイズ周波数領域NRGとして検出する。
したがって、第1実施形態のノイズ検出装置150Aによれば、ビート変動が発生しても、最近のビートノイズ成分が含まれるノイズ周波数帯域を適切に検出することができる。
また、第1実施形態では、低減ユニット156Aが、ノイズ検出装置150Aにより検出されたノイズ周波数領域NRGの周波数成分を、検波信号DTDから低減させる。したがって、第1実施形態のノイズ低減装置140Aによれば、ビート変動が発生しても、ビートノイズ成分を適切に低減させることができる。
[第2実施形態]
次に、本発明の第2実施形態を、図8及び図9を主に参照して説明する。
<構成>
図8には、本発明の第2実施形態に係るノイズ低減装置140Bを備える放送受信装置100Bの概略的な構成がブロック図にて示されている。なお、放送受信装置100Bは、AM音声放送の放送受信装置となっている。
図8に示されるように、放送受信装置100Bは、上述した放送受信装置100Aと比べて、ノイズ低減装置140Aに代えてノイズ低減装置140Bを備える点のみが異なっている。そして、ノイズ低減装置140Bは、ノイズ低減装置140Aと比べて、ノイズ検出装置150Aに代えてノイズ検出装置150Bを備えている点が異なっている。以下、この相違点に主に着目して説明する。
上記のノイズ検出装置150Bは、図9に示されるように、ノイズ検出装置150Aと比べて、音声低減ユニット155を更に備える点が異なっている。そして、FFTユニット151が、音声低減ユニット155から送られた音声低減信号ADDを受けるようになっている。
上記の音声低減ユニット155は、RF処理ユニット120から送られた中間周波信号IFDを受ける。そして、音声低減ユニット155は、ビートノイズ成分を低減させることなく、音声信号成分を低減させて、音声低減信号ADDを生成する。こうして生成された音声低減信号ADDは、FFTユニット151へ送られる。
なお、音声低減ユニット155による処理の詳細については、後述する。
<動作>
次に、以上のように構成された放送受信装置100Bの動作について、ノイズ検出装置150Bにおけるノイズ検出処理に着目して説明する。
中間周波信号IFDを受けると、音声低減ユニット155は、中間周波信号IFDにおける搬送波成分を抽出する。引き続き、音声低減ユニット155は、抽出された搬送波成分に対して90°移相処理を施して直交信号を生成する。
次に、音声低減ユニット155は、中間周波信号IFDと直交信号とを乗算し、乗算信号を生成する。そして、音声低減ユニット155は、乗算信号における音声帯域の成分を抽出して、音声低減信号ADDを生成する。この結果、ビートノイズ成分を低減させることなく、音声信号成分を低減させた音声低減信号ADDが生成される。そして、音声低減ユニット155は、生成された音声低減信号ADDをFFTユニット151へ送る。
以後、FFTユニット151、推定ユニット152及び検出ユニット153が、ノイズ検出装置150Aの場合と同様に動作する。この結果、ノイズ検出装置150Bからは、音声低減信号ADDに基づいて検出されたノイズ周波数領域情報NRIが低減ユニット156Aへ送られる。
なお、放送受信装置100Bにおけるノイズ検出装置150B以外の要素は、上述した放送受信装置100Aの場合と同様に動作する。
以上説明したように、第2実施形態では、音声低減ユニット155が、ビートノイズ成分を低減させることなく、音声信号成分を低減させた音声低減信号ADDを生成する。そして、音声低減信号ADDにおけるビートノイズ成分を、第1実施形態の場合のノイズ検出処理を音声低減信号ADDに対して施して、音声低減信号ADDにおいてビートノイズ成分が存在するノイズ周波数領域NRGを検出する。すなわち、ノイズ周波数領域NRGの検出に際して邪魔になる音声成分が低減された状態で、ノイズ周波数領域NRGを検出する。
したがって、第2実施形態のノイズ検出装置150Bによれば、AM音声放送の受信に際して、第1実施形態の場合よりも精度良くノイズ周波数領域NRGを検出することができる。
また、第2実施形態では、第1実施形態の場合と同様に、低減ユニット156Aが、ノイズ検出装置150Bにより検出されたノイズ周波数領域NRGの周波数成分を、検波信号DTDから低減させる。したがって、第2実施形態のノイズ低減装置140Bによれば、AM音声放送の受信に際して、ビート変動が発生しても、ビートノイズ成分を適切に低減させることができる。
[第3実施形態]
次に、本発明の第3実施形態を、図10及び図11を主に参照して説明する。
<構成>
図10には、本発明の第3実施形態に係るノイズ低減装置140Cを備える放送受信装置100Cの概略的な構成がブロック図にて示されている。
図10に示されるように、放送受信装置100Cは、上述した放送受信装置100Bと比べて、ノイズ低減装置140Bに代えてノイズ低減装置140Cを備える点のみが異なっている。そして、ノイズ低減装置140Cは、ノイズ低減装置140Bと比べて、低減ユニット156Aに代えて低減ユニット156Cを備えている点が異なっている。以下、この相違点に主に着目して説明する。
上記の低減ユニット156Cは、図11に示されるように、FFTユニット231と、除去ユニット232とを備えている。また、低減ユニット156Cは、逆フーリエ変換ユニット(IFFTユニット)233を備えている。
上記のFFTユニット231は、検波ユニット130から送られた検波信号DTDを受ける。そして、FFTユニット231は、検波信号DTDにフーリエ変換を施す。かかるフーリエ変換の結果は、スペクトルSQDとして、除去ユニット232へ送られる。
上記の除去ユニット232は、FFTユニット231から送られたスペクトルSQD、及び、ノイズ検出装置150Bから送られたノイズ周波数領域情報NRIを受ける。そして、除去ユニット232は、スペクトルSQD及びノイズ周波数領域情報NRIに基づいて、ノイズ除去スペクトルSRDを生成する。こうして生成されたノイズ除去スペクトルSRDは、IFFTユニット233へ送られる。
なお、除去ユニット232による処理の詳細については、後述する。
上記のIFFTユニット233は、除去ユニット232から送られたノイズ除去スペクトルSRDを受ける。そして、IFFTユニット233は、ノイズ除去スペクトルSRDに逆フーリエ変換を施して、信号AODを生成する。こうして生成された信号AODは、アナログ処理ユニット160へ送られる。
<動作>
次に、以上のように構成された放送受信装置100Cの動作について、低減ユニット156Cにおけるノイズ低減処理に着目して説明する。
検波信号DTDを受けると、FFTユニット231は、検波信号DTDにフーリエ変換を施して、スペクトルSQDを生成する。そして、FFTユニット231は、生成されたスペクトルSQDを除去ユニット232へ送る(図11参照)。
スペクトルSQDを受けると、除去ユニット232は、ノイズ検出装置150Bから受けた最新のノイズ周波数領域情報NRIにより示されるノイズ周波数領域NRGにおけるスペクトルSQDの成分を除去することにより、ノイズ除去スペクトルSRDを生成する。そして、除去ユニット232は、生成されたノイズ除去スペクトルSRDをIFFTユニット233へ送る。
ノイズ除去スペクトルSRDを受けると、IFFTユニット233は、ノイズ除去スペクトルSRDに逆フーリエ変換を施して、信号AODを生成する。そして、IFFTユニット233は、生成された信号AODをアナログ処理ユニット160へ送る。
なお、放送受信装置100Cにおける低減ユニット156C以外の要素は、上述した放送受信装置100Bの場合と同様に動作する。
以上説明したように、第3実施形態では、低減ユニット156Cが、ノイズ検出装置150Bにより検出されたノイズ周波数領域NRGの周波数成分を、検波信号DTDから低減させる。したがって、第3実施形態のノイズ低減装置140Cによれば、ビート変動が発生しても、ビートノイズ成分を適切に低減させることができる。
[実施形態の変形]
本発明は、上記の第1〜第3実施形態に限定されるものではなく、様々な変形が可能である。
例えば、上記の第2実施形態から第3実施形態への変形と同様の変形を第1実施形態に対して施すようにしてもよい。
また、上記の第1〜第3実施形態では、値N1を「5」としたが、時間平均スペクトルSP(T)の算出の迅速性が確保できるのであれば、値N1を「2」以上の任意の値とすることができる。
また、上記の第1〜第3実施形態では、値n1を「2」としたが、予想されるビート変動の態様及びサブバンド幅に応じて、値n1として「2」以外の値を採用してもよい。
また、上記の第1〜第3実施形態では、値N2を「2」としたが、値N2として「1」を採用してもよいし、N1未満であれば、値N2として「3」以上の値を採用してもよい。
また、上記の第1〜第3実施形態では、値n2を「1」としたが、予想されるビートノイズ成分の周波数軸上における広がり幅に応じて、値n2として「1」以外の値を採用してもよい。
また、上記の第1〜第3実施形態では、音声信号中におけるノイズ検出及びノイズ低減に本発明を適用したが、音声信号以外の信号中におけるノイズ検出及びノイズ低減に本発明を適用してもよい。
なお、上記の第1〜第3実施形態におけるノイズ検出装置及び低減ユニットを、DSP(Digital Signal Processor)等を備えた演算手段としてのコンピュータとして構成し、予め用意されたプログラムを当該コンピュータで実行することにより、上記の第1〜第3実施形態における処理の一部又は全部を実行するようにしてもよい。このプログラムはハードディスク、CD−ROM、DVD等のコンピュータで読み取り可能な記録媒体に記録され、当該コンピュータによって記録媒体から読み出されて実行される。また、このプログラムは、CD−ROM、DVD等の可搬型記録媒体に記録された形態で取得されるようにしてもよいし、インターネットなどのネットワークを介した配信の形態で取得されるようにしてもよい。
140A〜140C … ノイズ低減装置
150A,150B … ノイズ検出装置
152 … 推定ユニット(推定部)
153 … 検出ユニット(検出部)
156A,156C … 低減ユニット(低減部)

Claims (9)

  1. 入力した信号に対する所定回数の周波数解析の結果を時間平均化処理した結果から、ノイズ成分を含む第1周波数領域を推定する推定部と;
    前記所定回数の周波数解析のうち最新となる最新周波数解析の結果を含み、前記第1周波数領域に対する前記所定回数未満の回数の周波数解析の結果から、前記第1周波数領域より狭い第2周波数領域をノイズ周波数領域として検出する検出部と;
    を備えることを特徴とするノイズ検出装置。
  2. 前記所定回数未満の回数は1回である、ことを特徴とする請求項1に記載のノイズ検出装置。
  3. 前記所定回数未満の回数は複数回であり、
    前記所定回数未満の回数の周波数解析は、前記最新周波数解析、及び、前記最新周波数解析に時間的に連続した最近の周波数解析である、
    ことを特徴とする請求項1に記載のノイズ検出装置。
  4. 前記検出部は、前記第1周波数領域に対する前記所定回数未満の回数の周波数解析の結果を時間平均化した結果に基づいて、前記ノイズ周波数領域を検出する、ことを特徴とする請求項3に記載のノイズ検出装置。
  5. 前記信号は音声信号である、ことを特徴とする請求項1〜4のいずれか一項に記載のノイズ検出装置。
  6. 請求項1〜5のいずれか一項に記載のノイズ検出装置と;
    前記ノイズ検出装置により検出されたノイズ周波数領域の成分を低減させる低減部と;
    を備えるノイズ低減装置。
  7. 推定部と、検出部とを備えるノイズ検出装置において使用されるノイズ検出方法であって、
    前記推定部が、入力した信号に対する所定回数の周波数解析の結果を時間平均化処理した結果から、ノイズ成分を含む第1周波数領域を推定する推定工程と;
    前記検出部が、前記所定回数の周波数解析のうち最新となる最新周波数解析の結果を含み、前記第1周波数領域に対する前記所定回数未満の回数の周波数解析の結果から、前記第1周波数領域より狭い第2周波数領域をノイズ周波数領域として検出する検出工程と;
    を備えることを特徴とするノイズ検出方法。
  8. ノイズ検出装置が有するコンピュータに、請求項7に記載のノイズ検出方法を実行させる、ことを特徴とするノイズ検出プログラム。
  9. ノイズ検出装置が有するコンピュータにより読み取り可能に、請求項8に記載のノイズ検出プログラムが記録されている、ことを特徴とする記録媒体。
JP2015231573A 2015-11-27 2015-11-27 ノイズ検出装置、ノイズ低減装置及びノイズ検出方法 Pending JP2017098868A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015231573A JP2017098868A (ja) 2015-11-27 2015-11-27 ノイズ検出装置、ノイズ低減装置及びノイズ検出方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015231573A JP2017098868A (ja) 2015-11-27 2015-11-27 ノイズ検出装置、ノイズ低減装置及びノイズ検出方法

Publications (1)

Publication Number Publication Date
JP2017098868A true JP2017098868A (ja) 2017-06-01

Family

ID=58804088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015231573A Pending JP2017098868A (ja) 2015-11-27 2015-11-27 ノイズ検出装置、ノイズ低減装置及びノイズ検出方法

Country Status (1)

Country Link
JP (1) JP2017098868A (ja)

Similar Documents

Publication Publication Date Title
JP6263410B2 (ja) 放送受信装置及びノイズ除去方法
US8891780B2 (en) Microphone array device
JP2016178473A (ja) ノイズ低減装置及びノイズ低減方法
JP2016092461A (ja) ノイズ低減装置及びノイズ低減方法
US10356518B2 (en) First recording device, second recording device, recording system, first recording method, second recording method, first computer program product, and second computer program product
JP5579640B2 (ja) ノイズレベル検出装置、受信装置及びノイズレベル検出方法
JP5484153B2 (ja) 放送受信装置及び放送信号処理方法
JP2017098868A (ja) ノイズ検出装置、ノイズ低減装置及びノイズ検出方法
JP2018074382A (ja) ノイズ検出装置及びノイズ検出方法
JP4413043B2 (ja) 周期性ノイズ抑圧方法、周期性ノイズ抑圧装置、周期性ノイズ抑圧プログラム
JP6216546B2 (ja) ノイズ低減装置、放送受信装置及びノイズ低減方法
JP6775275B2 (ja) ノイズ低減装置及びノイズ低減方法
JP2012199739A (ja) 受信装置及び信号処理方法
JP2019186593A (ja) 検出装置、ビートノイズ低減装置及び検出方法
JP5095444B2 (ja) フィルタ装置、受信装置及び信号処理方法
WO2017104040A1 (ja) ノイズ検出装置、ノイズ低減装置及びノイズ検出方法
JP2015162738A (ja) 無線通信装置及び干渉検出方法
JP2014146941A (ja) ノイズ低減装置、放送受信装置及びノイズ低減方法
JP6695716B2 (ja) 受信装置及び信号処理方法
JP6295917B2 (ja) 復号方法、復号装置
JP6263394B2 (ja) Fm受信装置及び信号補正方法
JP6084049B2 (ja) フィルタ制御装置及びフィルタ制御方法
JP6165486B2 (ja) 放送受信装置及びフィルタリング制御方法
JP6186040B2 (ja) ノイズレベル推定装置、ノイズ低減装置及びノイズレベル推定方法
JP2017175390A (ja) ノイズレベル推定装置、受信装置及びノイズレベル推定方法