JP2017054853A - プラズマ処理方法および電子部品の製造方法 - Google Patents

プラズマ処理方法および電子部品の製造方法 Download PDF

Info

Publication number
JP2017054853A
JP2017054853A JP2015175747A JP2015175747A JP2017054853A JP 2017054853 A JP2017054853 A JP 2017054853A JP 2015175747 A JP2015175747 A JP 2015175747A JP 2015175747 A JP2015175747 A JP 2015175747A JP 2017054853 A JP2017054853 A JP 2017054853A
Authority
JP
Japan
Prior art keywords
plasma processing
substrate
resin sheet
stage
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015175747A
Other languages
English (en)
Other versions
JP6516125B2 (ja
Inventor
功幸 松原
Isayuki Matsubara
功幸 松原
篤史 針貝
Atsushi Harigai
篤史 針貝
秀夫 加納
Hideo Kano
秀夫 加納
満 廣島
Mitsuru Hiroshima
満 廣島
渡邉 彰三
Shozo Watanabe
彰三 渡邉
和田 年弘
Toshihiro Wada
年弘 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2015175747A priority Critical patent/JP6516125B2/ja
Priority to US15/245,139 priority patent/US9779986B2/en
Publication of JP2017054853A publication Critical patent/JP2017054853A/ja
Application granted granted Critical
Publication of JP6516125B2 publication Critical patent/JP6516125B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drying Of Semiconductors (AREA)
  • Dicing (AREA)

Abstract

【課題】樹脂シートに保持された基板をプラズマ処理する際の生産性を向上させる。【解決手段】樹脂シートに保持された基板を、反応室の内部に設けられたステージに載置してプラズマ処理を行うプラズマ処理方法であって、前記基板を、前記ステージの表面と前記樹脂シートとが接するように、前記ステージに載置する載置工程と、前記ステージに載置された前記基板に、プラズマ処理を行うプラズマ処理工程と、前記プラズマ処理工程の後、前記基板を前記樹脂シートとともに、前記反応室から搬出する搬出工程と、前記搬出工程の後、前記反応室内にプラズマを発生させて、前記樹脂シートから排出されて前記ステージの前記表面に付着した物質を除去する除去工程と、を備える、プラズマ処理方法。【選択図】図1

Description

本発明は、プラズマ処理方法および電子部品の製造方法に関し、特に、樹脂シートに保持された基板をプラズマ処理して電子部品を製造する場合の生産性の向上に関する。
基板をダイシングする方法として、レジストマスクを形成した基板にプラズマエッチングを施して個々のチップに分割するプラズマダイシングが知られている。特許文献1および2は、搬送等における基板のハンドリング性向上のために、環状のフレームとその開口部を覆う樹脂シートとを備える搬送キャリアに基板を保持させることを教示している。基板は、搬送キャリアに保持された状態でステージに載置され、プラズマ処理が施される。
この場合、通常、静電チャックといわれる静電吸着機構により、樹脂シートはステージに吸着される。静電吸着機構は、ステージの内部に配置された静電吸着(Electrostatic Chuck)用電極(以下、ESC電極と称する)を備える。ESC電極に電圧を印加すると、ESC電極と搬送キャリアとの間にクーロン力が発生し、また、ステージと搬送キャリアとの間にジョンソン・ラーベック(Johnsen-Rahbek)力が発生する。静電吸着機構は、これらの静電気力によって、ステージに樹脂シートを吸着させる。
特開2009−94436号公報 特表2014−513868号公報
樹脂シートに保持された基板を複数枚、連続してプラズマ処理する場合、処理枚数が増えるとともに、一定時間内にエッチングできる深さ(エッチングレート)が減少する傾向にある。また、樹脂シートに保持された基板に対してプラズマ処理を行った後のステージ上には、樹脂シートの形状を転写するように、付着物が生じる。そして、上記付着物が、エッチングレートの減少に影響を与えていることが判明した。
プラズマ処理の際、樹脂シートには、プラズマ照射による熱や、ESC電極によって生じる電界および漏れ電流が加えられる。そのため、プラズマ処理中に、樹脂シートに含まれる可塑剤等の各種添加物が、樹脂シートから排出されて、樹脂シートの表面に浮き出し、ステージに付着するものと考えられる。樹脂シートに起因する付着物は、特に、樹脂シートの基板が保持されていた部分から多く生じる。上記のように、樹脂に含まれる各種添加物が、樹脂の表面に浮き出す現象は、ブリードアウトと呼ばれる。
ここで、通常、ステージは冷却(例えば、15℃以下に)されている。樹脂シートがプラズマ照射により加熱され、熱的ダメージを受けることを抑制するためである。ステージを冷却することにより、静電吸着によってステージに密着された樹脂シートもまた冷却される。しかし、樹脂シートとステージとの間に付着物が介在すると、樹脂シートの冷却効果が低下する。樹脂シートが十分に冷却されないと、これに保持された基板の冷却効果も低下する。そのため、エッチングレートが減少し、生産性が低下する。また、基板を連続処理する場合には、ステージの付着物を除去するために、工程を停止することが必要となるため、生産性はさらに低下する。
本発明の一局面は、樹脂シートに保持された基板を、反応室の内部に設けられたステージに載置してプラズマ処理を行うプラズマ処理方法であって、前記基板を、前記ステージの表面と前記樹脂シートとが接するように、前記ステージに載置する載置工程と、前記ステージに載置された前記基板に、プラズマ処理を行うプラズマ処理工程と、前記プラズマ処理工程の後、前記基板を前記樹脂シートとともに、前記反応室から搬出する搬出工程と、前記搬出工程の後、前記反応室内にプラズマを発生させて、前記樹脂シートから排出されて前記ステージの前記表面に付着した物質を除去する除去工程と、を備える、プラズマ処理方法に関する。
本発明の他の一局面は、樹脂シートに保持された基板を準備する工程と、前記基板を、反応室の内部に設けられたステージの表面と前記樹脂シートとが接するように、前記ステージに載置する載置工程と、前記ステージに載置された前記基板にプラズマ処理を行って、前記基板を個片化するダイシング工程と、前記ダイシング工程の後、前記基板を前記樹脂シートとともに、前記反応室から搬出する搬出工程と、前記搬出工程の後、前記反応室内にプラズマを発生させて、前記樹脂シートから排出されて前記ステージの表面に付着した物質を除去する除去工程と、を備える、電子部品の製造方法に関する。
本発明によれば、エッチングレートが高く安定するため、生産性が向上する。また、基板を連続処理する場合であっても、工程を停止することなく付着物を除去することが可能であるため、生産性がさらに向上する。
本発明の一実施形態に係る搬送キャリアを概略的に示す上面図(a)およびそのB−B線での断面図(b)である。 本発明の一実施形態に係るプラズマ処理装置の概念図である。 プラズマダイシング速度の変化を示すグラフである。 本発明の一実施形態に係るプラズマ処理部を概念的に示す断面図である。 本発明の一実施形態に係るプラズマ処理方法を示すフローチャートである。 本発明の一実施形態に係るプラズマ処理部の動作の一部を示す概念図である((a)〜(e))。 本発明の一実施形態に係るプラズマ処理部の動作の他の一部を示す概念図である((f)〜(k))。 本発明の他の一実施形態に係るプラズマ処理方法を示すフローチャートである。
本発明に係るプラズマ処理方法は、樹脂シートに保持された基板を、プラズマ処理装置に備えられたステージの表面と樹脂シートとが接するように、ステージに載置する載置工程と、ステージに載置された基板に、プラズマ処理を行うプラズマ処理工程と、プラズマ処理工程の後、基板を樹脂シートとともに、反応室から搬出する搬出工程とを備える。さらに、搬出工程の後、搬送キャリア10が存在しない反応室内に、再びプラズマを発生させる。これにより、樹脂シートからブリードアウトしてステージの表面に付着した物質(付着物)を除去することができる。そのため、次にステージに載置される基板の冷却効果が損なわれにくい。よって、反応室内に高い電力を投入することが可能となり、エッチングレート(プラズマ処理により基板をダイシングする場合は、プラズマダイシング速度)を増加することができる。その結果、プラズマ処理(例えば、ダイシング)に要する時間が短縮されて、生産性が向上する。また、付着物が不均一に付着している場合、次にステージに載置される基板の温度が、基板面内で均一にならない場合がある。この場合、基板に対するエッチングの面内分布も不均一になって、加工形状のばらつきが発生し得る。すなわち、除去工程を備えることにより、ステージ上の付着物に起因する歩留まりの低下を抑制することもできる。
一方、プラズマ処理中に樹脂シートからブリードアウトする微量な成分(ブリードアウト成分)は、樹脂シートとステージとの間の微小な隙間を埋めるように介在し、樹脂シート、ひいては基板のステージに対する密着性(吸着性)を高めたり、樹脂シートとステージの間の熱伝導を向上させたりする場合もある。すなわち、本発明に係るプラズマ処理方法におけるプラズマ処理工程は、樹脂シートをステージの表面に静電吸着させた状態で、ステージに載置された基板にプラズマ処理を行うとともに、樹脂シートに含まれる微量なブリードアウト成分を、樹脂シートとステージとの間に介在させる工程であり得る。これにより、基板のエッチングがさらに均一になり易い。なお、上記のような、ブリードアウト成分による効果は、ブリードアウト成分が微量である場合にみられる。
除去工程は、酸素雰囲気下で行われることが好ましい。言い換えれば、酸素プラズマにより、付着物の除去を行うことが好ましい。付着物が効率よく除去されるためである。酸素プラズマによって、特に有機物が効率よく除去される。酸素雰囲気とは、反応室中に含まれる全気体に対する酸素の含有率が、50〜100体積%であることをいう(以下、同様)。なかでも、除去効率の観点から、酸素含有率は80〜100体積%であることが好ましい。
本発明に係る電子部品の製造方法は、上記プラズマ処理方法を用いて基板をダイシングする方法である。すなわち、本発明に係る電子部品の製造方法は、樹脂シートに保持された基板を準備する工程と、上記載置工程と、上記プラズマ処理により基板を個片化するダイシング工程と、上記搬出工程と、上記除去工程とを、この順に備える。上記のとおり、除去工程を行うことでプラズマ処理の効率が向上するため、電子部品の生産性が向上する。
以下、本発明の実施形態について図面を参照しながら、詳細に説明する。
まず、本発明で使用される搬送キャリアの一実施形態について、図1(a)および(b)を参照しながら説明する。図1(a)は、搬送キャリア10を概略的に示す上面図であり、図1(b)は、搬送キャリア10の(a)に示すB−B線での断面図である。なお、図1では、フレーム2および基板1が共に略円形である場合について図示するが、これに限定されるものではない。
図1(a)に示すように、搬送キャリア10は、基板1、フレーム2および樹脂シート3を備えている。樹脂シート3は、その外周部がフレーム2に固定されている。基板1は、樹脂シート3に貼着されて、搬送キャリアに保持される。
(フレーム)
フレーム2は、基板1の全体と同じかそれ以上の面積の開口を有した枠体であり、所定の幅および略一定の薄い厚みを有している。フレーム2は、樹脂シート3および基板1を保持した状態で搬送できる程度の剛性を有している。
フレーム2の開口の形状は特に限定されないが、例えば、円形や、矩形、六角形など多角形であってもよい。フレーム2には、位置決めのためのノッチ2aやコーナーカット2bが設けられていてもよい。フレーム2の材質としては、例えば、アルミニウム、ステンレス鋼等の金属や、樹脂等が挙げられる。フレーム2の一方の面には、樹脂シート3の一方の面の外周縁付近が貼着される。
(樹脂シート)
樹脂シート3は、例えば、粘着剤を有する面(粘着面3a)と粘着剤を有しない面(非粘着面3b)とを備えている。粘着面3aの外周縁は、フレーム2の一方の面に貼着しており、フレーム2の開口を覆っている。また、粘着面3aのフレーム2の開口から露出した部分には、基板1が貼着される。
粘着面3aは、紫外線の照射によって粘着力が減少する粘着成分からなることが好ましい。ダイシング後に紫外線照射を行うことにより、個片化された基板(電子部品)が、粘着面3aから容易に剥離され、ピックアップしやすいためである。例えば、樹脂シート3は、フィルム状の基材の片面にUV硬化型アクリル粘着剤を、5〜20μmの厚みに塗布することにより得られる。
フィルム状の基材の材質は特に限定されず、例えば、ポリエチレン、ポリプロピレン等のポリオレフィンや、ポリエチレンテレフタレート等のポリエステル等が挙げられる。基材には、伸縮性を付加するためのゴム成分(例えば、エチレン−プロピレンゴム(EPM)、エチレン−プロピレン−ジエンゴム(EPDM)等)、可塑剤、軟化剤、酸化防止剤、導電性材料等の各種添加剤が配合されていても良い。基材の厚みは、例えば、50〜150μmである。プラズマ処理の際、搬送キャリア10は、ステージと非粘着面3bとが接するように、ステージに載置される。プラズマ処理の際、基材から上記のような各種添加剤の少なくとも一部(特に、有機物)がブリードアウトし、ステージの表面に付着する。
(基板)
基板1は、プラズマ処理の対象物である。基板1は、例えば、本体部の一方の表面に、半導体回路、電子部品素子、MEMS等の回路層を形成した後、回路層とは反対側である本体部の裏面を研削し、厚みを薄くすることにより作製される。基板1を個片化することにより、上記回路層を有する電子部品(図示せず)が得られる。
基板1の大きさは特に限定されず、例えば、最大径50mm〜300mm程度、厚み25〜150μm程度である。その形状も特に限定されず、例えば、円形、角型である。また、基板1には、オリエンテーションフラット(オリフラ)、ノッチ等の切欠き(いずれも図示せず)が設けられていてもよい。
基板の本体部の材質も特に限定されず、例えば、半導体、誘電体、金属、あるいはこれらの積層体等が挙げられる。半導体としては、シリコン(Si)、ガリウム砒素(GaAs)、窒化ガリウム(GaN)、炭化ケイ素(SiC)などが例示できる。誘電体としては、二酸化ケイ素(SiO2)、窒化ケイ素(Si34)、ポリイミド、タンタル酸リチウム(LiTaO3)、ニオブ酸リチウム(LiNbO3)などが例示できる。
基板1の樹脂シート3に貼着していない面には、所望の形状にレジストマスクが形成されている(図示せず)。レジストマスクが形成されている部分は、プラズマによるエッチングから保護される。レジストマスクが形成されていない部分は、その表面から裏面までがプラズマによりエッチングされ得る。
[第1実施形態]
次に、本発明の一実施形態に係るプラズマ処理方法について、図2を参照しながら、その概要を説明する。図2は、本発明の一実施形態に係るプラズマ処理方法に用いられるプラズマ処理装置20の概念図を示す。図2において、M1〜M4は、搬送機構203の動作(各部への進入および退出)を表わす。
プラズマ処理装置20は、例えば、基板1が保持された搬送キャリア10を収納するカセット部300と、搬送キャリア10を搬送するための搬送機構203を備える準備部200と、プラズマ処理部100と、を備えている。準備部200は、カセット部300とプラズマ処理部100との間に介在しており、カセット部300から搬出された搬送キャリア10は、準備部200を経由して、プラズマ処理部100に搬入される。カセット部300は、例えば、複数枚の搬送キャリア10を収納するためのカセット301を備える。搬送機構203は、例えば、搬送フォーク201と、搬送フォーク201を支持する搬送アーム202とを備える。プラズマ処理部100は、搬送キャリア10を載置するステージ111を備える。プラズマ処理部100は、ステージ111に載置された基板1に対してプラズマ処理を行って、基板1を個片化する。プラズマ処理部100のステージ111以外の構成については、後述する。
このようなプラズマ処理装置20を用いた場合における、ロット開始から終了までのプロセスは以下のとおりである。
まず、複数の搬送キャリアの中から、プラズマ処理に供される搬送キャリア10の選定が行われる。選定された搬送キャリア10は、搬送機構203により、カセット部300から搬出される(M1)。搬出された搬送キャリア10は、必要に応じて、準備部200内において、位置調整や、基板1の有無の検査等がなされる。続いて、搬送キャリア10はプラズマ処理部100に搬入される(M2)。
ここで、プラズマ処理の効率が向上する点で、搬送キャリア10の搬出入の際、プラズマ処理部100は真空に保たれることが好ましい。そのため、カセット部300が大気下にある場合、準備部200は、搬送キャリア10が搬入された後、密閉されて、図示しない真空ポンプにより減圧される。準備部200が減圧された後、プラズマ処理部100の図示しないゲートバルブが開いて、搬送キャリア10は、プラズマ処理部100に搬入され、ステージ111に載置される。このとき、搬送フォーク201は、樹脂シート3の基板1を保持していない面の側から、搬送キャリアを保持している。搬送キャリア10は、樹脂シート3とプラズマ処理部100のステージとが接するように、ステージ111に載置される。搬送キャリア10を載置した後、搬送機構203はプラズマ処理部100から退出し、再びゲートバルブは閉じられる。
プラズマ処理部100では、ステージ111に載置された基板に対し、プラズマ処理(エッチングおよびアッシング)が行われる。プラズマ処理が終了すると、再びプラズマ処理部100のゲートバルブが開いて、搬送機構203によって搬送キャリア10がプラズマ処理部100から搬出される(M3)。搬出が完了すると、ゲートバルブは閉じられる。搬出された搬送キャリア10は、準備部200において、必要に応じて検査等がなされた後、カセット部300のカセット301に収納される(M4)。
一方、搬送キャリア10が搬出され、ゲートバルブが閉じられたプラズマ処理部100では、再び、プロセスガスが供給され、プラズマ処理が開始される。このプラズマ処理は、ステージ111に付着した、樹脂シート由来の付着物を除去するために行われる。ステージ111の付着物が除去されると、プラズマ処理部100の内部のガスは排出され、再び真空状態になる。プラズマ処理部100が真空になった後、他の基板1を保持した搬送キャリア10が、搬送機構203によってプラズマ処理部100に搬入され、上記プラズマ処理が繰り返される。
複数枚の搬送キャリアに対して、載置工程、プラズマ処理工程および搬出工程を含むフローが連続して行われる場合、付着物の除去工程は、プラズマ処理部100内に搬送キャリア10が無い時であれば、どのタイミングで行われても良い。なかでも、N回目のフローにおいてプラズマ処理済みの搬送キャリアが搬出された後、(N+1)回目のフローにおいて、プラズマ処理の対象となる搬送キャリアが載置される前までの時間を利用して、除去工程を行うことが好ましい。1枚の搬送キャリア10に対して行われる一連の処理の中で、必ず要される時間(例えば、搬送キャリア10の搬送時間等)を利用して除去工程を行うため、除去工程を追加しても、所要時間の増加を抑えることができる。つまり、生産性を損なわない。むしろ、付着物が除去されることによって、複数枚の基板を連続処理した場合であっても、エッチングレートは高く安定するため、プラズマ処理の効率は向上し、生産性は高まる。
除去工程は、例えば、プラズマ処理が終了し、プラズマ処理済みの搬送キャリア10がプラズマ処理部100から搬出されて、ゲートバルブが閉じられた後、速やかに開始されても良い。この場合、プラズマ処理済みの搬送キャリア10は、カセット部300に向かって移動中であるため、除去工程は、直近の処理済み搬送キャリア10のカセット部300への収納が完了する直前のタイミングで開始されることになる。
また、除去工程は、プラズマ処理済みの搬送キャリア10がカセット301に収納された後、次のプラズマ処理の対象である搬送キャリア10の搬送工程が開始される際に、開始されても良い。具体的には、搬送キャリア10の選定中、あるいは、搬送キャリア10の準備部200からプラズマ処理部100への移動中に除去工程を行うことができる。この場合、除去工程は、次のプラズマ処理の対象である搬送キャリア10の選定作業あるいは搬送工程の開始直後のタイミングで開始される。
なお、除去工程は、1枚の搬送キャリアに対するプラズマ処理が終了または開始されるたびに行っても良いし、複数枚の搬送キャリアに対する処理ごとに行っても良い。
図3に、樹脂シート(ポリオレフィン樹脂製)に保持させた複数枚の基板をステージに載置し、連続してプラズマダイシングした場合の、プラズマダイシング速度(単位時間あたりのエッチングの深さ)の変化を示す。使用した基板は、厚み100μmのSi基板であり、基板の表面にはマスクパターンが形成されている。図中、プラズマダイシング速度の単位(arb. unit)は、任意単位(arbitrary unit)を意味している。除去工程を行わない場合、処理枚数が増えるとともに、プラズマダイシング速度は減少する傾向にある。一方、除去工程を行う場合、プラズマダイシング速度は、開始直後に少し低下するものの、その後は一定の高い値で安定する傾向にあることがわかる。なお、樹脂シートに保持されていないSi基板を、直接ステージに載置し、連続してプラズマダイシングする場合、プラズマダイシング速度の低下の程度は、除去工程を行わない場合よりも小さく、除去工程を行った場合と同程度である。言い換えれば、樹脂シート由来の付着物は、プラズマダイシング速度に大きな影響を与えるが、除去工程により、その影響は極めて小さくなる。
除去工程を行わない場合、処理枚数が増えるとともに、プラズマダイシング速度が減少する理由については、以下のように考えられる。
プラズマダイシングによるSi基板の個片化は、Si基板のマスクの開口部を深さ方向に垂直にエッチング(深掘りエッチング)することにより行われる。その際、通常、いわゆるボッシュ(Bosch)プロセスが用いられる。ボッシュプロセスでは、エッチング用のプラズマによるエッチングステップと、保護膜堆積用のプラズマによる保護膜堆積ステップとが交互に繰り返される。エッチングステップでは、マスクの開口部に露出するSi基板が、深さ方向にエッチングされて、溝が形成される。保護膜堆積ステップでは、エッチングステップで形成された溝の内壁面が保護膜で被覆される。続いて行われるエッチングステップでは、溝の底部を被覆する保護膜を除去し、底部に露出されたSi基板を深さ方向にエッチングする。このとき、溝の側壁は依然として保護膜で被覆されているため、エッチングステップにおいてエッチングされ難い。このようなエッチングステップと保護膜堆積ステップを交互に繰り返すことで、マスクの開口部において、基板を深さ方向に垂直に深掘りすることができる。
除去工程を行わない場合、樹脂シート由来の付着物がステージの表面に付着し、基板の冷却効果が低下する。そのため、プラズマ処理中の基板の温度が上昇する。基板の温度上昇は、エッチングステップにおけるエッチング速度に、相反する2つの影響をもたらす。
第1の影響は、エッチングステップにおけるエッチング速度の増加である。基板が高温になると、プラズマとSi基板との反応性が高まるためである。
第2の影響は、エッチングステップにおけるエッチング速度の減少である。
基板の温度上昇は、保護膜堆積ステップにおける保護膜の堆積を阻害する。基板が高温になると、基板における堆積物の脱離反応が促進されるためである。そのため、溝の側面に保護膜が形成され難くなる。さらに基板の温度が上昇すると、側面に保護膜が形成されない部分、すなわちSi基板の露出する部分が生じる。つまり、Si基板の温度が上昇すると、溝の底部以外の部分に露出するSi基板の面積が増大する。溝の底部以外に露出するSi基板の面積が増えると、エッチングステップにおいて、Si基板のエッチングに寄与するプラズマ中の成分(イオンやラジカルなど)は、溝の底部以外(すなわち、溝の側面)に露出するSi基板との反応により消費され、溝の底部に十分に供給されなくなる。その結果、溝の底部に対するエッチング速度が低下する(ローディング効果)。
すなわち、基板の温度上昇は、エッチングステップにおけるエッチング速度を増加させるように作用すると同時に、当該速度を低下させるようにも作用する。除去工程を行わない場合、処理枚数が増えるとともに、ローディング効果による底部に対するエッチング速度の低下が、温度上昇によるエッチング速度の増加を上回ると考えられる。そのため、プラズマダイシング速度が減少する。プラズマダイシング速度が減少すると、生産性が低下する。また、側面に対するエッチング速度が相対的に増加すると、垂直に深掘りすることが困難となって、所望の形状に個片化することが困難となる。
次に、図4を参照しながら、本発明の一実施形態に係るプラズマ処理部100を詳細に説明する。図4は、プラズマ処理部100の断面を示す概念図である。
プラズマ処理部100は、ステージ111を備えている。搬送キャリア10は、樹脂シート3の基板1を保持している面(粘着面3a)が上方を向くように、ステージ111に搭載される。ステージ111の上方には、フレーム2および樹脂シート3の少なくとも一部を覆うとともに、基板1の少なくとも一部を露出させるための窓部124Wを有するカバー124が配置されている。
ステージ111およびカバー124は、反応室(真空チャンバ103)内に配置されている。真空チャンバ103は、上部が開口した概ね円筒状であり、上部開口は蓋体である誘電体部材108により閉鎖されている。真空チャンバ103を構成する材料としては、アルミニウム、ステンレス鋼(SUS)、表面をアルマイト加工したアルミニウム等が例示できる。誘電体部材108を構成する材料としては、酸化イットリウム(Y23)、窒化アルミニウム(AlN)、アルミナ(Al23)、石英(SiO2)等の誘電体材料が例示できる。誘電体部材108の上方には、上部電極としてのアンテナ109が配置されている。アンテナ109は、第1高周波電源110Aと電気的に接続されている。ステージ111は、真空チャンバ103内の底部側に配置される。
真空チャンバ103には、ガス導入口103aが接続されている。ガス導入口103aには、プラズマ発生用ガスの供給源であるプロセスガス源112およびアッシングガス源113が、それぞれ配管によって接続されている。また、真空チャンバ103には、排気口103bが設けられており、排気口103bには、真空チャンバ103内のガスを排気して減圧するための真空ポンプを含む減圧機構114が接続されている。
ステージ111は、それぞれ略円形の電極層115と、金属層116と、電極層115および金属層116を支持する基台117と、電極層115、金属層116および基台117を取り囲む外周部118とを備える。電極層115の内部には、静電吸着機構を構成する電極部(以下、ESC電極と称する)119と、第2高周波電源110Bに電気的に接続された高周波電極120とが配置されている。ESC電極119には、直流電源126が電気的に接続されている。静電吸着機構は、ESC電極119および直流電源126により構成されている。電極層115は、例えば、上記の誘電体材料により構成される。
金属層116は、例えば、表面にアルマイト被覆を形成したアルミニウム等により構成される。金属層116内には、冷媒流路127が形成されている。冷媒流路127は、ステージ111を冷却する。ステージ111が冷却されることにより、ステージ111に搭載された樹脂シート3が冷却されるとともに、ステージ111にその一部が接触しているカバー124も冷却される。冷媒流路127内の冷媒は、冷媒循環装置125により循環される。
ステージ111の外周付近には、ステージ111を貫通する複数の支持部122が配置されている。支持部122は、昇降機構123Aにより昇降駆動される。搬送キャリア10が真空チャンバ103内に搬送されると、所定の位置まで上昇した支持部122に受け渡される。支持部122は、搬送キャリア10のフレーム2を支持する。支持部122の上端面がステージ111と同じレベル以下にまで降下することにより、搬送キャリア10は、ステージ111の所定の位置に搭載される。
カバー124の端部には、複数の昇降ロッド121が連結しており、カバー124を昇降可能にしている。昇降ロッド121は、昇降機構123Bにより昇降駆動される。昇降機構123Bによるカバー124の昇降の動作は、昇降機構123Aとは独立して行うことができる。
制御装置128は、第1高周波電源110A、第2高周波電源110B、プロセスガス源112、アッシングガス源113、減圧機構114、冷媒循環装置125、昇降機構123A、昇降機構123Bおよび静電吸着機構を含むプラズマ処理部100を構成する要素の動作を制御する。
本実施形態に係るプラズマ処理方法により実行される具体的な工程を、図5および図6を用いて説明する。図5は、プラズマ処理方法を示すフローチャートであり、図6は、プラズマ処理部の動作の一部を示す概念図である。
載置工程(S1)の開始に先立ち、カセット部300に備えられたカセット301に、複数の搬送キャリア10が収納される。搬送機構203が作動して、搬送フォーク201がカセット部300内に進入し、複数の搬送キャリア10のうちの1枚を保持する。次いで、搬送フォーク201は搬送キャリア10を保持したままカセット部300から退出する。搬送キャリア10が搬入された準備部200は、密閉されて、真空ポンプにより真空にされる。準備部200が真空になったことが確認されると、プラズマ処理部100のゲートバルブが開き、載置工程(S1)が開始される。
載置工程(S1)において、搬送機構203は、搬送キャリア10をプラズマ処理部100内に搬送し、ステージ111に載置する。このとき、真空チャンバ103内では、搬送キャリア10を支持するために、複数の支持部122が上昇した状態で待機している。カバー124も上昇した位置で待機している(図6(a))。図示しない搬送機構により、搬送キャリア10が、真空チャンバ103内に搬送され、複数の支持部122に受け渡される(図6(b))。搬送キャリア10は、樹脂シート3の基板1を保持している面(粘着面3a)が上方を向くように、支持部122の上端面122aに載置される。
搬送フォーク201は、支持部122の上端面122aに搬送キャリア10を載置すると、退出する。搬送フォーク201が退出したことが確認されると、プラズマ処理部100と準備部200とを隔てるゲートバルブ(図示せず)が閉じられ、プラズマ処理部100が密閉状態に置かれる。続いて、基板1に対してプラズマ処理が施される(プラズマ処理工程:S2)。
プラズマ処理工程(S2)では、まず、支持部122が降下を開始する。支持部122の上端面122aが、ステージ111と同じレベル以下にまで降下し、搬送キャリア10は、ステージ111に載置される(図6(c))。続いて、昇降機構123Bにより昇降ロッド121が駆動する。昇降ロッド121は、カバー124を所定の位置にまで降下させる(図6(d))。
このとき、ステージ111は、冷媒流路127に常時循環している冷媒により、例えば15℃程度に冷却されている。また、ESC型電極119には電圧が印加されている。ESC電極が形成する電界、および、ESC電極から生じる漏れ電流によって、樹脂シート3からのブリードアウトはより顕著になり易い。しかし、プラズマ処理工程の後、除去工程を行うため、上記ブリードアウトによって、プラズマ処理の効率はほとんど低下しない。
カバー124が所定の降下位置に配置されると、フレーム2および樹脂シート3の基板1を保持していない部分は、カバー124と接触することなくカバー124によって覆われ、基板1はカバー124の窓部124Wから露出する。
カバー124は、例えば、略円形の外形輪郭を有したドーナツ形であり、一定の幅および薄い厚みを備えている。カバー124の内径(窓部124Wの直径)はフレーム2の内径よりも小さく、カバー124の外径はフレーム2の外径よりも大きい。したがって、搬送キャリア10をステージの所定の位置に搭載し、カバー124を降下させると、カバー124は、フレーム2と樹脂シート3の少なくとも一部を覆うことができる。窓部124Wからは、基板1の少なくとも一部が露出する。このとき、カバー124は、フレーム2、樹脂シート3および基板1のいずれとも接触しない。カバー124は、例えば、セラミックス(例えば、アルミナ、窒化アルミニウムなど)や石英などの誘電体や、アルミニウムあるいは表面がアルマイト処理されたアルミニウムなどの金属で構成される。
支持部122およびカバー124が所定の位置に配置されると、プロセスガス源112からガス導入口103aを通って、プロセスガスが真空チャンバ103内部に導入される。一方、減圧機構114は、真空チャンバ103内のガスを排気口103bから排気し、真空チャンバ103内を所定の圧力に維持する。
続いて、アンテナ109に第1の高周波電源110Aから高周波電力を投入し、真空チャンバ103内にプラズマP1を発生させる(図6(e))。発生したプラズマP1は、イオン、電子、ラジカルなどから構成される。基板1に形成されたレジストマスクから露出した部分の表面から裏面までが、発生したプラズマP1との物理化学的反応によって除去(エッチング)され、基板1は個片化される。
ここで、第2高周波電源110Bから高周波電極120に、例えば100kHz以上の高周波電力を投入してもよい。イオンの基板1への入射エネルギーは、第2高周波電源110Bから高周波電極120に印加された高周波電力によって制御することができる。高周波電極120に高周波電力が投入されることにより、ステージ111の表面にバイアス電圧が発生し、このバイアス電圧によって基板1に入射するイオンが加速され、エッチング速度が増加する。一方、高周波電極120に高周波電力が投入されると、樹脂シート3からのブリードアウトはより顕著になり易い。しかし、プラズマ処理工程の後、除去工程によってステージ111に付着したブリードアウト成分の除去を行うため、高周波電極120に高周波電力を投入しながら、プラズマ処理を繰り返し行う場合においても、ステージ111へのブリードアウト成分の蓄積が抑制される。よって、高速でエッチングを行うために高周波電極120に高周波電力を投入するプラズマ処理を繰り返し行う場合においても、基板1を冷却する効果が損なわれ難く、基板の温度上昇に起因する問題(例えば、プラズマダイシング速度の低下)の発生が抑制される。
エッチングの条件は、基板1の材質などに応じて設定される。例えば、基板1がSiの場合、真空チャンバ103内に、六フッ化硫黄(SF6)などのフッ素含有ガスのプラズマP1を発生させることにより、基板1はエッチングされる。この場合、例えば、プロセスガス源112から、SF6ガスを100〜800sccmで供給しながら、減圧機構114により反応室103の圧力を10〜50Paに制御する。アンテナ109に1000〜5000Wの周波数13.56MHzの高周波電力を供給するとともに、高周波電極120に50〜1000Wの周波数13.56MHzの高周波電力を供給する。
エッチング中の搬送キャリア10の温度上昇を抑えるため、冷媒循環装置125により、ステージ111内に循環させる冷媒の温度を−20から20℃に設定することが好ましい。これにより、プラズマ処理中の樹脂シート3の温度は150℃以下に制御される。そのため、樹脂シート3の熱的ダメージが抑制される。なお、樹脂シート3の温度が、例えば50℃以上150℃以下であると、樹脂シート3から、有機物がブリードアウトし易くなる。
プラズマダイシングの場合、レジストマスクから露出した基板1の表面は、垂直にエッチングされることが望ましい。この場合、上記のように、SF6などのフッ素系ガスのプラズマによるエッチングステップと、パーフルオロシクロブタン(C48)などのフッ化炭素ガスのプラズマによる保護膜堆積ステップとを、交互に繰り返してもよい。
エッチングによって基板が個片化され、電子部品4(チップ)が製造される。続いて、アッシングが実行される。アッシング用のプロセスガス(例えば、酸素ガスや、酸素ガスとフッ素を含むガスとの混合ガス等)を、アッシングガス源113から真空チャンバ103内に導入する。一方、減圧機構114による排気を行い、真空チャンバ103内を所定の圧力に維持する。第1高周波電源110Aからの高周波電力の投入により、真空チャンバ103内には酸素プラズマが発生し、カバー124の窓部124Wから露出している電子部品4の表面のレジストマスクが完全に除去される。
アッシングが終了すると、真空チャンバ103内のガスが排出され、ゲートバルブが開く。電子部品4を保持する搬送キャリア10は、ゲートバルブから進入した搬送機構203によって、プラズマ処理部100から搬出される(S3)。搬送キャリア10が搬出されると、ゲートバルブは速やかに閉じられる。搬出された搬送キャリア10は、一旦、準備部200に搬入され、必要に応じて検査等がなされた後、カセット部300に搬入されてカセット301に収納される。
ここで、搬送キャリア10の搬出プロセスは、上記のような基板1をステージ111に搭載する手順とは逆の手順で行われても良い。すなわち、図7に示すように、カバー124を所定の位置にまで上昇させた後(図7(g))、ESC型電極119への印加電圧をゼロにして、搬送キャリア10のステージ111への吸着を解除し、支持部122を上昇させる(図7(h))。支持部122が所定の位置まで上昇した後、搬送機構203により搬送キャリア10が搬出される(図7(i))。図7は、プラズマ処理部の動作の他の一部を示す概念図である。
ここで、支持部122の上昇前あるいは上昇中(図7(g)〜(h)の間)に、図8に示すように、樹脂シート3を除電する除電工程(S5)を設けることが好ましい。樹脂シート3にプラズマ処理時の電荷が残留し、樹脂シート3がステージ111に残留吸着している場合、樹脂シート3をステージ111から滑らかに剥離することが困難なためである。除電は、第1高周波電源110Aから、例えば、200W程度の弱い高周波電力を投入して、弱いプラズマを発生させることにより行われる。除電によって、樹脂シート3はステージ111から滑らかに剥離されるため、搬出の際に樹脂シート3が損傷するなどのトラブルが抑制され、プラズマ処理の効率はさらに向上する。なお、図8は、他のプラズマ処理方法を示すフローチャートである。
除電工程(S5)は、この後に続けて行われる除去工程(S4)と同じ雰囲気下で行われることが好ましい。真空チャンバ103内が、除去工程に適した環境(すなわち、除去工程における真空チャンバ103内の雰囲気)になるまでに要する時間が短くなり、プラズマ処理の効率がさらに向上するためである。除去工程が、例えば酸素雰囲気下で行われる場合、除電工程も酸素雰囲気で行われることが好ましい。すなわち、除電には、プラズマを発生させるガスとして、酸素を含むガスを用いることが好ましく、特に、酸素のみを用いることが好ましい。言い換えれば、除電工程における真空チャンバ103内の酸素含有率は、80〜100体積%であることが好ましい。
除電工程は、例えば、アッシングガス源113から、O2ガスを200〜500sccmで供給しながら、減圧機構114により反応室103の圧力を8〜12Paに制御する。次いで、アンテナ109に100〜200Wの周波数13.56MHzの高周波電力を供給することにより行われる。
また、アッシングの終了後(図7(f))、支持部122を上昇させるまでの間に、真空チャンバ103内に冷却用ガスを導入し、カバー124を冷却する冷却工程を設けても良い。カバー124は、プラズマ処理工程でプラズマに晒されたことにより、高温になっているためである。カバー124を冷却することにより、カバー124からの輻射熱による、樹脂シート3の熱的ダメージが抑制され易くなる。樹脂シート3の熱的ダメージを抑制する観点から、カバー124を所定の位置まで上昇させて、カバー124を樹脂シート3から遠ざけた後(図7(g))、上記の冷却工程を行うことが好ましい。
冷却工程もまた、この後に続けて行われる除去工程(S4)と同じ雰囲気下で行われることが好ましい。真空チャンバ103内が、除去工程に適した環境になるまでに要する時間が短くなり、プラズマ処理の効率がさらに向上するためである。除去工程が、例えば酸素雰囲気下で行われる場合、冷却工程も酸素雰囲気で行われることが好ましい。すなわち、冷却用ガスとして、酸素を含むガスを用いることが好ましく、特に、酸素のみを用いることが好ましい。言い換えれば、冷却工程における真空チャンバ103内の酸素含有率は、80〜100体積%であることが好ましい。
必要に応じて上記除電工程(S5)および/または冷却工程が行われた後、搬送キャリア10が搬出される(S3)。このとき、ステージ111の表面には、樹脂シート3に由来する付着物5が付着している(図7(i))。そこで、搬送キャリア10が搬出され、ゲートバルブが閉じられた後、再び、真空チャンバ103内にガスを供給し、プラズマP2を発生させる(図7(j)、S4)。このとき、例えば、アッシングガス源113から、O2ガスを200〜1000sccmで供給しながら、減圧機構114により反応室103の圧力を8〜12Paに制御する。アンテナ109に500〜1000Wの周波数13.56MHzの高周波電力を供給する。
これにより、樹脂シート3からブリードアウトし、ステージ111の表面に付着した付着物5が除去される(図7(k))。付着物5の除去は、上記のとおり、酸素プラズマにより行われることが好ましい。ステージ111に付着した付着物5を除去した後、プラズマ処理部100の内部のガスを排出し、再び真空にする。このようにして、一連の工程が終了する。複数枚の搬送キャリアに対して連続してプラズマ処理を行う場合、載置工程(S1)から除去工程(S4)までの工程を繰り返しても良いし、載置工程(S1)から搬出工程までの工程を複数回繰り返した後、除去工程(S4)を行っても良い。
一方、一連のプラズマ処理が行われている間、プラズマ処理部100以外の部分では、プラズマ処理すべき次の基板1の準備が行われる。すなわち、電子部品4の製造プロセスにおいて、除去工程の後、再び、支持部122およびカバー124が上昇し(図6(a))、他の搬送キャリア10が搬入されて、載置工程、プラズマ処理工程、搬出工程および除去工程が行われる。
本発明のプラズマ処理方法は、樹脂シートに保持された基板をプラズマ処理する方法として有用である。
1:基板、2:フレーム、2a:ノッチ、2b:コーナーカット、3:樹脂シート、3a:粘着面、3b:非粘着面、4:電子部品、5:付着物、10:搬送キャリア、20:プラズマ処理装置、100:プラズマ処理部、103:真空チャンバ、103a:ガス導入口、103b:排気口、108:誘電体部材、109:アンテナ(プラズマ源)、110A:第1の高周波電源、110B:第2の高周波電源、111:ステージ、112:プロセスガス源、113:アッシングガス源、114:減圧機構、115:電極層、116:金属層、117:基台、118:外周部、119:ESC電極、120:高周波電極、121:昇降ロッド、122:支持部、122a:上端面、123A、123B:昇降機構、124:カバー、124W:窓部、125:冷媒循環装置、126:直流電源、127:冷媒流路、128:制御装置

Claims (10)

  1. 樹脂シートに保持された基板を、反応室の内部に設けられたステージに載置してプラズマ処理を行うプラズマ処理方法であって、
    前記基板を、前記ステージの表面と前記樹脂シートとが接するように、前記ステージに載置する載置工程と、
    前記ステージに載置された前記基板にプラズマ処理を行うプラズマ処理工程と、
    前記プラズマ処理工程の後、前記基板を前記樹脂シートとともに、前記反応室から搬出する搬出工程と、
    前記搬出工程の後、前記反応室内にプラズマを発生させて、前記樹脂シートから排出されて前記ステージの前記表面に付着した物質を除去する除去工程と、を備える、プラズマ処理方法。
  2. 前記載置工程、前記プラズマ処理工程および前記搬出工程を含むフローが、複数の樹脂シートにそれぞれ保持された複数の前記基板のそれぞれに対して行われ、
    前記除去工程が、N回目(Nは整数)の前記フローにおける前記搬出工程の後、(N+1)回目の前記フローにおける前記載置工程の前に行われる、請求項1に記載のプラズマ処理方法。
  3. 前記除去工程が、酸素雰囲気下で行われる、請求項1または2に記載のプラズマ処理方法。
  4. 前記プラズマ処理工程の後、前記除去工程の開始までの間、前記反応室内には酸素を含むガスが供給される、請求項3に記載のプラズマ処理方法。
  5. 前記プラズマ処理工程の後、前記除去工程の開始までの間、前記反応室内には酸素のみが供給される、請求項4に記載のプラズマ処理方法。
  6. 前記プラズマ処理工程において、前記ステージに、100kHz以上の高周波電力を印加する、請求項1〜5のいずれか一項に記載のプラズマ処理方法。
  7. 前記プラズマ処理工程において、前記樹脂シートの温度を150℃以下に制御する、請求項1〜6のいずれか一項に記載のプラズマ処理方法。
  8. 前記プラズマ処理工程の後、前記搬出工程までの間に、前記樹脂シートを除電する除電工程を備え、
    前記除電工程が、酸素雰囲気下で行われる請求項3〜7のいずれか一項に記載のプラズマ処理方法。
  9. 前記樹脂シートから排出される前記物質が、有機物を含む、請求項1〜8のいずれか一項に記載のプラズマ処理方法。
  10. 樹脂シートに保持された基板を準備する工程と、
    前記基板を、反応室の内部に設けられたステージの表面と前記樹脂シートとが接するように、前記ステージに載置する載置工程と、
    前記ステージに載置された前記基板にプラズマ処理を行って、前記基板を個片化するダイシング工程と、
    前記ダイシング工程の後、前記基板を前記樹脂シートとともに、前記反応室から搬出する搬出工程と、
    前記搬出工程の後、前記反応室内にプラズマを発生させて、前記樹脂シートから排出されて前記ステージの表面に付着した物質を除去する除去工程と、を備える、電子部品の製造方法。
JP2015175747A 2015-09-07 2015-09-07 プラズマ処理方法および電子部品の製造方法 Active JP6516125B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015175747A JP6516125B2 (ja) 2015-09-07 2015-09-07 プラズマ処理方法および電子部品の製造方法
US15/245,139 US9779986B2 (en) 2015-09-07 2016-08-23 Plasma treatment method and method of manufacturing electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015175747A JP6516125B2 (ja) 2015-09-07 2015-09-07 プラズマ処理方法および電子部品の製造方法

Publications (2)

Publication Number Publication Date
JP2017054853A true JP2017054853A (ja) 2017-03-16
JP6516125B2 JP6516125B2 (ja) 2019-05-22

Family

ID=58317304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015175747A Active JP6516125B2 (ja) 2015-09-07 2015-09-07 プラズマ処理方法および電子部品の製造方法

Country Status (1)

Country Link
JP (1) JP6516125B2 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08279486A (ja) * 1993-05-20 1996-10-22 Hitachi Ltd プラズマ処理方法
JP2004193305A (ja) * 2002-12-11 2004-07-08 Matsushita Electric Ind Co Ltd 半導体ウェハの切断方法および半導体ウェハの切断方法で使用される保護シート
JP2007214512A (ja) * 2006-02-13 2007-08-23 Tokyo Electron Ltd 基板処理室の洗浄方法、記憶媒体及び基板処理室
JP2009260272A (ja) * 2008-03-25 2009-11-05 Panasonic Corp 基板の加工方法および半導体チップの製造方法ならびに樹脂接着層付き半導体チップの製造方法
JP2010182712A (ja) * 2009-02-03 2010-08-19 Seiko Epson Corp 電気光学装置の製造装置のクリーニング方法、電気光学装置の製造装置
JP2010199475A (ja) * 2009-02-27 2010-09-09 Tokyo Electron Ltd プラズマ処理装置のクリーニング方法及び記憶媒体
JP2012204644A (ja) * 2011-03-25 2012-10-22 Tokyo Electron Ltd プラズマ処理装置及びプラズマ処理方法
JP2012248741A (ja) * 2011-05-30 2012-12-13 Panasonic Corp プラズマ処理装置、搬送キャリア、及びプラズマ処理方法
JP2014165182A (ja) * 2013-02-21 2014-09-08 Panasonic Corp プラズマ処理装置及びプラズマ処理方法
WO2014137905A2 (en) * 2013-03-06 2014-09-12 Plasma-Therm, Llc Method and apparatus for plasma dicing a semi-conductor wafer

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08279486A (ja) * 1993-05-20 1996-10-22 Hitachi Ltd プラズマ処理方法
JP2004193305A (ja) * 2002-12-11 2004-07-08 Matsushita Electric Ind Co Ltd 半導体ウェハの切断方法および半導体ウェハの切断方法で使用される保護シート
JP2007214512A (ja) * 2006-02-13 2007-08-23 Tokyo Electron Ltd 基板処理室の洗浄方法、記憶媒体及び基板処理室
JP2009260272A (ja) * 2008-03-25 2009-11-05 Panasonic Corp 基板の加工方法および半導体チップの製造方法ならびに樹脂接着層付き半導体チップの製造方法
JP2010182712A (ja) * 2009-02-03 2010-08-19 Seiko Epson Corp 電気光学装置の製造装置のクリーニング方法、電気光学装置の製造装置
JP2010199475A (ja) * 2009-02-27 2010-09-09 Tokyo Electron Ltd プラズマ処理装置のクリーニング方法及び記憶媒体
JP2012204644A (ja) * 2011-03-25 2012-10-22 Tokyo Electron Ltd プラズマ処理装置及びプラズマ処理方法
JP2012248741A (ja) * 2011-05-30 2012-12-13 Panasonic Corp プラズマ処理装置、搬送キャリア、及びプラズマ処理方法
JP2014165182A (ja) * 2013-02-21 2014-09-08 Panasonic Corp プラズマ処理装置及びプラズマ処理方法
WO2014137905A2 (en) * 2013-03-06 2014-09-12 Plasma-Therm, Llc Method and apparatus for plasma dicing a semi-conductor wafer

Also Published As

Publication number Publication date
JP6516125B2 (ja) 2019-05-22

Similar Documents

Publication Publication Date Title
CN107204274B (zh) 等离子体处理方法以及等离子体处理装置
US10923357B2 (en) Element chip and manufacturing process thereof
US10037891B2 (en) Manufacturing method of element chip
CN106024682B (zh) 等离子处理装置以及等离子处理方法
CN105140094B (zh) 等离子处理装置及方法
JP2019125723A (ja) 素子チップの製造方法
JP6650593B2 (ja) プラズマ処理装置およびプラズマ処理方法
US10714356B2 (en) Plasma processing method
JP6485702B2 (ja) プラズマ処理方法および電子部品の製造方法
JP6555656B2 (ja) プラズマ処理装置および電子部品の製造方法
US9779986B2 (en) Plasma treatment method and method of manufacturing electronic component
JP6573231B2 (ja) プラズマ処理方法
JP7209247B2 (ja) 素子チップの製造方法
JP2018078168A (ja) プラズマ処理方法およびプラズマ処理装置
JP6516125B2 (ja) プラズマ処理方法および電子部品の製造方法
US9922841B2 (en) Plasma processing method
JP7281741B2 (ja) 素子チップのスムージング方法および素子チップの製造方法
JP6704147B2 (ja) プラズマ処理方法、電子部品の製造方法およびプラズマ処理装置
US9941167B2 (en) Method for manufacturing element chip
JP6440120B2 (ja) プラズマ処理装置およびプラズマ処理方法
JP2020053472A (ja) 素子チップの製造方法
JP7213477B2 (ja) 素子チップの製造方法
JP7361306B2 (ja) プラズマ処理装置、プラズマ処理方法ならびに素子チップの製造方法
JP6558567B2 (ja) プラズマ処理装置およびプラズマ処理方法
JP2022089007A (ja) プラズマ処理方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180223

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190403

R151 Written notification of patent or utility model registration

Ref document number: 6516125

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151