JP2017075838A - ウェハ検査装置およびウェハ検査方法 - Google Patents

ウェハ検査装置およびウェハ検査方法 Download PDF

Info

Publication number
JP2017075838A
JP2017075838A JP2015203055A JP2015203055A JP2017075838A JP 2017075838 A JP2017075838 A JP 2017075838A JP 2015203055 A JP2015203055 A JP 2015203055A JP 2015203055 A JP2015203055 A JP 2015203055A JP 2017075838 A JP2017075838 A JP 2017075838A
Authority
JP
Japan
Prior art keywords
wafer
component
light
image
defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015203055A
Other languages
English (en)
Inventor
美行 掛布
Yoshiyuki Kakefu
美行 掛布
充男 奥村
Mitsuo Okumura
充男 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2015203055A priority Critical patent/JP2017075838A/ja
Publication of JP2017075838A publication Critical patent/JP2017075838A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

【課題】欠陥の検出精度の低下を抑制できるウェハ検査装置およびウェハ検査方法を提供する。【解決手段】炭化ケイ素ウェハを検査対象とするウェハ検査装置であって、検査対象であるウェハに可視光を照射する光源と、光源から可視光を照射されたウェハを撮像する撮像装置と、撮像装置がウェハを撮像することにより得られた画像に基づいて、ウェハの欠陥の有無を判定する判定装置と、を備え、判定装置は、画像をRGB形式として、光源が照射する可視光に含まれる赤色光、緑色光、青色光それぞれの成分の大きさに対しての、画像のウェハに対応する部分に含まれる画素のR成分、G成分、B成分のうち、R成分とG成分の大きさが、それぞれ所定の閾値以上であるときに、ウェハのうち、該画素に対応する部分に欠陥があると判定する。【選択図】図3

Description

本発明は、SiC(炭化ケイ素)ウェハを検査対象とするウェハ検査装置およびウェハ検査方法に関するものである。
SiCウェハの製造工程では、SiCインゴットを板状にスライスしたのち、円形に打ち抜いてウェハを成形し、その後、ウェハの検査を行う。この検査では、打ち抜きの際にウェハの外周部に生じた欠陥の半径方向の寸法を調べる。そして、欠陥の寸法が所定の閾値以下であったウェハについて、研磨工程が行われる。
ウェハの外周部に欠陥が含まれていても、それが小さな欠陥であれば研磨工程で取り除かれる。しかし、ウェハの外周部に大きな欠陥が含まれている場合、研磨工程で欠陥を起点としてウェハが破壊され、その際に生じた破片により研磨装置が破壊されるおそれがある。
そのため、ウェハの検査においては、研磨工程におけるウェハの破壊を考慮して欠陥の寸法の閾値が設定されており、ウェハに含まれる欠陥の半径方向の寸法がこの閾値以下であるか否かを精度良く検出することは重要な課題である。
また、ウェハの表面だけでなく内部にも欠陥が生じている可能性があるため、ウェハの表面および内部の欠陥を精度良く検出する方法が必要である。
従来、ウェハ検査装置として、例えば特許文献1に記載の検査装置が提案されている。この検査装置では、可視光と紫外線光をウェハに照射することにより、ウェハに存在する欠陥の位置および寸法を調べている。
特表2009−511878号公報
しかしながら、特許文献1に記載の検査装置では、可視光を照射する光源および紫外線光を照射する光源の2つの光源、または、可視光および紫外線光の両方を照射できる広帯域の光源が必要である。また、可視光を用いてウェハ表面の欠陥の寸法を測定し、紫外線光を用いてウェハ内部の欠陥の寸法を測定しているため、それぞれの反射光の検出装置が必要である。このように検査に用いられる機器の数が多いと、各機器が持つ誤差が重なり、欠陥の検出精度が低下するおそれがある。
本発明は上記点に鑑みて、欠陥の検出精度の低下を抑制できるウェハ検査装置およびウェハ検査方法を提供することを目的とする。
上記目的を達成するため、請求項1に記載の発明では、炭化ケイ素ウェハを検査対象とするウェハ検査装置であって、検査対象であるウェハ(5)に可視光を照射する光源(2)と、光源から可視光を照射されたウェハを撮像する撮像装置(3)と、撮像装置がウェハを撮像することにより得られた画像に基づいて、ウェハの欠陥の有無を判定する判定装置(4)と、を備え、判定装置は、画像をRGB形式として、光源が照射する可視光に含まれる赤色光、緑色光、青色光それぞれの成分の大きさに対しての、画像のウェハに対応する部分に含まれる画素のR成分、G成分、B成分のうち、R成分とG成分の大きさが、それぞれ所定の閾値以上であるときに、ウェハのうち、該画素に対応する部分に欠陥があると判定する。
これによれば、ウェハに可視光を照射したときに反射光に含まれる波長成分が欠陥の有無により変化することを利用して、ウェハを撮像することにより得られた画像のRGB成分に基づいてウェハの欠陥の有無を判定する。したがって、紫外線光を用いずにウェハを検査することが可能であり、紫外線光に対応した機器を削減して、各機器が持つ誤差の重なりによる欠陥の検出精度の低下を抑制することができる。
また、請求項6に記載の発明では、炭化ケイ素ウェハを検査対象とするウェハ検査方法であって、検査対象であるウェハ(5)に可視光を照射する工程と、可視光を照射されたウェハを撮像する工程と、ウェハを撮像することにより得られた画像に基づいてウェハの欠陥の有無を判定する工程と、を備え、ウェハの欠陥の有無を判定する工程では、画像をRGB形式として、光源が照射する可視光に含まれる赤色光、緑色光、青色光それぞれの成分の大きさに対しての、画像のウェハに対応する部分に含まれる画素のR成分、G成分、B成分のうち、R成分とG成分の大きさが、それぞれ所定の閾値以上であるときに、ウェハのうち、該画素に対応する部分に欠陥があると判定する。
これによれば、ウェハに可視光を照射したときに反射光に含まれる波長成分が欠陥の有無により変化することを利用して、ウェハを撮像することにより得られた画像のRGB成分に基づいてウェハの欠陥の有無を判定する。したがって、紫外線光を用いずにウェハを検査することが可能であり、紫外線光に対応した機器を削減して、各機器が持つ誤差の重なりによる欠陥の検出精度の低下を抑制することができる。
なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係の一例を示すものである。
本発明の第1実施形態にかかるウェハ検査装置の構成を示す図である。 本発明の第1実施形態にかかるウェハ検査装置の構成を示す図である。 ウェハの欠陥の有無および位置と画素のRGB成分との関係を示す図である。
以下、本発明の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。
(第1実施形態)
本発明の第1実施形態について説明する。図1に示すように、本実施形態のウェハ検査装置は、ステージ1と、光源2と、撮像装置に相当するカメラ3と、判定装置に相当する制御装置4とを備えており、SiCで構成されたウェハ5を検査対象とする。
ステージ1は、検査対象であるウェハ5が載置されるものであり、図2に示すように、フランジ11を備えている。フランジ11は、上面が円形の板状とされており、外周部の厚みが内周部の厚みよりも大きくされている。ウェハ5は、フランジ11の内周部に載置されている。
ステージ1は、制御装置4からの信号に基づいて、図1の矢印で示すように、ウェハ5を厚み方向に平行な軸まわりに360度回転させる。なお、ステージ1を手動で操作することにより、ウェハ5を回転させてもよい。
光源2は、人間の目に見える波長成分を持つ可視光を発生させ、ウェハ5に照射するものであり、本実施形態では、白熱灯で構成されている。本実施形態では、光源2は、波長360nm〜830nmの可視光をウェハ5に照射する。
カメラ3は、ステージ1に載置され、光源2から可視光を照射されたウェハ5を撮像する装置であり、ここでは顕微鏡で構成されている。カメラ3は、所定のフレームレートでウェハ5を繰り返し撮像し、ウェハ5を撮像することにより得られた画像を制御装置4に送信する。
本実施形態では、カメラ3は、ウェハ5の外周部をウェハ5の厚み方向から撮像するように固定されている。また、光源2は、ウェハ5の外周部のうちカメラ3が撮像する部分に対し、所定の角度で可視光を照射するように固定されている。
制御装置4は、ステージ1およびカメラ3を制御し、カメラ3から送信された画像に基づいてウェハ5の欠陥の有無および欠陥の位置を判定し、ウェハ5の半径方向における欠陥の寸法を測定するものである。制御装置4は、CPU、ROM、RAM、I/Oなどを備えた周知のマイクロコンピュータによって構成され、ROMなどに記憶されたプログラムに従って各種演算などの処理を実行し、ステージ1の操作等を行う。
本実施形態のウェハ検査装置では、制御装置4から送られた信号に基づいてステージ1が回転し、ステージ1上に置かれたウェハ5が回転する。また、ウェハ5には、光源2から可視光が照射される。カメラ3は、制御装置4から送られた信号に基づいて、所定のフレームレートでウェハ5を繰り返し撮像し、これにより得られた画像を制御装置4へ送信する。
ウェハ5を構成するSiCは透過性を持つため、光源2から照射された可視光のウェハ5による反射光には、ウェハ5の表面での反射光と、ウェハ5の内部での反射光とが含まれている。そして、可視光がウェハ5のどの箇所で反射されたかにより、反射光に含まれる波長成分が異なる。
具体的には、ウェハ5のうち、表面に欠陥がある部分での反射光と、内部に欠陥がある部分での反射光と、欠陥がない部分での反射光は、含まれる波長成分が互いに異なる。したがって、反射光に含まれる波長成分を調べることにより、つまり、ウェハ5を撮像することにより得られた画像のうちウェハ5に対応する部分の画素の色を調べることにより、ウェハ5の欠陥の有無および位置を調べることができる。
制御装置4は、カメラ3から送信された画像のうちウェハ5に対応する部分について、画素の色に基づいて欠陥の有無および欠陥の位置を判定し、欠陥があると判定した場合には、欠陥の半径方向の寸法を測定する。
具体的には、制御装置4は、画素の色をRGB(Red Green Blue)形式で表したときのR成分およびG成分がそれぞれ所定の閾値Th以上であるとき、ウェハ5のうち、この画素に対応する部分に欠陥があると判定する。
さらに、制御装置4は、欠陥があると判定された画素におけるB成分が閾値Th以上であるとき、この欠陥がウェハ5の表面に存在すると判定する。また、制御装置4は、欠陥があると判定された画素におけるB成分が閾値Th未満であるとき、この欠陥がウェハ5の内部に存在すると判定する。
制御装置4は、R成分またはG成分が閾値Th未満であるとき、ウェハ5のうち、この画素に対応する部分には、欠陥がないと判定する。
欠陥の位置と画素のRGB成分との関係について、本発明者らが行った実験の結果を図3に示す。図3は、カメラ3がウェハ5を撮像することにより得られた画像を模式的に示している。
図3では、領域R1、R2、R3が順に並んでおり、領域R1、R2、R3は、それぞれ、ウェハ5のうち欠陥がない部分、内部に欠陥がある部分、表面に欠陥がある部分に対応している。領域R3に対して領域R2とは反対側の領域は、フランジ11のうち、ウェハ5の半径方向においてウェハ5よりも外側に位置する部分に対応している。図3の直線L1は、ウェハ5の半径方向に対応する方向に伸びている。
また、図3は、直線L1上に位置する複数の画素について、画素の半径方向の位置と、画素のRGB成分との関係を示しており、RGB成分のグラフにおいて、実線、破線、一点鎖線は、それぞれ、画素のR成分、G成分、B成分を示す。
R、G、B成分をそれぞれ0〜255の256段階で表現した場合、図3に示すように、ウェハ5に対応する複数の画素のうち、ウェハ5に欠陥がない領域R1に含まれる画素では、R、G、Bのすべての成分が180未満となった。
また、ウェハ5の内部に欠陥がある領域R2に含まれる画素では、R成分およびG成分がそれぞれ180以上となり、B成分が180未満となった。また、ウェハ5の表面に欠陥がある領域R3に含まれる画素では、R、G、Bのすべての成分が180以上となった。
したがって、この実験を行った条件では、閾値Thを180とすることにより、ウェハ5の欠陥の有無および欠陥の位置を判定することができる。
制御装置4は、ウェハ5に欠陥があると判定した場合に、欠陥があると判定された画素のうちウェハ5の中心に最も近い画素の位置に基づいて、ウェハ5に含まれる欠陥の半径方向の寸法を測定する。
このように、本実施形態では、ウェハ5に可視光を照射し、可視光を照射されたウェハ5を撮像することにより得られた画像を解析することで、ウェハ5の欠陥の有無および欠陥の位置を調べることができる。したがって、紫外線光を照射する光源が不要であるため、ウェハ検査装置に必要な機器を削減し、各機器が持つ誤差の重なりによる検出精度の低下を抑制することができる。
また、本実施形態では、紫外線光を照射する光源、紫外線光を検出する装置等が不要であるため、ウェハ検査装置を小型化することができる。
また、可視光および紫外線光を用いてウェハ5の欠陥の位置を判定する場合、可視光および紫外線光それぞれについて、光源、検出装置、測定・処理・判定システム等が必要となる。これに対して本実施形態では、紫外線光が不要であり、紫外線光に対応した光源、検出装置、測定・処理・判定システム等も不要であるため、ウェハ検査装置の導入コスト、ランニングコスト等を低減することができる。
なお、カメラ3がウェハ5を撮像することにより得られた画像において、領域R1と領域R2との間でR成分およびG成分の差が大きいほど検出精度が向上する。また、領域R2と領域R3との間でB成分の差が大きいほど検出精度が向上する。したがって、これらの差が大きくなるような角度でウェハ5に可視光を照射することが好ましい。
また、ステージ1の回転速度は、カメラ3のフレームレートおよびウェハ5の直径に応じて、ウェハ5を鮮明に撮像できるように設定することが好ましい。
また、本実施形態では、可視光のみを用いてウェハ5の欠陥の有無および位置を調べることができるが、光源2が紫外線光を含む全色光をウェハ5に照射してもよい。
(他の実施形態)
なお、本発明は上記した実施形態に限定されるものではなく、特許請求の範囲に記載した範囲内において適宜変更が可能である。
例えば、上記第1実施形態では、ウェハ5の欠陥の有無および欠陥の位置を判定したが、欠陥の位置を判定せず、R成分およびG成分を用いた欠陥の有無の判定結果に基づいて、欠陥の半径方向の寸法を測定してもよい。
また、上記第1実施形態では、ウェハ5に含まれる欠陥の半径方向の寸法を測定したが、半径方向以外の方向における欠陥の寸法を測定してもよい。例えば、ウェハ5の周方向における欠陥の寸法を測定してもよい。また、欠陥の面積を測定してもよい。
また、上記第1実施形態では、R成分、G成分が閾値Th以上であり、B成分が閾値Th未満であるときにウェハ5の内部に欠陥があると判定したが、R成分およびG成分がそれぞれB成分よりも大きく、R成分およびG成分とB成分との差が所定の値以上であるときに、ウェハ5の内部に欠陥があると判定してもよい。
また、ウェハ5による反射光に含まれる赤色光、緑色光、青色光の成分の大きさは、それぞれ、光源2から照射される可視光に含まれる赤色光、緑色光、青色光の成分の大きさに応じて変化する。つまり、ウェハ5を撮像することにより得られる画像において、画素のR成分、G成分、B成分は、それぞれ、光源2から照射される可視光に含まれる赤色光、緑色光、青色光の成分の大きさに応じて変化する。
そこで、光源2が照射する可視光に含まれる赤色光、緑色光、青色光それぞれの成分の大きさに対しての、ウェハ5を撮像することにより得られた画像のウェハ5に対応する部分に含まれる画素のR成分、G成分、B成分の大きさをAr、Ag、Abとし、Ar、Ag、Abと閾値Thとの関係に基づいて、ウェハ5の欠陥の有無および位置を判定してもよい。
具体的には、Ar≧ThかつAg≧Thである画素が存在するときに、ウェハ5のうち、この画素に対応する部分に欠陥があると判定してもよい。また、Ar≧ThかつAg≧ThかつAb≧Thである画素が存在するときに、ウェハ5のうち、この画素に対応する部分において、ウェハ5の表面に欠陥があると判定してもよい。また、Ar≧ThかつAg≧ThかつAb<Thである画素が存在するときに、ウェハ5のうち、この画素に対応する部分において、ウェハ5の内部に欠陥があると判定してもよい。また、Ar>AbかつAg>Abであり、Ar−AbおよびAg−Abがそれぞれ所定の値以上である画素が存在するときに、ウェハ5のうち、この画素に対応する部分において、ウェハ5の内部に欠陥があると判定してもよい。
また、上記第1実施形態では、光源2として白熱灯を用いたが、白熱灯以外の光源で光源2を構成してもよい。例えば、白色LED(発光ダイオード)で光源2を構成してもよい。また、上記第1実施形態では、光源2およびカメラ3を固定し、ステージ1およびウェハ5を回転させたが、ステージ1およびウェハ5を固定し、光源2およびカメラ3をウェハ5の周方向に移動させてもよい。また、カメラ3として、倍率調整機能、輝度調整機能を有するものを用いてもよい。
1 ステージ
2 光源
3 カメラ
4 制御装置
5 ウェハ

Claims (10)

  1. 炭化ケイ素ウェハを検査対象とするウェハ検査装置であって、
    検査対象であるウェハ(5)に可視光を照射する光源(2)と、
    前記光源から可視光を照射された前記ウェハを撮像する撮像装置(3)と、
    前記撮像装置が前記ウェハを撮像することにより得られた画像に基づいて、前記ウェハの欠陥の有無を判定する判定装置(4)と、を備え、
    前記判定装置は、前記画像をRGB形式として、前記光源が照射する可視光に含まれる赤色光、緑色光、青色光それぞれの成分の大きさに対しての、前記画像の前記ウェハに対応する部分に含まれる画素のR成分、G成分、B成分のうち、R成分とG成分の大きさが、それぞれ所定の閾値以上であるときに、前記ウェハのうち、該画素に対応する部分に欠陥があると判定するウェハ検査装置。
  2. 前記判定装置は、前記画像の前記ウェハに対応する部分に、前記光源が照射する可視光に含まれる赤色光、緑色光、青色光それぞれの成分の大きさに対しての、前記画像の前記ウェハに対応する部分に含まれる画素のR成分、G成分、B成分の大きさが、それぞれ前記閾値以上である画素が存在するときに、前記ウェハのうち該画素に対応する部分において、前記ウェハの表面に欠陥があると判定する請求項1に記載のウェハ検査装置。
  3. 前記判定装置は、前記画像の前記ウェハに対応する部分に、前記光源が照射する可視光に含まれる赤色光、緑色光、青色光それぞれの成分の大きさに対しての、前記画像の前記ウェハに対応する部分に含まれる画素のR成分、G成分、B成分のうち、R成分とG成分の大きさがそれぞれ前記閾値以上であり、かつ、B成分の大きさが前記閾値未満である画素が存在するときに、前記ウェハのうち該画素に対応する部分において、前記ウェハの内部に欠陥があると判定する請求項1または2に記載のウェハ検査装置。
  4. 前記判定装置は、前記画像の前記ウェハに対応する部分に、前記光源が照射する可視光に含まれる赤色光、緑色光、青色光それぞれの成分の大きさに対しての、前記画像の前記ウェハに対応する部分に含まれる画素のR成分、G成分、B成分のうち、R成分とG成分がそれぞれB成分よりも大きく、かつ、R成分とB成分との差、および、G成分とB成分との差が、それぞれ所定の値以上である画素が存在するときに、前記ウェハのうち該画素に対応する部分において、前記ウェハの内部に欠陥があると判定する請求項1または2に記載のウェハ検査装置。
  5. 前記判定装置は、前記ウェハに欠陥があると判定した場合に、該欠陥の寸法を測定する請求項1ないし4のいずれか1つに記載のウェハ検査装置。
  6. 炭化ケイ素ウェハを検査対象とするウェハ検査方法であって、
    検査対象であるウェハ(5)に可視光を照射する工程と、
    可視光を照射された前記ウェハを撮像する工程と、
    前記ウェハを撮像することにより得られた画像に基づいて前記ウェハの欠陥の有無を判定する工程と、を備え、
    前記ウェハの欠陥の有無を判定する工程では、前記画像をRGB形式として、前記光源が照射する可視光に含まれる赤色光、緑色光、青色光それぞれの成分の大きさに対しての、前記画像の前記ウェハに対応する部分に含まれる画素のR成分、G成分、B成分のうち、R成分とG成分の大きさが、それぞれ所定の閾値以上であるときに、前記ウェハのうち、該画素に対応する部分に欠陥があると判定するウェハ検査方法。
  7. 前記ウェハの欠陥の有無を判定する工程では、前記画像の前記ウェハに対応する部分に、前記光源が照射する可視光に含まれる赤色光、緑色光、青色光それぞれの成分の大きさに対しての、前記画像の前記ウェハに対応する部分に含まれる画素のR成分、G成分、B成分の大きさが、それぞれ前記閾値以上である画素が存在するときに、前記ウェハのうち該画素に対応する部分において、前記ウェハの表面に欠陥があると判定する請求項6に記載のウェハ検査方法。
  8. 前記ウェハの欠陥の有無を判定する工程では、前記画像の前記ウェハに対応する部分に、前記光源が照射する可視光に含まれる赤色光、緑色光、青色光それぞれの成分の大きさに対しての、前記画像の前記ウェハに対応する部分に含まれる画素のR成分、G成分、B成分のうち、R成分とG成分の大きさがそれぞれ前記閾値以上であり、かつ、B成分の大きさが前記閾値未満である画素が存在するときに、前記ウェハのうち該画素に対応する部分において、前記ウェハの内部に欠陥があると判定する請求項6または7に記載のウェハ検査方法。
  9. 前記ウェハの欠陥の有無を判定する工程では、前記画像の前記ウェハに対応する部分に、前記光源が照射する可視光に含まれる赤色光、緑色光、青色光それぞれの成分の大きさに対しての、前記画像の前記ウェハに対応する部分に含まれる画素のR成分、G成分、B成分のうち、R成分とG成分がそれぞれB成分よりも大きく、かつ、R成分とB成分との差、および、G成分とB成分との差が、それぞれ所定の値以上である画素が存在するときに、前記ウェハのうち該画素に対応する部分において、前記ウェハの内部に欠陥があると判定する請求項6または7に記載のウェハ検査方法。
  10. 前記ウェハの欠陥の有無を判定する工程において前記ウェハに欠陥があると判定した場合に、該欠陥の寸法を測定する工程を備える請求項6ないし9のいずれか1つに記載のウェハ検査方法。
JP2015203055A 2015-10-14 2015-10-14 ウェハ検査装置およびウェハ検査方法 Pending JP2017075838A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015203055A JP2017075838A (ja) 2015-10-14 2015-10-14 ウェハ検査装置およびウェハ検査方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015203055A JP2017075838A (ja) 2015-10-14 2015-10-14 ウェハ検査装置およびウェハ検査方法

Publications (1)

Publication Number Publication Date
JP2017075838A true JP2017075838A (ja) 2017-04-20

Family

ID=58551059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015203055A Pending JP2017075838A (ja) 2015-10-14 2015-10-14 ウェハ検査装置およびウェハ検査方法

Country Status (1)

Country Link
JP (1) JP2017075838A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020153854A (ja) * 2019-03-20 2020-09-24 株式会社Screenホールディングス 基板検査装置、基板処理装置、基板検査方法および基板処理方法
CN111982931A (zh) * 2020-08-27 2020-11-24 惠州高视科技有限公司 一种高精度晶圆表面缺陷检测装置及其检测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070007466A1 (en) * 2005-07-06 2007-01-11 Laurent Nicolas Differential wavelength photoluminescence for non-contact measuring of contaminants and defects located below the surface of a wafer or other workpiece
JP2009054771A (ja) * 2007-08-27 2009-03-12 Japan Aerospace Exploration Agency 半導体結晶の欠陥評価方法及び評価装置
JP2009175035A (ja) * 2008-01-25 2009-08-06 Topcon Corp 検査方法及び検査装置
JP2013101009A (ja) * 2011-11-08 2013-05-23 Fuji Electric Co Ltd 半導体装置の故障位置解析方法及び装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070007466A1 (en) * 2005-07-06 2007-01-11 Laurent Nicolas Differential wavelength photoluminescence for non-contact measuring of contaminants and defects located below the surface of a wafer or other workpiece
JP2009054771A (ja) * 2007-08-27 2009-03-12 Japan Aerospace Exploration Agency 半導体結晶の欠陥評価方法及び評価装置
JP2009175035A (ja) * 2008-01-25 2009-08-06 Topcon Corp 検査方法及び検査装置
JP2013101009A (ja) * 2011-11-08 2013-05-23 Fuji Electric Co Ltd 半導体装置の故障位置解析方法及び装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020153854A (ja) * 2019-03-20 2020-09-24 株式会社Screenホールディングス 基板検査装置、基板処理装置、基板検査方法および基板処理方法
CN111982931A (zh) * 2020-08-27 2020-11-24 惠州高视科技有限公司 一种高精度晶圆表面缺陷检测装置及其检测方法

Similar Documents

Publication Publication Date Title
JP6425755B2 (ja) 基板の異物質検査方法
US9310278B2 (en) Appearance inspection apparatus and appearance inspection method with uneveness detecting
TWI648534B (zh) 磊晶晶圓之裏面檢查方法、磊晶晶圓裏面檢查裝置、磊晶成長裝置之升降銷管理方法以及磊晶晶圓之製造方法
JP2015040796A (ja) 欠陥検出装置
JP5830229B2 (ja) ウエハ欠陥検査装置
TWI545314B (zh) Method and method for checking unevenness of film thickness
JP2007303854A (ja) 端部検査装置
JP2017075838A (ja) ウェハ検査装置およびウェハ検査方法
US20080205746A1 (en) Method of inspecting an identification mark, method of inspecting a wafer using the same, and apparatus for performing the method
JP6160255B2 (ja) 太陽電池セル検査装置および太陽電池セル検査装置の画像位置補正方法
TWI593955B (zh) 光偏折檢測模組及使用其檢測及誤差校正之方法
JP6119784B2 (ja) 異物検査方法
JP2009236760A (ja) 画像検出装置および検査装置
JP5048558B2 (ja) 基板検査方法および基板検査装置
JP2021063739A (ja) 異物検査装置および異物検査方法
JP2017020880A (ja) 膜厚ムラ検査装置
JP6671253B2 (ja) ウェーハの外周位置を検出するウェーハの検出方法及びウェーハの外周位置を検出することが可能な加工装置
JP5380223B2 (ja) 円形レンズの検査装置及び方法
JP6212843B2 (ja) 異物検査装置、異物検査方法
JPWO2022113369A5 (ja)
JP2007194888A (ja) 固体撮像素子検査方法
KR101885614B1 (ko) 웨이퍼 검사 방법 및 웨이퍼 검사 장치
JP2019219295A (ja) ウエハ検査装置およびウエハ検査方法
KR20150091920A (ko) 기판의 에지 검사장치 및 이를 이용한 검사방법
JP3505655B2 (ja) ガラス容器検査装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190730

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200818