JP2017060323A - 制御装置、及び制御方法 - Google Patents

制御装置、及び制御方法 Download PDF

Info

Publication number
JP2017060323A
JP2017060323A JP2015183986A JP2015183986A JP2017060323A JP 2017060323 A JP2017060323 A JP 2017060323A JP 2015183986 A JP2015183986 A JP 2015183986A JP 2015183986 A JP2015183986 A JP 2015183986A JP 2017060323 A JP2017060323 A JP 2017060323A
Authority
JP
Japan
Prior art keywords
electromotive force
control
battery
voltage
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015183986A
Other languages
English (en)
Inventor
大輔 西
Daisuke Nishi
大輔 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Priority to JP2015183986A priority Critical patent/JP2017060323A/ja
Publication of JP2017060323A publication Critical patent/JP2017060323A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

【課題】使用する部品の耐圧を低減する。
【解決手段】制御装置1は、モータ3に発生した起電力に基づいて制御電力を生成する電源回路11と、電源回路11が生成した制御電力によりスイッチ素子Q1〜Q6を制御してモータ3の駆動制御を行う制御回路12とを備え、制御回路12は、モータ3に起電力が発生し、且つ、モータ3を駆動する駆動電力を供給するバッテリ21への起電力の供給が遮断された場合に、起電力によってスイッチ素子Q1〜Q6に印加される電圧が、スイッチ素子Q1〜Q6の耐圧以下になるように制御する。
【選択図】図1

Description

本発明は、制御装置、及び制御方法に関する。
近年、駆動用のバッテリ、モータ、及びモータ制御用の制御装置を備える電動式車両が使用されている。このような電動式車両において、モータからの起電力をバッテリに回生する技術が知られている(例えば、特許文献1を参照)。
特許第3155313号公報
ところで、上述した電動式車両では、例えば、バッテリが満充電状態にある場合など、バッテリが遮断されることがある。このようにバッテリが遮断された場合に、モータからの起電力をバッテリが充電により消費しないため、制御装置に使用される半導体素子などの部品には、モータからの起電力によってバッテリが接続されている場合よりも高い電圧が印加される。そのため、上述した電動式車両の制御装置に使用される部品は、モータの起電力によって印加される電圧よりも高い耐圧が必要であり、制御装置に耐圧の低い部品を使用することが困難であった。
本発明は、上記問題を解決すべくなされたもので、その目的は、使用する部品の耐圧を低減することができる制御装置、及び制御方法を提供することにある。
上記問題を解決するために、本発明の一態様は、モータに発生した起電力に基づいて制御電力を生成する電源回路と、前記電源回路が生成した前記制御電力によりスイッチ素子を制御して前記モータの駆動制御を行う制御回路とを備え、前記制御回路は、前記起電力が発生し、且つ、前記モータを駆動する駆動電力を供給するバッテリへの前記起電力の供給が遮断された場合に、前記起電力によって前記スイッチ素子に印加される電圧が、前記スイッチ素子の耐圧以下になるように制御することを特徴とする制御装置である。
また、本発明の一態様は、上記の制御装置において、前記制御回路は、前記起電力が発生し、且つ、前記バッテリへの前記起電力の供給が遮断された場合に、前記駆動電力が供給されるとともに前記起電力が供給される駆動信号線を、前記スイッチ素子の耐圧以下の電位の信号線に導通させる制御を行うことを特徴とする。
また、本発明の一態様は、上記の制御装置において、前記スイッチ素子には、前記バッテリから前記駆動電力を前記駆動信号線に供給する第1スイッチ素子と、前記スイッチ素子の耐圧以下の基準電位の信号線と前記駆動信号線との間に接続される第2スイッチ素子とが含まれ、前記制御回路は、前記起電力が発生し、且つ、前記バッテリへの前記起電力の供給が遮断された場合に、前記第2スイッチ素子を導通状態に制御して、前記基準電位の信号線と、前記駆動信号線とを導通させることを特徴とする。
また、本発明の一態様は、上記の制御装置において、前記制御回路は、前記バッテリから前記駆動電力を前記駆動信号線に供給するとともに、前記駆動信号線から前記起電力が供給される電力供給線の電圧に基づいて、前記起電力が発生し、且つ、前記バッテリへの前記起電力の供給が遮断されたことを検出することを特徴とする。
また、本発明の一態様は、上記の制御装置において、前記制御回路は、前記電力供給線の電圧が、予め定められた所定の電圧以上である場合に、前記起電力が発生し、且つ、前記バッテリへの前記起電力の供給が遮断されたことを検出することを特徴とする。
また、本発明の一態様は、上記の制御装置において、前記制御回路は、前記バッテリから前記駆動電力を前記駆動信号線に供給するとともに、前記駆動信号線から前記起電力が供給される電力供給線に流れる電流に基づいて、前記モータに起電力が発生し、且つ、前記バッテリへの前記起電力の供給が遮断されたことを検出することを特徴とする。
また、本発明の一態様は、電源回路が、モータに発生した起電力に基づいて制御電力を生成するステップと、制御回路が、前記電源回路が生成した前記制御電力によりスイッチ素子を制御して前記モータの駆動制御を行うステップと、前記制御回路が、前記起電力が発生し、且つ、前記モータを駆動する駆動電力を供給するバッテリへの前記起電力の供給が遮断された場合に、前記起電力によって前記スイッチ素子に印加される電圧が、前記スイッチ素子の耐圧以下になるように制御するステップとを含むことを特徴とする制御方法である。
本発明によれば、電源回路が、少なくともモータに発生した起電力に基づいて所定の電圧の電力を生成する。そして、電源回路が生成した制御電力によりスイッチ素子を制御してモータの駆動制御を行う制御回路が、モータに起電力が発生し、且つ、モータを駆動する駆動電力を供給するバッテリへの起電力の供給が遮断された場合に、起電力によってスイッチ素子に印加される電圧が、スイッチ素子の耐圧以下になるように制御する。これにより、制御装置に使用されるスイッチ素子を含む半導体素子などの部品に印加される電圧は、低減されて耐圧を超えることがない。よって、本発明は、制御装置に使用される半導体素子などの部品に印加される電圧が低減されることから、使用する部品の耐圧を低減することができる。
本実施形態による制御装置の一例を示すブロック図である。 本実施形態による制御回路の一例を示すブロック図である。 本実施形態による制御装置の動作の一例を示すフローチャートである。 本実施形態による制御回路の動作の一例を示すフローチャートである。 本実施形態による制御装置の動作の一例を示すタイムチャートである。
以下、本発明の一実施形態による制御装置について図面を参照して説明する。
図1は、本実施形態による制御装置1の一例を示すブロック図である。
本実施形態による制御装置1は、一例として、電動バイクなどのモータにより駆動する電動式車両におけるモータ制御を行うものとして説明する。
図1に示すように、制御装置1は、電源回路11と、制御回路12と、平滑コンデンサ13と、抵抗14〜17と、コンパレータ18と、トランジスタ19と、UVW出力回路20とを備えている。また、制御装置1は、バッテリ装置2及びモータ3と接続されている。
バッテリ装置2は、例えば、リチウムイオンバッテリであり、正極端子(+端子)が、制御装置1のノードN1(電力供給線L1)に接続され、負極端子(−端子)が、GND信号線L2に接続されている。また、バッテリ装置2は、バッテリ21と、遮断スイッチ22とを備えている。
バッテリ21は、例えば、リチウムイオン二次電池であり、モータ3を駆動する駆動電力を電力供給線L1に供給する。また、バッテリ21は、モータ3に起電力(回生電力)が発生した場合に、電力供給線L1を介して起電力を充電する。
遮断スイッチ22は、バッテリ21の正極端子と、バッテリ装置2の正極端子(+端子)との間に配置され、バッテリ21が満充電状態になり、モータ3により発生した起電力を吸収できない場合に、非導通状態(OFF(オフ)状態)されてバッテリ21への起電力の供給を遮断する。
なお、バッテリ装置2は、不図示のバッテリマネジメントユニット(バッテリ管理部)を備えており、遮断スイッチ22は、当該バッテリマネジメントユニットにより導通状態が制御される。すなわち、バッテリマネジメントユニットは、モータ3に起電力が発生していない場合、又は、モータ3に起電力が発生してバッテリ21が満充電状態でない場合に、遮断スイッチ22を導通状態(ON(オン)状態)に制御する。また、バッテリマネジメントユニットは、モータ3に起電力が発生してバッテリ21が満充電状態である場合に、遮断スイッチ22を非導通状態(OFF状態)にして、バッテリ21への起電力の供給を遮断させる。
モータ3は、例えば、電動式車両を駆動する3相モータである。モータ3は、制御装置1から出力される3相の駆動信号(MU、MV、MW)によって駆動される。また、モータ3は、回転の減速、又は外部からの力による回転により起電力(回生電力)が発生し、3相の制御信号を介して、制御装置1に供給する。
なお、図1において、モータ3への駆動電力の供給を破線の矢印により示し、正電圧(+の電圧)の起電力が発生した場合の起電力の流れを一点鎖線の矢印により示している。但し、供給された駆動電力によりモータ3から他の信号線及びスイッチ素子Q4〜Q6を経由してGND信号線L2に流れる電流、及び、負電圧(−の電圧)の起電力が発生した場合についての記載を説明上省略している。
また、モータ3に起電力が発生する場合としては、例えば、電動式車両の走行中にブレーキをかけて制動した場合、電動式車両が坂道などを走行中に、主電源スイッチ(不図示)をOFF状態にして、バッテリ21を遮断した場合などが想定される。
電源回路11は、バッテリ21から供給される電力に基づいて、制御装置1を動作させる制御電力を生成するとともに、モータ3に発生した起電力に基づいて制御電力を生成する。電源回路11は、例えば、DC/DCコンバータであり、バッテリ21の電圧を所定の電圧に変換する。電源回路11は、後述するCPU(Central Processing Unit)30(図2)などの主に制御用の回路に供給される低電圧(例えば、5V)の電源VCCと、後述するプリドライバ部50を駆動するための電圧(例えば、13V)の電源VCCHとを生成する。電源回路11は、生成した電源VCCを制御回路12及びコンパレータ18などに供給するとともに、生成した電源VCCHを制御回路12に供給する。
なお、電源回路11は、ノードN1を介して、バッテリ21から出力される電力が供給されるとともに、ノードN1に接続された電力供給線L1を介して、モータ3の起電力が供給される。
平滑コンデンサ13は、ノードN1(電力供給線L1)と電源GND線(GND信号線L2)との間に配置され、電力供給線L1に供給される電圧を平滑化する。
抵抗14は、ノードN1(電力供給線L1)と、ノードN2との間に配置されている。また、抵抗15は、ノードN2と、GND信号線L2との間に配置されている。抵抗14と、抵抗15とは、所定の抵抗比により、電力供給線L1の電圧を抵抗分圧して、ノードN2に電圧V1として出力する。
抵抗16は、電源VCCの信号線(以下、VCC電源線という)と、ノードN3との間に配置されている。また、抵抗17は、ノードN3と、GND信号線L2との間に配置されている。抵抗16と、抵抗17とは、所定の抵抗比により、電源VCCの電圧を抵抗分圧して、所定の基準電圧(電圧V2)を生成し、電圧V2をノードN3に出力する。
コンパレータ18(比較部の一例)は、+端子がノードN2に、−端子がノードN3にそれぞれ接続されている。コンパレータ18は、ノードN2の電圧V1と、ノードN3の電圧V2とを比較し、当該比較結果を出力する。例えば、コンパレータ18は、ノードN2の電圧V1が、ノードN3の電圧V2以上である場合(V1≧V2)に、H(High:ハイ)状態を出力する。また、コンパレータ18は、ノードN2の電圧V1が、ノードN3の電圧V2未満である場合(V1<V2)に、L(Low:ロウ)状態を出力する。
ここで、電圧V2は、電力供給線L1の電圧が、制御装置1に使用されている部品(例えば、後述するスイッチ素子Q1〜Q6)の耐圧を超える前に、コンパレータ18が、H状態を出力するように設定されている。
トランジスタ19は、例えば、NPN型バイポーラトランジスタであり、制御回路12と、GND信号線L2との間に配置されている。トランジスタ19は、コレクタ端子が制御回路12に、ベース端子がコンパレータ18の出力端子に、エミッタ端子がGND信号線L2に、それぞれ接続されている。トランジスタ19は、例えば、コンパレータ18の出力が、H状態になった場合に、ON状態になり、コンパレータ18の出力が、L状態になった場合に、OFF状態になる。
コンパレータ18及びトランジスタ19の機能の詳細については、制御回路12とともに、図2を参照して後述する。
制御回路12は、電源回路11が生成した制御電力(例えば、電源VCC及び電源VCCHの電力)により、スイッチ素子Q1〜Q6を制御してモータ3の駆動制御を行う。制御回路12は、例えば、制御信号G1〜G6をUVW出力回路20に出力し、モータ3の駆動制御を行う。制御回路12は、UVW出力回路20に制御信号G1〜G6に基づいて、駆動信号(MU、MV、MW)を駆動信号線L3〜L5に供給させる。すなわち、制御回路12は、バッテリ21から駆動電力を駆動信号線L3〜L5に供給する制御を行う。
UVW出力回路20(駆動信号出力部の一例)は、制御回路12が出力する制御信号G1〜G6に基づいて、モータ3を駆動する駆動信号(MU、MV、MW)を生成し、生成した駆動信号(MU、MV、MW)をモータ3に供給する。ここで、駆動信号(MU、MV、MW)は、互いに位相が120度ずれた3相の交流信号である。また、UVW出力回路20は、スイッチ素子Q1〜Q6と、寄生ダイオードD1〜D6とを備えている。
スイッチ素子Q1〜Q6は、例えば、NMOS型電界効果トランジスタ(NMOS型FET)である。ここで、スイッチ素子Q1〜Q3は、バッテリ21から駆動電力を駆動信号線L3〜L5に供給する第1スイッチ素子である。また、スイッチ素子Q4〜Q6は、スイッチ素子Q1〜Q6の耐圧以下の基準電位の信号線(例えば、GND信号線L2)と、駆動信号線L3〜L5との間に接続される第2スイッチ素子である。
スイッチ素子Q1は、ドレイン端子が電力供給線L1に、ゲート端子が制御信号G1の信号線に、ソース端子がノードN4に、それぞれ接続されている。また、スイッチ素子Q4は、ドレイン端子がノードN4に、ゲート端子が制御信号G4の信号線に、ソース端子がGND信号線L2に、それぞれ接続されている。スイッチ素子Q1及びスイッチ素子Q4とは、制御信号G1及び制御信号G4に基づいて導通状態が制御され、ノードN4に駆動信号MUを生成し、駆動信号線L3を介して、駆動信号MUをモータ3に供給する。
スイッチ素子Q2は、ドレイン端子が電力供給線L1に、ゲート端子が制御信号G2の信号線に、ソース端子がノードN5に、それぞれ接続されている。また、スイッチ素子Q5は、ドレイン端子がノードN5に、ゲート端子が制御信号G5の信号線に、ソース端子がGND信号線L2に、それぞれ接続されている。スイッチ素子Q2及びスイッチ素子Q5とは、制御信号G2及び制御信号G5に基づいて導通状態が制御され、ノードN5に駆動信号MVを生成し、駆動信号線L5を介して、駆動信号MVをモータ3に供給する。
スイッチ素子Q3は、ドレイン端子が電力供給線L1に、ゲート端子が制御信号G3の信号線に、ソース端子がノードN6に、それぞれ接続されている。また、スイッチ素子Q6は、ドレイン端子がノードN6に、ゲート端子が制御信号G6の信号線に、ソース端子がGND信号線L2に、それぞれ接続されている。スイッチ素子Q3及びスイッチ素子Q6とは、制御信号G3及び制御信号G6に基づいて導通状態が制御され、ノードN6に駆動信号MWを生成し、駆動信号線L6を介して、駆動信号MWをモータ3に供給する。
寄生ダイオードD1は、スイッチ素子Q1の寄生ダイオードであり、アノード端子がノードN4に、カソード端子が電力供給線L1に、それぞれ接続されている。寄生ダイオードD1は、モータ3に起電力が発生した場合に、駆動信号線L3から電力供給線L1に起電力を供給する。
寄生ダイオードD2は、スイッチ素子Q2の寄生ダイオードであり、アノード端子がノードN5に、カソード端子が電力供給線L1に、それぞれ接続されている。寄生ダイオードD2は、モータ3に起電力が発生した場合に、駆動信号線L4から電力供給線L1に起電力を供給する。
寄生ダイオードD3は、スイッチ素子Q3の寄生ダイオードであり、アノード端子がノードN6に、カソード端子が電力供給線L1に、それぞれ接続されている。寄生ダイオードD3は、モータ3に起電力が発生した場合に、駆動信号線L5から電力供給線L1に起電力を供給する。
寄生ダイオードD4は、スイッチ素子Q4の寄生ダイオードであり、アノード端子がGND信号線L2に、カソード端子がノードN4に、それぞれ接続されている。
寄生ダイオードD5は、スイッチ素子Q5の寄生ダイオードであり、アノード端子がGND信号線L2に、カソード端子がノードN5に、それぞれ接続されている。
寄生ダイオードD6は、スイッチ素子Q6の寄生ダイオードであり、アノード端子がGND信号線L2に、カソード端子がノードN6に、それぞれ接続されている。
なお、寄生ダイオードD1〜D6は、モータ3に発生した起電力である交流信号を整流する整流回路として機能する。
また、制御回路12は、モータ3に起電力が発生し、且つ、モータ3を駆動する駆動電力を供給するバッテリ21への起電力の供給が遮断された場合に、起電力によってスイッチ素子Q1〜Q6に印加される電圧が、スイッチ素子Q1〜Q6の耐圧以下になるように制御する。
制御回路12は、例えば、モータ3に起電力が発生し、且つ、バッテリ21への起電力の供給が遮断された場合に、駆動電力が供給されるとともに起電力が供給される駆動信号線L3〜L5を、スイッチ素子Q1〜Q6の耐圧以下の電位の信号線(例えば、GND信号線L2)に導通させる制御を行う。すなわち、制御回路12は、モータ3に起電力が発生し、且つ、バッテリ21への起電力の供給が遮断された場合に、第2スイッチ素子(スイッチ素子Q4〜Q6)をON状態に制御して、GND信号線L2と、駆動信号線L3〜L5とを導通させる。これにより、駆動信号線L3〜L5に供給される起電力が、GND信号線L2に放電される(逃がされる)。
また、制御回路12は、駆動信号線L3〜L5から起電力が供給される電力供給線L1の電圧に基づいて、モータ3に起電力が発生し、且つ、バッテリ21への起電力の供給が遮断されたことを検出する。制御回路12は、上述したコンパレータ18を利用して、駆動信号線L3〜L5から起電力が供給される電力供給線L1の電圧に基づいて、モータ3に起電力が発生し、且つ、バッテリ21への起電力の供給が遮断されたことを検出する。
次に、図2を参照して、本実施形態による制御回路12の詳細な構成について説明する。
図2は、本実施形態による制御回路12の一例を示すブロック図である。
図2に示すように、制御回路12は、CPU30と、抵抗31〜36と、AND(アンド)回路41〜46と、プリドライバ部50とを備えている。
CPU30は、制御装置1を統括的に制御し、例えば、モータ3を駆動するための制御信号SG1〜SG6を生成する。
抵抗31〜33は、第1端がVCC電源線に接続されているプルアップ抵抗である。抵抗31は、第1端がVCC電源線に、第2端が制御信号SG4の信号線(以下、SG4信号線という)に、それぞれ接続され、SG4信号線をプルアップする。抵抗32は、第1端がVCC電源線に、第2端が制御信号SG5の信号線(以下、SG5信号線という)に、それぞれ接続され、SG5信号線をプルアップする。抵抗33は、第1端がVCC電源線に、第2端が制御信号SG6の信号線(以下、SG6信号線という)に、それぞれ接続され、SG6信号線をプルアップする。
抵抗34〜36は、第1端がGND信号線L2に接続されているプルダウン抵抗である。抵抗34は、第1端がGND信号線L2に、第2端が制御信号SG1の信号線(以下、SG1信号線という)に、それぞれ接続され、SG1信号線をプルダウンする。抵抗35は、第1端がGND信号線L2に、第2端が制御信号SG2の信号線(以下、SG2信号線という)に、それぞれ接続され、SG2信号線をプルダウンする。抵抗36は、第1端がGND信号線L2に、第2端が制御信号SG3の信号線(以下、SG3信号線という)に、それぞれ接続され、SG3信号線をプルダウンする。
抵抗37は、第1端がVCC電源線に接続されているプルアップ抵抗である。抵抗37は、第1端がVCC電源線に、第2端がノードN7に、それぞれ接続されている。抵抗37は、トランジスタ19がOFF状態である場合に、ノードN7をH状態にする。なお、トランジスタ19のコレクタ端子は、ノードN7に接続されている。
AND回路41〜46は、例えば、2入力の論理積演算回路である。なお、AND回路41〜46は、電源VCCにより動作する。
AND回路41は、第1入力端子がノードN7に、第2入力端子がSG1信号線に、それぞれ接続されている。AND回路41は、ノードN7の論理状態と、SG1信号線の論理状態との論理積した制御信号GL1をプリドライバ部50に出力する。
AND回路42は、第1入力端子がノードN7に、第2入力端子がSG2信号線に、それぞれ接続されている。AND回路42は、ノードN7の論理状態と、SG2信号線の論理状態との論理積した制御信号GL2をプリドライバ部50に出力する。
AND回路43は、第1入力端子がノードN7に、第2入力端子がSG3信号線に、それぞれ接続されている。AND回路43は、ノードN7の論理状態と、SG3信号線の論理状態との論理積した制御信号GL3をプリドライバ部50に出力する。
AND回路44は、第1入力端子がノードN7に、第2入力端子がSG4信号線に、それぞれ接続されている。AND回路44は、ノードN7の論理状態と、SG4信号線の論理状態との論理積した制御信号GL4をプリドライバ部50に出力する。
AND回路45は、第1入力端子がノードN7に、第2入力端子がSG5信号線に、それぞれ接続されている。AND回路45は、ノードN7の論理状態と、SG5信号線の論理状態との論理積した制御信号GL5をプリドライバ部50に出力する。
AND回路46は、第1入力端子がノードN7に、第2入力端子がSG6信号線に、それぞれ接続されている。AND回路46は、ノードN7の論理状態と、SG6信号線の論理状態との論理積した制御信号GL6をプリドライバ部50に出力する。
なお、制御信号GL1〜GL6は、H状態が電源VCCの電圧(例えば、5V)である電源VCC系統の信号である。
プリドライバ部50は、電源VCC系統の制御信号GL1〜GL6を、スイッチ素子Q1〜Q6を駆動(制御)するための信号である電源VCCH系統の制御信号G1〜G6に変換して出力する。ここで、電源VCCH系統とは、H状態が電源VCCHの電圧(例えば、13V)の信号であることを示す。また、プリドライバ部50は、バッファ回路51〜53と、インバータ回路54〜56とを備えている。
バッファ回路51は、電源VCC系統の制御信号GL1を、電源VCCH系統の制御信号G1に変換して出力する。バッファ回路52は、電源VCC系統の制御信号GL2を、電源VCCH系統の制御信号G2に変換して出力する。バッファ回路53は、電源VCC系統の制御信号GL3を、電源VCCH系統の制御信号G3に変換して出力する。
インバータ回路54〜56は、入力信号を論理反転する論理反転回路である。インバータ回路54は、電源VCC系統の制御信号GL4を論理反転するとともに、電源VCCH系統の制御信号G4に変換して出力する。インバータ回路55は、電源VCC系統の制御信号GL5を論理反転するとともに、電源VCCH系統の制御信号G5に変換して出力する。インバータ回路56は、電源VCC系統の制御信号GL6を論理反転するとともに、電源VCCH系統の制御信号G6に変換して出力する。
なお、図2に示す制御回路12では、上述した電圧V1が電圧V2未満である場合(通常状態である場合)に、コンパレータ18がL状態を出力し、トランジスタ19をOFF状態にすると、抵抗37が、ノードN7がH状態にする。ここで、通常状態とは、モータ3に起電力が発生していない状態、又は、モータ3に起電力が発生しており、バッテリ21が遮断されていない(満充電状態でない)状態のことである。ノードN7がH状態である場合に、AND回路41〜46は、入力された制御信号SG1〜SG6を、制御信号GL1〜GL6として出力する。この場合、CPU30が、制御信号SG1〜SG6を出力することで、モータ3の駆動制御を行う。
また、上述した電圧V1が電圧V2以上である場合に、コンパレータ18がH状態を出力し、トランジスタ19をON状態にすると、制御回路12は、ノードN7がL状態になる。すなわち、制御回路12は、モータ3に起電力が発生し、且つ、モータ3を駆動する駆動電力を供給するバッテリ21への起電力の供給が遮断された状態であると判定する。なお、電圧V1が電圧V2以上である場合は、例えば、電力供給線L1の電圧が、予め定められた所定の電圧(閾値電圧Vth1)以上である場合に対応する。ここで、所定の電圧(閾値電圧Vth1)は、スイッチ素子Q1〜Q6などの部品の耐圧よりも低い電圧値であり、例えば、起電力によってスイッチ素子Q1〜Q6に印加される電圧が、スイッチ素子Q1〜Q6の耐圧以下になるように定められている。
ノードN7がL状態である場合に、AND回路41〜46は、制御信号GL1〜GL6にL状態を出力する。その結果、制御回路12は、制御信号G1〜G3にL状態を出力するとともに、制御信号G4〜G6にH状態を出力する。制御回路12は、制御信号G4〜G6にH状態を出力することで、スイッチ素子Q4〜Q6をON状態に制御する。
次に、図面を参照して、本実施形態による制御装置1の動作について説明する。
図3は、本実施形態による制御装置1の動作の一例を示すフローチャートである。ここでは、制御装置1において、モータ3に起電力が発生した場合の動作について説明する。
この図に示すように、ステップS101において、制御装置1では、起電力が発生した場合(ステップS101:YES)に、寄生ダイオードD1〜D3を介して、電力供給線L1に、起電力が供給される(ステップS102、図1の一点鎖線の矢印を参照)。なお、制御装置1は、起電力が発生したか発生していない場合(ステップS101:NO)に、ステップS101を繰り返す。
次に、制御装置1の電源回路11が、起電力に基づいて、制御電源(VCC、VCCH)を生成する(ステップS103)。すなわち、電源回路11は、電力供給線L1を介して、起電力の供給を受けて、制御電源(VCC、VCCH)を生成し、生成した制御電源(VCC、VCCH)を各部に供給する。
次に、制御装置1は、バッテリ21が遮断されたか否かを判定する(ステップS104)。制御装置1は、コンパレータ18、トランジスタ19、及び制御回路12を利用して、バッテリ21が遮断されたか否かを判定する。制御装置1は、バッテリ21が遮断されていないと判定した場合(ステップS104:NO)に、ステップS105の動作を実行する。また、制御装置1は、バッテリ21が遮断されていると判定した場合(ステップS104:YES)に、ステップS106の動作を実行する。
ステップS105において、制御装置1は、スイッチ素子Q4〜Q6をON状態にして、起電力をGND信号線L2に逃がす。すなわち、制御装置1の制御回路12が、制御信号G4〜G6をH状態にして、スイッチ素子Q4〜Q6をON状態に制御する。
また、ステップS106において、制御装置1は、起電力をバッテリ21に充電する。
次に、図4を参照して、本実施形態による制御回路12の動作について説明する。
図4は、本実施形態による制御回路12の動作の一例を示すフローチャートである。
図4に示すように、制御回路12は、コンパレータ18の入力である電圧V1が電圧V2以上であるか否かを判定する(ステップS201)。すなわち、制御回路12は、トランジスタ19を介したノードN7の論理状態により、電圧V1が電圧V2以上であるか否かを判定する。
ここで、モータ3に起電力が発生し、且つ、モータ3を駆動する駆動電力を供給するバッテリ21への起電力の供給が遮断されると、バッテリ21の充電に使用されていた起電力が行先を失い、電力供給線L1の電圧が上昇する。そのため、電力供給線L1を抵抗14及び抵抗15により抵抗分圧した電圧V1が、基準電圧である電圧V2以上に上昇する。このように、制御回路12は、電圧V1が電圧V2以上であることを判定することで、モータ3に起電力が発生し、且つ、モータ3を駆動する駆動電力を供給するバッテリ21への起電力の供給が遮断されていることを判定する。
制御回路12は、電圧V1が電圧V2以上である場合(ステップS201:YES)に、処理をステップS202に進める。また、制御回路12は、電圧V1が電圧V2未満である場合(ステップS201:NO)に、処理をステップS203に進める。
ステップS202において、制御回路12は、スイッチ素子Q4〜Q6をON状態に制御する。すなわち、制御回路12のノードN7がL状態になることで、AND回路44〜46が、L状態を出力し、制御信号G4〜G6をH状態に制御する。その結果、スイッチ素子Q4〜Q6がON状態になり、GND信号線L2と、駆動信号線L3〜L5とが、電気的に接続される。これにより、モータ3の起電力が、駆動信号線L3〜L5からGND信号線L2に逃がされて、例えば、電力供給線L1の電圧の上昇が低減させる。制御回路12は、ステップS202の処理後に、処理をステップS201に戻す。
また、ステップS203において、制御回路12は、通常状態のモータ制御を行う。すなわち、制御回路12のノードN7がH状態になることで、AND回路44〜46が、CPU30が出力した制御信号SG1〜SG6を、制御信号GL1〜GL6として出力する。制御回路12は、ステップS203の処理後に、処理をステップS201に戻す。
次に、図5を参照して、本実施形態による制御装置1の動作の詳細について説明する。
図5は、本実施形態による制御装置1の動作の一例を示すタイムチャートである。
図5において、上から順に、起電力の状態、バッテリ21の接続状態、電力供給線L1の電圧、コンパレータ18の入力電圧(V1、V2)、コンパレータ18の出力信号の論理状態、ノードN7の論理状態、及び制御信号G4〜G6の論理状態を示している。なお、図5に示すグラフの横軸は、時間を示している。
また、波形W1は、電力供給線L1の電圧波形を示し、波形W2は、コンパレータ18の入力電圧V2の波形を示し、波形W3は、コンパレータ18の入力電圧V1の波形を示している。また、波形W4は、コンパレータ18の出力信号の波形を示し、波形W5は、制御信号G4〜G6の波形を示している。
また、図5において、制御装置1の初期状態は、例えば、制御信号SG4〜SG6が、H状態であり、スイッチ素子Q4〜Q6が、OFF状態であるものとして説明する。また、初期状態において、起電力の状態は、“未発生”であり、バッテリ21の接続状態は、“接続”であるものとする。
まず、時刻T1において、モータ3に起電力が発生すると、起電力の状態は、“発生”になり、駆動信号線L3〜L5から寄生ダイオードD1〜D3を介して、起電力が電力供給線L1に供給される。そのため、電力供給線L1の電圧が上昇し(波形W1参照)、電力供給線L1の電圧の上昇に伴い、電圧V1が上昇する(波形W3参照)。なお、バッテリ21の接続状態が“接続”であるため、起電力は、バッテリ21の充電に消費され、電力供給線L1の電圧及び電圧V1の上昇は、充電に応じた電圧で安定する。
次に、時刻T2において、バッテリ21が満充電状態になり、遮断スイッチ22がOFF状態になると、バッテリ21の接続状態が“遮断”になり、再び、電力供給線L1の電圧が上昇し(波形W1参照)、電力供給線L1の電圧の上昇に伴い、電圧V1が上昇する(波形W3参照)。
次に、時刻T3において、電力供給線L1の電圧が、閾値電圧Vth1に到達する(波形W1参照)と、電圧V1が、閾値電圧Vth1に対応する電圧V2に到達する(波形W2参照)。これにより、コンパレータ18は、H状態を出力し(波形W4参照)、トランジスタ19が、ノードN7をL状態にする(波形W5参照)。そして、ノードN7をL状態になることにより、AND回路44〜46が、L状態を出力し、結果として、プリドライバ部50が、制御信号G4〜G6に、H状態を出力する。これにより、スイッチ素子Q4〜Q6が、ON状態になり、起電力を駆動信号線L3〜L5からGND信号線L2に逃がし、電力供給線L1への起電力の供給が停止される。
次に、電力供給線L1の電圧の上昇が低下に転じて、時刻T4において、電力供給線L1の電圧が、閾値電圧Vth1未満になる(波形W1参照)と、電圧V1が、電圧V2未満になる(波形W2参照)。これにより、コンパレータ18は、L状態を出力し(波形W4参照)、トランジスタ19が、ノードN7をH状態にする(波形W5参照)。そして、ノードN7をH状態になることにより、AND回路44〜46が、再びH状態を出力し、結果として、プリドライバ部50が、制御信号G4〜G6に、L状態を出力する。これにより、スイッチ素子Q4〜Q6が、OFF状態になり、寄生ダイオードD1〜D3が、起電力を再び電力供給線L1に供給する。
次に、電力供給線L1の電圧の上昇が低下に転じて、時刻T4において、電力供給線L1の電圧が、閾値電圧Vth1未満になる(波形W1参照)と、電圧V1が、電圧V2未満になる(波形W2参照)。これにより、コンパレータ18は、L状態を出力し(波形W4参照)、トランジスタ19が、ノードN7をH状態にする(波形W5参照)。そして、ノードN7をH状態になることにより、AND回路44〜46が、再びH状態を出力し、結果として、プリドライバ部50が、制御信号G4〜G6に、L状態を出力する。これにより、スイッチ素子Q4〜Q6が、OFF状態になり、寄生ダイオードD1〜D3が、起電力を電力供給線L1に供給する。
続く時刻T5及び時刻T6と、時刻T7及び時刻T8と、時刻T9及び時刻T10とにおいては、制御装置1は、上述した時刻T3及び時刻T4と同様の処理を実行する。
なお、時刻T10において、起電力の発生が終了すると、起電力の状態は、“未発生”になり、バッテリ21の接続状態は、再び“接続”になる。これにより、通常状態に戻り、電力供給線L1の電圧、及び電圧V1は、初期状態の電圧に戻る。
このように、制御装置1の制御回路12は、時刻T3から時刻T4の期間、時刻T5から時刻T6の期間、時刻T7から時刻T8の期間、及び時刻T9から時刻T10の期間、スイッチ素子Q4〜Q6をON状態に制御して、電力供給線L1の電圧及び電圧V1の上昇を抑制する。なお、図5において、電圧Vmaxは、例えば、スイッチ素子Q1〜Q6の耐圧値(許容定格電圧値)である。ここで、閾値電圧Vth1及び電圧V2は、例えば、電力供給線L1の電圧が、電圧Vmax以下になるように定められている。また、閾値電圧Vth1及び電圧V2は、例えば、起電力によって、電力供給線L1の電圧が電圧Vmaxに到達する前に、スイッチ素子Q4〜Q6をON状態に出来るように定められている。
以上説明したように、本実施形態による制御装置1は、モータ3に発生した起電力に基づいて制御電力を生成する電源回路11と、電源回路11が生成した制御電力によりスイッチ素子Q1〜Q6を制御してモータ3の駆動制御を行う制御回路12とを備えている。制御回路12は、モータ3に起電力が発生し、且つ、モータ3を駆動する駆動電力を供給するバッテリ21への起電力の供給が遮断された場合に、起電力によってスイッチ素子Q1〜Q6に印加される電圧が、スイッチ素子Q1〜Q6の耐圧以下になるように制御する。
これにより、本実施形態による制御装置1は、制御装置1に使用されるスイッチ素子Q1〜Q6を含む半導体素子などの部品に印加される電圧は、低減(抑制)されて耐圧を超えることがない。よって、本実施形態による制御装置1は、使用する部品の耐圧を低減することができる。すなわち、本実施形態による制御装置1は、耐圧の低い部品を使用することが可能になる。
また、耐圧の低い部品を使用することが可能になるため、本実施形態による制御装置1は、より安価な部品及び小型化された部品を使用することができる。よって、本実施形態による制御装置1は、制御装置1の低コスト化、及び省スペース化を行うことができる。
また、本実施形態による制御装置1は、電源回路11が、起電力に基づいて制御電力を生成するため、バッテリ21が遮断された場合であっても、適切に制御を行うことができる。
また、本実施形態では、制御回路12は、モータ3に起電力が発生し、且つ、バッテリ21への起電力の供給が遮断された場合に、駆動電力(例えば、電源VCC、電源VCCH)が供給されるとともに起電力が供給される駆動信号線L3〜L5を、スイッチ素子Q1〜Q6の耐圧以下の電位の信号線(例えば、GND信号線L2)に導通させる制御を行う。
これにより、起電力が供給される駆動信号線L3〜L5をスイッチ素子Q1〜Q6の耐圧以下の電位の信号線(例えば、GND信号線L2)に導通させるため、本実施形態による制御装置1は、駆動信号線L3〜L5を耐圧以下に制御することができ、適切に起電力を抑制することがきる。
また、本実施形態では、スイッチ素子Q1〜Q6には、バッテリ21から駆動電力を駆動信号線L3〜L5に供給する第1スイッチ素子(例えば、スイッチ素子Q1〜Q3)と、スイッチ素子Q1〜Q6の耐圧以下の基準電位の信号線(例えば、GND信号線L2)と、駆動信号線L3〜L5との間に接続される第2スイッチ素子(例えば、スイッチ素子Q4〜Q6)とが含まれる。制御回路12は、モータ3に起電力が発生し、且つ、バッテリ21への起電力の供給が遮断された場合に、第2スイッチ素子(例えば、スイッチ素子Q4〜Q6)をON状態(導通状態)に制御して、基準電位の信号線(例えば、GND信号線L2)と、駆動信号線L3〜L5とを導通させる。
これにより、本実施形態による制御装置1は、例えば、第2スイッチ素子を用いた簡易な構成により、モータ3の起電力を適切に抑制することができる。また、モータ3の駆動用のスイッチ素子Q4〜Q6を利用するため、本実施形態による制御装置1は、より簡易な手段により、実現することができる。
また、本実施形態では、制御回路12は、バッテリ21から駆動電力が供給されるとともに、駆動信号線L3〜L5から起電力が供給される電力供給線L1の電圧に基づいて、モータ3に起電力が発生し、且つ、バッテリ21への起電力の供給が遮断されたことを検出する。
これにより、本実施形態による制御装置1は、電力供給線L1の電圧を監視するという簡易な手法により、モータ3に起電力が発生し、且つ、バッテリ21への起電力の供給が遮断されたことを正確に検出することができる。
また、本実施形態では、制御回路12は、電力供給線L1の電圧が、予め定められた所定の電圧以上である場合に、モータ3に起電力が発生し、且つ、バッテリ21への起電力の供給が遮断されたことを検出する。例えば、制御回路12は、コンパレータ18(比較部)を利用して、モータ3に起電力が発生し、且つ、バッテリ21への起電力の供給が遮断されたことを検出する。
これにより、本実施形態による制御装置1は、より簡易な構成により、モータ3に起電力が発生し、且つ、バッテリ21への起電力の供給が遮断されたことを検出することができる。
また、本実施形態による制御方法は、第1ステップと、第2ステップと、第3ステップとを含んでいる。第1ステップにおいて、電源回路11が、モータ3に発生した起電力に基づいて制御電力を生成する。第2ステップにおいて、制御回路12が、電源回路11が生成した制御電力によりスイッチ素子Q1〜Q6を制御してモータ3の駆動制御を行う。第3ステップにおいて、制御回路12が、モータ3に起電力が発生し、且つ、モータ3を駆動する駆動電力を供給するバッテリ21への起電力の供給が遮断された場合に、起電力によってスイッチ素子Q1〜Q6に印加される電圧が、スイッチ素子Q1〜Q6の耐圧以下になるように制御する。
これにより、本実施形態による制御方法は、上述した制御装置1と同様の効果を奏し、使用する部品の耐圧を低減することができる。
なお、本発明は、上記の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で変更可能である。
例えば、上記の実施形態では、起電力が供給される電力供給線L1の電圧に基づいて、モータ3に起電力が発生し、且つ、バッテリ21への起電力の供給が遮断されたことを検出する例を説明したがこれに限定されるものではない。制御回路12は、例えば、バッテリ21から駆動電力を駆動信号線L3〜L5に供給するとともに、駆動信号線L3〜L5から起電力が供給される電力供給線L1に流れる電流に基づいて、モータ3に起電力が発生し、且つ、バッテリ21への起電力の供給が遮断されたことを検出するようにしてもよい。制御回路12は、例えば、電力供給線L1に流れる電流の大きさ及び電流の向きから、モータ3に起電力が発生し、且つ、バッテリ21への起電力の供給が遮断されたことを検出するようにしてもよい。この場合、制御装置1は、電力供給線L1の電流を監視するという簡易な手法により、モータ3に起電力が発生し、且つ、バッテリ21への起電力の供給が遮断されたことを正確に検出することができる。
また、上記の実施形態において、UVW出力回路20は、ダイオードとして、スイッチ素子Q1〜Q6の寄生ダイオードD1〜D6を備える例を説明したが、寄生ダイオードD1〜D6とは別にダイオード素子を備えるようにしてもよい。
また、上記の実施形態において、スイッチ素子Q1〜Q6は、NMOS型電界効果トランジスタ(NMOS型FET)である例を説明したが、例えば、PMOS型電界効果トランジスタ(PMOS型FET)であってもよいし、他のFETや、他のスイッチ素子であってもよい。
また、上記の実施形態において、耐圧以下の電位の信号線の一例として、スイッチ素子Q1〜Q6が、GND信号線L2に接続されている例を説明したが、これに限定されるものではなく、他の電位の信号線に接続されて起電力を逃がすようにしてもよい。
また、上記の実施形態において、モータ3の駆動制御用のスイッチ素子Q1〜Q6が、ON状態になって起電力を逃がす例を説明したが、スイッチ素子Q1〜Q6とは別のスイッチ素子により起電力を逃がすようにしてもよい。
また、上記の実施形態において、バッテリ21が、リチウムイオン二次電池である例を説明したが、これに限定されるものではなく、鉛畜電池を備える鉛バッテリや、他の蓄電池又は二次電池を備えるバッテリであってもよい。
なお、上記の実施形態において、制御回路12は、回路構成により、起電力によってスイッチ素子Q1〜Q6に印加される電圧が、スイッチ素子Q1〜Q6の耐圧以下になるように制御する例を説明したが、CPU30と制御プログラムとにより同様の制御を実現するようにしてもよい。
なお、上述の制御装置1は内部に、コンピュータシステムを有している。そして、上述した制御装置1の処理過程は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されており、このプログラムをコンピュータが読み出して実行することによって、上記処理が行われる。ここでコンピュータ読み取り可能な記録媒体とは、磁気ディスク、光磁気ディスク、CD−ROM、DVD−ROM、半導体メモリ等をいう。また、このコンピュータプログラムを通信回線によってコンピュータに配信し、この配信を受けたコンピュータが当該プログラムを実行するようにしてもよい。
また、上述した制御装置1が備える機能の一部又は全部を、LSI(Large Scale Integration)等の集積回路として実現してもよい。上述した各機能は個別にプロセッサ化してもよいし、一部、又は全部を集積してプロセッサ化してもよい。また、集積回路化の手法はLSIに限らず専用回路、又は汎用プロセッサで実現してもよい。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いてもよい。
1 制御装置
2 バッテリ装置
3 モータ
11 電源回路
12 制御回路
13 平滑コンデンサ
14、15、16、17、31、32、33、34、35、36、37 抵抗
18 コンパレータ
19 トランジスタ
20 UVW出力回路
21 バッテリ
22 遮断スイッチ
30 CPU
41、42、43、44、45、46 AND回路
50 プリドライバ部
51、52、53 バッファ回路
54、55、56 インバータ回路
Q1、Q2、Q3、Q4、Q5、Q6 スイッチ素子
D1、D2、D3、D4、D5、D6 寄生ダイオード

Claims (7)

  1. モータに発生した起電力に基づいて制御電力を生成する電源回路と、
    前記電源回路が生成した前記制御電力によりスイッチ素子を制御して前記モータの駆動制御を行う制御回路と
    を備え、
    前記制御回路は、
    前記起電力が発生し、且つ、前記モータを駆動する駆動電力を供給するバッテリへの前記起電力の供給が遮断された場合に、前記起電力によって前記スイッチ素子に印加される電圧が、前記スイッチ素子の耐圧以下になるように制御する
    ことを特徴とする制御装置。
  2. 前記制御回路は、
    前記起電力が発生し、且つ、前記バッテリへの前記起電力の供給が遮断された場合に、前記駆動電力が供給されるとともに前記起電力が供給される駆動信号線を、前記スイッチ素子の耐圧以下の電位の信号線に導通させる制御を行う
    ことを特徴とする請求項1に記載の制御装置。
  3. 前記スイッチ素子には、前記バッテリから前記駆動電力を前記駆動信号線に供給する第1スイッチ素子と、前記スイッチ素子の耐圧以下の基準電位の信号線と前記駆動信号線との間に接続される第2スイッチ素子とが含まれ、
    前記制御回路は、
    前記起電力が発生し、且つ、前記バッテリへの前記起電力の供給が遮断された場合に、前記第2スイッチ素子を導通状態に制御して、前記基準電位の信号線と、前記駆動信号線とを導通させる
    ことを特徴とする請求項2に記載の制御装置。
  4. 前記制御回路は、
    前記バッテリから前記駆動電力を前記駆動信号線に供給するとともに、前記駆動信号線から前記起電力が供給される電力供給線の電圧に基づいて、前記起電力が発生し、且つ、前記バッテリへの前記起電力の供給が遮断されたことを検出する
    ことを特徴とする請求項2又は請求項3に記載の制御装置。
  5. 前記制御回路は、
    前記電力供給線の電圧が、予め定められた所定の電圧以上である場合に、前記起電力が発生し、且つ、前記バッテリへの前記起電力の供給が遮断されたことを検出する
    ことを特徴とする請求項4に記載の制御装置。
  6. 前記制御回路は、
    前記バッテリから前記駆動電力を前記駆動信号線に供給するとともに、前記駆動信号線から前記起電力が供給される電力供給線に流れる電流に基づいて、前記起電力が発生し、且つ、前記バッテリへの前記起電力の供給が遮断されたことを検出する
    ことを特徴とする請求項2又は請求項3に記載の制御装置。
  7. 電源回路が、モータに発生した起電力に基づいて制御電力を生成するステップと、
    制御回路が、前記電源回路が生成した前記制御電力によりスイッチ素子を制御して前記モータの駆動制御を行うステップと
    前記制御回路が、前記起電力が発生し、且つ、前記モータを駆動する駆動電力を供給するバッテリへの前記起電力の供給が遮断された場合に、前記起電力によって前記スイッチ素子に印加される電圧が、前記スイッチ素子の耐圧以下になるように制御するステップと
    を含むことを特徴とする制御方法。
JP2015183986A 2015-09-17 2015-09-17 制御装置、及び制御方法 Pending JP2017060323A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015183986A JP2017060323A (ja) 2015-09-17 2015-09-17 制御装置、及び制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015183986A JP2017060323A (ja) 2015-09-17 2015-09-17 制御装置、及び制御方法

Publications (1)

Publication Number Publication Date
JP2017060323A true JP2017060323A (ja) 2017-03-23

Family

ID=58391883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015183986A Pending JP2017060323A (ja) 2015-09-17 2015-09-17 制御装置、及び制御方法

Country Status (1)

Country Link
JP (1) JP2017060323A (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012063287A1 (ja) * 2010-11-10 2012-05-18 国産電機株式会社 回転電機の制御装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012063287A1 (ja) * 2010-11-10 2012-05-18 国産電機株式会社 回転電機の制御装置

Similar Documents

Publication Publication Date Title
JP5433608B2 (ja) 電力変換装置
JP5338850B2 (ja) スイッチング素子の駆動回路
US9059709B2 (en) Gate drive circuit for transistor
CN106688183B (zh) 自灭弧式半导体元件的短路保护电路
WO2016204122A1 (ja) 半導体装置
JP6298069B2 (ja) 電力変換装置
JP5767018B2 (ja) 絶縁ゲート型スイッチング素子のゲートの電位を制御する回路
JP2014192975A (ja) インバータ装置
CN105429500A (zh) 用于电机的逆变电路
JP5282492B2 (ja) スイッチング素子駆動回路
WO2020179633A1 (ja) スイッチの駆動装置
JP6102586B2 (ja) 駆動対象スイッチング素子の駆動回路
JP6044476B2 (ja) 駆動対象スイッチング素子の駆動回路
CN105553236A (zh) 驱动电路
JP2017060323A (ja) 制御装置、及び制御方法
JP2020025165A (ja) 駆動回路
JP6638504B2 (ja) インバータ駆動装置
JP6619312B2 (ja) 電力変換装置
TWI614991B (zh) 驅動電路、轉換器及驅動方法
KR101906158B1 (ko) 고입력 전압 보호의 수신기 회로
JP6503269B2 (ja) ゲート駆動回路
JP7088115B2 (ja) スイッチの駆動回路
CN108205286B (zh) 可编程逻辑控制器及其输出电路和方法
JP2019088078A (ja) ドライバ回路および電力変換装置
JP2019097011A (ja) 信号伝播装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190903