JP2017051074A - 非接触送電装置、および、非接触給電システム - Google Patents

非接触送電装置、および、非接触給電システム Download PDF

Info

Publication number
JP2017051074A
JP2017051074A JP2015175116A JP2015175116A JP2017051074A JP 2017051074 A JP2017051074 A JP 2017051074A JP 2015175116 A JP2015175116 A JP 2015175116A JP 2015175116 A JP2015175116 A JP 2015175116A JP 2017051074 A JP2017051074 A JP 2017051074A
Authority
JP
Japan
Prior art keywords
power
power transmission
coil
unit
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015175116A
Other languages
English (en)
Inventor
小谷 弘幸
Hiroyuki Kotani
弘幸 小谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP2015175116A priority Critical patent/JP2017051074A/ja
Publication of JP2017051074A publication Critical patent/JP2017051074A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】複数の受電装置に同時に電力を供給でき、送電が必要な送電コイルにのみ電力を供給し、製造コストを抑制することができる非接触給電システムを提供する。【解決手段】送電装置Aから受電装置B1〜B3に非接触で電力を供給する非接触給電システムCにおいて、送電装置Aは、一定の高周波電圧を出力する高周波電源装置4と、送電ユニット11,12,13と、各送電ユニット11〜13が、高周波電源装置4に接続された状態と切り離された状態とを、それぞれ切り替えるスイッチ61〜63と、受電装置B1〜B3がいずれかの送電ユニット11〜13から受電可能な位置に配置された場合に、当該送電ユニットが接続された状態にスイッチ61〜63を切り替える制御装置5とを備え、受電装置B1〜B3は、それぞれ受電ユニット21〜23を備えるようにした。送電ユニット11〜13から受電ユニット21〜23への送電方式は、磁界共鳴方式である。【選択図】図1

Description

本発明は、非接触で電力の供給を行う非接触送電装置、および、非接触給電システムに関する。
負荷と電源とを直接接続することなく、電源が出力する電力を非接触で負荷に伝送する技術が開発されている。当該技術は、一般的に、非接触給電やワイヤレス給電と呼ばれている。当該技術は、携帯電話や家電製品、電気自動車、無人搬送車(AGV:Automated Guided Vehicle)などへの給電に応用されている。
非接触給電では、高周波電源装置に接続された送電装置から、負荷に接続された受電装置に、非接触で送電を行う。送電装置には送電コイルが備えられており、受電装置には受電コイルが備えられている。送電コイルと受電コイルとが磁気的に結合されることで、非接触での送電が行われる。
非接触給電技術を無人搬送車に用いた例として、特許文献1などがある。
特開2008−137451号公報
例えば、工場内などで、複数の無人搬送車を用いる場合がある。図12は、3台の無人搬送車Eを用いている場合に、3台の無人搬送車Eが同時に充電を行っている状態を示している。各無人搬送車Eの受電装置Bは、それぞれ、送電装置A100から非接触で電力を供給されている。各送電装置A100は、高周波電源装置4の出力を制御装置500で制御して、送電コイルに電力を供給している。無人搬送車Eが受電位置に位置していない時には、その送電装置A100の制御装置500は、高周波電源装置4の出力を停止している。この場合、各送電装置A100が高周波電源装置4および制御装置500を備えているので、高周波電源装置4および制御装置500が3台ずつ必要になる。したがって、製造コストが大きくなる。
一方、各送電装置A100で1つの高周波電源装置4および制御装置500を利用するようにした場合、すなわち、3つの送電コイルを1つの高周波電源装置4に並列接続した場合、製造コストを抑制することができる。しかし、常に3台の無人搬送車Eが同時に充電を行うわけではないので、送電を行う必要がない送電コイルにも電力が供給される場合がある。この場合、電力が無駄になるうえに、高周波ノイズをまき散らすことになる。また、3台の無人搬送車Eが同時に充電を行う場合にのみ高周波電源装置4を起動する場合は、いずれかの無人搬送車Eの充電が完了すると、他の2台の無人搬送車Eの充電も停止されてしまう。
本発明は上記した事情のもとで考え出されたものであって、複数の受電装置に同時に電力を供給することができる非接触送電装置であって、送電が不要の送電コイルには電力を供給せず、送電が必要な送電コイルには電力を供給し、製造コストを抑制することができる非接触送電装置、および、当該非接触送電装置を備える非接触給電システムを提供することを目的としている。
上記課題を解決するため、本発明では、次の技術的手段を講じている。
本発明の第1の側面によって提供される非接触給電システムは、送電装置から受電装置に非接触で電力を供給する非接触給電システムであって、前記送電装置は、一定の高周波電圧を出力する高周波電源装置と、送電コイル、および、前記送電コイルに直列接続された共振コンデンサを備えている複数の送電ユニットと、前記各送電ユニットが、前記高周波電源装置に接続された状態と切り離された状態とを、それぞれ切り替えるスイッチと、前記受電装置がいずれかの送電ユニットから受電可能な位置に配置された場合に、当該送電ユニットが接続された状態に前記スイッチを切り替える制御手段とを備えていることを特徴とする。
本発明の好ましい実施の形態においては、前記受電装置は、前記送電コイルに磁気的に結合される受電コイル、および、前記受電コイルに直列接続された共振コンデンサを備えている受電ユニットを備え、前記送電ユニットから前記受電ユニットへの送電方式は、磁界共鳴方式である。
本発明の好ましい実施の形態においては、前記送電装置および前記受電装置は、それぞれ、通信手段をさらに備えており、前記受電装置は、いずれかの送電ユニットから受電可能な位置に配置された場合に、当該送電ユニットを知らせるための信号を、前記送電装置の制御手段に送信し、前記送電装置の制御手段は、受信した信号に応じて、対応する送電ユニットが接続された状態に、前記スイッチを切り替える。
本発明の好ましい実施の形態においては、前記受電装置は、受電した電力を蓄電装置に供給しており、前記蓄電装置が満充電状態になった場合に、送電を停止させるための送電停止信号を、前記送電装置の制御手段に送信し、前記送電装置の制御手段は、受信した前記送電停止信号に基づいて、対応する送電ユニットが切り離された状態に、前記スイッチを切り替える。
本発明の好ましい実施の形態においては、前記受電装置は、受電した電力を蓄電装置に供給しており、前記蓄電装置の充電電圧情報を、前記送電装置の制御手段に送信し、前記送電装置の制御手段は、受信した前記充電電圧情報に基づいて、対応する送電ユニットが切り離された状態に、前記スイッチを切り替える。
本発明の好ましい実施の形態においては、前記受電装置は、前記各受電ユニットからの出力電流をそれぞれ整流する整流回路をさらに備えている。
本発明の好ましい実施の形態においては、前記各整流回路の出力側に、それぞれ平滑回路が接続されている。
本発明の好ましい実施の形態においては、前記各送電ユニットが備えている送電コイルの自己インダクタンスがいずれも同一であり、前記各受電ユニットが備えている受電コイルの自己インダクタンスがいずれも同一であり、いずれの送電コイルといずれの受電コイルとが磁気結合したときでも結合係数が同一である。
本発明の好ましい実施の形態においては、前記受電装置は、車両に配置され、前記送電装置は、床面に配置されている。
本発明の好ましい実施の形態においては、前記受電装置は、電動工具に配置され、前記送電装置は、前記電動工具を収納する筐体に配置されている。
本発明の第2の側面によって提供される非接触送電装置は、受電装置に非接触で電力を供給する非接触送電装置であって、一定の高周波電圧を出力する高周波電源装置と、送電コイル、および、前記送電コイルに直列接続された共振コンデンサを備えている複数の送電ユニットと、前記各送電ユニットが、前記高周波電源装置に接続された状態と切り離された状態とを、それぞれ切り替えるスイッチと、前記受電装置がいずれかの送電ユニットから受電可能な位置に配置された場合に、当該送電ユニットが接続された状態に前記スイッチを切り替える制御手段とを備えており、前記受電装置が備えている、前記送電コイルに磁気的に結合され直列共振を行う受電コイルと、前記送電コイルとの送電方式は、磁界共鳴方式であることを特徴とする。
本発明によると、制御手段は、受電装置が受電可能な位置に配置された送電ユニットを、高周波電源装置に接続された状態とするようにスイッチを切り替える。したがって、送電が必要な送電ユニットだけに電力を供給し、送電を行う必要がない送電ユニットには電力を供給しないようにすることができる。複数の送電ユニットは、1つの高周波電源から電力を供給されるので、送電ユニット毎に高周波電源を設ける場合と比べて、製造コストを抑制することができる。
本発明のその他の特徴および利点は、添付図面を参照して以下に行う詳細な説明によって、より明らかとなろう。
第1実施形態に係る非接触給電システムの全体構成を説明するための図である。 スイッチの一例を示す図である。 切替制御処理を説明するためのフローチャートである。 第1実施形態に係る非接触給電システムを説明するための回路図である。 一般化した非接触給電システムを説明するための回路図である。 非接触給電システムの等価回路の変換を説明するための図である。 図5に示す回路を変換した等価回路を示す図である。 図7に示す回路をFパラメータを用いて説明するための等価回路を示す図である。 スイッチの切り替えと送電状態の例について説明するための図である。 切替制御処理の他の例を説明するためのフローチャートである。 第2実施形態に係る非接触給電システムの全体構成を説明するための図である。 従来の非接触給電システムの全体構成を説明するための図である。
以下、本発明の実施の形態を、本発明に係る非接触給電システムを無人搬送車の充電システムとして用いた場合を例として、図面を参照して具体的に説明する。
図1は、第1実施形態に係る非接触給電システムの全体構成を説明するための図である。
非接触給電システムCは、3台の無人搬送車E1〜E3の車体にそれぞれ備えられたバッテリD1〜D3を充電するための給電システムである。各無人搬送車E1〜E3は、所定の受電位置に移動することで、送電装置Aから非接触で電力を供給される。
送電装置Aは、床面に埋設されて配置されており、高周波電源装置4、送電ユニット11,12,13、スイッチ61〜63、制御装置5、および、通信装置7を備えている。
高周波電源装置4は、一定の大きさの高周波電圧を出力するものであり、いわゆる定電圧源である。高周波電源装置4は、図示しない電力系統から入力される交流電力を図示しない整流平滑回路で直流電力に変換し、図示しないインバータ回路で高周波電力に変換して、並列接続された各送電ユニット11,12,13に出力する。なお、高周波電源装置4の構成は限定されず、所定の高周波電圧を出力するものであればよい。
送電ユニット11は、送電コイルL11および共振コンデンサC11を備えている。送電コイルL11は、高周波電源装置4より供給される高周波電力を、受電装置B1(B2,B3)に送電するものである。送電コイルL11は、渦巻状に巻回された平面コイルであり、コイル面が床面に対して略平行になるように配置されている。共振コンデンサC11は、送電コイルL11に直列接続されて、直列共振回路を構成するためのものである。
送電コイルL11および共振コンデンサC11は、共振周波数が高周波電源装置4より供給される高周波電力の周波数f0(例えば、85kHや13.56MHzなど)と一致するように設計される。すなわち、送電コイルL11の自己インダクタンスLRと、共振コンデンサC11のキャパシタンスCRとが、下記(1)式の関係になるように設計される。なお、高周波電源装置4が出力する高周波電圧の周波数が高い場合は、送電コイルL11の巻線間の浮遊キャパシタンスを共振コンデンサC11として用いるようにしてもよい。
Figure 2017051074
送電ユニット12は、送電ユニット11と同様の構成であり、送電コイルL12および共振コンデンサC12を備えている。送電ユニット13も、送電ユニット11と同様の構成であり、送電コイルL13および共振コンデンサC13を備えている。送電ユニット11,12,13は、それぞれ、高周波電源装置4に並列接続されている。
スイッチ61〜63は、それぞれ、送電ユニット11〜13と高周波電源装置4との間に直列接続されている。スイッチ61(62,63)は、制御装置5より入力される切替信号に応じて、送電ユニット11(12,13)に高周波電力が供給される状態と、供給されない状態とを切り替える。すなわち、切替信号がオン信号(ハイレベル信号)の場合、高周波電源装置4と送電ユニット11(12,13)とを接続状態(オン)に切り替え、切替信号がオフ信号(ローレベル信号)の場合、高周波電源装置4と送電ユニット11(12,13)との接続を遮断する状態(オフ)に切り替える。本実施形態では、図2に示すように、2つのMOSFET(Metal Oxide Semiconductor Field Effect Transistor)を逆直列接続したものをスイッチ61〜63として用いている。2つのMOSFETは、ソース端子同士が接続されている。一方のMOSFETのドレイン端子は、高周波電源装置4に接続されており、他方のMOSFETのドレイン端子は送電ユニット11(12,13)に接続されている。そして、両者のゲート端子には、制御装置5から切替信号が入力される。切替信号がオン信号の場合、高周波電流を流すことができる。なお、スイッチ61〜63は、IGBT(Insulated Gate Bipolar Transistor : 絶縁ゲート・バイポーラトランジスタ)やトランジスタなどの他の半導体スイッチを用いたものであってもよいし、電磁接触器のような機械的なスイッチであってもよい。また、その他の構成で、各送電ユニット11〜13に高周波電力が供給される状態と、供給されない状態とを切り替えるようにしてもよい。
制御装置5は、送電装置Aの制御を行うものである。制御装置5は、高周波電源装置4の出力電圧を目標電圧に一致させるように、フィードバック制御を行う。また、制御装置5は、通信装置7から入力される信号に応じて、スイッチ61〜63の切り替えを行うための切替信号を出力する。当該切り替えの制御についての詳細は、後述する。
通信装置7は、無人搬送車E1〜E3の通信装置9との間で無線通信を行うものである。通信装置7は、通信装置9より受信した信号を、制御装置5に出力する。なお、通信装置7の通信方式や用いる電磁波の種類は限定されない。
受電装置B1は、無人搬送車E1の車体に配置されており、受電ユニット21、整流平滑回路31、制御装置8、および、通信装置9を備えている。
受電ユニット21は、受電コイルL21、および、共振コンデンサC21を備えている。受電コイルL21は、送電コイルL11〜L13のいずれかと磁気結合して、非接触で受電するものである。受電コイルL21は、渦巻状に巻回された平面コイルであり、コイル面が床面に対して略平行になるように、無人搬送車E1の車体底面に配置されている。共振コンデンサC21は、受電コイルL21に直列接続されて、直列共振回路を構成するためのものである。
受電コイルL21および共振コンデンサC21は、送電コイルL11および共振コンデンサC11と同様に、共振周波数が高周波電源装置4より供給される高周波電力の周波数f0と一致するように設計される。なお、高周波電源装置4が出力する高周波電圧の周波数が高い場合は、受電コイルL21の巻線間の浮遊キャパシタンスを共振コンデンサC21として用いるようにしてもよい。
受電コイルL21が送電コイルL11〜L13のいずれかと磁気結合することで、受電装置B1は、送電装置Aから送電される高周波電力を受電する。すなわち、送電コイルL11(L12,L13)に高周波電流が流れることで磁束が変化し、この磁束に鎖交する受電コイルL21に高周波電流が流れる。これにより、送電装置Aから受電装置B1に、非接触で電力を供給することができる。なお、無人搬送車E1〜E3が、床面に貼った磁気テープによって移動ルートを検出するタイプのものである場合、送電コイルL11〜L13を磁気テープから離れた位置に配置する必要がある。また、この場合、無人搬送車E1〜E3の磁気テープを検出する検出部と、受電コイルL21〜L23とは、離れた位置に配置されることになる。なお、後述するように、送電コイルL11〜L13を床面以外に配置するようにしてもよい。
また、受電ユニット21および送電ユニット11〜13は、いずれも共振回路であり、共鳴して結合される。すなわち、送電ユニット11(12,13)から受電ユニット21へは、磁界共鳴方式により、非接触給電が行われる。受電ユニット21が受電した電力は、整流平滑回路31に出力される。
整流平滑回路31は、受電ユニット21より出力される高周波電流を整流して、直流電流に変換するものである。整流平滑回路31は、4つのダイオードをブリッジ接続した全波整流回路を備えている(図4参照)。また、整流平滑回路31は、整流後の出力を平滑するための平滑回路も備えている(図4参照)。なお、整流平滑回路31の構成は限定されず、高周波電流を直流電流に変換するものであればよい。整流平滑回路31から出力される直流電流は、バッテリD1に供給される。
バッテリD1は、例えばリチウムイオン電池などの二次電池である。バッテリD1は、整流平滑回路31より出力される直流電力によって充電され、図示しないモータなどに電力を供給する。なお、二次電池の種類は限定されず、鉛蓄電池などであってもよい。また、バッテリD1に代えて、電気二重層キャパシタを用いるようにしてもよい。
制御装置8は、無人搬送車E1の制御を行うものである。制御装置8は、無人搬送車E1が所定の受電位置に位置した場合に、送電開始信号を通信装置9に送信させる。送電開始信号は、送電装置Aに所定の送電ユニット(11,12,13)から送電を開始させるための信号であり、送電ユニット(送電コイル)を識別するための情報(例えば、送電ユニットのID番号)が含まれている。受電位置は、受電コイルL21の中心の水平方向での位置と送電コイル(L11,L12,L13)の中心の水平方向での位置とが一致して、受電コイルL21と送電コイル(L11,L12,L13)とが、最も強力に磁気結合できるようになる位置である。無人搬送車E1は、所定の受電位置に位置したことを検知するためのセンサを備えている。制御装置8は、センサからの入力に基づいて、無人搬送車E1が所定の受電位置に位置したことを検知し、いずれの送電コイル(L11,L12,L13)に対する受電位置であるかを判断する。
なお、無人搬送車E1が受電位置に位置したことを検知するための手法は限定されない。例えば、無人搬送車E1の水平方向の位置を検出し、あらかじめ設定されている各送電コイル(L11,L12,L13)の水平方向の位置との関係から検知するようにしてもよい。また、床面上の各送電コイル(L11,L12,L13)の位置にそれを示すマークを設け、無人搬送車E1に搭載されて床面を撮像する撮像センサによる撮像画像から当該マークを検出するようにしてもよい。また、無人搬送車E1がいずれかの受電位置に位置したことを検知するセンサと、当該受電位置がいずれの送電コイル(L11,L12,L13)に対する受電位置であるかを検知するセンサとを別々に設けてもよい。例えば、無人搬送車E1が床面に向けて所定の電磁波を出力し、床面上の各送電コイル(L11,L12,L13)の位置に設けられた反射部材で反射された電磁波を検出することでいずれかの受電位置に位置したことを検知し、無人搬送車E1の水平方向のおおまかな位置から、いずれの送電コイル(L11,L12,L13)に対する受電位置であるかを検知するようにしてもよい。
また、制御装置8は、バッテリD1が満充電状態になった場合に、送電を停止させるための送電停止信号を、通信装置9に送信させる。無人搬送車E1は、バッテリD1の充電電圧を検出する電圧センサを備えており、制御装置8は、電圧センサが検出した充電電圧が所定の閾値以上になった場合に、バッテリD1が満充電状態になったと判断する。制御装置8は、受電中の送電ユニット(11,12,13)を識別するための情報(例えば、送電ユニットのID番号)を図示しない記憶部に記憶している。制御装置8は、当該情報を、送電停止信号に含めて送信する。
通信装置9は、送電装置Aの通信装置7との間で無線通信を行うものである。通信装置9は、制御装置8より入力された信号を、通信装置7に送信する。なお、通信装置9の通信方式や用いる電磁波の種類は限定されない。
無人搬送車E2は、無人搬送車E1と同様の構成であり、受電装置B2およびバッテリD2を備えている。受電装置B2は、受電装置B1と同様の構成であり、受電コイルL22および共振コンデンサC22を備える受電ユニット22、整流平滑回路32、制御装置8、および、通信装置9を備えている。受電コイルL22が送電コイルL11〜L13のいずれかと磁気結合することで、送電装置Aから受電装置B2に、非接触で電力を供給することができる。また、無人搬送車E3も、無人搬送車E1と同様の構成であり、受電装置B3およびバッテリD3を備えている。受電装置B3は、受電装置B1と同様の構成であり、受電コイルL23および共振コンデンサC23を備える受電ユニット23、整流平滑回路33、制御装置8、および、通信装置9を備えている。受電コイルL23が送電コイルL11〜L13のいずれかと磁気結合することで、送電装置Aから受電装置B3に、非接触で電力を供給することができる。
図1においては、無人搬送車E1が送電コイルL11に対する受電位置に位置しており、無人搬送車E2が送電コイルL12に対する受電位置に位置しており、無人搬送車E3が送電コイルL13に対する受電位置に位置している状態を示している。なお、無人搬送車E1(E2,E3)は、バッテリD1(D2,D3)の充電量が少なくなった時に、最寄りの受電位置に移動するので、各無人搬送車E1〜E3がどの受電位置に位置するかは任意である。また、無人搬送車E1〜E3のいずれか1台だけ、または、2台だけが、受電位置に位置している状態もある。
次に、スイッチ61〜63の切り替え制御について説明する。
制御装置5は、受電装置B1〜B3より受信する信号に応じて、スイッチ61〜63の切り替えを行う。制御装置5は、通信装置7より送電開始信号を入力された場合、送電開始信号に含まれる送電ユニット(11,12,13)を識別するための情報に基づいて、該当する送電ユニット(11,12,13)に対応するスイッチ(61,62,63)に、オン信号である切替信号を出力する。また、制御装置5は、通信装置7より送電停止信号を入力された場合、送電停止信号に含まれる送電ユニット(11,12,13)を識別するための情報に基づいて、該当する送電ユニット(11,12,13)に対応するスイッチ(61,62,63)に、オフ信号である切替信号を出力する。また、制御装置5は、高周波電源装置4が起動していない状態で送電開始信号を入力された場合は、高周波電源装置4を起動させる。具体的には、高周波電源装置4のインバータ回路を駆動する駆動信号の出力を開始する。また、すべての送電ユニット11〜13で送電の必要がなくなった場合、すなわち、いずれか1つの送電ユニット(11,12,13)のみが送電を行っている状態で、当該送電ユニットを識別するための情報を含んだ送電停止信号を入力された場合、制御装置5は、高周波電源装置4の運転を停止させる。具体的には、高周波電源装置4のインバータ回路を駆動する駆動信号の出力を停止する。
図3は、制御装置5が行う切替制御処理を説明するためのフローチャートである。当該切替制御処理は、送電装置Aが起動したときに開始され、送電装置Aが稼働している間、実行される。
まず、送電開始信号が受信されたか否かが判別される(S1)。受信された場合(S1:YES)、送電開始信号に含まれる識別情報に基づいて、対応するスイッチに、オン信号である切替信号を出力する(S2)。次に、高周波電源装置4が起動しているか否かが判別される(S3)。具体的には、制御装置5が高周波電源装置4のインバータ回路を駆動する駆動信号を出力しているか否かによって判別される。高周波電源装置4が起動していない場合(S3:NO)、高周波電源装置4が起動され(S4)、ステップS1に戻る。具体的には、高周波電源装置4のインバータ回路を駆動する駆動信号の出力を開始する。一方、高周波電源装置4が起動している場合(S3:YES)、ステップS4を行わずに、ステップS1に戻る。これにより、識別情報に対応する送電ユニットに高周波電力が供給される。したがって、送電開始信号を送信した受電装置に送電が行われ、当該受電装置のバッテリが充電される。
ステップS1において、送電開始信号が受信されなかった場合(S1:NO)、送電停止信号が受信されたか否かが判別される(S5)。受信されなかった場合(S5:NO)、ステップS1に戻り、ステップS1およびS2が繰り返される。一方、受信された場合(S5:YES)、送電停止信号に含まれる識別情報に基づいて、対応するスイッチに、オフ信号である切替信号を出力する(S6)。これにより、識別情報に対応する送電ユニットに高周波電力が供給されないようになる。そして、すべてのスイッチ61〜63がオフであるか否かが判別される(S7)。具体的には、制御装置5が各スイッチ61〜63に出力している切替信号が、すべてオフ信号であるか否かによって判別する。すべてオフである場合(S7:YES)、高周波電源装置4の運転が停止され(S8)、ステップS1に戻る。具体的には、高周波電源装置4のインバータ回路を駆動する駆動信号の出力が停止される。すべてがオフでない場合(S7:NO)、まだ高周波電力の供給が継続されるため、ステップS8が行われずに、ステップS1に戻る。なお、切替制御処理の処理手順は、これに限られない。
次に、図4〜図8を参照して、各バッテリD1〜D3に供給される電流が、各バッテリD1〜D3の充電状態に関係なく一定になることを説明する。
図4は、図1に示す非接触給電システムCを回路図で示したものである。図1の状態の場合、送電装置Aの制御装置5は、無人搬送車E1〜E3から受信した送電開始信号に基づいて、スイッチ61〜63に切替信号(オン信号)を出力し、スイッチ61〜63がオン状態になる。したがって、図4においては、スイッチ61〜63がすべて接続されて、受電コイルL21が送電コイルL11と磁気結合し、受電コイルL22が送電コイルL12と磁気結合し、受電コイルL23が送電コイルL13と磁気結合している状態を示している。
図5は、非接触給電システムを一般化して説明するための回路図であり、n個の送電ユニットを備える送電装置A’と、n個の受電装置B1’〜Bn’とを備えている。
高周波電源装置4の出力電圧をV1、出力電流をI1とする。また、送電ユニット1k(k=1,2,…,n)に流れる電流をI1kとし、受電ユニット2kに流れる電流をI2kとし、受電ユニット2kの出力電圧をV2kとする。なお、各電圧および電流は交流なので、V1,I1,I1k,I2k,V2kは、いずれもベクトルである。
一般的に、非接触給電システムの等価回路は、図6(a)のようになる。送電装置において、高周波電源装置の電圧をV、送電コイルの自己インダクタンスをLS、共振コンデンサのキャパシタンスをCSとし、受電装置において、受電コイルの自己インダクタンスをLL、共振コンデンサのキャパシタンスをCL、負荷の抵抗をRLとしている。また、送電コイルと受電コイルとの間の磁気結合による相互インダクタンスをMとしている。
図6(a)に示す回路は、図6(b)に示す等価回路に変換することができる。
すなわち、送電装置を流れる電流をISとし、受電装置を流れる電流をILとすると、高周波電源装置の電圧Vは、下記(2)式で表すことができ、また、下記(3)式も成立する。
Figure 2017051074
上記(2)および(3)式をそれぞれ変形して下記(4)および(5)式とすると、この(4)および(5)式より、図6(b)の等価回路が得られる。
Figure 2017051074
図6に示す等価回路の変換を用いて、図5に示す回路を、T型回路を用いて表した等価回路に変換すると、図7に示す回路になる。各T型回路において並列接続されているコイルのインダクタンスは、送電コイルL1kと受電コイルL2kの相互インダクタンスMkになる。
図8(a)は、図7に示す回路を、インピーダンスZを用いて表した等価回路を示す図である。なお、各インピーダンスZ1k,Z2k,Z3k(k=1,2,…,n)は、いずれもベクトルである。
図8(b)は、図8(a)に示す回路を、Fパラメータを用いて表した等価回路を示す図である。なお、各Fパラメータの各要素Ak,Bk,Ck,Dk(k=1,2,…,n)は、いずれもベクトルである。
例えば、図8(b)の最上段のFパラメータは、下記(6)式のようになる。
Figure 2017051074
磁界共鳴の条件式であるZ11+Z31=Z31+Z21=0を、上記(6)式に代入すると、下記(7)式になる。これより、下記(8)式から、下記(9)式が求められる。
Figure 2017051074
ここで、Z31は、送電コイルL11と受電コイルL21の相互インダクタンスM1によるインピーダンスである(図7参照)。送電コイルL11と受電コイルL21の距離が変化しなければ、結合係数が変化せず、相互インダクタンスM1は変化しない。したがって、Z31は変化しない。よって、高周波電源装置4の出力電圧V1の大きさが一定の場合、受電ユニット21から出力される電流I21の大きさも一定である。すなわち、受電ユニット21の出力は、接続される負荷のインピーダンスなどに関係なく、一定の大きさの電流I21を出力する定電流源と考えることができる。
同様に、下記(10)式が算出され、下記(11)式が求められる。
Figure 2017051074
また、下記(12)式が算出され、下記(13)式が求められる。
Figure 2017051074
上記(9)、(11)、(13)式より、高周波電源装置4を定電圧源として動作させ、電圧V1を一定の電圧とした場合、各受電ユニット2k(k=1,2,…,n)から出力される電流I2kの大きさは、接続される負荷のインピーダンスなどに左右されることなく一定であり、各受電ユニット2kの出力は、定電流源の出力と考えることができる。また、送電コイルL1k(k=1,2,…,n)の自己インダクタンスがいずれも同一であり、受電コイルL2k(k=1,2,…,n)の自己インダクタンスがいずれも同一であり、送電コイルL1kと受電コイルL2kとの結合係数がいずれも同一であれば、送電コイルL1kと受電コイルL2kの相互インダクタンスMk(k=1,2,…,n)は、いずれも同一となり、相互インダクタンスMkによるインピーダンスZ3k(k=1,2,…,n)は、いずれも同一となる。この場合、上記(9)、(11)、(13)式より、各受電ユニット2k(k=1,2,…,n)から出力される電流I2kの大きさは、いずれも同一となる。つまり、いずれの受電ユニット2kも、電力を供給する負荷のインピーダンスなどに左右されることなく、同じ大きさの電流を負荷に供給することができる。
以上のように、図5に示す非接触給電システムでは、各受電ユニット2k(k=1,2,…,n)は、接続される負荷のインピーダンスなどに左右されることなく一定の電流を出力することができ、いずれの受電ユニット2kも、同じ大きさの電流を出力することができる。
図5に示す非接触給電システムの各受電ユニット2k(k=1,2,…,n)の出力側にそれぞれ整流平滑回路およびバッテリを接続した場合、各バッテリには、それぞれ電流I2k(k=1,2,…,n)に比例した電流が出力される。したがって、この場合、各バッテリの充電状態に関係なく、各バッテリに出力される電流の大きさは一定であり、いずれの出力電流も同じ大きさになる。また、このことは、受電ユニット2kの数nにも左右されない。
図9は、スイッチ61〜63の切り替えと送電状態の例について説明するための図である。
図9(a)は、どの受電位置にも無人搬送車Eが配置されておらず、スイッチ61〜63がすべてオフであり、送電ユニット11〜13が高周波電源装置4に接続されていない状態を示している。この時、高周波電源装置4はまだ起動していない。
図9(b)は、送電ユニット11の受電位置に無人搬送車E1が配置された状態を示している。このとき、送電装置Aは、無人搬送車E1からの送電開始信号を受信して、スイッチ61をオンに切り替えるので、高周波電源装置4と送電ユニット11とが接続され、高周波電源装置4が起動される。これにより、無人搬送車E1のバッテリD1の充電が行われる。また、高周波電源装置4が起動されても、スイッチ62,63はオフなので、送電ユニット12,13に電力が供給されることはない。
図9(c)は、さらに、送電ユニット12の受電位置に無人搬送車E2が配置された状態を示している。このとき、送電装置Aは、無人搬送車E2からの送電開始信号を受信して、スイッチ62をオンに切り替えるので、高周波電源装置4と送電ユニット12とが接続される。高周波電源装置4は、すでに起動されているので、起動処理は行われない。これにより、無人搬送車E2のバッテリD2の充電も行われる。すなわち、無人搬送車E1と無人搬送車E2のバッテリが同時に充電される。このとき、バッテリD1およびバッテリD2は、それぞれの充電状態に関係なく、同じ大きさの電流で、定電流充電される。
図9(d)は、無人搬送車E1のバッテリD1が満充電になった状態を示している。このとき、送電装置Aは、無人搬送車E1からの送電停止信号を受信して、スイッチ61をオフに切り替えるので、高周波電源装置4と送電ユニット12との接続が切り離される。しかし、スイッチ62はオンなので、高周波電源装置4の運転は停止されない。これにより、無人搬送車E2のバッテリD2の充電は継続される。
本実施形態によると、制御装置5は、受電装置B1〜B3より受信する信号に応じてスイッチ61〜63の切り替えを行い、受電位置に無人搬送車(E1,E2,E3)が配置され、かつ、配置された無人搬送車(E1,E2,E3)のバッテリ(D1,D2,D3)が満充電でない場合のみ、対応する送電ユニット(11,12,13)に高周波電力を供給する。したがって、送電が必要な送電ユニット(11,12,13)だけに電力を供給し、送電を行う必要がない送電ユニットには電力を供給しないようにすることができる。また、制御装置5は、すべてのスイッチ61〜63がオフになるまで運転を継続する。したがって、いずれかの送電ユニット(11,12,13)への送電が不要になったとしても、他の送電ユニット(11,12,13)への送電は継続される。また、送電ユニット11,12,13は、1つの高周波電源装置4から電力を供給されるので、送電ユニット11,12,13毎に高周波電源装置4を設ける場合(図12参照)と比べて、製造コストを抑制することができる。
また、本実施形態によると、各送電ユニット11〜13および各受電ユニット21〜23は直列共振回路であり、高周波電源装置4は各送電ユニット11〜13に一定の高周波電圧を出力し、送電ユニット11〜13から受電ユニット21〜23へは磁界共鳴方式で送電を行う。したがって、各受電ユニット21〜23の出力が定電流源の出力と等価になる。また、各受電ユニット21〜23から出力される電流の大きさは、いずれも同一となる。このことは、バッテリD1〜D3の充電状態に左右されず、受電中の受電装置B1〜B3の数にも左右されない。したがって、どの受電装置(B1,B2,B3)が、いくつ受電中であっても、また、バッテリ(D1,D2,D3)の充電状態がまちまちであっても、バッテリ(D1,D2,D3)に出力される電流の大きさは一定であり、いずれの電流も同じ大きさになる。これにより、バッテリ(D1,D2,D3)を、同じ大きさの定電流で充電することができる。
本実施形態においては、3台の無人搬送車E1〜E3を備えており、送電装置Aが3つの送電ユニット11〜13を備えている場合について説明したが、これに限られない。それぞれの数は限定されず、無人搬送車の数と送電ユニットの数とが一致しなくてもよい。
本実施形態においては、送電装置Aが床面に埋設されている場合について説明したが、これに限られない。例えば、送電コイルL11〜L13のみが床面に埋設されるようにしてもよいし、送電コイルL11〜L13を床面に埋設せずに床面上に配置するようにしてもよい。また、送電コイルL11〜L13および受電コイルL21〜L23が、床面に対して略平行となるように設けられる場合に限定されない。例えば、受電コイルL21(L22,L23)を無人搬送車E1(E2,E3)の後部や側面に配置し、送電コイルL11〜L13を壁面に配置して、送電コイルL11〜L13および受電コイルL21〜L23が床面に対して略垂直になるようにしてもよい。送電コイルL11〜L13と受電コイルL21〜L23とが略平行で向かい合う位置に配置できるように、それぞれ配置されていればよい。
本実施形態においては、受電装置B1(B2,B3)が、バッテリD1(D2,D3)が満充電状態になった場合に、送電停止信号を出力する場合について説明したが、これに限られない。例えば、充電を停止させるための操作ボタンを設けて、当該操作ボタンが押された場合に、送電停止信号を出力するようにしてもよい。また、受電装置B1(B2,B3)で何かの異常が発生した場合にも、送電停止信号を出力するようにしてもよい。
本実施形態においては、無人搬送車E1〜E3が受電位置に位置した場合に、受電装置B1(B2,B3)が送電開始信号を出力する場合について説明したが、これに限られない。例えば、充電を開始させるための操作ボタンを設けて、当該操作ボタンが押された場合に、送電開始信号を出力するようにしてもよい。
本実施形態においては、受電位置にあることを無人搬送車E1〜E3側で判断する場合について説明したが、これに限られない。無人搬送車E1〜E3が受電位置にあることを、送電装置A側で判断するようにしてもよい。この場合、受電装置Aがセンサによって無人搬送車E1〜E3が受電位置に位置したことを検知して、該当する送電ユニット(11,12,13)に対応するスイッチ(61,62,63)をオンにする。無人搬送車E1〜E3(受電装置B1〜B3)は、満充電時に送電停止信号に含めるために、送電ユニットを識別するための情報を入手して記憶しておく必要がある。なお、受電装置Aが無人搬送車E1〜E3を識別して、送電ユニット11〜13と無人搬送車E1〜E3との対応関係を記憶しておき、無人搬送車E1〜E3(受電装置B1〜B3)が、送電停止信号に、自分を識別するための情報を含めるようにしてもよい。この場合、送電停止信号に含まれる識別情報と、対応関係の情報から、オフにすべきスイッチ(61,62,63)を判断することができる。
本実施形態においては、受電装置B1(B2,B3)が、バッテリD1(D2,D3)が満充電になったか否かを判別する場合について説明したが、これに限られない。送電装置Aが判別するようにしてもよい。
図10は、バッテリD1(D2,D3)が満充電になったか否かを、送電装置Aが判別するようにした場合の、制御装置5が行う切替制御処理を説明するためのフローチャートである。図10に示すフローチャートは、図3に示すフローチャートにおいて、ステップS5をステップS11およびS12に置き換えたものである。その他のステップS1〜S4,S6~S8については変更がないので説明を省略する。
受電装置B1〜B3の各制御装置8は、電圧センサが検出した充電電圧の情報を検出電圧信号として、定期的に送電装置Aに送信する。検出電圧信号には、送電ユニットを識別するための情報(例えば、送電ユニットのID番号)が含まれている。
ステップS1において、送電開始信号が受信されなかった場合(S1:NO)、検出電圧信号が受信されたか否かが判別される(S11)。受信されなかった場合(S11:NO)、ステップS1に戻り、ステップS1およびS11が繰り返される。一方、受信された場合(S11:YES)、満充電であるか否かが判別される(S12)。具体的には、検出電圧信号の充電電圧の情報が所定の閾値と比較され、閾値以上であれば満充電であると判別される。満充電であると判別された場合(S12:YES)、検出電圧信号に含まれる識別情報に基づいて、対応するスイッチに、オフ信号である切替信号を出力する(S6)。これにより、識別情報に対応する送電ユニットに高周波電力が供給されないようになる。一方、満充電であると判別されなかった場合(S12:NO)、ステップS1に戻る。なお、切替制御処理の処理手順は、これに限られない。
上記第1実施形態においては、本発明に係る非接触給電システムを、無人搬送車に内蔵されたバッテリの充電に利用する場合を例として説明したが、これに限られない。例えば、電気自動車のバッテリなどへの充電にも、利用することができる。また、電動工具やノートパソコンなどの電気製品のバッテリに充電を行う場合にも、本発明を適用することができる。また、バッテリに充電するのではなく、受電装置に接続された電気製品などの負荷に直接、電力を供給する場合にも、本発明を適用することができる。この場合、平滑回路を備えないようにしてもよい。また、負荷に高周波電力をそのまま供給するのであれば、整流平滑回路を設けないようにしてもよい。また、整流後の直流電力を、インバータ回路で適切な交流電力に変換して用いるようにしてもよい。
図11は、第2実施形態に係る非接触給電システムの全体構成を説明するための図である。図11において、第1実施形態に係る非接触給電システムC(図1参照)と同一または類似の要素には、同一の符号を付している。なお、図11においては、受電装置B1〜B3の記載を簡略化している。非接触給電システムC2は、3台の電動工具E1’〜E3’にそれぞれ内蔵されたバッテリD1〜D3を充電するための給電システムである。なお、実際には、より多くの電動工具を充電できるようにすればいいが、ここでは3台の場合を例示している。
送電装置A2は、電動工具E1’〜E3’を収納するための収納部10が設けられた筐体を有している点で、第1実施形態に係る送電装置Aと異なるが、その他の内部構成は送電装置Aと共通する。送電コイルL11〜L13は、それぞれ、収納部10の底面に対向する位置に配置されている。
電動工具E1’(E2’,E3’)は、受電装置B1(B2,B3)およびバッテリD1(D2,D3)を備えた、例えば電気ドリルなどの電動工具である。受電コイルL21(L22,L23)は、電動工具E1’(E2’,E3’)の底面に対向する位置に配置されている。電動工具E1’(E2’,E3’)を底面を下にして収納部10に収納することで、受電コイルL21(L22,L23)は、送電コイル(L11,L12,L13)と対向することになる。スイッチ61〜63の切り替えは、第1実施形態と同様にしてもよい。また、送電装置A2の各収納部10近辺に送電開始のためのボタンを設け、電動工具(E1’,E2’,E3’)を収納部10に収納したときに、当該ボタンを押すことで、スイッチ(S61,S62,S63)をオンにするようにしてもよい。また、各収納部10にセンサを設けて、電動工具(E1’,E2’,E3’)が収納されたことを検知して、自動的に、スイッチ(S61,S62,S63)をオンにするようにしてもよい。
第2実施形態においても、第1実施形態と同様の効果を奏することができる。
本発明に係る非接触送電装置および非接触給電システムは、上述した実施形態に限定されるものではない。本発明に係る非接触送電装置および非接触給電システムの各部の具体的な構成は、種々に設計変更自在である。
A,A2 送電装置
11,12,13,1n 送電ユニット
L11,L12,L13,L1n 送電コイル
C11,C12,C13,C1n 共振コンデンサ
4 高周波電源装置
5 制御装置
61,62,63 スイッチ
7 通信装置
B1,B2,B3 受電装置
21,22,23,2n 受電ユニット
L21,L22,L23,L2n 受電コイル
C21,C22,C23,C2n 共振コンデンサ
31,32,33 整流平滑回路(整流回路、平滑回路)
8 制御装置
9 通信装置
C,C2 非接触給電システム
D1,D2,D3 バッテリ(蓄電装置)
E1,E2,E3 無人搬送装置
E1’,E2’,E3’ 電動工具

Claims (11)

  1. 送電装置から受電装置に非接触で電力を供給する非接触給電システムであって、
    前記送電装置は、
    一定の高周波電圧を出力する高周波電源装置と、
    送電コイル、および、前記送電コイルに直列接続された共振コンデンサを備えている複数の送電ユニットと、
    前記各送電ユニットが、前記高周波電源装置に接続された状態と切り離された状態とを、それぞれ切り替えるスイッチと、
    前記受電装置がいずれかの送電ユニットから受電可能な位置に配置された場合に、当該送電ユニットが接続された状態に前記スイッチを切り替える制御手段と、
    を備えている、
    ことを特徴とする非接触給電システム。
  2. 前記受電装置は、
    前記送電コイルに磁気的に結合される受電コイル、および、前記受電コイルに直列接続された共振コンデンサを備えている受電ユニットを備え、
    前記送電ユニットから前記受電ユニットへの送電方式は、磁界共鳴方式である、
    請求項1に記載の非接触給電システム。
  3. 前記送電装置および前記受電装置は、それぞれ、通信手段をさらに備えており、
    前記受電装置は、いずれかの送電ユニットから受電可能な位置に配置された場合に、当該送電ユニットを知らせるための信号を、前記送電装置の制御手段に送信し、
    前記送電装置の制御手段は、受信した信号に応じて、対応する送電ユニットが接続された状態に、前記スイッチを切り替える、
    請求項2に記載の非接触給電システム。
  4. 前記受電装置は、
    受電した電力を蓄電装置に供給しており、
    前記蓄電装置が満充電状態になった場合に、送電を停止させるための送電停止信号を、前記送電装置の制御手段に送信し、
    前記送電装置の制御手段は、受信した前記送電停止信号に基づいて、対応する送電ユニットが切り離された状態に、前記スイッチを切り替える、
    請求項3に記載の非接触給電システム。
  5. 前記受電装置は、
    受電した電力を蓄電装置に供給しており、
    前記蓄電装置の充電電圧情報を、前記送電装置の制御手段に送信し、
    前記送電装置の制御手段は、受信した前記充電電圧情報に基づいて、対応する送電ユニットが切り離された状態に、前記スイッチを切り替える、
    請求項3に記載の非接触給電システム。
  6. 前記受電装置は、前記各受電ユニットからの出力電流をそれぞれ整流する整流回路をさらに備えている、
    請求項2ないし5のいずれかに記載の非接触給電システム。
  7. 前記各整流回路の出力側に、それぞれ平滑回路が接続されている、
    請求項6に記載の非接触給電システム。
  8. 前記各送電ユニットが備えている送電コイルの自己インダクタンスがいずれも同一であり、
    前記各受電ユニットが備えている受電コイルの自己インダクタンスがいずれも同一であり、
    いずれの送電コイルといずれの受電コイルとが磁気結合したときでも結合係数が同一である、
    請求項2ないし7のいずれかに記載の非接触給電システム。
  9. 前記受電装置は、車両に配置され、
    前記送電装置は、床面に配置されている、
    請求項2ないし8のいずれかに記載の非接触給電システム。
  10. 前記受電装置は、電動工具に配置され、
    前記送電装置は、前記電動工具を収納する筐体に配置されている、
    請求項2ないし8のいずれかに記載の非接触給電システム。
  11. 受電装置に非接触で電力を供給する非接触送電装置であって、
    一定の高周波電圧を出力する高周波電源装置と、
    送電コイル、および、前記送電コイルに直列接続された共振コンデンサを備えている複数の送電ユニットと、
    前記各送電ユニットが、前記高周波電源装置に接続された状態と切り離された状態とを、それぞれ切り替えるスイッチと、
    前記受電装置がいずれかの送電ユニットから受電可能な位置に配置された場合に、当該送電ユニットが接続された状態に前記スイッチを切り替える制御手段と、
    を備えており、
    前記受電装置が備えている、前記送電コイルに磁気的に結合され直列共振を行う受電コイルと、前記送電コイルとの送電方式は、磁界共鳴方式である、
    ことを特徴とする非接触送電装置。
JP2015175116A 2015-09-04 2015-09-04 非接触送電装置、および、非接触給電システム Pending JP2017051074A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015175116A JP2017051074A (ja) 2015-09-04 2015-09-04 非接触送電装置、および、非接触給電システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015175116A JP2017051074A (ja) 2015-09-04 2015-09-04 非接触送電装置、および、非接触給電システム

Publications (1)

Publication Number Publication Date
JP2017051074A true JP2017051074A (ja) 2017-03-09

Family

ID=58280539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015175116A Pending JP2017051074A (ja) 2015-09-04 2015-09-04 非接触送電装置、および、非接触給電システム

Country Status (1)

Country Link
JP (1) JP2017051074A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018038211A (ja) * 2016-09-01 2018-03-08 株式会社Lixil 連成コイル、給電装置及びワイヤレス給電システム
CN107791865A (zh) * 2017-10-10 2018-03-13 深圳市招科智控港口科技有限公司 一种港口集装箱搬运无人车供电系统及方法
JP2018174659A (ja) * 2017-03-31 2018-11-08 富士通株式会社 送電器、電力伝送システム、送電器の電力伝送方法、及び、受電器
CN109279282A (zh) * 2017-07-21 2019-01-29 伯曼集团公司 行驶车辆链的电能供应
JP6687173B1 (ja) * 2019-07-19 2020-04-22 三菱電機株式会社 エレベータ用ワイヤレス給電システムおよびエレベータシステム
JP6925569B1 (ja) * 2020-09-04 2021-08-25 三菱電機株式会社 ワイヤレス給電システム
WO2022254954A1 (ja) 2021-05-31 2022-12-08 株式会社デンソー 給電システム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010035545A1 (ja) * 2008-09-26 2010-04-01 株式会社村田製作所 無接点充電システム
JP2011130569A (ja) * 2009-12-17 2011-06-30 Toko Inc 無接点電力伝送装置
JP2013219845A (ja) * 2012-04-04 2013-10-24 Toyota Industries Corp 給電装置と充電装置、給電方法と給電プログラム
JP2014230364A (ja) * 2013-05-21 2014-12-08 株式会社テクノバ 双方向非接触給電装置
JP2015139345A (ja) * 2014-01-24 2015-07-30 トヨタ自動車株式会社 非接触電力伝送システム
JP2015149803A (ja) * 2014-02-05 2015-08-20 国立大学法人埼玉大学 非接触給電システム、非接触給電方法及び二次電池充電方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010035545A1 (ja) * 2008-09-26 2010-04-01 株式会社村田製作所 無接点充電システム
JP2011130569A (ja) * 2009-12-17 2011-06-30 Toko Inc 無接点電力伝送装置
JP2013219845A (ja) * 2012-04-04 2013-10-24 Toyota Industries Corp 給電装置と充電装置、給電方法と給電プログラム
JP2014230364A (ja) * 2013-05-21 2014-12-08 株式会社テクノバ 双方向非接触給電装置
JP2015139345A (ja) * 2014-01-24 2015-07-30 トヨタ自動車株式会社 非接触電力伝送システム
JP2015149803A (ja) * 2014-02-05 2015-08-20 国立大学法人埼玉大学 非接触給電システム、非接触給電方法及び二次電池充電方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
今野 純也: "非接触給電の定電圧出力および定電流出力を電源周波数の変更だけで逆特性にする方法", 平成26年電気学会全国大会, JPN7018004158, 18 March 2014 (2014-03-18), pages 147 - 148, ISSN: 0004059762 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018038211A (ja) * 2016-09-01 2018-03-08 株式会社Lixil 連成コイル、給電装置及びワイヤレス給電システム
JP2018174659A (ja) * 2017-03-31 2018-11-08 富士通株式会社 送電器、電力伝送システム、送電器の電力伝送方法、及び、受電器
CN109279282A (zh) * 2017-07-21 2019-01-29 伯曼集团公司 行驶车辆链的电能供应
CN109279282B (zh) * 2017-07-21 2022-03-25 伯曼集团公司 行驶车辆链的电能供应
CN107791865A (zh) * 2017-10-10 2018-03-13 深圳市招科智控港口科技有限公司 一种港口集装箱搬运无人车供电系统及方法
CN107791865B (zh) * 2017-10-10 2021-02-12 深圳市招科智控科技有限公司 一种港口集装箱搬运无人车供电系统及方法
JP6687173B1 (ja) * 2019-07-19 2020-04-22 三菱電機株式会社 エレベータ用ワイヤレス給電システムおよびエレベータシステム
WO2021014480A1 (ja) * 2019-07-19 2021-01-28 三菱電機株式会社 エレベータ用ワイヤレス給電システムおよびエレベータシステム
CN114174208A (zh) * 2019-07-19 2022-03-11 三菱电机株式会社 电梯用无线供电系统以及电梯系统
JP6925569B1 (ja) * 2020-09-04 2021-08-25 三菱電機株式会社 ワイヤレス給電システム
WO2022049736A1 (ja) * 2020-09-04 2022-03-10 三菱電機株式会社 ワイヤレス給電システム
WO2022254954A1 (ja) 2021-05-31 2022-12-08 株式会社デンソー 給電システム

Similar Documents

Publication Publication Date Title
JP2017051074A (ja) 非接触送電装置、および、非接触給電システム
EP3654490B1 (en) Contactless power transmission system
US9564760B2 (en) Contactless power feeding system
JP6487825B2 (ja) 非接触電力伝送システム、および、送電装置
US9762084B2 (en) Wireless charging system and method for controlling the same
US10703209B2 (en) Vehicle and wireless power transmission system
US10277082B2 (en) Power-transmitting device and wireless power-supplying system
WO2015182335A1 (ja) 非接触給電システム、受電装置及び送電装置
US9634636B2 (en) Non-contact power transmission device
WO2014196239A1 (ja) 給電装置、および非接触給電システム
JP6179730B2 (ja) 受電装置、非接触電力伝送システム及び充電方法
WO2013077326A1 (ja) 非接触給電装置及び非接触給電システム
JP5966038B1 (ja) 非接触給電システム
JP2016015808A (ja) 受電機器及び非接触電力伝送装置
JP2015228739A (ja) 送電装置
WO2015083578A1 (ja) 非接触電力伝送装置及び受電機器
JP2015231258A (ja) 非接触給電システム及び受電装置
JP2018078773A (ja) 無線給電装置、及び無線給電方法
JP5761507B2 (ja) 電力伝送システム
JP6959168B2 (ja) 電力伝送装置
JP2017212854A (ja) 非接触給電システム及び非接触電力伝送システム
JP2016208602A (ja) 非接触電力伝送装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190411

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190625