JP2017040176A - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP2017040176A
JP2017040176A JP2015161001A JP2015161001A JP2017040176A JP 2017040176 A JP2017040176 A JP 2017040176A JP 2015161001 A JP2015161001 A JP 2015161001A JP 2015161001 A JP2015161001 A JP 2015161001A JP 2017040176 A JP2017040176 A JP 2017040176A
Authority
JP
Japan
Prior art keywords
air
ventilation
fuel ratio
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015161001A
Other languages
English (en)
Other versions
JP6269616B2 (ja
Inventor
孝佳 田中
Takayoshi Tanaka
孝佳 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015161001A priority Critical patent/JP6269616B2/ja
Priority to US15/187,944 priority patent/US10138784B2/en
Publication of JP2017040176A publication Critical patent/JP2017040176A/ja
Application granted granted Critical
Publication of JP6269616B2 publication Critical patent/JP6269616B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/101Three-way catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M13/00Crankcase ventilating or breathing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0806NOx storage amount, i.e. amount of NOx stored on NOx trap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/08Engine blow-by from crankcase chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/41Control to generate negative pressure in the intake manifold, e.g. for fuel vapor purging or brake booster
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Lubrication Details And Ventilation Of Internal Combustion Engines (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

【課題】この発明は、内燃機関の制御装置に関し、必要に応じて、内燃機関の出力特性及び排気特性を損なわない範囲で運転状態を変更することでクランクケースの換気を促進することを目的とする。【解決手段】クランクケースの換気を図るPCVバルブを設ける。排気通路に三元触媒とNOx吸蔵還元触媒を設ける。電子制御ユニットは、ストイキ制御とリーン制御を実行する。クランクケースの換気要求が生じた際に(ステップ100)、PCVバルブで実現される換気量Ventpcvと、その換気に伴う燃費Fuelpcvとの関係を算出する(ステップ108)。更に、換気量Ventpcvが要求換気量Vを満たし、燃費Fuelpcvを最小とする運転条件を算出する(ステップ110)。この運転条件は、等しい機関トルクを維持し、浄化が担保できる空燃比を外さないこととする。【選択図】図6

Description

この発明は、内燃機関の制御装置に係り、特に、リーンバーン運転を行う車載用の内燃機関の制御装置として好適な内燃機関の制御装置に関する。
特許文献1には、PCV(Positive Crankcase Ventilation)バルブとエゼクタを備える内燃機関が開示されている。内燃機関のクランクケース内には、NOx及びCO2を含むブローバイガスが吹き抜けてくることがある。このため、内燃機関においては、クランクケース内のガス(以下、「ケース内ガス」と称す)を適度に換気することが必要である。
PCVバルブは、クランクケースと吸気通路との間に介在し、吸気負圧を利用してケース内ガスを吸気通路に引き込むためのバルブである。PCVバルブによれば、適度な吸気負圧が発生する状況下で、クランクケースの内部を適度に換気することができる。
エゼクタは、過給機と共に内燃機関に搭載される。過給機を備える内燃機関においては、コンプレッサの前後に圧力差が発生する。エゼクタは、クランクケースの内部に通じるインレットと、コンプレッサの上流に通じるアウトレットと、コンプレッサの下流に通じる圧力導入口とを有している。このような構成によれば、コンプレッサの前後に圧力差が生ずると、エゼクタの内部には、圧力導入口からアウトレットに向かう空気の流れが生ずる。そして、このような空気の流れが生ずると、エゼクタは、インレットから吸引したケース内ガスをアウトレットから流出させる。このため、エゼクタによれば、適度な過給圧が発生する状況下でクランクケースの内部を適度に換気することができる。
特開2013−124544号公報 特開2013−096247号公報 特開平6−108903号公報 特開2013−050096号公報
しかしながら、特許文献1に記載の内燃機関においては、吸気負圧が殆ど発生せず、かつ、十分な過給圧も発生しない状態で運転が継続されることがある。吸気負圧が発生しなければPCVバルブはケース内ガスを換気することができない。また、過給圧が十分でなければエゼクタもケース内ガスを換気しない。このため、特許文献1に記載の内燃機関においては、このような運転状態の下では、クランクケースの換気が十分に行えない事態が生じ得る。
この発明は、上述のような課題を解決するためになされたもので、必要に応じて、内燃機関の出力特性及び排気特性を損なわない範囲で運転状態を変更することによりケース内ガスの換気能力を高めることのできる内燃機関の制御装置を提供することを目的とする。
第1の発明は、上記の目的を達成するため、ケース内ガスを吸気通路に吸引させてクランクケースの換気を図るPCVバルブと、排気通路に配置された三元触媒及びNOx吸蔵還元触媒と、内燃機関に関わるアクチュエータを駆動する電子制御ユニットとを備える内燃機関の制御装置であって、
前記電子制御ユニットは、
理論空燃比を含むストイキ領域で前記内燃機関を作動させるストイキ制御と、前記ストイキ領域よりリーンなリーン領域で前記内燃機関を作動させるリーン制御とを実行し、
前記クランクケースの換気要求が生じた際に、混合気の空燃比、燃料噴射量、及び吸気マニホールド圧の組み合わせの中で、前記ケース内ガスの単位時間当たりの換気量を増量させる組み合わせを換気条件として抽出し、かつ、空燃比、燃料噴射量、及び吸気マニホールド圧を当該換気条件に従って変更し、
空燃比に関する前記抽出は、前記三元触媒と前記NOx吸蔵還元触媒とで排気ガスを浄化することができ、かつ、前記混合気の筒内燃焼を担保することができる許容空燃比範囲の中で行い、
前記換気条件として抽出される空燃比と燃料噴射量とは、前記変更の前後で等機関トルクを維持する関係を満たしていることを特徴とする。
また、第2の発明は、第1の発明において、
前記電子制御ユニットは、前記換気要求が生じた際に、前記ケース内ガスの単位時間当たりの要求換気量を設定し、
前記換気条件は、前記換気量が当該要求換気量を満たす条件であることを特徴とする。
また、第3の発明は、第2の発明において、前記換気条件は、前記許容空燃比範囲内の空燃比、等機関トルクを維持する燃料噴射量、及び吸気マニホールド圧の組み合わせの中で、最小燃費で前記要求換気量を満たす組み合わせであることを特徴とする。
また、第4の発明は、第3の発明において、前記電子制御ユニットは前記換気要求が生じた際に、
(1−1)前記許容空燃比範囲の中で空燃比を仮決めし、
(1−2)仮決めされた空燃比と当該空燃比の下で前記等機関トルクを発生する燃料噴射量との組み合わせに対して最小燃費で前記要求換気量を満たす吸気マニホールド圧を特定する特定処理を実行し、
(2)前記許容空燃比範囲に含まれる複数の空燃比の夫々について、前記特定処理を繰り返し実行し、
(3)前記特定処理により特定された全ての吸気マニホールド圧の中で最小燃費を実現する吸気マニホールド圧と、当該吸気マニホールド圧を特定する特定処理の際に用いられた空燃比及び燃料噴射量との組み合わせを、前記換気条件として抽出することを特徴とする。
また、第5の発明は、第1の発明において、
吸気量を制御するスロットル弁と、
ウェストゲートバルブを備える過給機と、
当該過給機のコンプレッサ前後に生ずる差圧を用いて前記クランクケースの換気を図るエゼクタと、を更に備え、
前記換気条件は、混合気の空燃比、燃料噴射量、吸気マニホールド圧、スロットル開度、及びウェストゲート開度の組み合わせの中で、前記PCVバルブと前記エゼクタの双方で実現される単位時間当たりの総換気量を増量させる組み合わせであることを特徴とする。
また、第6の発明は、第5の発明において、
前記電子制御ユニットは、前記換気要求が生じた際に、前記ケース内ガスの単位時間当たりの要求換気量を設定し、
前記換気条件は、前記総換気量が当該要求換気量を満たす条件であることを特徴とする請求項5に記載の内燃機関の制御装置。
また、第7の発明は、第6の発明において、前記換気条件は、前記許容空燃比範囲内の空燃比、等機関トルクを維持する燃料噴射量、吸気マニホールド圧、スロットル開度、及びウェストゲート開度の組み合わせの中で、最小燃費で前記要求換気量を満たす組み合わせであることを特徴とする。
また、第8の発明は、第7の発明において、
前記電子制御ユニットは前記換気要求が生じた際に、
(1−1)前記許容空燃比範囲の中で空燃比を仮決めし、
(1−2)前記吸気マニホールド圧を実用範囲の中で仮決めし、
(1−3)仮決めされた吸気マニホールド圧及び空燃比と、当該空燃比の下で前記等機関トルクを発生する燃料噴射量との組み合わせに対して、最小燃費で前記要求換気量を満たすスロットル開度とウェストゲート開度のペアを特定する特定処理を実行し、
(2)前記許容空燃比範囲に含まれる複数の空燃比と前記実用範囲に含まれる複数の吸気マニホールド圧との組み合わせの夫々について、前記特定処理を繰り返し実行し、
(3)前記特定処理の実行により特定されたスロットル開度とウェストゲート開度の全てのペアの中で最小燃費を実現するペアと、当該ペアを特定する特定処理の際に用いられた空燃比、燃料噴射量、及び吸気マニホールド圧との組み合わせを前記換気条件として抽出することを特徴とする。
また、第9の発明は、第2乃至第4及び第6乃至第8の発明の何れかにおいて、前記電子制御ユニットは、
前記クランクケース内のNOx濃度を検知し、
前記NOx濃度に基づいて前記要求換気量を設定することを特徴とする。
また、第10の発明は、第2乃至第4及び第6乃至第9の発明の何れかにおいて、前記電子制御ユニットは、
前記クランクケース内のCO2濃度を検知し、
前記CO2濃度に基づいて前記要求換気量を設定することを特徴とする。
また、第11の発明は、第1乃至第10の発明の何れかにおいて、前記電子制御ユニットは、
前記クランクケース内のNOx濃度を検知し、
前記NOx濃度が閾値に達したら前記換気要求の発生を認識することを特徴とする。
また、第12の発明は、第1乃至第11の発明の何れかにおいて、前記電子制御ユニットは、
前記クランクケース内のCO2濃度を検知し、
前記CO2濃度が閾値に達したら前記換気要求の発生を認識することを特徴とする。
また、第13の発明は、第1乃至第12の発明の何れかにおいて、
前記許容空燃比範囲は、前記ストイキ領域と前記リーン領域とで構成されており、
前記ストイキ領域と前記リーン領域との間には、前記三元触媒と前記NOx吸蔵還元触媒とでは排気ガス中のNOxが浄化できない中間領域が存在し、
前記電子制御ユニットは、
前記換気要求の発生を受けて前記空燃比を変更する際に、当該空燃比が前記中間領域を跨いで変化する場合には、その変更に先立って、前記NOx吸蔵還元触媒のNOx吸蔵容量の回復が認められるまで混合気の空燃比を理論空燃比よりリッチとするリッチ制御を実行することを特徴とする。
第1の発明によれば、内燃機関は、ストイキ領域とリーン領域で作動することができる。従って、本発明においてクランクケースの換気要求が生じた際には、混合気の空燃比をストイキ領域とリーン領域の範囲内で変化させることができる。空燃比を変化させれば、内燃機関のトルクを変化させることなく空気量を変化させることができる。また、空気量が変化すれば、吸気マニホールド圧にも変化が生ずる。そして、吸気マニホールド圧が変化すれば、PCVバルブによって吸引されるガス量が変わり、その結果ケース内ガスの換気量も変化する。電子制御ユニットは、換気要求が生じた際に、その換気量が増加するように空燃比、燃料噴射量、及び吸気マニホールド圧を変更する。このため、本発明によれば、換気が必要な場面でケース内ガスの換気量を増やすことができる。この際、電子制御ユニットは、許容空燃比範囲に属する空燃比と、等機関トルクを維持する燃料噴射量とを用いる。このため、内燃機関の出力特性及び排気特性が損なわれることはない。
第2の発明によれば、換気要求が生じた際に、単位時間当たりの要求換気量が設定される。そして、当該要求換気量を満たす換気量が生ずるように換気条件が抽出される。このため、本発明によれば、内燃機関の出力特性及び排気特性を損なうことなく、換気要求の発生時に、要求換気量を満たす換気量を発生させることができる。
第3の発明によれば、最小燃費で要求換気量を満たす換気条件を抽出することができる。このため、本発明によれば、換気要求の発生時に、内燃機関の出力特性及び排気特性を損なうことなく、かつ、燃費特性をも損なうことなく所望の換気量を確保することができる。
第4の発明によれば、(1−1)から(3)までの処理を実行することにより、最小燃費で要求換気量を満たす換気条件を確実に抽出することができる。
第5の発明によれば、吸気負圧を高めることでPCVによる換気量を増やすことができる。また、過給圧を高めることによりエゼクタによる換気量を増やすことができる。本発明においては、換気要求が生じた際に、両者の換気量を合わせた総換気量が増加するように換気条件が抽出される。総換気量は、吸気負圧が稼ぎ難い状況下では過給圧を高めることで、また、過給圧が確保し難い状況下では吸気負圧を確保することで増やすことができる。このため、本発明によれば、PCVバルブのみを用いる場合に比して、所望の換気量を得るための換気条件をより容易に抽出することができる。
第6の発明によれば、PCVバルブ及びエゼクタを備える内燃機関が要求換気量を満たすための条件が換気条件として抽出される。このため、本発明によれば、換気要求の発生時に、PCVバルブ及びエゼクタに、要求換気量を満たす総換気量を発生させることができる。
第7の発明によれば、PCVバルブ及びエゼクタを備える内燃機関が、最小燃費で要求換気量を得るための条件が換気条件として抽出される。このため、本発明によれば、内燃機関の燃費特性を損なうことなく、要求換気量を満たす総換気量を発生させることができる。
第8の発明によれば、(1−1)から(3)の処理を実行することにより、PCVバルブとエゼクタを備える内燃機関において最小燃費と要求換気量を満たすための換気条件を、確実に抽出することができる。
第9の発明によれば、クランクケース内のNOx濃度に基づいて、過不足無く要求換気量を設定することができる。
第10の発明によれば、クランクケース内のCO2濃度に基づいて、過不足無く要求換気量を設定することができる。
第11の発明によれば、クランクケース内のNOx濃度が高まった段階で、電子制御ユニットに無駄なく換気要求の発生を認識させることができる。
第12の発明によれば、クランクケース内のCO2濃度が高まった段階で、電子制御ユニットに無駄なく換気要求の発生を認識させることができる。
第13の発明によれば、空燃比が中間領域を跨いで変化する際には、その変化に先立ってNOx吸蔵還元触媒のNOx吸蔵容量を回復させておくことができる。空燃比が中間領域を横切る際には多量のNOxが排出される。その際にNOx吸蔵容量が既に回復していれば、NOxの大気放出を有効に防ぐことができる。
本発明の実施の形態1の構成を示す図である。 三元触媒とNOx吸蔵還元触媒とを備える浄化システムの排気ガス浄化特性を示す図である。 混合気の空燃比A/Fとトルク変動TFとの関係を示す図である。 図1に示す内燃機関における許容空燃比範囲を説明するための図である。 換気要求の発生前後における本発明の実施の形態1の動作を説明するためのタイミングチャートである。 本発明の実施の形態1で実行されるメインルーチンのフローチャートである。 図6のステップ102で参照される要求換気量Vに関するマップの一例である。 図6のステップ108の詳細を示すフローチャートである。 等機関トルクを維持する燃料噴射量Fと空燃比A/Fとの関係を示す図である。 等燃料噴射量の下で吸入空気量Gaと空燃比A/Fの間に成立する関係を示す図である。 吸気マニホールド圧Pinと吸気弁特性InVVTとの関係を、吸入空気量Gaをパラメータとして表した図である。 吸気マニホールド圧Pinと燃費との関係を示す図である。 吸気マニホールド圧PinとPCV換気量Ventpcvとの関係を示す図である。 燃費とPCV換気量Ventpcvの関係を整理した図である。 図6のステップ108の処理により得られる関係を模式的に表した図である。 図6のステップ110の詳細を示すフローチャートである。 図16のステップ128の処理を具体的に説明するための図である。 図16のステップ134の処理を具体的に説明するための図である。 本発明の実施の形態2の構成を示す図である。 本発明の実施の形態2で実行されるメインルーチンのフローチャートである。 図19のステップ152の詳細を示すフローチャートである。 スロットル開度と燃費との関係を示す図である。 ウェストゲート開度と燃費との関係を示す図である。 図20のステップ170で特定される関係を模式的に表した図である。 過給圧Pscとスロットル開度TAとの関係を、吸気マニホールド圧Pinをパラメータとして表した図である。 過給圧Pscとウェストゲート開度との関係を表した図である。 図20のステップ178で特定される関係を模式的に表した図である。 過給圧Pscとエゼクタ換気量Ventejeとの関係を示す図である。 図20のステップ182で特定される関係を模式的に表した図である。 図20のステップ184で特定される関係を模式的に表した図である。 図20のステップ186の処理により得られる関係を模式的に表した図である。 図20のステップ188の処理により得られる関係を模式的に表した図である。 図19のステップ154の詳細を示すフローチャートである。 図32のステップ196の処理を具体的に説明するための図である。 図32のステップ202の処理を具体的に説明するための図である。
実施の形態1.
[実施の形態1の構成]
図1は本発明の実施の形態1の構成を示す。本実施形態は内燃機関10を備えている。内燃機関10は、吸気側及び排気側の双方に可変動弁機構12,14を備えている。可変動弁機構12,14は、吸気弁及び排気弁の開弁特性を変化させることができる。以下、本明細書では、吸気側の可変動弁機構12の状態と吸気弁の開弁特性とが同義であるものとして、それらを「吸気弁特性InVVT」と称する。
内燃機関10は、気筒毎に、燃焼圧センサ15(図1上方の「CPS15」参照)、筒内噴射弁16、及びポート噴射弁18を備えている。また、内燃機関10は、水温センサ20及びクランク角センサ22を備えている。クランク角センサ22によれば、内燃機関10の回転速度NEを検知することができる。
内燃機関10のクランクケース24にはオイルセパレータ26が装着されている。また、オイルセパレータ26にはPCV(Positive Crankcase Ventilation)バルブ28が接続されている。クランクケース24の内部空間は、オイルセパレータ26を介してPCVバルブ28に連通している。クランクケース24には、内燃機関10の燃焼室から、オイル等を含むブローバイガスが吹き抜けてくる。オイルセパレータ26は、そのオイルを除去した状態でケース内ガスをPCVバルブ28に送り出すことができる。
内燃機関10には、吸気通路30が連通している。吸気通路30は、エアフィルタ32の下流にエアフロメータ(AFM)34を備えている。AFM34の下流には、ターボチャージャ36のコンプレッサ38が配置されている。コンプレッサ38の下流には、インタークーラ40、過給圧センサ42、及び電子式のスロットル弁44がその順で配置されている。以下、過給圧センサ42が検出する圧力、つまり、スロットル弁44の上流側の圧力を「過給圧Psc」と称す。
スロットル弁44の下流はサージタンク46に連通している。サージタンク46の内圧は、スロットル弁44が閉じるに連れて負圧化する。上述したPCVバルブ28は、サージタンク46に連通しており、その負圧を利用してケース内ガスをサージタンク46に流通させる。内燃機関10は、このようにしてケース内ガスを流通させることにより、クランクケース24の換気を図ることができる。
図1に示すように、サージタンク46には吸気圧センサ48が配置されている。吸気圧センサ48によれば、サージタンク46の内圧を計測することができる。以下、本実施形態では、その内圧を「吸気マニホールド圧Pin」と称す。
内燃機関10には、排気通路50が連通している。排気通路50には、ターボチャージャ36のタービン52が組み込まれている。また、排気通路50には、タービン52をバイパスするバイパス通路54が設けられている。バイパス通路54はウェストゲートバルブ(WGV)56を備えている。ターボチャージャ36は、WGV56の開度を変えることにより、タービン52の駆動に用いる排気ガスの比率を変えることができる。
排気通路50は、タービン52の下流に三元触媒58とNOx吸蔵還元触媒(NSR触媒)60を備えている。三元触媒58の上流には空燃比センサ62が配置されている。空燃比センサ62は、その周囲を流れるガスの空燃比に対してリニアな信号を発生する。
三元触媒58の下流及びNSR触媒60の下流には、それぞれ酸素センサ64,66が配置されている。酸素センサ64,66は、その周囲を流れるガスの空燃比が理論空燃比に比してリーンであるかリッチであるかに応じて出力信号をステップ的に変化させる。
図1に示すシステムは、電子制御ユニット(以下、「ECU」と称す)70を備えている。ECU70には、内燃機関10に関わる上記の各種センサ及びアクチュエータが接続されている。ECU70は、それらのセンサからの出力により内燃機関10の状態を検知し、また、それらのアクチュエータを駆動することにより内燃機関10の状態を制御することができる。
[実施の形態1の基本動作]
(ストイキ制御とリーン制御)
本実施形態において、ECU70は、ストイキ制御とリーン制御を切り替えて実行することができる。ここで、「ストイキ制御」とは、混合気の空燃比を、理論空燃比を含むストイキ領域内の値に制御して内燃機関10を作動させる制御である。ストイキ制御は、内燃機関10に高い出力と優れた応答性を発揮させるのに適した運転であることから、主として高負荷高回転領域で用いられる。
上記の「リーン制御」とは、混合気の空燃比を、ストイキ領域に比してリーンなリーン領域内の値に制御して内燃機関10を作動させる制御である。リーン制御は、低燃費の実現に適した運転であり、主として低負荷低回転領域で用いられる。本実施形態では、以上の通りストイキ制御とリーン制御とが行われる。このため、内燃機関10では、幅広い空燃比範囲が用いられることになる。
(許容空燃比範囲)
内燃機関10の排気システムには、排気ガスの浄化が可能なウィンドウが存在する。このため、内燃機関10で用いる空燃比は、そのウィンドウを超えて変化させることはできない。また、混合気の空燃比には、適切な燃焼を担保する観点からも制約が課される。従って、内燃機関10で用いる空燃比は、その制約も満たすものでなければならない。以下、これらの要求を共に満たす空燃比範囲を、内燃機関10の「許容空燃比範囲」と称す。
図2は、三元触媒58及びNSR触媒60による排気ガスの浄化率と、混合気の空燃比A/Fとの関係を示す。但し、本明細書において、排気ガスの「浄化率」とは、排気システムから流れ出た排気ガスの清浄度を意味するものとする。つまり、図2においては、内燃機関10がそもそも不純物を排出せず、その結果として排気システム下流の清浄度が高くなる場合も「浄化率」が高いものとして表している。
図2中に「ストイキ領域」の文字を付して示す領域は、ストイキ制御の際に用いられる領域である。また、図2に示す「THC」は、HC及びCOの総称(Total HCの略)である。内燃機関10は、混合気の空燃比A/Fがストイキ領域よりリッチな領域では、NOxを殆ど発生しない一方、空燃比がリッチであるほどHC及びCO(THC)を多量に発生する。このため、空燃比がストイキ領域よりリッチな領域では、NOxの浄化率は高い値に維持され、他方、THCの浄化率は空燃比がリッチであるほど低い値となる。
混合気の空燃比A/Fがストイキ領域に属する場合、内燃機関10は、空燃比がリーン寄りであれば主としてNOxを発生し、空燃比がリッチ寄りであれば主としてHC及びCOを発生する。三元触媒58は、NOxが過多であれば過剰な酸素を吸蔵してNOxを浄化し、HC及びCOが過多であれば吸蔵酸素を放出してそれらを浄化する。このため、空燃比がストイキ領域に属する場合は、三元触媒58の機能により、NOx及びTHCの双方につき良好な浄化率が得られる。
内燃機関10は、混合気の空燃比A/Fがストイキ領域の上限を超えてリーン化すると、HC及びCOを殆ど排出しなくなる一方、NOxを多量に排出し始める。三元触媒58は、多量に発生し続けるNOxを浄化し続けることはできない。また、NSR触媒60は、排気ガスの空燃比が大きくリーン化し、強い酸素過多の状態が形成されている場合に、高いNOx吸蔵能力を発揮する触媒である。従って、空燃比がストイキ領域より僅かにリーンな領域では、多量に発生するNOxをNSR触媒60が浄化しきれない事態が生じ得る。このため、NOxの浄化率は、ストイキ領域に近い弱リーンな空燃比領域では低い値となり、ストイキ領域から十分に離れた領域、具体的には、空燃比が閾値Zを超える強リーンな領域では良好な値となる。以下、図2に示すように、ストイキ領域と閾値Zの間の領域、つまり、NSR触媒60が排気ガス中のNOxを浄化しきれない領域を「中間領域」と称す。
上述した通り、内燃機関10は、空燃比A/Fがストイキ領域を超えてリーン化している場合には、HC及びCOを殆ど発生しない。このため、THCの浄化率は、図2に示すように、空燃比がストイキ領域の上限を超える全域で良好な値となる。以上説明した理由により、内燃機関10においては、ストイキ領域と、空燃比が閾値Zを越えるリーン領域とが、浄化を担保することのできる空燃比領域となる。
図3は、混合気の空燃比A/Fと内燃機関のトルク変動TF(Torque Fluctuation)との関係を示す。混合気の燃焼性は、空燃比がリーンになるほど低下する。そして、混合気の燃焼性が低下すれば、機関トルクの安定性が損なわれ、トルク変動TFが生じ易くなる。図3に示す「TFth」は、ドライバビリティ上許容することのできるトルク変動の上限値である。また、図3に示す「U」は、この上限値TFthに基づいて、燃焼が担保できる空燃比の上限値として定められる値である。
図4は、図2に示す空燃比の許容領域に、図3に示す空燃比の上限値Uを加えた関係を示す。図4に示すように、本実施形態では、理論空燃比の付近に幅を有するストイキ領域と、閾値Zと上限値Uとの間に幅を有するリーン領域とが、内燃機関10において用いることの出来る「許容空燃比範囲」となる。尚、本明細書において、リーン制御の際に用いる「リーン領域」は、図4に示すリーン領域と一致するものとする。
(リッチ制御)
リーン制御の実行中は、内燃機関10から排出されるNOxが継続的にNSR触媒60に吸蔵される。この状態が続くと、やがてはNSR触媒60がNOx飽和の状態に至る。ECU70は、この状態を避けるため、NSR触媒60に流入するNOx量を積算し、その積算値がNOx飽和に対応する判定値に達したら、混合気の空燃比をリッチ化する「リッチ制御」を行う。NSR触媒60は、リッチな排気ガスの供給を受けると、吸蔵NOxを放出する性質を有している。この際に放出されるNOxは、リッチな排気ガス中に含まれるHC、CO等の還元剤により浄化される。NOxの放出が終わると、NSR触媒60の下流にリッチな排気ガスが吹き抜け、酸素センサ66の出力がリッチに反転する。ECU70は、この反転を受けてリッチ制御を終了し、リーン制御を再開する。本実施形態のシステムは、以上の処理により、排気特性を損なうことなく実質的に継続してリーン制御を行うことができる。
[実施の形態1の特徴]
(空燃比A/Fの変更による換気量の変更)
本実施形態のシステムは、PCVバルブ28によりクランクケース24の換気を実現している。上述した通り、PCVバルブ28は吸気負圧を利用してケース内ガスの換気を図る。このため、吸気負圧が十分に発生しない運転状態が継続すると、クランクケース24内のブローバイガス濃度が上昇する事態が生ずる。
ところで、本実施形態では、混合気の空燃比A/Fを許容空燃比範囲の中で変化させることができる。また、空燃比A/Fを変化させることができれば、機関トルクの変化を抑制しつつ吸入空気量Gaを変化させることができる。内燃機関10において、吸入空気量Gaは、吸気マニホールド圧Pinと吸気弁特性InVVTにより決定される。そして、吸気マニホールド圧Pinが変わればPCVバルブ28の換気量も変化する。従って、本実施形態では、機関トルクを変えずに、吸気マニホールド圧Pinが下がるように空燃比A/Fを変化させれば、ドライバビリティを損なうことなくケース内ガスの換気量を増やすことができる。そして、その空燃比A/Fの変化を許容空燃比範囲の中で行えば、排気特性の悪化をも避けることができる。
(換気の必要性判定)
更に、本実施形態では、以下に説明する手法により、クランクケース24内のNOx濃度及びCO2濃度を推定することができる。このため、ECU70は、それらの推定値に基づいて、クランクケース24の換気の必要性を判断することができる。
(1)NOx濃度の推定
・クランクケース24内のNOx濃度(a)は、燃焼室からクランクケース24へのNOx吹き抜け量(b)に応じた値となる。
・NOx吹き抜け量(b)は、燃焼ガス中のNOx濃度(c)と、燃焼室からクランクケース24への吹き抜けガス量(d)との乗算値(c)*(d)となる。
・燃焼ガス中のNOx濃度(c)は、筒内の燃焼温度(e)に応じた値となる。
・燃焼温度(e)は、燃焼圧(f)と相関を有している。このため、ECU70は、燃焼圧センサ15の出力(f)に基づいてNOx濃度(c)を推定することができる。
・吹き抜けガス量(d)は、クランクケース24の内圧(g)と筒内圧(h)との差圧(i)と、ピストンとシリンダ壁面との隙間(j)とに応じた値となる。
・ケース内圧(g)は大気圧で代用できるため、差圧(i)は筒内圧(h)に基づいて推定することができる。また、筒内圧(h)は、燃焼圧(f)で代用できるため、燃焼圧センサ15により検知することができる。このため、ECU70は、燃焼圧センサ15の出力に基づいて差圧(i)を推定することができる。
・また、ピストンとシリンダ壁面との隙間(j)は、シリンダブロックの温度、即ち冷却水温に依存している。このため、ECU70は、水温センサ20の出力に基づいて、その隙間(j)を推定することができる。
・このように、ECU70は、差圧(i)及び隙間(j)の双方を推定することができる。従って、ECU70は、それらに基づいて吹き抜けガス量(d)を推定することができる。
・更に、ECU70は、上記の手法で推定したNOx濃度(c) と吹き抜けガス量(d)を掛け合わせることにより、NOx吹き抜け量(b)を算出することができる。そして、NOx吹き抜け量(b)をクランクケース24の容量(k)で除することにより、NOx濃度(a)=(b)/(k)を計算することができる。
(2)CO2濃度の推定
・クランクケース24内のCO2濃度(m)は、燃焼室からクランクケース24へのCO2吹き抜け量(n)に応じた値となる。
・CO2吹き抜け量(n)は、燃焼ガス中のCO2濃度(o)と、燃焼室からクランクケース24への吹き抜けガス量(d)との乗算値(o)*(d)となる。
・燃焼ガス中のCO2濃度(o)は、主として混合気の空燃比A/Fに依存する。このため、ECU70は、空燃比A/Fに基づいてCO2濃度(o)を推定することができる。
・吹き抜けガス量(d)は、NOx濃度の算出過程と同様の手法で算出することができる。このため、ECU70は、CO2濃度(o) と吹き抜けガス量(d)を掛け合わせることにより、CO2吹き抜け量(n)を算出することができる。そして、CO2吹き抜け量(n)をクランクケース24の容量(k)で除することにより、CO2濃度(m)=(n)/(k)を計算することができる。
(3)判定
以上説明した通り、本実施形態のシステムでは、クランクケース24内のNOx濃度及びCO2濃度を推定することができる。NOx濃度及びCO2濃度が十分に低い状況下では、敢えて換気を促進する必要がない。他方、NOx濃度、或いはCO2濃度が十分に高い場合には、クランクケース24の内部を清浄に保つために、換気を促進することが望ましい。そこで、本実施形態では、クランクケース24内のNOx濃度或いはCO2濃度が、それぞれの換気要求値に達した場合に、換気の必要性を判定して換気要求を発することとした。
(換気要求発生前後の動作)
図5は、換気要求の発生前後の内燃機関10の動作例を示すタイミングチャートである。図5に示す4本の破線は、それぞれ下記の値を示している。
破線72:NOx濃度に関する換気要求値
破線74:NOx濃度に関する換気終了判定値
破線76:CO2濃度に関する換気要求値
破線78:CO2濃度に関する換気終了判定値
図5に示す例は、時刻t1までは自然換気によって適度な換気がなされていたが、時刻t1において、クランクケース24内のNOx濃度が換気要求値72に達した場合を示している。時刻t1の時点でCO2濃度は換気要求値76に達していないが、本実施形態では、この時刻t1の時点で換気促進のための空燃比制御(以下、「換気制御」と称す)が開始される。その結果、時刻t1以降、ケース内ガスの換気量が増えてNOx濃度及びCO2濃度が低下している。
本実施形態において、上記の換気制御は、クランクケース24内のNOx濃度及びCO2濃度の双方が、夫々の換気終了判定値を下回るまで継続される。このため、図5に示す例では、CO2濃度が換気終了判定値78を下回った後も、NOx濃度が換気終了判定値74に達する時刻t2まで、換気制御が継続されている。以上の処理によれば、ケース内ガスの換気を必要に応じて促進することができ、クランクケース24の内部を常に清浄な状態に保つことができる。
(実施の形態1のフローチャート)
以下、図6乃至図17を参照して、上記の換気制御を実行するためにECU70が実行するルーチンについて説明する。図6は、本実施形態においてECU70が実行するメインルーチンのフローチャートである。ECU70は、内燃機関10の始動後、所定の周期で図6に示すルーチンを実行する。
図6に示すルーチンでは、先ず、換気要求が発生しているか否かが判別される(ステップ100)。ECU70は、内燃機関10の始動後、上述した手法により常にクランクケース24内のNOx濃度及びCO2濃度を計算している。本ステップ100では、その計算によるNOx濃度及びCO2濃度と、夫々の換気判定値(図5の破線72,76参照)とが比較され、何れかの濃度が換気判定値に達していれば、換気要求が発生していると判別される。
上記の処理により換気要求が発生していないと判別された場合は、換気制御を行う必要がないため、以後速やかに今回のルーチンが終了される。一方、換気要求が生じていると判別された場合は、次に、単位時間当たりの要求換気量Vが算出される(ステップ102)。
図7は、ECU70が上記ステップ102において参照する要求換気量Vのマップである。このマップは、差分Yとの関係で要求換気量Vを定めている。より具体的には、図7に示すマップは、差分Yが大きいほど要求換気量Vが多量になるように設定されている。ECU70は、上記ステップ102において、先ず、NOx濃度及びCO2濃度の夫々につき、現在の濃度と換気終了判定値(図5の破線74,78参照)との差分Yを算出する。次いで、図7に示すマップを参照して、その差分Yに対応する要求換気量Vを特定する。以上の処理によれば、現在のNOx濃度又はCO2濃度が、夫々の換気終了判定値74,78から乖離しているほど、要求換気量Vは大きな値に設定されることになる。
上記の処理が終わると、次に、現在の回転速度NE及び機関トルクTRQを維持した状態でエミッション保証が可能な空燃比A/Fが算出される(ステップ104)。ECU70は、図2に示す空燃比の許容範囲、つまり、浄化能力の面から定まる空燃比の許容領域を、回転速度NEと機関トルクTRQとの関係で定めたマップを記憶している。本ステップ104では、そのマップを参照して、現在の運転条件下でエミッション保証が可能な空燃比A/Fの範囲が特定される。
次に、燃焼担保が可能な空燃比A/Fが算出される(ステップ106)。ECU70は、図3に示す空燃比の上限値U、つまり、燃焼が担保できる空燃比の上限値Uを、回転速度NEと機関トルクTRQとの関係で定めたマップを記憶している。本ステップ106では、そのマップを参照して、現在の運転条件下で燃焼が担保できる空燃比の上限値Uが特定される。以上の処理が終わると、ECU70は、現在の回転速度NE及び機関トルクTRQの下での許容空燃比領域(図4参照)を特定し得る状態となる。
ECU70は、次に、許容空燃比範囲の中で、PCVバルブ28による換気量Ventpcvとその換気に伴う燃費Fuelpcvとの間に成立する関係を算出する(ステップ108)。
次いで、ECU70は、その関係に基づいて、要求換気量Vを満たす換気量Ventpcvを最小燃費Fuelpcvで発生させる運転条件を算出する(ステップ110)。
図8は、上記ステップ108において実行される処理の詳細を説明するためのフローチャートである。図8に示すように、ステップ108では先ず、許容空燃比範囲の中で空燃比A/F(i)が仮決めされる(ステップ112)。
次に、燃料噴射量Fと吸入空気量Gaとが仮決めされる(ステップ114)。
図9は、等しい機関トルクTRQを維持する空燃比A/Fと燃料噴射量Fとの関係の一例を示す。ECU70は、機関トルクTRQ毎にこの関係を記憶している。本ステップ114では先ず、現在のトルクTRQについて空燃比A/Fと噴射量Fの間に成立する図9同様の関係が読み出される。次いで、その関係に基づいて、上記ステップ112で仮決めした空燃比A/F(i)に対応する噴射量Fが読み出される。以上の処理によれば、仮決めされた空燃比A/F(i)の下で、等しい機関トルクTRQを維持するための噴射量Fを仮決めすることができる。
図10は、噴射量Fが一定である場合に空燃比A/Fと吸入空気量Gaとの間に成立する関係を示す。空燃比A/Fは、吸入空気量Gaを噴射量Fで除した値である。従って、噴射量Fが一定であれば、吸入空気量Gaと空燃比A/Fとの間には、図10に示すように比例関係が成立する。従って、ECU70は、A/F(i)とFとが仮決めされれば、それらに基づいて吸入空気量Gaを算出することができる。本ステップ114では、上記の通り噴射量Fを仮決めした後、そのFを空燃比A/F(i)に掛け合わすことにより、更に吸入空気量Gaを仮決めする。
上記の処理が終わると、次に、図11に示す関係からPin-InVVT関係が読み出される(ステップ116)。
図11は、吸気マニホールド圧Pinと吸気弁特性InVVTとの間に成立する関係を、吸入空気量Gaをパラメータとして表した図である。図11に示す関係からは、下記の現象を読み取ることができる。但し、図11吸気弁特性InVVTは、吸気弁の開弁時期と同義であり、その値が大きいほど開弁時期が遅角側にずれるものとする。
1.吸気マニホールド圧Pinが同じであれば、吸気弁特性InVVTが大きいほど(遅角側であるほど)吸入空気量Gaは多量になる。
2.吸気弁特性InVVTが同じであれば、吸気マニホールド圧Pinが高いほど吸入空気量Gaは多量になる。
3.吸入空気量Gaを一定に保つためには、吸気弁特性InVVTが遅角側であるほど吸気マニホールド圧Pinを下げる必要があり、他方、吸気マニホールド圧が高いほど吸気弁特性InVVTを進角側にずらす必要がある。
ECU70は、内燃機関10に関して図11に示す関係を記憶している。本ステップ116では、図11に示す関係から、上記ステップ114で仮決めされた吸入空気量Gaに対応する関係が読み出され、その関係がPin-InVVT関係として特定される。
上記の処理が終わると、次に、吸気マニホールド圧Pinと、PCVバルブ28の換気に伴う燃費Fuelpcvとの関係が特定される(ステップ118)。内燃機関10のポンプ損は、主として吸気マニホールド圧Pinと吸気弁特性InVVTとによって決せられる。吸入空気量Gaが特定された条件下では、Pin-InVVT関係が特定され、InVVTがPinの関数となる。このため、この条件下では、内燃機関10のポンプ損が主としてPinで決まることになる。
図12は、吸入空気量Gaを特定した場合に、吸気マニホールド圧Pinと燃費Fuelpcvとの間に成立する関係の一例である。この関係は、Pinが低下するほど、吸気行程でのポンプ損が増大して燃料消費量(燃費)Fuelpcvが増えることを表している。ECU70は、吸入空気量Ga毎に図12に示すものと同様の関係を記憶している。本ステップ118では、それらの関係の中で、仮決め中の吸入空気量Gaに対応するものが、Pin-Fuelpcv関係として特定される。
次に、吸気マニホールド圧Pinと、PCVバルブ28による換気量Ventpcvとの関係が読み出される(ステップ120)。
図13は、内燃機関10において、PinとVentpcvとの間に成立する関係を示す。ECU70は図13に示す関係を記憶している。本ステップ120では、この関係がPin-Ventpcv関係として読み出される。
次に、燃費Fuelpcvと換気量Ventpcvとの関連付けが行われる(ステップ122)。
図14は、本ステップ122の処理により得られる結果の一例を模式的に表したものである。上記ステップ118で特定されたPin-Fuelpcv関係も、上記ステップ120で読み出されたPin-Ventpcv関係も、Pinの軸を有している。このため、燃費Fuelpcvと換気量Ventpcvとは、吸気マニホールド圧Pinを仲介軸とすることで、図14に示すように関連付けることができる。
以上の処理が終わると、次に、許容空燃比範囲の全域についてA/F(i)の展開が終了しているか否かが判別される(ステップ124)。その結果、未だA/F(i)の展開が終了していないと判別された場合は、A/F(i)の値を変えて上記ステップ112以降の処理が再び実行される。一方、A/F(i)の展開が終了していると判別された場合は、図8に示す一連の処理が終了される。
図15は、図8に示す一連の処理が終了される段階でECU70に蓄積されているFuelpcv-Ventpcv関係を模式的に表したものである。図15に示すように、図8に示す一連の処理によれば、Pinを仲介軸として燃費Fuelpcvと換気量Ventpcvを連結させた情報を、許容空燃比範囲の全域に渡って取得することができる。
図16は、図6に示すメインルーチン中、ステップ110において実行される処理の詳細を説明するためのフローチャートである。図16に示す一連の処理は、上述した図15に示す関係に基づいて、要求換気量Vを満たす換気量Ventpcvを、最小燃費で実現する運転条件を算出するために実行される。
図16に示す一連の処理では、先ず、空燃比A/F(i)の仮決めが行われる(ステップ126)。本ステップ126の処理は、図15に示す情報に対して行われる。図15に示す情報は、図14に示すFuelpcv-Ventpcv関係を許容空燃比範囲の全域について展開したものである。従って、図15に示す情報に対してA/F(i)を仮決めすると、そのA/F(i)の下で成立するFuelpcv-Ventpcv関係、つまり、図14に示すのと同様の関係が特定されることになる。
上記の処理が終わると、次に、特定されたFuelpcv-Ventpcv関係の中から、要求換気量Vを満たす換気量Ventpcvを発生させるPinが抽出される(ステップ128)。尚、要求換気量Vは、図6のステップ102で算出した値である。
図17は、上記ステップ126で特定された関係に、要求換気量Vを追記した図である。図17に示す例によれば、換気量Ventpcvが要求換気量Vを満たすのは、吸気マニホールド圧Pinが、PinL≦Pin≦PinHの関係を満たす場合である。従って、この場合はPinLからPinHの範囲が要求換気量Vを満たすPinとして抽出される。
次に、上記の処理で抽出したPinの中で、最小燃費を実現するPin(以下、「Pin(i)」とする)が特定される(ステップ130)。図17に示す例によれば、PinL≦Pin≦PinHの関係を満たすPinのうち、最小燃費を実現するのはPinHである。従って、この場合はPinHがPin(i)として特定される。
次に、許容空燃比範囲の全域について、A/F(i)の展開が終わっているか否かが判別される(ステップ132)。許容空燃比範囲の全域についてA/F(i)の展開が終了していない場合は、A/F(i)を変更して、上記ステップ126以降の処理が再び実行される。そして、A/F(i)の展開が終了していると判別された場合は、許容空燃比範囲の全域について、最小燃費を実現するPin(i)の特定が完了したと判断することができる。
上記の処理が終わると、次に、許容空燃比範囲の全域について、Pin(i)によって実現される最小燃費Fuelpcv(i)が読み出される(ステップ134)。
図18は、PinとA/Fの二次元座標中に複数のFuelpcv(i)を棒グラフにより示した図である。本ステップ134の処理によれば、許容空燃比範囲の全域から、図18に示す棒の高さが読み出されることになる。
次に、読み出された全ての最小燃費Fuelpcv(i)の中で最も値の小さいものが特定される。そして、その最小のFuelpcv(i)を実現するA/FとPinが特定される(ステップ136)。以上の処理によれば、図15に示す関係を満たすA/FとPinの組み合わせの中で、最小の燃費で要求換気量Vを満たす組み合わせ(A/F,Pin)を特定することができる。
上記の処理が終わると、次に、最小燃費で要求換気量Vを満たすための内燃機関10の運転条件が特定される。つまり、上記ステップ136で特定された(A/F,Pin)と共に用いるべき他のパラメータ(F,Ga,InVVT)が特定される(ステップ138)。
本実施形態において、最小燃費を実現する(A/F,Pin)の特定処理は、上記の通り図15に示す関係に基づいて行われる。図15に示す関係を定める過程では、等トルクTRQの要件を満たすためにA/F(i)毎に燃料噴射量Fを特定している(図8中ステップ114、並びに図9参照)。このため、図15に示す関係の下では、空燃比A/F(i)と燃料噴射量Fとが一対一に対応しており、A/F(i)が決まれば自ずとFが決まることになる。そして、A/F(i)が決まっている環境下でFが決まれば、当然に吸入空気量Gaも決まることになる。
更に、図15に示す関係は、吸入空気量Gaが決まると、Pin-InVVT関係が決まることを前提としている(図8中ステップ116、並びに図11参照)。従って、吸入空気量Gaが決まれば、Pin-InVVT関係も自ずと定まることになる。そして、上記ステップ136では、A/F(i)と共にPin(i)を特定しているから、Pin-InVVT関係が定まればInVVTも自ずと特定されることになる。
このように、本実施形態では、A/F(i)とPin(i)が特定されると、燃料噴射量F、吸入空気量Ga、及び吸気弁特性InVVTが、何れも必然的に定まることになる。本ステップ138では、具体的には、それらを特定するために下記の処理が行われる。
1.ステップ136で特性したA/F(i)に基づいて、図9に示す関係から噴射量Fを特定する。
2.ステップ136で特定したA/F(i)、及び上記の処理で特定したFに基づいて、図10に示す関係から吸入空気量Gaを特定する。
3.図11に示す関係の中から、上記の処理で特定したGaに対応するPin-InVVT関係を特定する。次いで、ステップ136で特定したPinを、そのPin-InVVT関係に当てはめて吸気弁特性InVVTを特定する。
以上の処理によれば、最小燃費で要求換気量Vを満たすことのできるA/F、Pin、F、Ga、InVVTの組み合わせを特定することができる。また、ここで特定される空燃比A/Fは許容空燃比範囲の中に納まっている。更に、ここで特定される燃料噴射量Fは、空燃比A/Fの変更前後で等しい機関トルクTRQを維持する値に特定される。このため、上記組み合わせに従う運転条件によれば、排気特性を損なうことなく、かつ、ドライバビリティを損なうことなく、最小の燃費でクランクケース24の換気を適切に促進することができる。以下、この条件を「最適換気条件」と称し、その条件での運転を「最適換気運転」と称す。
以後、再び図6を参照して、本実施形態において実行されるメインルーチンの説明を続ける。図6に示すルーチンでは、ステップ110の処理に続いて、最適換気条件の空燃比A/Fが閾値Zよりリーンであるか否かが判別される(ステップ140)。尚、閾値Zは、NOxの浄化率が低下する中間領域の上限値である(図4参照)。
本実施形態において、ECU70は、混合気の空燃比が許容空燃比範囲から外れないように空燃比制御を行う。このため、内燃機関10で用いられる空燃比は、リーン領域かストイキ領域に属している。
上記ステップ140で最適換気条件の空燃比が閾値Zよりリーンであると判別された場合は、最適換気運転がリーン領域で行われると判断できる。そして、現在の空燃比がリーン領域に属していれば、最適換気運転の開始に伴う空燃比の変化は、リーン領域内の変化に留まると判断できる。混合気の空燃比が継続的にリーン領域に維持されるのであれば、最適換気運転の開始前後でNSR触媒60の状態に大きな変化は生じない。従って、この場合は、最適換気運転の開始に伴ってNSR触媒60からNOxが吹き抜ける心配はない。
他方、最適換気条件の空燃比が閾値Zよりリーンであり、かつ、現在の空燃比がストイキ領域に属している場合は、最適換気運転の開始に伴って、空燃比が中間領域を跨いで変化することになる。中間領域では、NOxが多量に発生するため、その変化の過程では、NSR触媒60がNOx飽和に至り易い環境が形成される。しかしながら、ストイキ制御の実行中はNOxの生成量が少なく、NSR触媒60のNOx吸蔵容量が一般に十分な量となる。このため、ストイキ領域にある空燃比が中間領域を跨いでリーン領域に変化する際には、その過程で生成されるNOxをNSR触媒60が十分に吸収することができる。
以上説明した理由により、本実施形態では、上記ステップ140の判定が肯定された場合、NOxの大気放出を心配することなく最低換気運転が開始できると判断される。そして、この場合は、以後速やかに最適換気条件での運転が要求される(ステップ142)。その結果、内燃機関10において最適換気運転が開始され、排気特性を損なうことなく、かつドライバビリティを損なうことなく、クランクケース24の換気が促進され始める。
図6に示すルーチン中、上記ステップ140において最適換気条件の空燃比が閾値Zよりリーンではないと判別された場合、その空燃比はリーン領域に属するものではないと判断できる。そして、本実施形態では、混合気の空燃比が常に許容空燃比範囲の中、つまり、リーン領域かストイキ領域の中に収められるため、リーン領域に属しないとすれば、その空燃比はストイキ領域に属するものと判断することができる。この場合、ECU70は、次に、現在の空燃比制御がリーン制御であるか否かを判別する(ステップ144)。
上記ステップ144の判別が否定された場合は、現在の空燃比制御がストイキ制御であると判断できる。そして、その場合は、現在の空燃比がストイキ領域に属し、かつ、最適換気条件の空燃比もストイキ領域に属すると判断できる。空燃比が継続的にストイキ領域に維持される場合は、三元触媒58により排気ガスを適切に浄化し続けることができる。ECU70は、この場合も、排気特性を損なうことなく最適換気運転への移行が可能であると判断して以後速やかにステップ142の処理を行う。
一方、上記ステップ144において、現在の空燃比制御がリーン制御であると判別された場合は、最適換気運転の開始に伴って、リーン領域にある空燃比が中間領域を跨いでストイキ領域に変化すると判断できる。ECU70は、この場合次に、NSR触媒60のNOx吸蔵量がNOx放出を要求する判定値以上であるかを判別する(ステップ146)。
空燃比が中間領域を跨いで変化する際には、一時的に多量のNOxが生成される。その際、NSR触媒60に十分なNOx吸蔵容量が確保されていれば、生成されたNOxはNSR触媒60に捕獲され、大気には放出されない。上記ステップ146の判別が否定された場合は、NSR触媒60に十分なNOx吸蔵容量が残されていると判断できる。この場合、ECU70は、NOxが大気放出されることはないと判断して速やかにステップ142の処理を実行する。
他方、上記ステップ146において、NOx吸蔵量が判定値以上であると判定された場合は、空燃比が中間領域を跨ぐ際にNOxの大気放出が生じ得ると判断できる。この場合、ECU70は、リッチ制御を実行した後、最適換気条件での運転を要求する(ステップ148)。リッチ制御が行われると、NSR触媒60は、NOxを放出してNOx吸蔵能力を回復する。NSR触媒60がNOx吸蔵能力を回復した後であれば、空燃比が中間領域を跨いで変化しても、生成されるNOxはNSR触媒60に捕獲され大気には放出されない。このため、上記の処理によれば、最適換気運転の開始に伴って空燃比がリーン領域からストイキ領域に変化する場合においても、良好な排気特性を維持することができる。
図6に示すルーチンでは、上記の処理に続いて、クランクケース24内のNOx濃度及びCO2濃度が、夫々の換気終了判定値以下に低下したか否かが判別される(ステップ150)。その結果、何れかの濃度が未だ換気終了判定値まで下がっていないと判別された場合は、ステップ100以降の処理が繰り返される。そして、NOx濃度もCO2濃度も換気終了判定値以下に下がったと判別された場合は、最適換気条件での運転要求が取り下げられた後、今回のルーチンが終了される。
以上説明した通り、本実施形態によれば、PCVバルブ28による自然換気の結果、クランクケース内のNOx濃度又はCO2濃度が要求判定値にまで上昇した場合には、最適換気運転を行うことでケース内ガスの換気量を増やすことができる。この際、空燃比の変化は、許容空燃比範囲の中に収められる。また、最適換気運転への移行に伴って空燃比が中間領域を跨ぐ際には、必要に応じてNSR触媒60の回復処理(リッチ制御)も実行される。更に、最適換気運転では、等しい機関トルクを維持する燃料噴射量Fが用いられる。このため、本実施形態によれば、排気特性を損なうことなく、かつ、ドライバビリティを損なうことなく、最小の燃費で適切な換気促進を実現することができる。
[実施の形態1の変形例]
ところで、上述した実施の形態1では、PCVバルブ28がクランクケース24の内部空間に連通する構成を用いているが、その構成はこれに限定されるものではない。例えば、クランクケース24の内部空間とヘッドカバー内側の空間とが繋がっているような場合には、PCVバルブ28をシリンダヘッドの内部空間に連通させることとしてもよい。
また、上述した実施の形態1では、クランクケース内のNOx濃度又はCO2濃度が換気判定値に達した段階で換気要求を発生することとしているが、換気要求の発生手法はこれに限定されるものではない。換気要求は、例えば、所定の時間毎に周期的に発生させることとしてもよい。また、換気要求は、所定の走行距離毎に適宜発生させることとしてもよい。
また、上述した実施の形態1では、クランクケース内のNOx濃度及びCO2濃度に基づいて要求換気量Vを設定し、その要求換気量Vが満たされるように換気条件を設定することとしているが、本発明はこれに限定されるものではない。例えば、要求換気量Vは、現在の換気量を越える任意の値とし、その要求換気量Vが満たされるように換気条件を設定することとしてもよい。
また、上述した実施の形態1では、換気の促進を開始するに当たって空燃比がリーン領域からストイキ領域に変化する場合にのみリッチ制御を実行することとしているが、本発明はこれに限定されるものではない。即ち、上記のリッチ制御は、換気の促進を開始するに当たって空燃比がストイキ領域からリーン領域に変化する場合にも、併せて実行することとしてもよい。
また、上述した実施の形態1では、許容空燃比範囲をECU70が車両上で算出することとしているが、許容空燃比範囲は、予め適合作業により内燃機関10に対して実験的に定めておくこととしてもよい。例えば、許容空燃比範囲は、回転速度NE、機関負荷KL(吸入空気量Ga)、空燃比A/F、点火時期、吸気弁特性InVVT、燃料噴射時期、筒内とポートの燃料噴き分け率等、燃焼耐圧に影響を及ぼすパラメータの少なくとも一部を軸として適合作業により予めマップ化しておくことができる。ECU70は、そのマップを記憶しておき、内燃機関10の運転状態に応じてそのマップから許容空燃比範囲を読み出すこととしてもよい。
尚、以上四点については、以下に説明する実施の形態2の場合も同様である。
また、上述した実施の形態1では、許容空燃比範囲の中で最小燃費を実現する空燃比A/F(i)を特定して、最適換気条件で換気を促進することとしているが、本発明はこれに限定されるものではない。例えば、最小燃費の要件を外して、要求換気量Vを満たす換気条件で換気を促進することとしてもよい。この変形例は、例えば、図6に示すステップ110において、下記の処理を行うことにより実現することができる。
1.要求換気量Vを満たすA/FとPinの組み合わせを一つ特定する。
2.その組み合わせに対して、F、Ga及びInVVTを実施の形態1の場合と同様の手法で特定する。
3.上記1及び2の処理により特定した各種パラメータの組み合わせを、最適換気条件に代わる換気条件として設定する。
実施の形態2.
[実施の形態2の構成]
図19は、本発明の実施の形態2の構成を説明するための図である。以下、図19において、図1に示す要素と同一の要素については、同一の符号を付してその説明を省略又は簡略する。
図19に示す構成は、内燃機関10の吸気通路30にエゼクタ80を備える点を除いて図1に示す構成と同様である。エゼクタ80は、ガス通路82を介してオイルセパレータ26と連通している。また、エゼクタ80は、高圧通路84を介してコンプレッサ38の下流に連通している。更に、エゼクタ80は、低圧通路86を介してコンプレッサ38の上流に連通している。
内燃機関10の運転中に、過給圧Pscが上昇すると、高圧通路84と低圧通路86に差圧が生ずる。その結果、エゼクタ80の内部には、高圧通路84から低圧通路86に向かう空気の流れが生ずる。エゼクタ80は、その空気の流れを利用してガス通路82からケース内ガスを吸引する。吸引されたケース内ガスは、エゼクタ80内を流れる空気と共にコンプレッサ38の上流側に流入する。
このように、エゼクタ80は、コンプレッサ38の下流に生ずる過給圧Pscと、コンプレッサ38の上流における大気圧との差圧を利用してケース内ガスの換気を図ることができる。このため、本実施形態の構成によれば、PCVバルブ28による換気量Ventpcvと、エゼクタ80による換気量Ventejeとを合わせた総換気量Ventsum=Ventpcv+Ventejeがケース内ガスの換気量となる。
[実施の形態2の特徴]
上述した実施の形態1では、要求換気量Vを満たす換気量VentpcvをPCVバルブ28に発生させる条件のうち、燃費Fuelpcvを最小とする条件が最適換気条件とされる。これに対して、本実施形態では、要求換気量Vを満たす総換気量Ventsumを最小燃費で発生させる条件が最適換気条件となる。以下、このような最適換気条件を設定して内燃機関10を制御するために、本実施形態においてECU70が実行する処理の内容を、図20乃至図34を参照して説明する。
(実施の形態2のフローチャート)
図20は、本実施形態においてECU70が実行するメインルーチンのフローチャートである。ECU70は、内燃機関10の始動後、所定の周期で図20に示すルーチンを実行する。図20に示すルーチンは、ステップ110が、ステップ152及び154に変更されている点を除いて図6に示すルーチンと同様である。以下、図20において、図6に示すステップと同一のステップについては、共通する符号を付してその説明を省略又は簡略する。
図20に示すルーチンでは、ステップ108でPCVバルブ28の換気量Ventpcvと燃費Fuelpcvとの関係が算出された後、エゼクタ80を対象として同様の処理が実行される。具体的には、許容空燃比範囲の中で、エゼクタ80による換気量Ventejeとその換気に伴う燃料消費(燃費)Fuelejeとの間に成立する関係が算出される(ステップ152)。
次に、ステップ108で算出した関係と、ステップ152で算出した関係に基づいて、最適換気条件が算出される(ステップ154)。尚、本実施形態における最適換気条件は、総換気量Ventsumが要求換気量Vを満たす条件のうち、PCVバルブ28の換気に起因する燃費Fuelpcvとエゼクタ80の換気に起因する燃費Fuelejeとの和(以下、「総燃費Fuelsum」とする)を最小とする条件である。
ステップ154以降、ECU70は、実施の形態1の場合と同様にステップ140〜150の処理を実行する。
図21は、上記ステップ152において実行される処理の詳細を説明するためのフローチャートである。図21に示すように、ステップ152では先ず、許容空燃比範囲の中で空燃比A/F(i)が仮決めされる(ステップ156)。
次に、燃料噴射量Fと吸入空気量Gaとが仮決めされる(ステップ158)。本ステップ158の処理は、図8に示すステップ114の場合と同様に行われる。具体的には、図9に示す関係に基づいて、仮決めされた空燃比A/F(i)の下で等しい機関トルクTRQを維持する噴射量Fが仮決めされる。更に、その噴射量Fの下で空燃比A/F(i)を実現する吸入空気量Gaが仮決めされる。
次に、Pin-InVVT関係が特定される(ステップ160)。本ステップ160の処理は、図8のステップ116の場合と同様に行われる。具体的には、図11に示す複数の特性のうち、仮決めされたGaに対応するものがPin-InVVT関係として特定される。尚、図11においてGa毎に定められている個々の特性は、吸気マニホールド圧Pinの実用範囲、及び吸気弁特性InVVTの可動範囲について定められているものとする。
次に、吸気マニホールド圧Pinが仮決めされる(ステップ162)。上記の通り、Pin-InVVT関係は、Pinの実用範囲について定められている。本ステップ162では、その実用範囲の中でPinが任意の値に仮決めされる。以下、ここで仮決めされたPinを特に「Pin(j)」とする。本ステップ162が実行される段階ではPin-InVVT関係が特定されているため、Pin(j)が仮決めされれば、InVVTも仮決めされることになる。
以上説明した通り、図21に示す一連の処理では、ステップ162が実行された段階で、空燃比A/F、燃料噴射量F、吸入空気量Ga、吸気マニホールド圧Pin、及び吸気弁特性InVVTが仮決めされた状態となる。以下、これらのパラメータを「燃焼系パラメータ」と称す。内燃機関10において、燃焼パラメータが固定されると、残されたパラメータはスロットル開度TAとウェストゲート開度W/Gの二つとなる。そして、これら二つのパラメータは、何れも内燃機関10の燃費に影響を与えるパラメータである。
図22は、「燃焼系パラメータ」固定の状態で、内燃機関10のスロットル開度TAと燃費との間に成立する関係の一例を示している。上述した通り、PCVバルブ28の換気量Ventpcvは、吸気マニホールド圧Pinにより決定される。Pinは燃焼系パラメータに含まれているため、その換気量Ventpcvはスロットル開度TAとは無関係である。従って、スロットル開度TAと相関を持つ燃費は、エゼクタ80の換気にのみ関連を持つことになる。この点を明確にするため、図22の縦軸タイトルは、「燃費Fueleje」としている。
内燃機関10においては、スロットル開度TAが大きいほど、ポンプ損が低下し、かつ、コンプレッサ38の負荷が軽減される。図22は、それらの影響により、TAが小さいほど燃料消費が多量となり、TAが大きくなるに従って燃費が改善される様子を示している。
図23は、「燃焼系パラメータ」固定の状態で、ウェストゲート開度W/Gと燃費Fuelejeとの間に成立する関係の一例を示している。図23の縦軸タイトルも、図22の場合と同様の理由により「燃費Fueleje」としている。
内燃機関10においては、ウェストゲート開度W/Gが大きいほど、排気ガスがバイパス通路54を通過し易くなり、排気損失が低下する。図23は、その排気損失の影響により、W/Gが小さいほど燃料消費が多量となり、W/Gが大きくなるに連れて燃費が改善される様子を示している。
このように、スロットル開度TA及びウェストゲート開度W/Gは、エゼクタ80の換気に起因する燃費Fuelejeに対して夫々相関を有している。ここで、上述した「燃焼系パラメータ」に加えてウェストゲート開度W/Gを固定すると、スロットル開度TAと燃費Fuelejeの関係を図22のように特定することができる。そして、本実施形態のECU70は、ウェストゲート開度W/Gが固定されると、上記の「燃焼系パラメータ」に基づいて、そのW/Gの下で成立するTA-Fueleje関係を算出することができる。
図21に示す一連の処理では、上記ステップ162の処理に続いて、そのTA-Fueleje関係の算出が進められる。具体的には、先ず、ウェストゲート開度W/Gが、実用範囲内の任意の値W/G(k)に仮決めされる(ステップ164)。
次に、ECU70は、仮決めされている燃焼系パラメータ及びW/G(k)に基づいて、スロットル開度TAと燃費Fuelejeとの間に成立する関係を算出する(ステップ166)。この処理は、空燃比A/FがA/F(i)に、吸気マニホールド圧PinがPin(j)に、また、ウェストゲート開度W/GがW/G(k)に、夫々仮決めされた状態で行われる。ステップ166の枠内には、この点を明確にするためFuelejeに(ijk)の記号を添付している。
上記の処理が終わると、次に、実用範囲の全域についてW/G(k)の展開が終了しているか否かが判別される(ステップ168)。その結果、未だW/G(k)の展開が終了していないと判別された場合は、W/G(k)の値を変えて上記ステップ164以降の処理が再び実行される。
一方、W/G(k)の展開が終了したと判別された場合は、(TA,W/G)と燃費Fuelejeとの関係が記憶される(ステップ170)。
図24は、本ステップ170で記憶される(TA,W/G)-Fueleje関係の一例を模式的に表したものである。
尚、本ステップ170が実行される段階では、W/Gの展開が終わり、W/G(k)の仮決めが解除されている。このため、ステップ170の枠内、及び図24の縦軸タイトルには、A/F(i)とPin(j)が仮決めの状態であることを表すべく (ij)の記号を添付している。
内燃機関10において、スロットル開度TA及びウェストゲート開度W/Gは、燃費Fuelejeを決める因子であると共に、過給圧Pscを決める因子でもある。
図25は、スロットル開度TAと過給圧Pscとの間に成立する関係を示す。図25に示す関係からは、下記の現象を読み取ることができる。
1.スロットル開度TAが同じであれば、過給圧Pscが高いほど吸気マニホールド圧Pinが高くなる。
2.過給圧Pscが同じであれば、スロットル開度TAが大きいほど吸気マニホールド圧Pinが高くなる。
3.吸気マニホールド圧Pinを一定に保つためには、過給圧Pscが高いほどスロットル開度TAを小さくし、他方、スロットル開度TAが大きいほど過給圧Pscを下げる必要がある。
ECU70は、内燃機関10に関して図25に示す関係を記憶している。このため、ECU70は、吸気マニホールド圧Pinが仮決めされている状況下では、TA-Psc関係を特定することができる。
図26は、ウェストゲート開度W/Gと過給圧Pscとの間に成立する関係を示す。図26に示す関係からは、W/G開度が小さいほど、ターボチャージャ36の効率が上がって過給圧Pscが高まる現象を読み取ることができる。
このように、スロットル開度TAとウェストゲート開度W/Gは、何れも過給圧Pscに対して相関を有している。そして、内燃機関10においては、それらの一方を、上記の「燃焼系パラメータ」と共に固定すれば、それらの他方と過給圧Pscとの関係を一義的に特定することができる。例えば、「燃焼系パラメータ」と共にウェストゲート開度W/Gを固定すれば、スロットル開度TAと過給圧Pscの関係は、図25に示す複数の特性のうちの一つに特定することができる。そして、本実施形態のECU70は、ウェストゲート開度W/Gが固定されると、上記の「燃焼系パラメータ」に基づいて、そのW/Gの下で成立するTA-Psc関係を算出することができる。
図21に示す一連の処理では、上記ステップ170の処理に続いて、そのTA-Psc関係の算出が進められる。具体的には、先ず、ウェストゲート開度W/Gが、実用範囲内の任意の値W/G(k)に仮決めされる(ステップ172)。
次に、ECU70は、仮決めされている燃焼系パラメータ及びW/G(k)に基づいて、スロットル開度TAと過給圧Pscとの間に成立する関係を算出する(ステップ174)。この処理は、空燃比A/FがA/F(i)に、吸気マニホールド圧PinがPin(j)に、また、ウェストゲート開度W/GがW/G(k)に、夫々仮決めされた状態で行われる。ステップ174の枠内には、この点を明確にするためPscに(ijk)の記号を付している。
上記の処理が終わると、次に、実用範囲の全域についてW/G(k)の展開が終了しているか否かが判別される(ステップ176)。その結果、未だW/G(k)の展開が終了していないと判別された場合は、W/G(k)の値を変えて上記ステップ172以降の処理が再び実行される。
一方、W/G(k)の展開が終了したと判別された場合は、(TA,W/G)と過給圧Pscとの関係が記憶される(ステップ178)。
図27は、本ステップ178で記憶される(TA,W/G)-Psc関係の一例を模式的に表したものである。尚、本ステップ178が実行される段階では、W/Gの展開が終わり、W/G(k)の仮決めが解除されている。このため、ステップ178の枠内、及び図27の縦軸タイトルには、A/F(i)とPin(j)が仮決めされていることを表すべく (ij)の記号を添付している。
上記の処理が終わると、次に、過給圧Pscを、エゼクタ80の換気量Ventejeに変換する処理が行われる(ステップ180)。
図28は、エゼクタの換気量Ventejeと過給圧Pscとの間に成立する関係を示す。内燃機関10が備えるエゼクタ80は、上述した通り、コンプレッサ38の上下差圧、大気圧と過給圧Pscとの差圧を利用してケース内ガスを換気する。このため、その換気量Ventejeは、図28に示すように過給圧Pscに対応した値となる。ECU70は、図28に示す関係を記憶している。本ステップ180では、その関係に基づいて、上記ステップ178で記憶された(TA,W/G)-Psc(ij)関係が、(TA,W/G)-Venteje(ij)関係に変換される。
次に、エゼクタ80に関する燃費Fuelejeと換気量Ventejeの関連付けが行われる(ステップ182)。
図29は、本ステップ182の処理により得られる結果の一例を模式的に表したものである。上記ステップ170で記憶された(TA,W/G)-Fueleje(ij)関係も、上記ステップ182で変換された(TA,W/G)-Venteje(ij)関係も、TAとW/Gの二つの軸を有している。このため、燃費Fuelejeと換気量Ventejeとは、それら二つの軸(TA,W/G)を仲介軸とすることで、図29に示すように関連付けることができる。
以上の処理が終わると、図29に示す関係に、PCVバルブ28に関する燃費Fuelpcv及び換気量Ventpcvを反映させるための処理が行われる(ステップ184)。上述した通り、図29に示す関係は、空燃比をA/F(i)に、吸気マニホールド圧をPin(j)に、夫々仮決めして求めた関係である。ECU70は、図15に示す関係から、A/F(i)とPin(j)の組み合わせの下で発生する燃費Fuelpcv(ij)並びに換気量Ventpcv(ij)を読み出すことができる。本ステップ184では、具体的には、そのようにして読み出された燃費Fuelpcv(ij)及び換気量Ventpcv(ij)が、図29に示す燃費Fueleje及び換気量Ventejeに夫々加算される。
図30は、上記ステップ184の処理により生成された関係の一例を示す。図30に示すように、上記の処理によれば、仮決めされたA/F(i)及びPin(j)の下で、(TA,W/G)をパラメータとして、総燃費Fuelsumと総換気量Ventsumとを関連付けることができる。
上記の処理が終わると、次に、実用範囲の全域についてPin(j)の展開が終了しているか否かが判別される(ステップ186)。その結果、未だPin(j)の展開が終了していないと判別された場合は、Pin(j)の値を変えて上記ステップ162以降の処理が再び実行される。一方、Pin(j)の展開が終了していると判別された場合は、吸気マニホールド圧Pinの全域について、必要なデータ収集が終わったと判断することができる。
図31は、上記ステップ186が終了した段階でECU70に蓄積されている総燃費Fuelsumと総換気量Ventsumの関係の一例を模式的に表したものである。ここでは、吸気マニホールド圧Pinの展開が終わり、Pin(j)の仮決めが解除されている。このため、図31の縦軸タイトルには、A/F(i)が仮決めの状態であることを明示するべく (i)の記号を付している。以下、記号(i)、(ij)及び(ijk)については、上記同様のルールで用いることとし、個々の箇所での説明を省略する。
図21に示す一連の処理では、次に、許容空燃比範囲の全域についてA/F(i)の展開が終了しているか否かが判別される(ステップ188)。その結果、未だA/F(i)の展開が終了していないと判別された場合は、A/F(i)の値を変えて上記ステップ156以降の処理が再び実行される。一方、A/F(i)の展開が終了していると判別された場合は、図21に示す一連の処理が終了される。
図32は、図21に示す一連の処理が終了した段階でECU70に蓄積されている総燃費Fuelsumと総換気量Ventsumの関係の一例を模式的に表したものである。図32に示すように、上記の処理によれば、A/F、Pin、W/G、TAをパラメータとして、PCVバルブ28とエゼクタ80の双方により実現される総燃費Fuelsum及び総換気量Ventsumを、適切に定めることができる。
図33は、図20に示すメインルーチン中、ステップ154において実行される処理の詳細を説明するためのフローチャートである。図33に示す一連の処理は、上述した図32に示す関係に基づいて、要求換気量Vを満たす総換気量Ventsumを、最小の総燃費Fuelsumで実現する運転状態を算出するために実行される。
図33に示す一連の処理では、先ず、空燃比A/F(i)の仮決めが行われる(ステップ190)。本ステップ190の処理は、図32に示す情報に対して行われる。図32に示す情報は、図31に示す総燃費Fuelsum(i)及び総換気量Ventsum(i)の関係を許容空燃比範囲の全域について展開したものである。従って、図32に示す情報に対してA/F(i)を仮決めすると、図31に示すのと同様の関係が特定されることになる。
続いて、吸気マニホールド圧Pin(j)の仮決め(ステップ192)と、ウェストゲート開度W/G(k)の仮決め(ステップ194)が、順次行われる。これらの処理も図32に示す情報に対して行われる。ステップ192の処理によれば、図30に示すのと同様の関係が特定されることになる。また、ステップ194の処理によれば、図30からW/G軸を消去したものと同様の関係が特定されることになる。
上記の処理が終わると、次に、特定された総燃費Fuelsum及び総換気量Ventsumの関係に基づいて、要求換気量Vを満たす総換気量Ventsumを発生させるTA(ijk)が抽出される(ステップ196)。
図34は、上記ステップ194で特定された関係に、要求換気量Vを追記した図である。図34に示す例によれば、総換気量Ventsumが要求換気量Vを満たすのは、スロットル開度TAがTA≦TA1を満たす場合である。従って、この場合はTA1以下のTAが、要求換気量Vを満たすTA(ijk)として抽出される。
次に、上記の処理で抽出したTA(ijk)の中で、総燃費Fuelsumを最小とするTA(ijk)が特定される(ステップ198)。図34に示す例によれば、総燃費Fuelsumを最小とするのはTA1である。従って、この場合はTA1が最小燃費のTA(ijk)として特定される。
上記の処理が終わると、次に、実用範囲の全域について、W/G(k)の展開が終わっているか否かが判別される(ステップ200)。W/G(k)の展開が終了していない場合は、W/G(k)を変えて上記ステップ194以降の処理が再び実行される。そして、その展開が終了していると判別された場合は、最小燃費のTA(ijk)をW/Gの実用領域の全域で抽出し終えたと判断することができる。
図33に示す一連の処理では、次に、最小燃費のTA(ijk)により実現される総燃費Fuelsum(ijk)が読み出される(ステップ202)。図34に示す例によれば、最小燃費のTA(ijk)はTA1である。そして、TA1により実現される総燃費Fuelsum(ijk)はFuelsum1である。従って、この場合はFuelsum1がFuelsum(ijk)として読み出される。本ステップ202の処理は、上記ステップ198で抽出した全てのTA(ijk)について行われる。
図35は、W/GとTAの二次元座標中に複数のFuelsum(ijk)を棒グラフにより示した図である。上記ステップ202の処理によれば、W/Gの実用範囲の全域から、図35に示す全ての棒の高さが読み出されることになる。
次に、読み出された全ての総燃費Fuelsum(ijk)の中で最も値の小さいものが特定される。そして、その最小のFuelsum(ijk)を実現するW/GとTAの組み合わせが特定される(ステップ204)。以上の処理によれば、仮決めされたA/F(i)及びPin(j)の下で、要求換気量Vを満たす総換気量Ventsum(ij)を発生させ、かつ、総燃費Fuelsum(ij)を最小とする組み合わせ(W/G,TA)(ij)を特定することができる。
上記の処理が終わると、次に、実用範囲の全域について、Pin(j)の展開が終わっているか否かが判別される(ステップ206)。Pin(j)の展開が終了していない場合は、Pin(j)を変えて上記ステップ192以降の処理が再び実行される。そして、その展開が終了していると判別された場合は、最小燃費の(W/G,TA)(ij)をPinの実用範囲の全域で抽出し終えたと判断することができる。
図33に示す一連の処理では、次に、最小燃費の(W/G,TA)(ij)により実現される総燃費Fuelsum(ij)が読み出される(ステップ208)。この処理は、上記ステップ204で抽出した全ての(TA,W/G)(ij)について行われる。続いて、読み出された全ての総燃費Fuelsum(ij)の中で最も値の小さいものが特定される。そして、その最小のFuelsum(ij)を実現する(W/G,TA,Pin)の組み合わせが特定される(ステップ210)。これらの処理は、上述したステップ202及び204の処理と同様に行われる。以上の処理によれば、仮決めされたA/F(i)の下で、要求換気量Vを満たす総換気量Ventsum(i)を発生させ、かつ、総燃費Fuelsum(i)を最小とする組み合わせ(W/G,TA,Pin)(i)を特定することができる。
次に、許容空燃比範囲の全域について、A/F(i)の展開が終わっているか否かが判別される(ステップ212)。A/F(i)の展開が終了していない場合は、A/F(i)を変えて上記ステップ190以降の処理が再び実行される。そして、A/F(i)の展開が終了していると判別された場合は、最小燃費を実現する(W/G,TA,Pin)(i)を許容空燃比範囲の全域で抽出し終えたと判断することができる。
上記の処理が終わると、次に、最小燃費の(W/G,TA,Pin)(i)により実現される総燃費Fuelsum(i)が読み出される(ステップ214)。この処理は、上記ステップ210で抽出した全ての(TA,W/G,Pin)(i)について行われる。続いて、読み出された全ての総燃費Fuelsum(i)の中で最も値の小さいものが特定される。そして、その最小のFuelsum(i)を実現する(W/G,TA,Pin,A/F)の組み合わせが特定される(ステップ216)。これらの処理は、上述したステップ202及び204の処理と同様に行われる。以上の処理によれば、要求換気量Vを満たす総換気量Ventsumを発生させ、かつ、取り得る全ての組み合わせの中で総燃費Fuelsumを最小とする組み合わせ(W/G,TA,Pin,A/F)を特定することができる。
上記の処理に続いて、最小燃費で要求換気量Vを満たすための最適換気条件が特定される。つまり、上記ステップ218で特定された(W/G,TA,Pin,A/F)と共に用いるべき他のパラメータ(F,Ga,InVVT)が特定される(ステップ218)。本ステップ218で行われる具体的処理の内容は、図16に示すステップ138の場合と同様である。
以上の処理によれば、PCVバルブ28とエゼクタ80に、最小燃費で要求換気量Vを満たす総換気量Ventsumを発生させる内燃機関10の運転条件を特定することができる。ここで特定される空燃比A/F及び燃料噴射量Fは、実施の形態1の場合と同様に、排気特性及びドライバビリティを良好に維持する値とされている。このため、本実施形態によれば、実施の形態1の場合と同様に、排気特性及び運転特性を損なうことなく、クランクケース24の換気を適切に促進することができる。
更に、本実施形態では、クランクケース24の換気を、PCVバルブ28とエゼクタ80の双方を用いて行うこととしている。PCVバルブ28とエゼクタ80は、夫々異なる条件下で高い換気能力を発揮する。このため、本実施形態によれば、実施の形態1の場合に比して更に広い運転範囲の下で、良好な換気能力を確保することができる。
[実施の形態2の変形例]
ところで、上述した実施の形態2では、最小燃費を実現する空燃比A/F(i)を特定して、最適換気条件で換気を促進することとしているが、本発明はこれに限定されるものではない。例えば、最小燃費の要件を外して、要求換気量Vを満たす換気条件で換気を促進することとしてもよい。この変形例は、例えば、図20に示すステップ154において、下記の処理を行うことにより実現することができる。
1.要求換気量Vを満たすA/F、Pin、W/G及びTAの組み合わせを一つ特定する。
2.その組み合わせに対して、F、Ga及びInVVTを実施の形態1の場合と同様の手法で特定する。
3.上記1及び2の処理により特定した各種パラメータの組み合わせを、最適換気条件に代わる換気条件として設定する。
10 内燃機関
26 オイルセパレータ
28 PCVバルブ
36 ターボチャージャ
38 コンプレッサ
42 過給圧センサ
44 スロットル弁
48 吸気圧センサ
56 ウェストゲートバルブ(WGV)
58 三元触媒
60 NOx吸蔵還元触媒(NSR触媒)
70 電子制御ユニット(ECU)
80 エゼクタ
A/F 空燃比
Pin 吸気マニホールド圧
W/G ウェストゲート開度
TA スロットル開度
Fuelpcv PCVバルブの換気に起因する燃費
Fueleje エゼクタの換気に起因する燃費
Ventpcv PCVバルブの換気量
Venteje エゼクタの換気量
Fuelsum FuelpcvとFuelejeを合わせた総燃費
Ventsum VentpcvとVentejeを合わせた総換気量

Claims (13)

  1. ケース内ガスを吸気通路に吸引させてクランクケースの換気を図るPCVバルブと、排気通路に配置された三元触媒及びNOx吸蔵還元触媒と、内燃機関に関わるアクチュエータを駆動する電子制御ユニットとを備える内燃機関の制御装置であって、
    前記電子制御ユニットは、
    理論空燃比を含むストイキ領域で前記内燃機関を作動させるストイキ制御と、前記ストイキ領域よりリーンなリーン領域で前記内燃機関を作動させるリーン制御とを実行し、
    前記クランクケースの換気要求が生じた際に、
    混合気の空燃比、燃料噴射量、及び吸気マニホールド圧の組み合わせの中で、前記ケース内ガスの単位時間当たりの換気量を増量させる組み合わせを換気条件として抽出し、かつ、空燃比、燃料噴射量、及び吸気マニホールド圧を当該換気条件に従って変更し、
    空燃比に関する前記抽出は、前記三元触媒と前記NOx吸蔵還元触媒とで排気ガスを浄化することができ、かつ、前記混合気の筒内燃焼を担保することができる許容空燃比範囲の中で行い、
    前記換気条件として抽出される空燃比と燃料噴射量とは、前記変更の前後で等機関トルクを維持する関係を満たしていることを特徴とする内燃機関の制御装置。
  2. 前記電子制御ユニットは、前記換気要求が生じた際に、前記ケース内ガスの単位時間当たりの要求換気量を設定し、
    前記換気条件は、前記換気量が当該要求換気量を満たす条件であることを特徴とする請求項1に記載の内燃機関の制御装置。
  3. 前記換気条件は、前記許容空燃比範囲内の空燃比、等機関トルクを維持する燃料噴射量、及び吸気マニホールド圧の組み合わせの中で、最小燃費で前記要求換気量を満たす組み合わせであることを特徴とする請求項2に記載の内燃機関の制御装置。
  4. 前記電子制御ユニットは前記換気要求が生じた際に、
    (1−1)前記許容空燃比範囲の中で空燃比を仮決めし、
    (1−2)仮決めされた空燃比と当該空燃比の下で等機関トルクを維持する燃料噴射量との組み合わせに対して最小燃費で前記要求換気量を満たす吸気マニホールド圧を特定する特定処理を実行し、
    (2)前記許容空燃比範囲に含まれる複数の空燃比の夫々について、前記特定処理を繰り返し実行し、
    (3)前記特定処理により特定された全ての吸気マニホールド圧の中で最小燃費を実現する吸気マニホールド圧と、当該吸気マニホールド圧を特定する特定処理の際に用いられた空燃比及び燃料噴射量との組み合わせを、前記換気条件として抽出することを特徴とする請求項3に記載の内燃機関の制御装置。
  5. 吸気量を制御するスロットル弁と、
    ウェストゲートバルブを備える過給機と、
    当該過給機のコンプレッサの前後に生ずる差圧を用いて前記クランクケースの換気を図るエゼクタと、を更に備え、
    前記換気条件は、混合気の空燃比、燃料噴射量、吸気マニホールド圧、スロットル開度、及びウェストゲート開度の組み合わせの中で、前記PCVバルブと前記エゼクタの双方で実現される単位時間当たりの総換気量を増量させる組み合わせであることを特徴とする請求項1に記載の内燃機関の制御装置。
  6. 前記電子制御ユニットは、前記換気要求が生じた際に、前記ケース内ガスの単位時間当たりの要求換気量を設定し、
    前記換気条件は、前記総換気量が当該要求換気量を満たす条件であることを特徴とする請求項5に記載の内燃機関の制御装置。
  7. 前記換気条件は、前記許容空燃比範囲内の空燃比、等機関トルクを維持する燃料噴射量、吸気マニホールド圧、スロットル開度、及びウェストゲート開度の組み合わせの中で、最小燃費で前記要求換気量を満たす組み合わせであることを特徴とする請求項6に記載の内燃機関の制御装置。
  8. 前記電子制御ユニットは前記換気要求が生じた際に、
    (1−1)前記許容空燃比範囲の中で空燃比を仮決めし、
    (1−2)前記吸気マニホールド圧を実用範囲の中で仮決めし、
    (1−3)仮決めされた吸気マニホールド圧及び空燃比と、当該空燃比の下で前記等機関トルクを発生する燃料噴射量との組み合わせに対して、最小燃費で前記要求換気量を満たすスロットル開度とウェストゲート開度のペアを特定する特定処理を実行し、
    (2)前記許容空燃比範囲に含まれる複数の空燃比と前記実用範囲に含まれる複数の吸気マニホールド圧との組み合わせの夫々について、前記特定処理を繰り返し実行し、
    (3)前記特定処理の実行により特定されたスロットル開度とウェストゲート開度の全てのペアの中で最小燃費を実現するペアと、当該ペアを特定する特定処理の際に用いられた空燃比、燃料噴射量、及び吸気マニホールド圧との組み合わせを前記換気条件として抽出することを特徴とする請求項7に記載の内燃機関の制御装置。
  9. 前記電子制御ユニットは、
    前記クランクケース内のNOx濃度を検知し、
    前記NOx濃度に基づいて前記要求換気量を設定することを特徴とする請求項2乃至4及び6乃至8の何れか1項に記載の内燃機関の制御装置。
  10. 前記電子制御ユニットは、
    前記クランクケース内のCO2濃度を検知し、
    前記CO2濃度に基づいて前記要求換気量を設定することを特徴とする請求項2乃至4及び6乃至9の何れか1項に記載の内燃機関の制御装置。
  11. 前記電子制御ユニットは、
    前記クランクケース内のNOx濃度を検知し、
    前記NOx濃度が閾値に達したら前記換気要求の発生を認識することを特徴とする請求項1乃至10の何れか1項に記載の内燃機関の制御装置。
  12. 前記電子制御ユニットは、
    前記クランクケース内のCO2濃度を検知し、
    前記CO2濃度が閾値に達したら前記換気要求の発生を認識することを特徴とする請求項1乃至11の何れか1項に記載の内燃機関の制御装置。
  13. 前記許容空燃比範囲は、前記ストイキ領域と前記リーン領域とで構成されており、
    前記ストイキ領域と前記リーン領域との間には、前記三元触媒と前記NOx吸蔵還元触媒とでは排気ガス中のNOxが浄化できない中間領域が存在し、
    前記電子制御ユニットは、
    前記換気要求の発生を受けて前記空燃比を変更する際に、当該空燃比が前記中間領域を跨いで変化する場合には、その変更に先立って、前記NOx吸蔵還元触媒のNOx吸蔵容量の回復が認められるまで混合気の空燃比を理論空燃比よりリッチとするリッチ制御を実行することを特徴とする請求項1乃至12の何れか1項に記載の内燃機関の制御装置。
JP2015161001A 2015-08-18 2015-08-18 内燃機関の制御装置 Active JP6269616B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015161001A JP6269616B2 (ja) 2015-08-18 2015-08-18 内燃機関の制御装置
US15/187,944 US10138784B2 (en) 2015-08-18 2016-06-21 Controller for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015161001A JP6269616B2 (ja) 2015-08-18 2015-08-18 内燃機関の制御装置

Publications (2)

Publication Number Publication Date
JP2017040176A true JP2017040176A (ja) 2017-02-23
JP6269616B2 JP6269616B2 (ja) 2018-01-31

Family

ID=58158203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015161001A Active JP6269616B2 (ja) 2015-08-18 2015-08-18 内燃機関の制御装置

Country Status (2)

Country Link
US (1) US10138784B2 (ja)
JP (1) JP6269616B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200076729A (ko) * 2017-11-14 2020-06-29 비테스코 테크놀로지스 게엠베하 내연기관용 크랭크케이스 환기 라인을 진단하기 위한 방법 및 디바이스
WO2022065105A1 (ja) * 2020-09-24 2022-03-31 いすゞ自動車株式会社 クリアランス推定装置、摺動制御装置、クリアランス推定方法および摺動制御方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018203491A1 (de) * 2018-03-08 2019-09-12 Bayerische Motoren Werke Aktiengesellschaft Brennkraftmaschine mit einer Kurbelgehäuseentlüftung und Verfahren zur Detektion einer Leckage
CN110646209A (zh) * 2019-09-25 2020-01-03 一汽解放汽车有限公司 一种闭式曲轴箱通风系统obd检测装置
DE102021213901B3 (de) 2021-12-07 2023-02-02 Vitesco Technologies GmbH Verfahren zum Überwachen der Entlüftung eines Kurbelgehäuses einer Brennkraftmaschine und Brennkraftmaschine
JP2023167567A (ja) * 2022-05-12 2023-11-24 トヨタ自動車株式会社 内燃機関制御装置
JP2024007819A (ja) * 2022-07-06 2024-01-19 トヨタ自動車株式会社 内燃機関の制御装置

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06108903A (ja) * 1992-09-28 1994-04-19 Unisia Jecs Corp 内燃機関の燃焼制御装置
JPH1077821A (ja) * 1996-09-04 1998-03-24 Unisia Jecs Corp 内燃機関のブローバイガス還元装置
JP2001214785A (ja) * 2000-02-01 2001-08-10 Fuji Heavy Ind Ltd 筒内燃料噴射エンジンの燃料噴射制御装置
JP2006183636A (ja) * 2004-12-28 2006-07-13 Mazda Motor Corp エンジンの空燃比制御装置
JP2006214342A (ja) * 2005-02-03 2006-08-17 Mitsubishi Motors Corp 内燃機関の排気浄化装置
JP2008297984A (ja) * 2007-05-31 2008-12-11 Toyota Motor Corp 車両の制御装置
JP2009156239A (ja) * 2007-12-28 2009-07-16 Nissan Motor Co Ltd ブローバイガス処理装置
JP2009299645A (ja) * 2008-06-17 2009-12-24 Aisan Ind Co Ltd ブローバイガス還元装置
JP2010090811A (ja) * 2008-10-08 2010-04-22 Nissan Motor Co Ltd エンジンの燃料制御装置
JP2010112356A (ja) * 2008-11-10 2010-05-20 Toyota Motor Corp 内燃機関のブローバイガス処理装置
JP2010112287A (ja) * 2008-11-07 2010-05-20 Toyota Motor Corp Pcv系異常検出装置
JP2011154044A (ja) * 2011-04-28 2011-08-11 Honda Motor Co Ltd エンジンオイルの状態検知方法
JP2012225266A (ja) * 2011-04-20 2012-11-15 Toyota Motor Corp 内燃機関の制御装置
JP2013050096A (ja) * 2011-08-31 2013-03-14 Fuji Heavy Ind Ltd エンジンの燃焼状態診断装置
WO2013065112A1 (ja) * 2011-10-31 2013-05-10 トヨタ自動車株式会社 内燃機関の換気制御装置
JP2013096247A (ja) * 2011-10-28 2013-05-20 Toyota Motor Corp 内燃機関の制御装置
JP2013124544A (ja) * 2011-12-13 2013-06-24 Daihatsu Motor Co Ltd 内燃機関
JP2014122567A (ja) * 2012-12-20 2014-07-03 Nippon Soken Inc クランクケース換気装置
JP2015014215A (ja) * 2013-07-03 2015-01-22 トヨタ自動車株式会社 内燃機関の排気浄化装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6148612A (en) * 1997-10-13 2000-11-21 Denso Corporation Engine exhaust gas control system having NOx catalyst
US6945201B2 (en) * 2004-01-15 2005-09-20 Daimlerchrysler Corporation Positive crankcase ventilation in an engine having a cyclically varying crankcase volume
US8343011B2 (en) * 2010-08-24 2013-01-01 Ford Global Technologies, Llc Method and system for controlling engine air

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06108903A (ja) * 1992-09-28 1994-04-19 Unisia Jecs Corp 内燃機関の燃焼制御装置
JPH1077821A (ja) * 1996-09-04 1998-03-24 Unisia Jecs Corp 内燃機関のブローバイガス還元装置
JP2001214785A (ja) * 2000-02-01 2001-08-10 Fuji Heavy Ind Ltd 筒内燃料噴射エンジンの燃料噴射制御装置
JP2006183636A (ja) * 2004-12-28 2006-07-13 Mazda Motor Corp エンジンの空燃比制御装置
JP2006214342A (ja) * 2005-02-03 2006-08-17 Mitsubishi Motors Corp 内燃機関の排気浄化装置
JP2008297984A (ja) * 2007-05-31 2008-12-11 Toyota Motor Corp 車両の制御装置
JP2009156239A (ja) * 2007-12-28 2009-07-16 Nissan Motor Co Ltd ブローバイガス処理装置
JP2009299645A (ja) * 2008-06-17 2009-12-24 Aisan Ind Co Ltd ブローバイガス還元装置
JP2010090811A (ja) * 2008-10-08 2010-04-22 Nissan Motor Co Ltd エンジンの燃料制御装置
JP2010112287A (ja) * 2008-11-07 2010-05-20 Toyota Motor Corp Pcv系異常検出装置
JP2010112356A (ja) * 2008-11-10 2010-05-20 Toyota Motor Corp 内燃機関のブローバイガス処理装置
JP2012225266A (ja) * 2011-04-20 2012-11-15 Toyota Motor Corp 内燃機関の制御装置
JP2011154044A (ja) * 2011-04-28 2011-08-11 Honda Motor Co Ltd エンジンオイルの状態検知方法
JP2013050096A (ja) * 2011-08-31 2013-03-14 Fuji Heavy Ind Ltd エンジンの燃焼状態診断装置
JP2013096247A (ja) * 2011-10-28 2013-05-20 Toyota Motor Corp 内燃機関の制御装置
WO2013065112A1 (ja) * 2011-10-31 2013-05-10 トヨタ自動車株式会社 内燃機関の換気制御装置
JP2013124544A (ja) * 2011-12-13 2013-06-24 Daihatsu Motor Co Ltd 内燃機関
JP2014122567A (ja) * 2012-12-20 2014-07-03 Nippon Soken Inc クランクケース換気装置
JP2015014215A (ja) * 2013-07-03 2015-01-22 トヨタ自動車株式会社 内燃機関の排気浄化装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200076729A (ko) * 2017-11-14 2020-06-29 비테스코 테크놀로지스 게엠베하 내연기관용 크랭크케이스 환기 라인을 진단하기 위한 방법 및 디바이스
KR102316607B1 (ko) 2017-11-14 2021-10-22 비테스코 테크놀로지스 게엠베하 내연기관용 크랭크케이스 환기 라인을 진단하기 위한 방법 및 디바이스
WO2022065105A1 (ja) * 2020-09-24 2022-03-31 いすゞ自動車株式会社 クリアランス推定装置、摺動制御装置、クリアランス推定方法および摺動制御方法

Also Published As

Publication number Publication date
US10138784B2 (en) 2018-11-27
US20170051694A1 (en) 2017-02-23
JP6269616B2 (ja) 2018-01-31

Similar Documents

Publication Publication Date Title
JP6269616B2 (ja) 内燃機関の制御装置
JP5775509B2 (ja) 内燃機関の制御装置
JP2005048700A (ja) エンジンの排気浄化装置
JP2005048724A (ja) エンジンの燃料噴射制御装置
JP2008163794A (ja) 内燃機関の排気再循環装置
JP2007002780A (ja) 内燃機関の制御装置
JP4905213B2 (ja) ディーゼルエンジンの制御装置
JP2009203918A (ja) ガソリンエンジンの運転制御方法
JP2008128217A (ja) 内燃機関の排ガス浄化装置
JP3861621B2 (ja) ディーゼルエンジンの燃料噴射制御装置
JP2006299833A (ja) ディーゼルエンジンにおける燃料噴射量制御装置
JP2008128214A (ja) 内燃機関の排ガス浄化装置
JP6542592B2 (ja) ターボ過給機付きエンジンの制御装置
JP2005048702A (ja) エンジンの燃料噴射制御装置
JP5659997B2 (ja) 内燃機関の制御装置
KR102452681B1 (ko) 엔진의 소기 제어 시의 배기 가스 저감 방법
JP3925273B2 (ja) 内燃機関の排気浄化装置
JP2008157187A (ja) エンジンのegr制御装置
JP2018178842A (ja) 内燃機関の制御装置
JP6323488B2 (ja) 内燃機関の制御装置
JP2014231821A (ja) 過給機付き内燃機関の制御装置
JP2011256849A (ja) 排気ガス浄化システム
JP2011052616A (ja) 多気筒内燃機関の燃料噴射制御装置
JP5110203B2 (ja) 内燃機関のegr制御システム
JP2009299483A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171218

R151 Written notification of patent or utility model registration

Ref document number: 6269616

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151