JP2017083511A - 光走査装置およびこれを備える画像形成装置 - Google Patents

光走査装置およびこれを備える画像形成装置 Download PDF

Info

Publication number
JP2017083511A
JP2017083511A JP2015208705A JP2015208705A JP2017083511A JP 2017083511 A JP2017083511 A JP 2017083511A JP 2015208705 A JP2015208705 A JP 2015208705A JP 2015208705 A JP2015208705 A JP 2015208705A JP 2017083511 A JP2017083511 A JP 2017083511A
Authority
JP
Japan
Prior art keywords
light
light beam
light source
scanning direction
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015208705A
Other languages
English (en)
Inventor
石田 英樹
Hideki Ishida
英樹 石田
祐司 豊田
Yuji Toyoda
祐司 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Document Solutions Inc
Original Assignee
Kyocera Document Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Document Solutions Inc filed Critical Kyocera Document Solutions Inc
Priority to JP2015208705A priority Critical patent/JP2017083511A/ja
Priority to US15/331,689 priority patent/US9955031B2/en
Publication of JP2017083511A publication Critical patent/JP2017083511A/ja
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/024Details of scanning heads ; Means for illuminating the original
    • H04N1/028Details of scanning heads ; Means for illuminating the original for picture information pick-up
    • H04N1/02815Means for illuminating the original, not specific to a particular type of pick-up head
    • H04N1/0282Using a single or a few point light sources, e.g. a laser diode
    • H04N1/0283Using a single or a few point light sources, e.g. a laser diode in combination with a light deflecting element, e.g. a rotating mirror
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/024Details of scanning heads ; Means for illuminating the original
    • H04N1/028Details of scanning heads ; Means for illuminating the original for picture information pick-up
    • H04N1/0281Details of scanning heads ; Means for illuminating the original for picture information pick-up with means for collecting light from a line or an area of the original and for guiding it to only one or a relatively low number of picture element detectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/024Details of scanning heads ; Means for illuminating the original
    • H04N1/028Details of scanning heads ; Means for illuminating the original for picture information pick-up
    • H04N1/03Details of scanning heads ; Means for illuminating the original for picture information pick-up with photodetectors arranged in a substantially linear array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/23Reproducing arrangements
    • H04N1/29Reproducing arrangements involving production of an electrostatic intermediate picture
    • H04N1/295Circuits or arrangements for the control thereof, e.g. using a programmed control device, according to a measured quantity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/0077Types of the still picture apparatus
    • H04N2201/0094Multifunctional device, i.e. a device capable of all of reading, reproducing, copying, facsimile transception, file transception

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Laser Beam Printer (AREA)

Abstract

【課題】露光時間及び光強度それぞれの調整幅を広げて、被走査面に定められた区分領域における光束のスポット径の補正範囲を拡大させるとともに、いずれの区分領域においても光量分布及び光束のスポット径を略等しくすることが可能な光走査装置およびこれを備える画像形成装置を提供する。
【解決手段】光走査装置6は、光源制御部81を備える。光源制御部81は、感光体ドラム31の表面において主走査方向D31に沿って区分けされた複数の画素領域R10の少なくとも一つに対して、主走査方向D31における画素領域R10の位置に基づいて定められた複数の照射タイミングで光ビームを照射させるように光源61を制御する。
【選択図】図5

Description

本発明は、光源から出射された光ビームによって被走査面を走査する光走査装置、及び光走査装置を備える画像形成装置に関する。
電子写真方式の画像形成装置には、感光体に光ビームを照射して感光体を光走査させる光走査装置が備えられている。光走査装置には、光ビームを偏向して感光体上の被走査面を走査させる偏向器が設けられている。偏向器として、複数の反射面を備えたポリゴンミラーを用いたものや、光ビームを正弦波振動によって反射面を往復して揺動するMEMSミラーなどの振動ミラー(共振ミラーとも呼ばれる。)を用いたものが知られている。近年、高速走査を実現するために、誤差が小さく駆動負荷の小さい前記振動ミラーが用いられる場合がある。
前記振動ミラーは、反射面の往復動作が正弦波的に駆動されるため、揺動範囲において動作速度が正弦波に同期して変化する。このため、前記振動ミラーを用いた光走査装置には、被走査面における光ビームの走査方向の速度が一定となるように、アークサイン特性を有する湾曲したレンズ(以下「アークサインレンズ」と称する。)が設けられている。
ところで、アークサインレンズは、光ビームを被走査面上に等速で走査させることができるが、レンズの光軸から離れるほど光ビームのスポット径(ビーム径とも称される。)が大きくなる。言い換えると、光軸に対する振動ミラーの画角が大きくなるほど、被走査面上の光ビームのスポット径が大きくなる。このような問題に対して、特許文献1には、被走査面における走査位置ごとに光量を調整してスポット径を均一にする補正技術が開示されている。また、特許文献2には、振動ミラーの画角が大きくなるにつれて露光時間を短くするとともに光強度を強くすることにより、スポット径を均一にする補正技術が開示されている。なお、本明細書において、スポット径は、被走査面に照射された光ビームの光強度のピーク値に対して光強度が1/e(=13.5%)となる点における光束の直径のことをいう。
特開平07−270699号公報 特開2006−154337号公報
しかしながら、特許文献1に記載の従来技術では、照射される光ビームの光エネルギーが被走査面における走査位置ごとに異なるため、走査方向において画像濃度のムラが生じる。一方、特許文献2に記載の従来技術では、走査方向の各走査位置それぞれにおける光ビームの光量分布(ビームプロファイルとも称される)を近似することができ、走査位置ごとの各光エネルギーを概ね等しくすることができる。しかしながら、この従来技術は、被走査面に定められた照射領域に対して1回の点灯によって光ビームを照射するものであるため、補正すべきスポット径の差が大きくなるほど、画角差(又は光軸からの距離差)に対する露光時間(点灯時間)の調整幅、及び光強度の調整幅が大きくなる。前記露光時間又は前記光強度の限界を超えてスポット径を補正することはできないため、スポット径の差が大きい場合は、スポット径を十分に補正することができない場合がある。近年、比較的大きいサイズの用紙(例えばA3サイズの用紙)に画像形成可能な画像形成装置の需要が高まっており、このような画像形成装置においては、スポット径の補正範囲が大きい場合、用紙の幅方向の端部に形成される画像濃度のムラを解消できない虞がある。
本発明の目的は、露光時間及び光強度それぞれの調整幅を広げて、被走査面に定められた区分領域における光束のスポット径の補正範囲を拡大させるとともに、いずれの区分領域においても光量分布及び光束のスポット径を略等しくすることが可能な光走査装置およびこれを備える画像形成装置を提供することにある。
本発明の一の局面に係る光走査装置は、光源と、偏向部と、結像レンズと、ブロック位置設定部と、光源制御部と、を備える。前記光源は、光ビームを出射する。前記偏向部は、前記光源から出射された光ビームを所定の偏向角で偏向して被走査面を一ラインずつ走査させる。前記結像レンズは、前記偏向部によって偏向された前記光ビームを前記被走査面に結像させるとともに前記被走査面における前記光ビームを走査方向へ等速で走査させる。前記ブロック位置設定部は、前記被走査面において前記走査方向に沿って区分けされた複数の区分領域を複数含むブロック領域を設定する。前記光源制御部は、前記区分領域それぞれに対して、前記ブロック位置設定部によって設定された前記ブロック領域毎に定められた複数の照射タイミングで前記光ビームを照射させるように前記光源を制御する。前記ブロック位置設定部は、前記ブロック位置設定部は、少なくとも一ラインの走査毎に前記走査方向における前記ブロック領域の設定位置を前記走査方向に変更する。
本発明の他の局面に係る画像形成装置は、前記光走査装置と、画像形成部と、を備える。前記画像形成部は、前記光走査装置によって走査された被走査面上の静電潜像に基づく画像を被転写シートに形成する。
本発明によれば、露光時間及び光強度それぞれの調整幅を広げて、被走査面に定められた区分領域における光束のスポット径の補正範囲を拡大させるとともに、いずれの区分領域においても光量分布及び光束のスポット径を略等しくすることが可能である。
図1は、本発明の第1実施形態に係る画像形成装置の構成を示す図である。 図2は、本発明の第1実施形態に係る光走査装置の構成を示す図である。 図3は、画像形成装置のシステム構成を示すブロック図である。 図4は、画像形成装置の制御部によって実行される光源の駆動制御処理の手順の一例を示すフローチャートである。 図5は、本発明の第1実施形態の実施例1を説明する図であり、図5(A)は実施例1における静止ビームの光量分布を示し、図5(B)は点灯制御に用いられる制御パルスを示す。 図6(A)〜(C)は、本発明の第1実施形態の実施例1を説明する図であり、実施例1における動的ビームの光量分布を示す。 図7は、本発明の第1実施形態の実施例2を説明する図であり、図7(A)は実施例2における静止ビームの光量分布を示し、図7(B)は点灯制御に用いられる制御パルスを示す。 図8は、本発明の第1実施形態の実施例3を説明する図であり、図8(A)は実施例3における静止ビームの光量分布を示し、図8(B)は点灯制御に用いられる制御パルスを示す。 図9は、本発明の第1実施形態の実施例4を説明する図であり、図9(A)は実施例4における静止ビームの光量分布を示し、図9(B)は点灯制御に用いられる制御パルスを示す。 図10は、本発明の第1実施形態の実施例5を説明する図であり、図10(A)は実施例5に適用される点灯制御に用いられる制御パルスを示し、図10(B)〜(D)は実施例5における動的ビームの光量分布を示す。 図11は、本発明の第1実施形態の実施例6を説明する図であり、図11(A)は実施例6に適用される点灯制御に用いられる制御パルスを示し、図11(B)〜(D)は実施例6における動的ビームの光量分布を示す。 図12(A)は、本発明の第1実施形態の実施例7を説明する図であり、実施例7に適用される点灯制御に用いられる制御パルスを示す図である。図12(B)は、本発明の第1実施形態の実施例8を説明する図であり、実施例8に適用される点灯制御に用いられる制御パルスを示す図である。 図13(A)及び(B)は、本発明の第2実施形態の一実施例を説明する図であり、第2実施形態で適用される点灯制御に用いられる制御パルスを示す。 図14(A)は、図13の制御パルスにおいて、重複する制御パルスを合成した合成パルスの一例を示す図であり、図14(B)は合成パルスの他の例を示す図である。 図15(A)及び(B)は、本発明の第2実施形態の他の実施例を説明する図であり、第2実施形態で適用される点灯制御に用いられる制御パルスを示す。 図16(A)及び(B)は、図15の制御パルスにおいて、近接する制御パルスを合成した合成パルスの一例を示す図である。 図17は、本発明の第3実施形態に係る画像形成装置のシステム構成を示すブロック図である。 図18は、被走査面に定められたブロック領域の境界を示す模式図である。 図19(A)は補正前の駆動パルス信号による光走査によって得られたベタ画像の印刷状態を示す図、図19(B)は、補正後の駆動パルス信号による光走査によって得られたベタ画像の印刷状態を示す図、図19(C)は、補正後の駆動パルス信号及び境界位置変更後の光走査によって得られたベタ画像の印刷状態を示す図である。 図20は、被走査面に定められたブロック領域の境界位置の変位の一例を示す図である。 図21は、被走査面に定められたブロック領域の境界位置の変位の一例を示す図である。 図22は、被走査面に定められたブロック領域の境界位置の変位の一例を示す図である。 図23は、被走査面に定められたブロック領域の境界位置の変位の一例を示す図である。
[第1実施形態]
以下、添付図面を参照しながら、本発明の第1実施形態について説明する。なお、以下の実施形態は、本発明を具体化した一例であって、本発明の技術的範囲を限定するものではない。
図1に示すように、画像形成装置10は、画像形成ユニット1〜4(画像形成部の一例)、中間転写ベルト5、2つの光走査装置6、二次転写ローラー7、定着装置8、排紙トレイ9、トナーコンテナー11〜14、給紙カセット21、及び搬送路22などを備える。画像形成装置10は、給紙カセット21から搬送路22に沿って供給される印刷用紙などのシート(被転写シートの一例)にカラー又はモノクロの画像を形成して排紙トレイ9に排出するプリンターである。なお、以下の説明では、各図面内で定義された左右方向D1、上下方向D2、及び前後方向D3を用いて説明することがある。
本実施形態では、画像形成装置10が、画像形成ユニット1〜4に対応して二つの光走査装置6を備える。なお、画像形成ユニット1〜4のそれぞれに対応する4つの光走査装置が個別に設けられる構成、又は画像形成ユニット1〜4に対応する1つの光走査装置が設けられる構成も他の実施形態として考えられる。また、プリンターに限らず、光走査装置を備えるファクシミリ、コピー機、及び複合機なども、本発明に係る画像形成装置の一例である。
画像形成ユニット1〜4は、光走査装置6によって走査された被走査面(後述の感光体ドラム31の表面)上の静電潜像に基づく画像をシートに形成する。画像形成ユニット1〜4は、中間転写ベルト5に沿って並設されており、所謂タンデム方式の画像形成部を構成する。画像形成ユニット1〜4は、Y(イエロー)、C(シアン)、M(マゼンタ)、K(ブラック)に対応するトナー像を形成する。画像形成ユニット1〜4は、電子写真方式にしたがって画像形成を行うものであり、感光体ドラム31、帯電部32、現像部33、及び一次転写ローラー34などを備える。
画像形成ユニット1〜4では、帯電部32により感光体ドラム31が帯電された後、光走査装置6から照射されるレーザー光などの光ビームにより感光体ドラム31に画像データに対応する静電潜像が形成される。その後、感光体ドラム31に形成された静電潜像が現像部33でトナー等の現像剤により現像される。そして、感光体ドラム31各々に形成されたトナー像は、一次転写ローラー34各々により中間転写ベルト5に順次転写される。これにより、中間転写ベルト5には、カラー又はモノクロのトナー像が形成される。その後、中間転写ベルト5のトナー像は、二次転写ローラー7でシートに転写され、定着装置8で溶融されてシートに定着される。そして、定着装置8による定着が行われた後に、シートは排紙トレイ9に排出される。
次に、図1及び図2を参照して、光走査装置6について説明する。なお、図2には、理解を容易にするために、構成が簡素化された光走査装置6が示されている。
光走査装置6は、感光体ドラム31へ向けて光ビームを出射して感光体ドラム31の表面を光ビームで走査する。これにより、光走査装置6は、感光体ドラム31の表面に画像データに対応する静電潜像を形成する。図1及び図2に示されるように、光走査装置6は、光源61(図2参照)、コリメータレンズ62、シリンドリカルレンズ63、MEMS(Micro Electro Mechanical Systems)ミラー64(偏向部の一例)、走査レンズ66,67(結像レンズの一例)、反射ミラー68、光検出部69、及びこれらを収容する筐体としてのケース60を備えている。
光走査装置6には、1つのMEMSミラー64に対して、光源61、コリメータレンズ62、シリンドリカルレンズ63、走査レンズ66,67、反射ミラー68、及び光検出部69がそれぞれ2組設けられている。なお、図2では、一組だけが示されており、他の一組の図示が省略されている。
光源61は、レーザー光などの光ビームを出射するものであり、半導体レーザー素子及びこれを駆動するLD駆動回路61A(図3参照)を有する。具体的に、光源61は、複数の発光点が同一基板上に形成されたモノリシックマルチレーザーダイオードである。前記発光点は、予め定められた方向に沿って配列されている。本実施形態では、光源61として、2つの発光点が配列されたモノリシックマルチレーザーダイオードを例示して説明する。もちろん、光源61は、マルチタイプのものに限られず、1つの発光点から光ビームを出射するシングルタイプのものであってもよい。
後述の制御部80からLD駆動回路61Aに光源61を発光させるための複数の駆動パルスからなる駆動パルス信号が入力される。LD駆動回路61Aは、前記駆動パルス信号を受けると、前記駆動パルス信号に応じた光強度(光エネルギー)の光ビームを光源61から出射させる。前記駆動パルス信号には、1ライン分の画像データの各画素に対応して定められた光強度や照射タイミング(露光タイミング)、露光時間(点灯時間)などを特定する駆動パルスが含まれている。前記駆動パルスは、感光体ドラム31の表面上において各画素に対応する画素領域(区分領域の一例)ごとに定められたものである。言い換えると、前記駆動パルスは、前記画素領域ごとに前記光強度や前記照射タイミング、前記露光時間など定められたものである。LD駆動回路61Aは、前記駆動パルス信号に含まれる前記駆動パルスに応じた特性の光ビームを光源61から出射させる。制御部80は、画像形成装置10に入力された画像データを構成する各画素データから、当該画素データに含まれる画素ごとの階調性(濃度情報)を取得すると、その階調性に応じた幅又は振幅の駆動パルスを有する前記駆動パルス信号を生成して、LD駆動回路61Aに出力する。なお、制御部80から出力される前記駆動パルス信号は、後述するように、制御部80によって補正される。そして、補正後の前記駆動パルス信号がLD駆動回路61Aに出力される。
光源61は、2つの発光点から光ビームを出射する。光源61から出射された2本の光ビームは、コリメータレンズ62によって平行光に変えられた後に、2本の光で構成される光束L1としてシリンドリカルレンズ63に入射する。シリンドリカルレンズ63を通った光束L1は、MEMSミラー64に入射する。なお、光源61から出射された光ビームの光束L1は、MEMSミラー64によって走査される走査方向(主走査方向)に異なる位置と角度で、光束L1の進行方向下流側の走査レンズ66に入射する。
MEMSミラー64は、光源61から出射されてシリンドリカルレンズ63を通過した光束L1を所定の偏向角で偏向して感光体ドラム31の表面(被走査面)を走査させる。以下、MEMSミラー64による光束L1の走査方向を主走査方向D31(図2参照)といい、感光体ドラム31の表面上において主走査方向D31に直交する方向を副走査方向という。MEMSミラー64は、前記所定の偏向角で正弦波振動して光束L1を感光体ドラム31の表面へ向けて反射させる所謂振動ミラーである。MEMSミラー64は、前記副走査方向に平行な揺動軸(不図示)を有する。MEMSミラー64は、前記揺動軸の軸周りに所定の偏向角の範囲内で往復して揺動しつつ、シリンドリカルレンズ63から入射した光束L1を偏向して走査する。MEMSミラー64によって反射された光は光束L2として走査レンズ66へ進行する。
MEMSミラー64は、正弦波振動によって揺動駆動されるものであり、MEMS基板64Aと、反射ミラー64Bとを有する。MEMS基板64Aは、半導体基板にアクチュエータや電磁コイルなどの機械要素や電子回路などの電子デバイスなどが一体的に集積されたデバイスである。例えば、前記電磁コイルに所定周波数の正弦波電圧が印加されると、この正弦波電圧によって動作する前記電磁コイルによって、反射ミラー64Bが前記揺動軸の軸周りに所定の偏向角の範囲内で揺動する。なお、本実施形態ではMEMSミラー64を例示するが、正弦波振動によって揺動駆動される偏向器であれば、MEMSミラー64に代えて、ガルバノミラーなどの他の振動ミラーを適用することも可能である。
走査レンズ66,67は、MEMSミラー64で反射されて主走査方向D31へ走査された光束L2を、被走査面である感光体ドラム31の表面に集光させる。つまり、走査レンズ66,67は、MEMSミラー64によって主走査方向D31へ走査された光束L2を感光体ドラム31の表面上に結像させる。また、走査レンズ66,67は、感光体ドラム31の表面における光束L2を主走査方向D31へ等速で走査させるものであり、具体的には、アークサイン特性を有するアークサインレンズである。
反射ミラー68各々は、MEMSミラー64によって光束L2が走査される主走査方向D31に長尺状の反射部材である。反射ミラー68各々は、走査レンズ66,67を通過した後の光束L2を順次反射させて感光体ドラム31の表面に光束L2を導く。
光検出部69は、ケース60の内部に設けられる。光検出部69は、画像形成ユニット1〜4各々に対応して設けられており、MEMSミラー64により主走査方向D31に走査される光束L2の走査経路上の予め定められた位置に配置されている。本実施形態では、光検出部69は、走査レンズ66,67から外れた位置に配置されている。光検出部69は光束L2の入射を検知する。光検出部69は、例えば、フォトトランジスタなどのフォトICと、フォトICが実装された基板とにより構成されている。光検出部69は、光束L2を検知すると、1ラインごとの走査開始のタイミングをとるためのビームディテクト信号(BD信号或いは主走査同期信号とも言う。)を後述の制御部80に出力する。そして、画像形成装置10では、制御部80によって、光検出部69による光束L2の検知タイミングに基づいて、各ラインの画像データに対応する光ビームの出射開始タイミング、即ち各ラインの画像の書き出しタイミングが制御される。なお、光検出部69は、MEMSミラー64の偏向角の両側それぞれに設けられていてもよい。また、画像形成装置10は、画像形成ユニット1〜4のいずれか一つに光検出部69が設けられた構成であってもよい。また、画像形成装置10は、画像形成ユニット1及び2に対応して一つの光検出部69が設けられ、画像形成ユニット3及び4に対応して一つの光検出部69が設けられた構成であってもよい。
ところで、感光体ドラム31の表面上における光束L2の走査速度を等速にするために、走査レンズ66,67としてアークサインレンズを用いた場合、レンズの光軸Pから離れるほど光ビームのスポット径が大きくなることが知られている。この場合、例えば、感光体ドラム31の長手方向の中央付近および長手方向の両端付近それぞれへ向けて同じ光エネルギーの光ビームを出射させても、それぞれの照射位置においてスポット径が異なる。そのため、感光体ドラム31の表面における静電潜像の電位がそれぞれの照射位置において異なる。その結果、画像形成装置10によってシートの中央と幅方向の両端に同じ画像が形成されても、各画像の濃度が異なったり、濃度むらが生じたりするという問題がある。これに対し、本実施形態の画像形成装置10では、後述するように、制御部80は、1画素に対応する感光体ドラム31の表面上の前記画素領域内に複数の照射タイミングで同画素領域内の複数の照射領域に光ビームを照射させる。これにより、感光体ドラム31の表面上の主走査方向D31のいずれの位置においても、前記画素領域における光量分布を概ね均一にすることができ、また、前記画素領域における光束のスポット径を概ね均一にすることが可能となる。特に、本実施形態では、1画素に対応して区分けされた前記画素領域において、複数の照射タイミングで出射された光ビームが複数の照射領域に照射されることにより、前記画素領域における複数の光ビームを含む光束のスポット径の補正範囲を拡大させることが可能になる。
具体的に、図3に示されているように、画像形成装置10は、画像形成装置10における画像形成動作を制御する制御部80を備える。なお、制御部80は、画像形成装置10全体を統括的に制御するメイン制御部であること、又は前記メイン制御部とは別に設けられていることが考えられる。そして、制御部80には、LD駆動回路61A、MEMSミラー64、光検出部69等が接続されている。LD駆動回路61Aは、光源61の点灯制御(露光制御)を行うためのドライバー回路であり、制御部80からの駆動パルス信号に応じて光源61の露光(発光及び消灯)を制御する。また、LD駆動回路61Aは、前記駆動パルス信号に応じて、光源61から出射される光ビームの変調、具体的には、光ビームの強度を変更したり、波長を変更したりする。
制御部80は、CPU、ROM、RAMなどを有する。また、制御部80は、光源制御部81、記憶部82を含む。具体的に、制御部80は、前記ROM等に記憶されている制御プログラムに従った処理を前記CPUで実行することにより、光源制御部81として機能する。また、記憶部82は、フラッシュメモリーなどの記憶媒体である。なお、光源制御部81は、集積回路などで構成されていてもよい。
光源制御部81は、感光体ドラム31の表面において主走査方向D31に沿って1画素ごとに区分けされた複数の画素領域の少なくとも一つに対して、複数の照射タイミングで光ビームを所定の照射位置に照射させるように光源61を制御する。前記複数の照射タイミングは、前記走査方向における前記画素領域の位置に基づいて定められた照射タイミングである。光源制御部81は、複数の画素領域の全てに対して複数の照射タイミングで光ビームを所定の照射位置に照射させるように光源61を制御してもよい。前記複数の照射タイミングは、予めシミュレーション或いは実測データに基づいて算出されて、記憶部82に記憶されている。或いは、1ラインを走査するたびに後述のビームデータに含まれている各画素領域の基準スポット径を読み出して、走査の度に前記基準スポット径に基づいて前記複数の照射タイミングを算出してもよい。なお、前記基準スポット径については後述する。
ここで、前記画素領域は、画像形成ユニット1〜4によりシートに形成される画像の最小単位である1画素に対応する領域である。例えば、画像の解像度が600dpiである場合は、1画素の幅が約42.3μmである。この画素領域は、後述の実施例1の例では、図5に示す画素領域R10である。この場合の前記画素領域は、感光体ドラム31の表面を主走査方向D31に42.3μm間隔で区分された各領域である。なお、前記画素領域は本発明の区分領域の一例であるが、前記区分領域は、1画素に対応する領域に限られない。例えば、前記区分領域は、2画素分或いは3画素分を一纏めにした領域であってもよく、或いは、1画素に対応する領域を更に細分化した領域であってもよい。
本実施形態では、前記複数の照射タイミングは、感光体ドラム31の表面上における前記画素領域それぞれの光束の光量分布が主走査方向D31の全域において略等しくなるように定められている。光量分布が等しくなることで、画素領域に照射される一つ又は複数の光ビームの光束のスポット径が主走査方向D31の全域において略均一になる。言い換えると、前記複数の照射タイミングによって光ビームが照射される複数の照射位置は、前記画素領域に照射された複数の光ビームによる光束のスポット径が主走査方向D31の全域において略均一になるように定められている。後述の実施例1の例では、画素領域R10(図5及び図6参照)における光束のスポット径が主走査方向D31の全域で均一なサイズ(=90.0μm)となるように、画素領域R10内で主走査方向D31へ均等間隔に隔てられた3つの照射位置(照射領域)に対応する制御パルスA11〜A13が定められている。制御パルスA11〜A13は、光源61を駆動させる制御信号である。光源制御部81は、前記複数の照射タイミングそれぞれに対応する複数の制御パルスA11〜A13をLD駆動回路61Aに出力して光源61の点灯を制御する。各制御パルスA11〜A13それぞれの幅は所定の露光時間で光ビームが照射されるように定められている。また、画素領域R10内で定められた3つの照射位置の間隔で光ビームが照射するように各制御パルスA11〜A13の照射タイミング(照射タイミング)が定められている。
光源制御部81は、前記画素領域内に定められた複数の照射位置(照射領域)に前記複数の照射タイミングで光ビームを照射させるように光源61を駆動制御する。本実施形態では、光源制御部81は、主走査方向D31における前記画素領域の位置に応じた露光時間(点灯時間)及び光強度の光ビームを各照射位置に前記照射タイミングで照射するように光源61を駆動制御する。具体的には、上述したように、画像データを構成する各画素データに含まれる各画素の階調性(濃度情報)に応じた幅の前記駆動パルスを有する駆動パルス信号を生成する。その後、その生成された前記駆動パルス信号を、前記複数の照射位置に応じた前記照射タイミング、露光時間、及び光強度を示す駆動パルス(制御パルス)を含む駆動パルス信号に補正する。そして、光源制御部81は、補正された前記駆動パルス信号をLD駆動回路61Aに出力し、LD駆動回路61Aが前記駆動パルス信号にしたがって光源61に光ビームを出射させる。後述の実施例1の例では、制御パルスA11〜A13の全てに対して、同じ光強度(5.25[mW])の光ビームを光源61から出射させるように前記照射タイミングが定められる。また、画素領域R10の中央位置に対応する制御パルスA12に対しては、前記中央位置よりも外側の位置に対応する他の制御パルスA13,A14よりも2倍の長さの露光時間となるように、前記制御パルスA12の幅が定められている。このように定められた制御パルスを含む駆動パルス信号によって光源61が駆動制御される。
記憶部82には、主走査方向D31に区分けされた複数の画素領域ごとに、当該画素領域の主走査方向D31における位置に応じたビームデータが記憶されている。このビームデータには、予め定められた一定の光エネルギーを有する基準光ビームが前記画素領域に一定時間照射されたときの当該画素領域におけるスポット径(以下「基準スポット径)と称する。)が含まれている。この基準スポット径は、前記基準光ビームが一度だけ画素領域に照射されたときの前記基準光ビームのスポット径である。具体的は、前記基準光ビームは、走査せずに出射される所謂静止ビームであり、前記基準光ビームが複数の画素領域に個別に照射されたときの当該基準光ビームのスポット径が前記基準スポット径である。この基準スポット径は、予めシミュレーション又は実測データにより取得することができる。このようなビームデータが予め取得されて記憶部82に記憶されている。このため、光源制御部81は、前記ビームデータから各画素領域における前記基準スポット径のばらつきを把握することができる。例えば、一定の光強度の前記基準光ビームを一定時間だけ各画素領域に照射させたときのその基準光ビームの光量分布(画素領域における光量分布)やスポット径などを測定しておき、その測定値を各画素領域に対応付けて前記ビームデータとして記憶部82に記憶する。このビームデータには、前記光量分布や基準スポット径のみならず、光源61から出射される光ビームの特性、具体的には、光ビームに含まれるメインローブの大きさやサイドローブの有無、メインローブの光エネルギー、光ビーム全体の光エネルギーなどが含まれていてもよい。本実施形態では、制御部80によって、主走査方向D31における画素領域の位置と前記ビームデータに含まれる前記基準スポット径とに基づいて、当該画素領域に対応する複数の駆動パルスの照射タイミングが定められる。
本実施形態では、光源制御部81は、前記ビームデータに含まれる前記基準スポット径のサイズに対して負の相関関係となるように前記画素領域に対する光ビームの前記複数の照射タイミングの間隔を調整する。後述の実施例4の例では、静的ビームのスポット径が小さいほど、主走査方向D31の外側の照射位置に対応する制御パルスの間隔が大きくされており、静的ビームのスポット径が大きいほど、主走査方向D31の外側の照射位置に対応する制御パルスの間隔が小さくされている。
以下、図4のフローチャートを参照して、制御部80によって実行される光源61の駆動制御処理の手順の一例について説明する。この駆動制御処理は、例えば外部のパーソナルコンピューター等の情報処理装置から印刷ジョブを受信した場合に画像形成処理と並行して実行される。
ステップS11では、制御部80は、光走査装置6による走査開始指示が入力されたかどうかを判定する。本実施形態では、画像形成装置10に画像印刷指示とともに印刷ジョブが入力された場合に、走査開始指示が入力されたと判定する。その後、ステップS12において、制御部80は、MEMSミラー64を駆動させる。
次のステップS13では、制御部80の光源制御部81は、1走査ライン上の各画素の濃度に応じた駆動パルス信号を生成する。具体的には、印刷ジョブとともに入力された画像データから、画像データを構成する各画素データに含まれる各画素の階調性(濃度情報)を取得し、その階調性に応じた幅の駆動パルスを含む駆動パルス信号を生成する。この駆動パルス信号には、1走査ラインに対応する1ラインの画像情報(濃度情報)が含まれており、具体的には、1ラインに含まれる各画素領域に定められた露光時間や光強度を示す前記駆動パルスが画素領域ごとに複数含まれている。この段階では、それぞれの駆動パルスは、一つの画素領域に対して1回の露光を行う一つのパルスであり、前記駆動パルスによる1回の露光によって一つの画素の静電潜像を感光体ドラム31の表面に形成するためのものである。本実施形態では、一つの画素領域に割り当てられる一つの駆動パルスを複数の駆動パルス(制御パルス)に分割して、一つの画素領域内に光ビームを複数回照射させるようにしている。
具体的には、次のステップS14において、光源制御部81は、ステップS13で生成された前記駆動パルス信号を補正する補正処理を行う。この補正処理は、前記画素領域それぞれに対応して予め定められた複数の照射タイミングで光ビームを照射させるために、前記画素領域に割り当てられている前記駆動パルスを複数に分割する処理である。例えば、或る画素領域に対して3回の照射タイミングが定められている場合は、前記駆動パルスを3つに分割する。以下、分割された各駆動パルスを制御パルスと称する。後述の実施例1の例では、前記駆動パルスは、当該補正処理によって、静止ビーム101に適用される3つの制御パルスA11〜A13(図5(B)参照)に分割される。
各制御パルスの間隔は、光ビームが照射される前記照射タイミングの間隔となるように定められる。また、前記制御パルスのパルス幅は、光ビームが照射される露光時間である。したがって、前記制御パルスのパルス幅は、前記画素領域における各照射位置に必要な光強度が得られるように定められる。また、前記制御パルスの振幅を調整して、各照射位置に必要な光強度を得るようにしてもよい。前記駆動パルスの分割数や分割後の前記制御パルスの間隔、制御パルスの振幅などは、前記画素領域ごとに予め対応して記憶された記憶部82内の基準スポット径や光ビームの特性(光量分布など)などの情報(補正情報とも称する)が参照されて、画素領域ごとに決定される。例えば、照射される画素領域の光束のスポット径が、記憶部82に記憶された基準スポット径の平均径となるように前記分割数や間隔が定められてもよい。もちろん、事前に各画素領域に対応して前記平均径となるように変調率や分割数などがシミュレーションなどによって求められている場合は、前記変調率や前記分割数(補正情報とも称する)に基づいて前記駆動パルスを分割する補正処理が行われてもよい。
次のステップS15では、制御部80は、光検出部69から前記DB信号を検知したかどうかを判定する。前記DB信号が検知されると、制御部80の光源制御部81は、ステップS16において、前記補正処理後の駆動パルス信号をLD駆動回路61Aに出力する。駆動パルス信号を受けたLD駆動回路61Aは、駆動パルス信号にしたがって光源61を駆動制御する。これにより、感光体ドラム31の表面上の前記画素領域ごとに定められた複数の照射タイミングで同画素領域における複数の照射位置(照射領域)に光ビームが照射される。なお、次のラインに対する走査がある場合は、ステップS13以降の処理が繰り返され、次のラインに対する走査が無い場合は、MEMSミラー64の駆動を停止して、一連の処理が終了する。
このように、画像形成装置10の光走査装置6において、上述の光源61の駆動制御処理が行われるため、走査時に、感光体ドラム31の表面上の前記画素領域ごとに定められた複数の照射タイミングで同画素領域における複数の照射位置(照射領域)に光ビームが照射される。このため、感光体ドラム31の表面上の主走査方向D31のいずれの位置においても、各画素領域における光束の光量分布を概ね等しくすることができ、また、各画素領域における光束のスポット径を概ね均一にすることが可能となる。
なお、本実施形態では、生成された駆動パルス信号を、前記制御パルスを含む新たな駆動パルス信号に補正する例について説明したが、光源制御部81が、ステップS13において、前記制御パルスを含む駆動パルス信号を生成するものであってもよい。
[実施例1〜8]
次に、本発明の第1実施形態の各実施例1〜8及について説明する。以下の各実施例1〜8は、所定のシミュレーションプログラムを用いて得られたシミュレーション結果を示す図5乃至図12を参照して説明する。
[実施例1]
図5及び図6を参照して、実施例1(シミュレーション例1)について説明する。図5(A)は、解像度600dpiにおける1画素に対応する画素領域R10に異なるスポット径の静止ビーム101,102が所定時間(2.80×10−8[s])照射されたときの光量分布のシミュレーン結果を示す図である。図5(B)は、実施例1のシミュレーションにおいて静止ビーム101に適用される点灯制御の制御パルスA11〜A13、及び静止ビーム102に適用される点灯制御の制御パルスA14を示す図である。また、図6(A)〜(C)は、図5(B)に示す制御パルスで光源61を駆動させて3つの光ビームを照射したときに得られる動的ビーム103,104,105のシミュレーン結果を示す図である。ここで、前記静止ビームは、走査させずに被走査面へ出射させた光ビームのことである。また、前記動的ビームは、被走査面に対して光ビームを走査させて得られた被走査面における光束のことである。
実施例1における静止ビーム101は、スポット径が67.2[μm]に設定された光ビームであり、静止ビーム102は、スポット径が90.0[μm]に設定された光ビームである。ここで、スポット径は、光強度のピーク値に対して1/e(=13.5%)となる点の光束の直径である。図5(A)に明らかなように、スポット径が異なると光量分布も異なることが理解できる。スポット径及び光量分布それぞれが異なる静止ビーム101及び静止ビーム102に対して、実施例1では、図5(B)に示す制御パルスを用いた点灯制御を行うことにより、静止ビーム101のスポット径67.2[μm]を静止ビーム102のスポット径90.0[μm]に揃えるシミュレーションを行った。ここで、図5(B)のシミュレーション条件は、各制御パルスの光強度(光エネルギー)が5.25[mW]、走査速度が1500[m/s]、制御パルスA11,A13の露光時間が6.67×10−10[s]、制御パルスA12の露光時間が1.33×10−9[s]、制御パルスA14の露光時間が2.67×10−9[s]、制御パルスA11,A13の点灯時の走査長が1[μm]、制御パルスA12の点灯時の走査長が2[μm]、制御パルスA14の点灯時の走査長が4[μm]、制御パルスA11〜A13の光エネルギー(露光エネルギー)が0.393701[μJ/cm2]、制御パルスA14の光エネルギー(露光エネルギー)が0.787402[μJ/cm2]である。
実施例1では、図5(B)に示されるように、画素領域R10において、スポット径の小さい静止ビーム101については、主走査方向D31の中央と両端部の合計3箇所に照射位置を定め、各照射位置に対応する制御パルスA11〜A13を用いた。つまり、画素領域R10に対する制御パルスA11〜A13による光ビームの照射タイミングは3回である。また、3つの制御パルスA11〜A13の照射タイミングは、主走査方向D31において均等な間隔に定められている。つまり、画素領域R10において、制御パルスA11〜A13による光ビームの各照射タイミング及び照射位置の間隔は均等である。また、静止ビーム101については、主走査方向D31の中央位置に対応するように制御パルスA12の照射タイミングが定められており、また、他の2つの制御パルスA11,A13は、主走査方向D31の中央位置を基準にして主走査方向D31へ対称に振り分けられた照射位置に光ビームが照射するように照射タイミングが定められている。つまり、制御パルスA11,A13によって複数の照射タイミングで照射される光ビームの照射位置は、前記中央位置を基準にして主走査方向D31へ対称に振り分けられている。具体的には、制御パルスA11,A13に対応する照射位置は、画素領域R10において主走査方向D31の最も外側の位置(隣接する画素領域の境界位置)に定められている。また、スポット径の大きい静止ビーム102については、主走査方向D31の中央位置に光強度が集中するように、中央位置に対応するように一つの制御パルスA14の照射タイミングが定められている。つまり、制御パルスA14よって照射される光ビームの照射位置は、前記中央位置である。
また、制御パルスA11〜A13、及び制御パルスA14は、それぞれ、光強度が同じであるが、制御パルスA12は、両端の制御パルスA11,A13に対して露光時間が2倍である。また、制御パルスA14の露光時間は、制御パルスA12の露光時間の2倍であり、制御パルスA11,A13の露光時間の4倍となっている。つまり、画素領域R10において、主走査方向D31の最も外側に位置する照射位置(外側照射位置)よりも内側に位置する照射位置(内側照射位置)に、より大きい光エネルギーの光ビームが照射されるように各露光時間が設定されている。具体的には、制御パルスA11〜A13においては、外側の制御パルスA11,A13による光ビームよりも、内側の制御パルスA12は、2倍の光エネルギーの光ビームを照射する。
図6(A)は、図5(B)に示す点灯制御が異なるプロファイルの静止ビーム101及び静止ビーム102に対して行われつつ光ビームが画素領域R10に対して走査されるときの動的ビーム101A,102Aの光量分布である。静止ビーム101及び静止ビーム102のいずれに対しても、これらの動的ビーム101A,102Bは、スポット径が90.0μmに揃えられ、また、光量分布も一致している。なお、図6(A)では、光量分布が一致しているため、動的ビーム101A,102Bが重なって表示されている。図6(B)及び(C)においても同様である。
図6(B)は、図5(B)に示す点灯制御が連続する2つの画素に対応する画素領域R10,R11に対して行われつつ光ビームが画素領域R10,R11に対して走査されるときの動的ビーム101B,102Bの光量分布である。図6(C)は、図5(B)に示す点灯制御が1by1画素に対応する画素領域R10〜R12に対して行われつつ光ビームが画素領域R10〜R12に対して走査されるときの動的ビーム101C,102Cの光量分布である。ここで、1by1(1対1)画素とは、1画素毎に点灯(ON)、非点灯(OFF)を交互に繰り返す画素列の点灯パターンである。図6(B)及び図6(C)に示されるように、静止ビーム101及び静止ビーム102のいずれに対しても、各動的ビームの光量分布が等しくなる。このため、光量分布のピーク値の1/eの点におけるスポット径も同じサイズに揃えられる。
このことから、図5(B)に示される点灯制御が適用されることにより、スポット径の差が、主走査方向D31に最大で22.8[μm](90.0[μm]−67.2[μm])あっても、光ビームの光量分布を概ね等しくすることができ、また、光ビームのスポット径を概ね均一にすることが可能であることが理解できる。また、図5(B)に示されるように、静止ビーム101,102に比べておよそ2倍の光強度を要することになるが、2倍程度の光強度の調整だけで光量分布を等しくすることができ、スポット径を揃えることができる。したがって、従来技術に比べて、少ない調整幅で従来と同程度或いはそれ以上の範囲でスポット径の補正を行うことができる。言い換えると、従来技術に比べて、スポット径の補正範囲を拡大することが可能である。
なお、実施例1において、静止ビーム101のスポット径を75.0[μm]に設定し、静止ビーム102のスポット径を95.6[μm]に設定し、静止ビーム101のスポット径75.0[μm]を静止ビーム102のスポット径95.6[μm]に揃えるシミュレーションを行った場合も、光量分布を等しくすることができ、スポット径を揃えることができることが確認済みである。
[実施例2]
図7を参照して、実施例2(シミュレーション例2)について説明する。図7(A)は、画素領域R10に異なるスポット径の静止ビーム201,202が所定時間(2.80×10−8[s])照射されたときの光量分布のシミュレーン結果を示す図である。図7(B)は、実施例2のシミュレーションにおいて静止ビーム201に適用される点灯制御の制御パルスA21〜A23、及び静止ビーム202に適用される点灯制御の制御パルスA24を示す図である。
実施例2における静止ビーム201は、スポット径が75.2[μm]に設定された光ビームであり、静止ビーム202は、スポット径が90.0[μm]に設定された光ビームである。実施例2では、図7(B)に示す制御パルスを用いた点灯制御を行うことにより、静止ビーム201のスポット径75.2[μm]を静止ビーム202のスポット径90.0[μm]に揃えるシミュレーションを行った。ここで、図7(B)のシミュレーション条件は、各制御パルスの光強度が1.05[mW]、制御パルスA21,A23の露光時間が3.33×10−10[s]、制御パルスA22の露光時間が6.67×10−9[s]、制御パルスA24の露光時間が1.33×10−8[s]、制御パルスA21,A23の点灯時の走査長が5[μm]、制御パルスA22の点灯時の走査長が10[μm]、制御パルスA24の点灯時の走査長が20[μm]、制御パルスA21〜A23の光エネルギー(露光エネルギー)が0.393701[μJ/cm2]、制御パルスA24の光エネルギー(露光エネルギー)が0.787402[μJ/cm2]である。なお、他の条件は実施例1の条件と同じである。
実施例2では、図7(B)に示されるように、画素領域R10において、スポット径の小さい静止ビーム201については、主走査方向D31の中央と両端部の合計3箇所に照射位置を定め、各照射位置に対応する制御パルスA21〜A23を用いた。つまり、画素領域R10に対する制御パルスA21〜A23による光ビームの照射タイミングは3回である。また、3つの制御パルスA21〜A23の照射タイミングは、主走査方向D31において均等な間隔に定められている。つまり、画素領域R10において、制御パルスA21〜A23による光ビームの各照射タイミング及び照射位置の間隔は均等である。また、静止ビーム201については、主走査方向D31の中央位置に対応するように制御パルスA22の照射タイミングが定められており、また、他の2つの制御パルスA21,A23は、主走査方向D31の中央位置を基準にして主走査方向D31へ対称に振り分けられた照射位置に光ビームが照射するように照射タイミングが定められている。つまり、制御パルスA21,A23によって複数の照射タイミングで照射される光ビームの照射位置は、前記中央位置を基準にして主走査方向D31へ対称に振り分けられている。また、スポット径の大きい静止ビーム202については、主走査方向D31の中央位置に光強度が集中するように、中央位置に対応するように一つの制御パルスA24の照射タイミングが定められている。実施例2が実施例1と大きく異なる点は、実施例1に比べて各制御パルスの光強度が概ね4分の1にされ、露光時間及び走査長が概ね5倍にされた点である。各制御パルスの配置や数などのその他の事項は、実施例1と同じである。
実施例2のシミュレーションにおいても、図7(B)に示す点灯制御により得られる2つの動的ビームにおいて、実施例1と同様に、光量分布が概ね等しくなり、スポット径が同じサイズ(例えば90.0μm)に揃えられるという結果を得た。なお、実施例2の動的ビームは、実施例1と概ね同様の波形であるため、図示は省略している。
このことから、図7(B)に示される点灯制御が適用されることにより、スポット径の差が、主走査方向D31に最大で14.8[μm](90.0[μm]−75.2[μm])あっても、光ビームの光量分布を概ね等しくすることができ、また、光ビームのスポット径を概ね均一にすることが可能であることが理解できる。
[実施例3]
図8を参照して、実施例3(シミュレーション例3)について説明する。図8(A)は、画素領域R10に異なるスポット径の静止ビーム301,302が所定時間(2.80×10−8[s])照射されたときの光量分布のシミュレーン結果を示す図である。図8(B)は、実施例3のシミュレーションにおいて静止ビーム301に適用される点灯制御の制御パルスA31〜A33、及び静止ビーム302に適用される点灯制御の制御パルスA34を示す図である。
実施例3における静止ビーム301は、スポット径が72.8[μm]に設定された光ビームであり、静止ビーム302は、スポット径が90.0[μm]に設定された光ビームである。実施例3では、図8(B)に示す制御パルスを用いた点灯制御を行うことにより、静止ビーム301のスポット径72.8[μm]を静止ビーム302のスポット径90.0[μm]に揃えるシミュレーションを行った。ここで、図8(B)のシミュレーション条件は、制御パルスA31〜A33の光強度が1.05[mW]、制御パルスA34の光強度が2.10[mW]、制御パルスA31,A33の露光時間が3.33×10−10[s]、制御パルスA32,A34の露光時間が6.67×10−9[s]、制御パルスA31,A33の点灯時の走査長が5[μm]、制御パルスA32,A34の点灯時の走査長が10[μm]、制御パルスA31〜A34の光エネルギー(露光エネルギー)が0.393701[μJ/cm2]である。なお、他の条件は実施例2の条件と同じである。
実施例3では、図8(B)に示されるように、画素領域R10において、スポット径の小さい静止ビーム301については、主走査方向D31の中央と両端部の合計3箇所に照射位置を定め、各照射位置に対応する制御パルスA31〜A33(制御パルスA21〜A23と同じ)を用いた。また、スポット径の大きい静止ビーム302については、主走査方向D31の中央位置に光強度が集中するように、中央位置に対応するように一つの制御パルスA34の照射タイミングが定められている。実施例3が実施例2と大きく異なる点は、実施例2に比べて制御パルスA34の走査長が2分の1にされ、光強度が2倍にされた点である。各制御パルスの配置や数などのその他の事項は、実施例2と同じである。
実施例3のシミュレーションにおいても、図8(B)に示す点灯制御により得られる2つの動的ビームにおいて、実施例1と同様に、光量分布が概ね等しくなり、スポット径が同じサイズ(例えば90.0μm)に揃えられるという結果を得た。なお、実施例3の動的ビームは、実施例1と概ね同様の波形であるため、図示は省略している。
このことから、図8(B)に示される点灯制御が適用されることにより、スポット径の差が、主走査方向D31に最大で17.2[μm](90.0[μm]−72.8[μm])あっても、光ビームの光量分布を概ね等しくすることができ、また、光ビームのスポット径を概ね均一にすることが可能であることが理解できる。
[実施例4]
図9を参照して、実施例4(シミュレーション例4)について説明する。図9(A)は、画素領域R10に異なるスポット径の静止ビーム401〜404が所定時間(2.80×10−8[s])照射されたときの光量分布のシミュレーン結果を示す図である。図9(B)は、実施例4のシミュレーションにおいて静止ビーム401に適用される点灯制御の制御パルスA41X,A41Y,A41Z、静止ビーム402に適用される点灯制御の制御パルスA42X,A42Y,A42Z、静止ビーム403に適用される点灯制御の制御パルスA43X,A43Y,A43Z、静止ビーム404に適用される点灯制御の制御パルスA44を示す図である。なお、図9(B)では、中央の制御パルスA41Z,A42Z,A43Zは同じパルス形状であるため、重なって示されている。
実施例4における静止ビーム401は、スポット径が67.2[μm]に設定された光ビームであり、静止ビーム402は、スポット径が74.8[μm]に設定された光ビームであり、静止ビーム403は、スポット径が82.4[μm]に設定された光ビームであり、静止ビーム404は、スポット径が90.0[μm]に設定された光ビームである。実施例4では、図9(B)に示す制御パルスを用いた点灯制御を行うことにより、静止ビーム401〜403のスポット径を静止ビーム404のスポット径90.0[μm]に揃えるシミュレーションを行った。ここで、図9(B)のシミュレーション条件は、各制御パルスの光強度が5.25[mW]、中央位置以外の制御パルスの露光時間が6.67×10−10[s]、その走査長が1[μm]、制御パルスA41Z,A42Z,A43Zの露光時間が1.33×10−9[s]、その走査長が2[μm]、制御パルスA44の露光時間が2.67×10−9[s]、その走査長が4[μm]、制御パルスA44の光エネルギー(露光エネルギー)が0.787402[μJ/cm2]、制御パルスA41X〜A41Zの光エネルギー(露光エネルギー)が0.393701[μJ/cm2]、制御パルスA42X〜A42Zの光エネルギー(露光エネルギー)が0.393701[μJ/cm2]、制御パルスA43X〜A43Zの光エネルギー(露光エネルギー)が0.393701[μJ/cm2]である。なお、他の条件は実施例3の条件と同じである。
実施例4では、図9(B)に示されるように、画素領域R10において、静止ビーム401については、主走査方向D31の中央と両端部の合計3箇所に照射位置を定め、各照射位置に対応する制御パルスA41X〜A41Zを用いた。外側の制御パルスA41X,41Yは、画素領域R10の中央位置を基準にして主走査方向D31へ対称に振り分けられている。具体的には、制御パルスA41X,A41Yは、画素領域R10において主走査方向D31の最も外側の照射位置(隣接する画素領域の境界位置)に光ビームが照射するように照射タイミングが定められている。静止ビーム402についても、同様に、3箇所に照射位置に対応する制御パルスA42X〜A42Zを用い、外側の制御パルスA42X,A42Yによる照射位置は、中央位置から17.3[μm]離れた位置に定められている。静止ビーム403についても、同様に、3箇所に照射位置に対応する制御パルスA43X〜A43Zを用い、外側の制御パルスA43X,A43Yによる照射位置は、中央位置から12.7[μm]離れた位置に定められている。また、最もスポット径の大きい静止ビーム404については、主走査方向D31の中央位置に光強度が集中するように、中央位置に対応するように一つの制御パルスA44の照射タイミングが定められている。実施例4においては、制御パルスA44を除き、スポット径の小さい制御パルスほど中央位置から離れた位置に照射位置が定められており、スポット径が大きい制御パルスほど中央位置寄りに照射位置が定められている。
実施例4のシミュレーションにおいても、図9(B)に示す点灯制御により得られる4つの動的ビームにおいて、4つの動的ビームそれぞれの光量分布が概ね等しくなり、スポット径が同じサイズ(90.0μm)に揃えられるという結果を得た。なお、実施例4の動的ビームは、実施例1と概ね同様の波形であるため、図示は省略している。
このことから、図9(B)に示される点灯制御が適用されることにより、4つの異なるスポット径の光ビームに対しても、光ビームの光量分布を概ね等しくすることができ、また、光ビームのスポット径を概ね均一にすることが可能であることが理解できる。また、当該シミュレーションによって、図9(B)に示すように、3つの制御パルスを用い、スポット径の小さいものほど外側の制御パルスの照射位置を中央位置から遠い位置に定めることにより、小さなスポット径の光ビームでも大きなスポット径の光ビームでも、外側の制御パルスの位置を変更するだけで、容易に補正できることが確認できた。
[実施例5及び6]
図10を参照して、実施例5(シミュレーション例5)について説明する。図10は、本実施形態における実施例5を説明するための図である。図10(A)は、実施例1の静止ビーム101に適用される点灯制御の制御パルスA51,A52、実施例1の静止ビーム102に適用される点灯制御の制御パルスA52を示す図である。上述の実施例1乃至4では、スポット径の小さい光ビームに対して3つの制御パルスを適用した例について例示したが、実施例5では、2つの制御パルスA51,A52が適用される。なお、実施例5のシミュレーション条件は実施例1と概ね同じである。静止ビーム101について、2つの制御パルスA51,A52による照射位置は、主走査方向D31の中央位置を基準にして主走査方向D31へ対称に振り分けられている。
図10(B)〜(D)は、図10(A)に示す点灯制御が異なるプロファイルの静止ビーム101,102に対して行われたときの動的ビームを示すものであり、図10(B)は光ビームが画素領域R10に対して走査されたときの動的ビームの光量分布、図10(C)は連続する2つの画素領域R10,R11に対して走査されたときの動的ビームの光量分布、図10(D)は1by1画素に対応する画素領域R10〜R12に対して走査されたときの動的ビームの光量分布である。いずれの図を見ても、光量分布が概ね一致していることが理解できる。しかしながら、上述の各実施例1乃至4の例に比べると、光量分布の一致性は劣る。このことから、スポット径の小さい光ビームに対しては3つの制御パルスを適用したほうが光量分布の一致性が良好であることが理解できる。特に、スポット径の差が大きい場合は、光量分布が一致し難くなるので、この場合は、画素領域R10において3つ以上の制御パルスを分散して適用することが好ましい。
また、図11は、比較的スポット径の差が小さい光ビーム(75.0[μm]と90.0[μm])に実施例5で用いた制御パルスA51〜A53を適用した実施例6(シミュレーション例6)のシミュレーション結果である。スポット径が小さい方の光ビームについて、2つの制御パルスA51,A52を適用した場合でも、比較的光量分布が一致していることが分かる。つまり、スポット径の差が15[μm]未満の場合は2つの制御パルスを適用しても光量分布が概ね等しくなり、スポット径も概ね一致することが理解できる。また、実施例5及び実施例6のシミュレーション結果から、スポット径の差が15[μm]を越える場合は、3つ以上の制御パルスを適用することが光量分布及びスポット径の一致性において好ましいことが確認できた。
[実施例7]
図12(A)を参照して、実施例7(シミュレーション例7)について説明する。図12(A)は、スポット径の小さい光ビームに対して4つの制御パルスA61〜A64を適用し、スポット径の大きい光ビームに対して中心位置に定められた一つの制御パルスA65を適用したシミュレーション例である。図12(A)に示されるように、点灯制御に用いられる4つの制御パルスA61〜A64による照射位置が、中心位置を境にして2つずつ主走査方向D31の外側に定められた場合にも、点灯制御により得られる2つの動的ビームにおいて光量分布を概ね等しくすることができ、また、スポット径を概ね均一にできることが当該シミュレーションによって確認済みである。
[実施例8]
図12(B)を参照して、実施例8(シミュレーション例8)について説明する。図12(B)は、スポット径の小さい光ビームに対して5つの制御パルスA71〜A75を適用し、スポット径の大きい光ビームに対して中心位置に定められた一つの制御パルスA76を適用したシミュレーション例である。図12(B)に示されるように、点灯制御に用いられる5つの制御パルスA71〜A75をスポット径の小さい光ビームに適用した場合でも、点灯制御により得られる2つの動的ビームにおいて光量分布を概ね等しくすることができ、また、光ビームのスポット径を概ね均一にできることが当該シミュレーションによって確認済みである。
[第2実施形態]
以下、図13乃至図16を参照して、本発明の第2実施形態について説明する。第2実施形態が上述の第1実施形態と異なるところは、制御部80及び光源制御部81が、上述の第1実施形態とは異なる点灯制御を行う点にあり、その他の構成は上述の第1実施形態と共通する。したがって、以下においては、構成が相違する点についてのみ説明し、上述の第1実施形態と共通する構成については、第1実施形態における構成に付した符号と同じ符号を付し示すことにより、その説明を省略する。なお、第2実施形態においても、上述の各実施例1〜8は適用可能である。
本実施形態では、制御部80及び光源制御部81は、感光体ドラム31の表面において主走査方向D31に沿って区分けされた複数の画素領域のうち主走査方向D31に連続する3つの画素領域R19〜R21からなる連続画素領域に対して、主走査方向D31における各画素領域の位置に基づいて定められた複数の照射タイミングで光ビームを照射させるように光源61を制御する。なお、本実施形態では、連続する3つの画素領域R19〜R21を例示して説明するが、少なくとも2つの画素領域からなる連続画素領域に本発明は適用可能である。
具体的には、図4のステップS14において、光源制御部81は、ステップS13で生成された前記駆動パルス信号を補正して、複数の前記制御パルスに分割する処理である。本実施形態では、図13(A)に示されるように、感光体ドラム31の表面に、主走査方向D31へ連続する画素領域R19,R20,R21が定められている場合に、画素領域R20の主走査方向D31の位置等に基づいて定められた3つの照射位置に対応する3つの制御パルスA81〜A83が生成される。制御パルスA81,A82は、画素領域R20と他の画素領域R19,R21との境界T1,T2を照射位置とするものである。制御パルスA81は、境界T1を跨ぐ照射位置に対応しており、制御パルスA82は、境界T2を跨ぐ照射位置に対応している。また、制御パルスA83は、画素領域R20の中央位置を照射位置とするものである。
ここで、制御パルスA81,A82の走査長は5[μm]であり、制御パルスA83の走査長は10[μm]である。制御パルスA81,A82は、画素領域R20の中心位置から主走査方向D31へ21.8[μm]隔てた位置を照射位置とするものである。また、制御パルスA81〜A83の光強度(光エネルギー)は、1.05[mW]である。
光源制御部81が、画素領域R19,R20,R21それぞれに図13(A)に示す制御パルスA81〜A83によって光ビームを照射させる場合、図13(B)に示すように、境界T1,T2において制御パルスが重複することになる。つまり、境界T1,T2それぞれを光ビームの照射位置(照射領域)に含む制御パルスA81,A82が重複する。この場合、光源制御部81は、前記ステップS14の補正処理において、重複する制御パルス(画素領域R19の制御パルスA82と画素領域R20の制御パルスA81、及び画素領域R20の制御パルスA82と画素領域R21の制御パルスA81)を合成する合成処理を行う。以下、合成処理により生成された制御パルスを合成パルスと称する。前記合成処理によって、図14(A)に示されるように、境界T1,T2それぞれに合成パルスA84,A85が生成される。
合成パルスA84,A85において重複部分の光強度は加算されるため、合成パルスA84,A85の光強度のピーク値は2倍の2.10[mW]である。この合成パルスA84,A85の光エネルギー量は、合成前の合成対象である2つの制御パルスそれぞれの光エネルギー量の合計値と一致している。つまり、光源制御部81は、合成対象の2つの制御パルスA81,A82に対応する光ビームの光エネルギー量を保持した合成パルスA84,A85を生成する。
その後、制御部80は、光検出部69から前記DB信号を検知すると、光源制御部81による補正処理後の駆動パルス信号(合成パルスを含む駆動パルス信号)をLD駆動回路61Aに出力する。これにより、図14(A)に示される複数の制御パルスを含む駆動パルス信号によって画素領域R19〜R21それぞれに対する点灯制御が行われる。つまり、主走査方向D31に連続する画素領域R19〜R21に対して、図14(A)に示される複数の制御パルスによる複数の光ビームが複数の照射タイミングで照射される。
このように、第2実施形態では、境界T1,T2を跨ぐ制御パルスによる点灯制御が行われるため、例えば、画素領域R20に対する点灯制御であっても、隣接する画素領域R19,R21にも光ビームの一部を照射させることができる。
また、前記補正処理において制御パルスを合成する処理が行われるため、光源61の点灯制御におけるオンオフ回数を減らすことができる。
また、上述したように、第2実施形態では、合成後の合成パルスA84,A85の光強度のピーク値が2倍になる。そのため、図14(B)に示されるように、光強度のピーク値を合成前の制御パルスの光強度1.05[mW]にしたまま、走査長を長くした合成パルスA86,A87を前記補正処理において生成してもよい。この場合、光強度のピーク値の上昇を抑えることができる。
なお、第2実施形態の他の実施例として、図15(A)に示されるように、画素領域R20の主走査方向D31の位置等に基づいて定められた3つの照射位置に対応する3つの制御パルスA91〜A93が前記補正処理において生成されてもよい。ここで、制御パルスA91は、境界T1を越えて隣の画素領域R19内に定められた照射位置に対応するものである。制御パルスA92は、境界T2を越えて隣の画素領域R21内に定められた照射位置に対応するものである。また、制御パルスA93は、画素領域R20の中央位置を照射位置とするものである。
ここで、制御パルスA91,A92の走査長は5[μm]であり、制御パルスA93の走査長は10[μm]である。制御パルスA91,A92は、画素領域R20の中心位置から主走査方向D31へ25.4[μm]隔てた位置を照射位置とするものである。また、制御パルスA91〜A93の光強度(光エネルギー)は、1.05[mW]である。
光源制御部81が、画素領域R19,R20,R21それぞれに図15(A)に示す制御パルスA91〜A93によって光ビームを照射させる場合、図15(B)に示すように、制御パルスが重複することはない。つまり、制御パルスA91〜A93は、画素領域R19,R20,R21それぞれに光ビームを照射させた場合でも、隣接する画素領域において光ビーム同士が重ならないように定められている。
一方、図16に示されるように、画素領域R19,R20,R21それぞれに光ビームを照射させる場合、境界T1,T2において制御パルスが近接する。つまり、境界T1において画素領域R19の制御パルスA92と画素領域R20の制御パルスA91とが近接し、境界T2において画素領域R20の制御パルスA92と画素領域R21の制御パルスA91とが近接する。この場合、光源制御部81は、前記ステップS14の補正処理において、互いに近接する制御パルスを合成する合成処理を行う。前記合成処理によって、図16(B)に示されるように、境界T1,T2それぞれに合成パルスA94,A95が生成される。当該合成処理は、合成対象の制御パルスに対応する光ビームの各照射位置の主走査方向D31における平均中心位置(境界T1,T2)位置を中心とする合成パルスA94,A95を生成する。
このように、前記補正処理において、境界T1,T2付近で互いに近接する制御パルスを合成する処理が行われるため、光源61の点灯制御におけるオンオフ回数を減らすことができる。
[第3実施形態]
以下、図17乃至図23を参照して、本発明の第3実施形態について説明する。第3実施形態が上述の第1実施形態と異なるところは、制御部80及び光源制御部81が、上述の第1実施形態とは異なる点灯制御を行う点にあり、その他の構成は上述の第1実施形態と共通する。したがって、以下においては、構成が相違する点についてのみ説明し、上述の第1実施形態と共通する構成については、第1実施形態における構成に付した符号と同じ符号を付し示すことにより、その説明を省略する。なお、第3実施形態においても、上述の第1実施形態の各実施例1〜8は適用可能である。
本実施形態では、図17に示されるように、制御部80は、前記ROM等に記憶されている制御プログラムに従った処理を前記CPUで実行することにより、ブロック位置設定部83と、ブロック位置調整部84として機能する。
ブロック位置設定部83は、感光体ドラム31の表面において走査方向D31に沿って区分けされた複数の画素領域を複数含むブロック領域を設定する。具体的には、主走査方向D31における1走査ライン上に解像度600dpiに基づいて複数の画素領域が区分けされている場合に、予め定められた数の画素領域の集合体となるように一つのブロック領域が設定されている。そして、そのブロック領域が主走査方向D31に沿って複数区画されている。ブロック位置設定部83は、予め定められた周期にしたがって全ての前記ブロック領域の位置を変更する。例えば、ブロック位置設定部83は、前記ブロック領域の位置を、前記主走査方向に振幅する正弦波又は三角波に沿って変更する。これらの三角波又は正弦波に関する情報は周期情報として予め記憶部82に格納されている。ブロック位置設定部83は、記憶部82に格納された前記正弦波又は前記三角波などの周期情報を参照して、前記ブロック領域の位置を変更する。
ブロック位置調整部84は、ブロック位置設定部83による前記ブロック領域の設定位置を調整する。例えば、記憶部82に格納された前記周期情報を変更することにより、前記ブロック領域の設定位置を変更可能である。例えば、前記三角波又は前記正弦波の周波数や周期を変更して前記設定位置を副走査方向(主走査方向D31に直交する直交方向)に変更することができる。また、前記三角波又は前記正弦波の振幅を変更することにより、前記設定位置を主走査方向D31に変更することができる。
光制御部81は、上述の各実施形態とは異なり、複数の画素領域に対して、ブロック位置設定部83によって設定された前記ブロック領域毎に定められた複数の照射タイミングで光ビームを照射させるように光源61を制御する。前記複数の照射タイミングは、予めシミュレーション或いは実測データに基づいて前記ブロック領域毎に算出されて、記憶部82に記憶されている。なお、複数の照射タイミングがブロック領域毎に定められている点が上述の第1実施形態との相違点であり、その他の点については共通する。つまり、光源制御部81は、前記駆動パルス信号を補正して、ブロック領域毎に定められた複数の照射タイミングを示す制御パルスを含む駆動パルス信号にしてから、補正された前記駆動パルス信号をLD駆動回路61Aに出力する。そして、LD駆動回路61Aが前記駆動パルス信号にしたがって光源61に光ビームを出射させる。
このように、走査方向D31に区画された複数のブロック領域ごとに同じ照射タイミングで光ビームを照射する場合、画素領域一つずつ異なる照射タイミングで照射する場合に比べて制御部80のCPUなどの演算負担が軽減する。しかしながら、例えば、図18に示されるように、隣接するブロック領域B1,B2がある場合に、各ブロック領域B1,B2それぞれへの光ビームの光量分布が略等しくされたとしても、ブロック領域B1,B2の境界P0に隣接する2つの画素領域B11,B12それぞれの光量分布には差が生じる。これは、前記ブロック領域を一単位として複数の照射タイミングが定められているためであり、各ブロック領域の境界P0を挟む各画素領域では、それぞれの照射タイミングが異なるため、光量分布の一致性が劣る。この場合、補正された前記駆動パルス信号による光ビームによって感光体ドラム31の表面が走査されたとしても、図19(B)に示すように、それによって得られる画像は、境界P0に対応する部分に副走査方向の筋画像が生じる。特に、主走査方向D31の端側において、筋画像が顕著である。このため、本実施形態では、ブロック位置設定部83は、少なくとも一ラインの走査毎に主走査方向D31におけるブロック領域の設定位置を前記主走査方向に変更している。これにより、光源制御部81は、一ラインの走査毎に主走査方向D31へずらされたブロック領域に対して光走査するため、走査毎に境界P0の位置が異なる。これにより、境界P0における画像の濃度差が主走査方向D31に散らされるため、図19(C)に示すように、走査方向D31の中央はもとより、主走査方向S31の端側においても目立った筋は現れなくなる。なお、図19(A)は、補正も位置変更も行われなかった場合の画像濃度を示す。
ブロック位置設定部83は、記憶部82に記憶されている三角波又は正弦波などの周期情報に従って前記ブロック領域の位置を設定する。例えば、図20に示されるように、ラインK1におけるブロック領域B1とブロック領域B2との境界を通る直線(副走査方向に延びる直線)を境界基準線P1とする。この場合、ブロック位置設定部83は、境界基準線P1を基準にしてブロック領域B1,B2を含む全てのブロック領域の位置を主走査方向D31へ周期的に変更させる。これにより、ブロック領域B1,B2の境界が主走査方向へ周期的に変更される。図20には、ラインK1からK7までの7ライン分の光走査を1周期として境界位置が周期的に変更された状態が示されている。また、図21には、記憶部82内の三角波に従って境界位置が三角波状に変更された場合の変更軌跡(破線参照)が示されており、図22には、記憶部82内の正弦波に従って境界位置が正弦波状に変更された場合の変更軌跡(破線参照)が示されている。なお、図20乃至図22において、符号αと符号βは、それぞれ、補正内容が異なる画素領域を示している。
また、本実施形態では、前記周期情報は、以下の条件を満たすように定められている。具体的には、ブロック位置設定部83によって変更される前記ブロック領域の位置(つまり境界位置)の変更周期が、スクリーンパターンの周期、MEMSミラーの偏向周期(正弦振動の振動周期)、光源61の光ビームの光波の周期のうちの少なくとも一つの周期と同期しないように定められている。ここで、スクリーンパターンとは、画像形成される画像データに対するスクリーン処理に用いられるスクリーンパターンのことであり、その周期とは、スクリーンパターンが主走査方向D31に直交する副走査方向に出現する周期のことである。ブロック領域の位置の変更周期がスクリーンパターンの周期から外れることにより、スクリーンパターンと境界における濃度差による境界画像が同期して波形状に現れることが防止される。また、ブロック領域の位置の変更周期が前記偏向周期や光ビームの光波の周期から外れる場合にも、境界における濃度差による境界画像が波形状に現れることが防止される。
また、上述した画像形成ユニット1〜4には帯電部32及び現像部33が設けられている。帯電部32(帯電装置)が、感光体ドラム31を所定電位に帯電させるために交流成分を有するバイアス電圧を印加する場合は、前記周期情報は、帯電部32の交流成分に同期しないことが好ましい。また、現像部33(現像装置)が、現像ローラーと感光体ドラム31との間に電位を印加する際に交流成分のバイアス電圧を用いる場合は、前記周期情報は、現像部33の交流成分に同期しないことが好ましい。この場合も、境界における濃度差による境界画像が波形状に現れることが防止される。
なお、上述の実施形態では、ブロック位置設定部83が、記憶部82に記憶されている三角波又は正弦波などの周期情報に従って前記ブロック領域の位置を設定する例について説明したが、本発明はこれに限られない。例えば、図23に示されるように、周期的に位置変更がされていなくても、少なくとも、1ライン毎に主走査方向D31へブロック領域の位置が変更されていればよい。
また、上述の実施形態では、1ライン毎にブロック位置設定部83が、前記ブロック領域の位置を設定する例について説明したが、本発明はこれに限られない。2つのライン或いは3ラインごとにブロック領域の位置が変更されてもよい。
6:光走査装置
10:画像形成装置
31:感光体ドラム
61:光源
64:MEMSミラー
66,67:走査レンズ
80:制御部
81:光源制御部

Claims (17)

  1. 光ビームを出射する光源と、
    前記光源から出射された光ビームを所定の偏向角で偏向して被走査面を一ラインずつ走査させる偏向部と、
    前記偏向部によって偏向された前記光ビームを前記被走査面に結像させるとともに前記被走査面における前記光ビームを走査方向へ等速で走査させる結像レンズと、
    前記被走査面において前記走査方向に沿って区分けされた複数の区分領域を複数含むブロック領域を設定するブロック位置設定部と、
    前記区分領域それぞれに対して、前記ブロック位置設定部によって設定された前記ブロック領域毎に定められた複数の照射タイミングで前記光ビームを照射させるように前記光源を制御する光源制御部と、を備え、
    前記ブロック位置設定部は、少なくとも一ラインの走査毎に前記走査方向における前記ブロック領域の設定位置を前記走査方向に変更する光走査装置。
  2. 前記ブロック位置設定部は、前記走査方向に直交する直交方向に定められた境界基準線を基準にして前記ブロック領域の位置を前記走査方向へ周期的に変更する請求項1に記載の光走査装置。
  3. 前記ブロック位置設定部による前記ブロック領域の位置の前記直交方向における変更周期は、画像形成に用いられる画像データに対するスクリーン処理に用いられるスクリーンパターンが前記走査方向に直交する直交方向に出現する周期、前記偏向部による光ビームの変更周期、前記光ビームの周期のうちの少なくとも一つの周期と同期しない請求項2に記載の光走査装置。
  4. 前記ブロック位置設定部は、前記ブロック領域の位置を前記走査方向に振幅する三角波又は正弦波に沿って変更する請求項2又は3に記載の光走査装置。
  5. 前記複数の照射タイミングは、前記被走査面上における前記複数の区分領域それぞれにおける光束の光量分布が略等しくなるように定められている請求項1から4のいずれかに記載の光走査装置。
  6. 前記光源制御部は、前記走査方向における前記ブロック領域の位置に応じた露光時間及び光強度の前記光ビームを前記複数の照射タイミングで照射させるように前記光源を制御する請求項1から5のいずれかに記載の光走査装置。
  7. 前記偏向部は、前記所定の偏向角で正弦振動して前記光ビームを前記被走査面へ向けて反射させる振動ミラーであり、
    前記結像レンズは、前記被走査面における前記光ビームの前記走査方向の速度を等速にするアークサイン特性を有する請求項1から6のいずれかに記載の光走査装置。
  8. 前記複数の区分領域それぞれに所定の光エネルギーの基準光ビームを照射させたときの前記複数の区分領域それぞれにおける前記基準光ビームの基準スポット径を含むビームデータを記憶する記憶部を更に備え、
    前記光源制御部は、前記走査方向における前記ブロック領域の位置と前記ビームデータに含まれる前記ブロック領域の各区分領域それぞれの前記基準スポット径とに基づいて定められた前記複数の照射タイミングで前記光ビームを照射させるように前記光源を制御する請求項1から7のいずれかに記載の光走査装置。
  9. 前記光源制御部は、前記ビームデータに含まれる前記基準スポット径のサイズに対して負の相関関係となるように前記複数の照射タイミングの間隔を調整する請求項8に記載の光走査装置。
  10. 前記複数の照射タイミングで照射される光ビームの照射位置は、前記区分領域の中心を基準にして前記走査方向へ対称に振り分けられている請求項1から9のいずれかに記載の光走査装置。
  11. 前記区分領域に対する前記複数の照射タイミングは、少なくとも3回である請求項1から10のいずれかに記載の光走査装置。
  12. 前記区分領域に対する前記複数の照射タイミングの間隔は均等である請求項11に記載の光走査装置。
  13. 前記光源制御部は、前記区分領域において前記走査方向の最も外側に位置する外側照射位置よりも内側に位置する内側照射位置により大きい光エネルギーの前記光ビームを照射するように前記光源を制御する請求項11又は12に記載の光走査装置。
  14. 前記光源制御部は、前記外側照射位置よりも2倍の光エネルギーの前記光ビームを前記内側照射位置に照射するように前記光源を制御する請求項13に記載の光走査装置。
  15. 請求項1から14のいずれかに記載の光走査装置と、
    前記光走査装置によって走査された被走査面上の静電潜像に基づく画像を被転写シートに形成する画像形成部と、を備える画像形成装置。
  16. 前記区分領域は、前記画像形成部により形成される画像の最小単位である1画素に対応する画素領域である請求項15に記載の画像形成装置。
  17. 前記画像形成部は、現像装置及び帯電装置を含み、
    前記ブロック位置設定部による前記ブロック領域の位置の変更周期は、前記現像装置で用いられるバイアス電圧の交流成分の周期、又は前記帯電装置で用いられるバイアス電圧の交流成分の周期と同期しない請求項15又は16に記載の画像形成装置。
JP2015208705A 2015-10-23 2015-10-23 光走査装置およびこれを備える画像形成装置 Pending JP2017083511A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015208705A JP2017083511A (ja) 2015-10-23 2015-10-23 光走査装置およびこれを備える画像形成装置
US15/331,689 US9955031B2 (en) 2015-10-23 2016-10-21 Laser scanning device and image forming apparatus including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015208705A JP2017083511A (ja) 2015-10-23 2015-10-23 光走査装置およびこれを備える画像形成装置

Publications (1)

Publication Number Publication Date
JP2017083511A true JP2017083511A (ja) 2017-05-18

Family

ID=58559328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015208705A Pending JP2017083511A (ja) 2015-10-23 2015-10-23 光走査装置およびこれを備える画像形成装置

Country Status (2)

Country Link
US (1) US9955031B2 (ja)
JP (1) JP2017083511A (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017083511A (ja) * 2015-10-23 2017-05-18 京セラドキュメントソリューションズ株式会社 光走査装置およびこれを備える画像形成装置
JP2017083512A (ja) * 2015-10-23 2017-05-18 京セラドキュメントソリューションズ株式会社 光走査装置およびこれを備える画像形成装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07270699A (ja) * 1994-03-29 1995-10-20 Canon Inc 光走査装置
JPH09174931A (ja) * 1995-11-27 1997-07-08 Hewlett Packard Co <Hp> 画像のドットの増強方法
JP2001281574A (ja) * 2000-03-28 2001-10-10 Fuji Photo Film Co Ltd 走査光学系
JP2006053240A (ja) * 2004-08-10 2006-02-23 Noritsu Koki Co Ltd レーザー光変調装置
JP2006154337A (ja) * 2004-11-30 2006-06-15 Konica Minolta Business Technologies Inc レーザー走査光学系
JP2009053466A (ja) * 2007-08-28 2009-03-12 Kyocera Mita Corp 画像形成装置
JP2009192563A (ja) * 2008-02-12 2009-08-27 Ricoh Co Ltd 光走査装置及び画像形成装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6045455B2 (ja) * 2013-08-02 2016-12-14 キヤノン株式会社 光走査装置及びそれを用いた画像形成装置
EP3722880B1 (en) * 2014-06-12 2022-10-05 Canon Kabushiki Kaisha Image-forming apparatus
JP6002737B2 (ja) * 2014-11-27 2016-10-05 京セラドキュメントソリューションズ株式会社 光走査装置及びこれを用いた画像形成装置
JP2017083511A (ja) * 2015-10-23 2017-05-18 京セラドキュメントソリューションズ株式会社 光走査装置およびこれを備える画像形成装置
JP2017083512A (ja) * 2015-10-23 2017-05-18 京セラドキュメントソリューションズ株式会社 光走査装置およびこれを備える画像形成装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07270699A (ja) * 1994-03-29 1995-10-20 Canon Inc 光走査装置
JPH09174931A (ja) * 1995-11-27 1997-07-08 Hewlett Packard Co <Hp> 画像のドットの増強方法
JP2001281574A (ja) * 2000-03-28 2001-10-10 Fuji Photo Film Co Ltd 走査光学系
JP2006053240A (ja) * 2004-08-10 2006-02-23 Noritsu Koki Co Ltd レーザー光変調装置
JP2006154337A (ja) * 2004-11-30 2006-06-15 Konica Minolta Business Technologies Inc レーザー走査光学系
JP2009053466A (ja) * 2007-08-28 2009-03-12 Kyocera Mita Corp 画像形成装置
JP2009192563A (ja) * 2008-02-12 2009-08-27 Ricoh Co Ltd 光走査装置及び画像形成装置

Also Published As

Publication number Publication date
US20170118368A1 (en) 2017-04-27
US9955031B2 (en) 2018-04-24

Similar Documents

Publication Publication Date Title
JP5804773B2 (ja) 画像形成装置
JP5679110B2 (ja) 画像形成装置
JP5078836B2 (ja) 光走査装置および画像形成装置
US9465312B2 (en) Image forming apparatus and method for adjustment of light amount during weak light emission
JP2017083511A (ja) 光走査装置およびこれを備える画像形成装置
JP2012037633A (ja) 光走査装置及び画像形成装置
JP2017083512A (ja) 光走査装置およびこれを備える画像形成装置
JP6726046B2 (ja) 画像形成装置
US20130271551A1 (en) Image forming apparatus
JP5315804B2 (ja) 画像形成装置
JP6477414B2 (ja) 光走査装置およびこれを備える画像形成装置
JP6493152B2 (ja) 光走査装置およびこれを備える画像形成装置
JP2007086335A (ja) 光走査装置
US8421835B2 (en) Exposure device capable of stabilizing density of image formed by multiple exposure and image forming apparatus equipped with the exposure device
JP2017083514A (ja) 光走査装置およびこれを備える画像形成装置
JP6384471B2 (ja) 光走査装置及びこれを用いた画像形成装置
JP4861662B2 (ja) 画像形成装置
JP2017083516A (ja) 光走査装置、画像形成装置
JP5151956B2 (ja) 画像形成装置
JP5429025B2 (ja) 光ビーム走査光学装置
JP6463082B2 (ja) 画像形成装置
JP5320834B2 (ja) 画像形成装置
JP5173389B2 (ja) 画像形成装置及びその制御方法
JP2020021010A (ja) 画像形成装置
JP2002225346A (ja) 画像形成装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181225