JP2017032100A - 車両制御装置 - Google Patents

車両制御装置 Download PDF

Info

Publication number
JP2017032100A
JP2017032100A JP2015154213A JP2015154213A JP2017032100A JP 2017032100 A JP2017032100 A JP 2017032100A JP 2015154213 A JP2015154213 A JP 2015154213A JP 2015154213 A JP2015154213 A JP 2015154213A JP 2017032100 A JP2017032100 A JP 2017032100A
Authority
JP
Japan
Prior art keywords
clutch
time
vehicle
speed change
gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015154213A
Other languages
English (en)
Other versions
JP6394531B2 (ja
Inventor
有 永里
Yu Nagasato
有 永里
朋亮 ▲柳▼田
朋亮 ▲柳▼田
Tomoaki Yanagida
謙大 木村
Kenta Kimura
謙大 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015154213A priority Critical patent/JP6394531B2/ja
Publication of JP2017032100A publication Critical patent/JP2017032100A/ja
Application granted granted Critical
Publication of JP6394531B2 publication Critical patent/JP6394531B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Transmission Device (AREA)

Abstract

【課題】車両におけるフリーランからの復帰時において、無段変速機の変速時間を短縮するとともに機械式オイルポンプから吐出される作動油の供給流量の不足を抑制すること。【解決手段】動力源、無段変速機、クラッチ、および動力源が駆動するMOPを備える車両に対し、惰性走行の継続中に惰性走行終了条件を満たした場合に動力源を再始動させ無段変速機の変速比を目標変速比に変化させてからクラッチを係合させる制御を行う車両制御装置であって、惰性走行からの復帰時の変速比から目標変速比に変化させる必要変速時間を算出し、プリチャージ時間のデータを有する時間算出部と、必要変速時間がプリチャージ時間以下の場合、プリチャージ完了後にクラッチ係合を開始し、必要変速時間がプリチャージ時間より大きい場合、プリチャージ完了後に第1,第2係合要素の回転数差が所定回転数以下になった時点でクラッチのスリップ係合を開始する係合制御部とを有する。【選択図】図3

Description

本発明は、車両制御装置に関する。
車両において、エンジンの停止中における油圧供給源として電動オイルポンプを備えた発進ギヤ付きベルト式CVT(以下、WCVT)が知られている。また、WCVTを備えた車両がエンジンを停止させつつ惰性走行を行う、いわゆるフリーランにおいては、WCVTと駆動輪との間に設けられたクラッチが開放される。これにより、車両の燃費を向上させることができる。
特許文献1には、無段変速機と駆動輪との間に介装されたクラッチと、駆動輪に結合された電動機と、無段変速機とクラッチとに油圧を供給するオイルポンプと、を備えた車両において、電動機により駆動輪に回生トルクを付与する減速回生中、クラッチを係合状態から開放状態に切り替える際、クラッチをスリップ状態にして無段変速機の変速比を最低変速比または最高変速比にした後、クラッチを開放する技術が開示されている。
特許文献1に記載された技術によれば、無段変速比の変速比を、最低変速比または最高変速比に変化させてから固定しているので、フリーラン中における無段変速機の変速比を確定させることができる。
特開2014−097773号公報
上述した技術において、車両がフリーランから復帰する際に、無段変速機に対して変速制御を行った後に、開放状態にあるクラッチを係合させる方法が考えられる。この場合、無段変速機において、クラッチを開放した際の変速比から目標の変速比に変化させる時間、すなわち無段変速機の変速時間が必要になる。また、クラッチのクリアランスをクラッチが係合状態になる直前の状態に制御するために、エンジンからの動力によって駆動して作動油を吐出する機械式オイルポンプ(MOP)からの油圧の供給が必要になる。クラッチが係合状態になる直前の状態に制御するとは、クラッチピストンと摩擦板とのクリアランスをクラッチが係合状態にならない程度の所定の幅まで狭くして待機状態にすることである。
しかしながら、フリーランから復帰した直後の車両においては、エンジンが再始動し始めた状態にあるのでMOPの回転数が低く、MOPからの作動油の吐出流量が小さい。そのため、無段変速機の変速制御およびクラッチが係合状態になる直前の状態に制御するために必要な作動油の流量に対して、MOPから吐出される作動油の供給流量が不足するという問題がある。
また、フリーランから復帰する際には、無段変速機の変速比を、フリーランから復帰した時点での変速比からクラッチを係合させるために必要な目標の変速比まで、変化させる必要がある。無段変速機の変速速度は、騒音振動(NV)の観点から、上限が設定されている。そのため、フリーラン復帰時の変速比と目標の変速比との差が大きい場合、フリーラン復帰時から目標の変速比に変化させてクラッチを係合状態にするまでの時間(復帰応答時間)が長くなるという問題がある。この復帰応答時間に対して上限値が設定されている場合、復帰応答時間を上限値以下にする必要があるため、車両をフリーランから復帰させる条件としての車速の下限値が高くなってしまい、燃費が相対的に低下するという問題が生じる。
本発明は、上記に鑑みてなされたものであって、その目的は、車両におけるフリーランからの復帰時において、機械式オイルポンプから吐出される作動油の供給流量の不足を抑制できるとともに、フリーランからの復帰時における復帰応答時間を短縮して、相対的に燃費が低下することを抑制できる車両制御装置を提供することにある。
上述した課題を解決し、上記目的を達成するために、本発明に係る車両制御装置は、動力源と、前記動力源から入力された駆動力を変速して出力する無段変速機と、第1係合要素と第2係合要素とが係合または開放されることによって前記動力源と駆動輪との間の前記無段変速機を経由する動力伝達経路を接続または遮断するクラッチと、前記動力源によって駆動される機械式オイルポンプと、を備える車両に対して、前記車両の走行中に、所定の惰性走行の開始の条件を満たした場合に前記動力源を停止かつ前記クラッチを開放させて前記惰性走行を開始させ、前記惰性走行の継続中に前記惰性走行の終了の条件を満たした場合に、前記動力源を再始動させるとともに前記無段変速機の変速比を目標の変速比になるように変化させてから前記クラッチを係合させる制御を行う車両制御装置であって、前記無段変速機において、所定の変速速度で前記惰性走行からの復帰時における変速比から前記目標の変速比に変化させるために必要な必要変速時間を算出するとともに、前記クラッチをプリチャージさせるために必要なプリチャージ時間のデータが格納された時間算出部と、前記時間算出部が算出した前記必要変速時間が前記プリチャージ時間以下である場合、前記クラッチのプリチャージが完了後に前記クラッチの係合を開始し、前記必要変速時間が前記プリチャージ時間より大きい場合、前記クラッチの前記第1係合要素と前記第2係合要素との回転数差を検出して、前記クラッチのプリチャージが完了した後に前記回転数差が所定回転数以下になった時点で前記クラッチをスリップ状態にして係合を開始する係合制御部と、を有することを特徴とする。
本発明に係る車両制御装置によれば、無段変速機の必要変速時間がクラッチのプリチャージ時間以下の場合に、無段変速機の変速速度を減少させる制御を行えば、フリーランから復帰した直後の車両において、無段変速機の変速に必要な単位時間当たりの変速に必要な機械式オイルポンプから吐出する作動油の流量である変速流量を低減できるため、車両がフリーランから復帰する際に、機械式オイルポンプから吐出される作動油の供給流量の不足を抑制することが可能となる。また、必要変速時間がプリチャージ時間より大きい場合に、クラッチを完全係合させる時点より前の時点でクラッチをスリップ状態にして係合を開始できるので、フリーランからの復帰時において復帰応答時間を短縮することができ、燃費の相対的な低下を抑制することが可能となる。
図1は、本発明の実施形態において対象とする車両を模式的に示すスケルトン図である。 図2は、本発明の実施形態による車両制御装置の一例を示すブロック図である。 図3は、本発明の一実施形態によるフリーラン制御を説明するためのフローチャートである。 図4は、本発明の一実施形態による変速マップの一例を示す図である。 図5は、比較例としてのフリーラン走行から復帰する際の車両状態の変化を示すタイムチャートである。 図6は、本発明の一実施形態によるフリーラン走行から復帰する際の車両状態の変化を示すタイムチャートである。
以下、本発明の実施形態について図面を参照しつつ説明する。なお、以下の実施形態の全図においては、同一または対応する部分には同一の符号を付す。また、本発明は以下に説明する実施形態によって限定されるものではない。
(1.車両)
まず、本発明の実施形態による車両制御装置の制御対象となる車両について説明する。図1は、本実施形態において対象とする車両の一例を示すスケルトン図である。
図1に示すように、車両Veは、動力源としてエンジン1を備える。エンジン1はエンジン回転数Neに応じて所定の動力を出力する。エンジン1から出力された動力は、流体伝動装置としてのトルクコンバータ2、入力軸3、前後進切替機構4、ベルト式の無段変速機5(以下、CVT)またはギヤ列6、出力軸7、カウンタギヤ機構8、デファレンシャルギヤ9、および駆動軸10を介して、駆動輪11に伝達される。CVT5の下流側には、エンジン1を駆動輪11から切り離すためのクラッチとして第2クラッチC2が設けられている。第2クラッチC2を開放させることによって、CVT5と出力軸7との間がトルク伝達不能に遮断され、エンジン1に加えてCVT5が駆動輪11から切り離される。
具体的にトルクコンバータ2は、エンジン1に連結されたポンプインペラ2a、ポンプインペラ2aに対向して配置されたタービンランナ2b、およびポンプインペラ2aとタービンランナ2bとの間に配置されたステータ2cを備える。トルクコンバータ2の内部は作動流体としてのオイルで満たされている。ポンプインペラ2aはエンジン1のクランクシャフト1aと一体回転する。タービンランナ2bには、入力軸3が一体回転するように連結されている。トルクコンバータ2はロックアップクラッチを備え、その係合状態ではポンプインペラ2aとタービンランナ2bとが一体回転し、その開放状態ではエンジン1から出力された動力が作動流体を介してタービンランナ2bに伝達される。なお、ステータ2cは、一方向クラッチを介してケースなどの固定部に保持されている。
また、ポンプインペラ2aには、ベルト機構などの伝動機構を介して、機械式オイルポンプとしてのメカオイルポンプ(MOP)41が連結されている。MOP41は、ポンプインペラ2aを介してクランクシャフト1aに連結され、エンジン1によって駆動される。なお、MOP41とポンプインペラ2aとが一体回転するように構成されてもよい。
入力軸3は、前後進切替機構4に連結されている。前後進切替機構4は、エンジン1が出力する動力であるエンジントルクを駆動輪11へ伝達する際、駆動輪11に作用するトルクの方向を前進方向と後進方向とに切り替える。前後進切替機構4は、差動機構からなり、図1に示す例ではダブルピニオン型の遊星歯車機構によって構成されている。
前後進切替機構4は、サンギヤ4Sと、リングギヤ4R、第1ピニオンギヤ4P1、第2ピニオンギヤ4P2、およびキャリヤ4Cを備える。リングギヤ4Rは、サンギヤ4Sに対して同心円上に配置されている。第1ピニオンギヤ4P1はサンギヤ4Sに噛み合っている。第2ピニオンギヤ4P2は、第1ピニオンギヤ4Pおよびリングギヤ4Rに噛み合っている。キャリヤ4Cは、それぞれの第1ピニオンギヤ4P1および第2ピニオンギヤ4P2を自転可能かつ公転可能に保持している。サンギヤ4Sには、ギヤ列6の駆動ギヤ61が一体回転するように連結されている。キャリヤ4Cには、入力軸3が一体回転するように連結されている。
また、サンギヤ4Sとキャリヤ4Cとを選択的に一体回転させる第1クラッチC1が設けられている。第1クラッチC1を係合させることによって、前後進切替機構4全体が一体回転する。さらに、リングギヤ4Rを選択的に回転不能に固定するブレーキB1が設けられている。第1クラッチC1およびブレーキB1は、油圧式である。
例えば、第1クラッチC1を係合させ、かつブレーキB1を開放させると、サンギヤ4Sとキャリヤ4Cとが一体回転する。すなわち、入力軸3と駆動ギヤ61とが一体回転する。また、第1クラッチC1を開放させ、かつブレーキB1を係合させると、サンギヤ4Sとキャリヤ4Cとが逆方向に回転する。すなわち、入力軸3と駆動ギヤ61とは逆方向に回転する。
車両Veにおいては、エンジン1から入力された駆動力を変速して出力する無段変速機であるCVT5と有段変速部であるギヤ列6とが並列に設けられている。入力軸3と出力軸7との間の動力伝達経路として、CVT5を経由する動力伝達経路(以下、第1経路)とギヤ列6を経由する動力伝達経路(以下、第2経路)とが、並列に形成されている。
CVT5は、入力軸3と入力軸回転数Ninで一体回転するプライマリプーリ51、セカンダリシャフト54と一体回転するセカンダリプーリ52、一対のプーリ51,52に形成されたV溝に巻き掛けられたベルト53を備える。入力軸3はプライマリシャフトとなる。
プライマリプーリ51は、入力軸3と一体化された固定シーブ51a、入力軸3上で軸線方向に移動可能な可動シーブ51b、および可動シーブ51bに推力を付与するプライマリ油圧シリンダ51cを備える。固定シーブ51aのシーブ面と可動シーブ51bのシーブ面とが対向して、プライマリプーリ51のV溝を形成する。プライマリ油圧シリンダ51cは、可動シーブ51bの背面側に配置されている。プライマリ油圧シリンダ51c内の油圧(以下、プライマリ圧)Pinによって、可動シーブ51bを固定シーブ51a側へ移動させる推力が発生する。
セカンダリプーリ52は、セカンダリシャフト54と一体化された固定シーブ52a、セカンダリシャフト54上で軸線方向に移動可能な可動シーブ52b、および可動シーブ52bに推力を付与するセカンダリ油圧シリンダ52cを備える。固定シーブ52aのシーブ面と可動シーブ52bのシーブ面とが対向して、セカンダリプーリ52のV溝を形成する。セカンダリ油圧シリンダ52cは、可動シーブ52bの背面側に配置されている。セカンダリ油圧シリンダ52c内の油圧(以下、セカンダリ圧)Poutによって、可動シーブ52bを固定シーブ52a側へ移動させる推力が発生する。
CVT5の変速比γは、各プーリ51,52のV溝幅を変化させてベルト53の巻き掛け径を変化させることによって、連続的に変化する。CVT5の変速比γの取り得る最大値をγmax、最小値をγminとすると、変速比γは最大変速比γmax(ギヤが最もLow)と最小変速比γmin(ギヤが最もHigh)との範囲内で連続的に変化する。
第2クラッチC2は、セカンダリシャフト54と出力軸7との間に設けられており、出力軸7からCVT5を選択的に切り離す。例えば、第2クラッチC2を係合させると、CVT5と出力軸7との間が動力伝達可能に接続され、セカンダリシャフト54と出力軸7とが一体回転する。すなわち、第2クラッチC2の上流側のセカンダリプーリ52の回転数Nout1と第2クラッチC2の下流側の出力軸7の出力軸回転数Nout2とが一致(Nout1=Nout2)する。一方、第2クラッチC2を開放させると、セカンダリシャフト54と出力軸7との間が動力伝達不能に遮断され、エンジン1およびCVT5が駆動輪11から切り離される。
第2クラッチC2は油圧式である。油圧アクチュエータによって第2クラッチC2の係合要素同士が摩擦係合するように構成されている。そのため、第2クラッチC2の係合要素同士を半係合状態として摩擦係合させると、第2クラッチC2をスリップ状態にできる。この場合、CVT5と出力軸7との間を伝達するトルクが比較的小さくなる。
出力軸7には、出力ギヤ7aと従動ギヤ63とが一体回転するように取り付けられている。出力ギヤ7aは、減速機構であるカウンタギヤ機構8のカウンタドリブンギヤ8aと噛み合っている。カウンタギヤ機構8のカウンタドライブギヤ8bは、デファレンシャルギヤ9のリングギヤ9aと噛み合っている。デファレンシャルギヤ9には、左右の駆動軸10,10を介して左右の駆動輪11,11が連結されている。
ギヤ列6は、前後進切替機構4のサンギヤ4Sと一体回転する駆動ギヤ61と、カウンタギヤ機構62と、出力軸7と一体回転する従動ギヤ63とを含む。ギヤ列6は減速機構であって、ギヤ列6の変速比(ギヤ比)は、CVT5の最大変速比γmaxよりも大きい所定値に設定されている。ギヤ列6の変速比は固定変速比である。車両Veは、発進時にエンジン1からギヤ列6を介して駆動輪11に動力を伝達可能である。ギヤ列6は発進ギヤとして機能する。
駆動ギヤ61は、カウンタギヤ機構62のカウンタドリブンギヤ62aと噛み合っている。カウンタギヤ機構62は、カウンタドリブンギヤ62aと、カウンタシャフト62bと、従動ギヤ63に噛み合っているカウンタドライブギヤ62cとを含む。カウンタシャフト62bには、カウンタドリブンギヤ62aが一体回転するように取り付けられている。カウンタシャフト62bは入力軸3および出力軸7と平行に配置されている。カウンタドライブギヤ62cは、カウンタシャフト62bに対して相対回転可能に構成されている。
カウンタシャフト62bとカウンタドライブギヤ62cとの間には、カウンタシャフト62bとカウンタドライブギヤ62cとを選択的に一体回転させる噛合式の係合装置(以下、ドグクラッチ)S1が設けられている。ドグクラッチS1は、噛合式の一対の係合要素64a,64bと、ドグクラッチS1の軸線方向に移動可能なスリーブ64cとを備える。ドグクラッチS1は、油圧式であり、油圧アクチュエータによってスリーブ64cが軸線方向に移動する。ドグクラッチS1を係合させることによって、駆動ギヤ61と従動ギヤ63との間(第2経路)が動力伝達可能に接続される。係合要素64bとスリーブ64cとの噛み合いが解除されることによって、ドグクラッチS1は開放状態となる。ドグクラッチS1を開放状態にすることによって、駆動ギヤ61と従動ギヤ63との間(第2経路)は動力伝達不能に遮断される。
(2.車両制御装置)
図2は、この一実施形態による車両制御装置を模式的に示す機能ブロック図である。車両制御装置は、車両Veを制御する電子制御装置(以下、ECU:Electronic Control Unit)100によって構成されている。ECU100は、CPU(Central Processing Unit)やRAM(Random Access Memory)などを有するマイクロコンピュータを主体にして構成される。ECU100は、入力されたデータおよび予め記憶させられているデータを使用して演算を行い、その演算結果を指令信号として出力する。
ECU100には、各種センサ31〜37からの信号が入力される。車速センサ31は車速Vを検出する。入力軸回転数センサ32は入力軸3の回転数(以下、入力軸回転数)Ninを検出する。入力軸3とタービンランナ2bとは一体回転するため、入力軸回転数センサ32は、タービンランナ2bの回転数(以下、タービン回転数)Ntを検出していることになる。入力軸回転数Ninとタービン回転数Ntとは一致する。第1出力軸回転数センサ33は、セカンダリシャフト54の回転数(以下、第1出力軸回転数)Nout1を検出する。第2出力軸回転数センサ34は、出力軸7の回転数(以下、第2出力軸回転数)Nout2を検出する。第2クラッチC2前(上流側)が第1出力軸回転数Nout1となり、第2クラッチC2における第1係合要素を構成する。一方、第2クラッチC2後(下流側)が第2出力軸回転数Nout2となり、第2クラッチC2における第2係合要素を構成する。エンジン回転数センサ35は、クランクシャフト1aの回転数(以下、エンジン回転数)Neを検出する。アクセル開度センサ36は、アクセルペダル(図示せず)の操作量を検出する。ブレーキストロークセンサ37は、ブレーキペダル(図示せず)の操作量を検出する。
ECU100は、走行制御部101、復帰制御部102、算出部103、変速比設定部104、変速制御部105、および判定部106を備える。
走行制御部101は、車両Veを複数の走行モードのいずれかに設定制御する。走行モードの一例としてはフリーランがある。フリーランとは、エンジン切り離しクラッチである第2クラッチC2を開放させるとともにエンジン1を自動停止させて、車両Veを惰性走行させる走行モードのことである。走行制御部101は、所定の実行条件が成立した場合にフリーラン制御を実行し、車両Veを通常走行からフリーランに移行させる。また、走行制御部101は、エンジン1に指令信号を出力して、燃料供給量、吸入空気量、燃料噴射、および点火時期などを制御する。
復帰制御部102は、フリーラン中に所定の復帰条件が成立した場合、フリーランから通常走行に復帰させる制御(復帰制御)を実行する。フリーランから通常走行に復帰することにより、エンジン1が出力した動力で走行可能になる。
時間算出部としての算出部103は、所定の変速速度によって、CVT5の変速比がフリーラン復帰時の変速比から目標変速比γtgtに変化するために必要なシーブ変速時間T_sfttgt、すなわち必要変速時間T_sfttgtを算出する。必要変速時間T_sfttgtの算出に利用される所定の変速速度は、シーブストローク速度に依存する変速比の時間変化率である。算出部103は例えば、CVT5の回転中において入力軸回転数Ninを第1出力軸回転数Nout1で除算することによりCVT5の変速比γ(=Nin/Nout1)を算出する。
変速比設定手段としての変速比設定部104は、車両Veに応じて設定される所定の変速マップに従って、CVT5の変速比γを設定する。なお、この一実施形態における変速マップの詳細については後述する。
変速制御部105は、CVT5における変速比を目標変速比γtgtに変化させた後に第2クラッチC2を係合させる制御を行う。また、変速制御部105は、油圧制御装置200に油圧指令信号を出力して、CVT5の変速動作や、第1クラッチC1などの各係合装置の動作を制御する。変速制御部105は第2クラッチC2に対して、クラッチピストンと摩擦板とのクリアランスをクラッチが係合状態にならない程度の所定の幅まで狭くする、いわゆるクリアランス制御であるプリチャージを行う。プリチャージは、パック詰めとも称される。
判定部106は、実行条件や復帰条件が成立するか否かを判定する。判定部106による判定に基づいて変速制御部105が各係合装置の動作を制御する場合、変速制御部105および判定部106が係合制御部として機能する。また、判定部106の記録部(図示せず)には、車両諸元に基づいて確定される第2クラッチC2のプリチャージに要する時間(プリチャージ時間T_c2)が読み出し可能に格納されている。さらに、判定部106は、フリーランを開始させる条件であるフリーラン実行条件が成立するか否かを判定する。
油圧制御装置200は、CVT5の各油圧シリンダ51c,52cや、それぞれの係合装置、すなわち第1クラッチC1、第2クラッチC2、ブレーキB1、およびドグクラッチS1のそれぞれの油圧アクチュエータに油圧を供給する。ECU100は、油圧制御装置200を制御することによって、動力伝達経路を第1経路と第2経路との間で切り替える制御や、CVT5の変速制御や、各種の走行モードに切り替える制御などを実行する。
(3.フリーラン制御)
次に、本発明の一実施形態によるフリーラン制御について説明する。図3は、フリーラン制御の一例を示すフローチャートである。ECU100は、車両Veを通常走行状態に制御している状態から図3に示す制御フローを実行する。通常走行状態では、第2クラッチC2を係合させてエンジン1の動力で車両Veを前進走行させている。
ステップST1において判定部106は、車両Veが通常走行中に、アクセル開度センサ36からの信号に基づいてアクセルがオフであるか否かを判定する。なお、アクセルがオフである(アクセルOff)とは、運転者がアクセルペダルから足を離した場合など、アクセルペダルが戻されたことである。アクセル開度が零(0)の場合にアクセルがオフになる。アクセルがオフである場合(ステップST1:Yes)、ステップST2に移行して、判定部106は、ブレーキストロークセンサ37からの信号に基づいてブレーキがオフであるか否かを判定する。なお、ブレーキがオフである(ブレーキOff)とは、運転者がブレーキペダルから足を離した場合など、ブレーキペダルが戻されたことである。ブレーキ踏力やブレーキストローク量が零(0)の場合にブレーキがオフになる。
すなわち、ステップST1,ST2において判定部106は、フリーランを開始させる条件であるフリーラン実行条件が成立するか否かを判定している。ここで、フリーラン実行条件は、車両Veが通常走行中にアクセルがオフかつブレーキがオフになる場合である。そのため、判定部106は、アクセルがオフでないと判定した場合(ステップST1:No)や、ブレーキがオフでないと判定した場合(ステップST2:No)は、ECU100は、この制御ルーチンを終了する。すなわち、走行制御部101が、車両Veをフリーラン状態に移行させずに、通常走行状態を継続させる。判定部106が、アクセルはオフであり(ステップST1:Yes)、かつブレーキもオフである(ステップST2:Yes)と判定すると、ステップST3に移行する。これは、車両Veにおいてフリーラン実行条件が成立したためである。
ステップST3において走行制御部101は、第2クラッチC2の開放制御を行って第2クラッチC2を開放させた後、ステップST4に移行する。ステップST4において走行制御部101は、CVT5の変速比γを検出する。ここで、ステップST3とステップST4の順序は限定されず、ステップST3とステップST4とをほぼ同時に実行しても、ステップST4の実行後にステップST3を実行してもよい。CVT5の変速比γを検出した後、ステップST5に移行して、走行制御部101は、エンジン1内部への燃料の供給を停止させてエンジン1を自動停止させる。これらのステップST3〜ST5の制御は、フリーラン開始制御である。ここで、フリーラン開始制御において、走行制御部101は、エンジン1を停止させる前にCVT5の変速比γを検出している。これは、第2クラッチC2を開放させてエンジン1を停止させた後は、CVT5の各プーリ51,52の回転が停止することから、CVT5の変速比γを検出できないためである。その後、ステップST6に移行する。
ステップST6において走行制御部101は、CVT5の変速比γをステップST4において検出した変速比に維持する。この場合、CVT5の変速比γは、フリーラン開始時の変速比γに固定される。車両Veがフリーラン中、走行制御部101は各プーリ51,52のV溝幅をフリーラン開始時のV溝幅に維持させる。これにより、プライマリプーリ51の推力とセカンダリプーリ52の推力との比(シーブ推力比)が維持される。走行制御部101は、各プーリ51,52のV溝幅が変化しないように、プライマリ圧Pinとセカンダリ圧Poutとの油圧比(油圧バランス)を制御する。これにより、CVT5の変速比γがフリーラン開始時の変速比γに維持される。この状態においては、CVT5の回転が停止しているので、フリーラン開始前の油圧よりも低い油圧であっても、各プーリ51,52のV溝幅をフリーラン開始時の状態に維持できる。なお、ステップST6はステップST5と同時に実行してもよい。
その後、ステップST7に移行して、走行制御部101が車速Vを検出する。その後、ステップST8に移行する。
ステップST8において判定部106は、フリーランから通常走行に復帰させる条件(フリーラン復帰条件)が成立するか否かを判定する。ECU100にフリーランの復帰指示が入力されるとフリーラン復帰条件が成立する。フリーラン復帰条件として、アクセルがオン(アクセルOn)である場合や、ブレーキがオン(ブレーキOn)である場合が含まれる。ここで、アクセルOnとは、運転者がアクセルペダルを踏み込んだことであり、アクセル開度が零より大きい状態である。ブレーキOnとは、運転者がブレーキペダルを踏み込んだことであり、ブレーキ踏力やブレーキストローク量が零よりも大きい状態である。
判定部106が、フリーラン復帰条件が成立したと判定した場合(ステップST8:Yes)、ステップST9に移行する。なお、フリーラン復帰条件として、消費電力や、バッテリの充電状態(SOC)や、トランスミッションの油温などが含まれてもよい。これらはシステム要求のフリーラン復帰指示となる。一方、フリーラン復帰条件が成立しない場合(ステップST8:No)、ECU100はステップST7に復帰して、ステップST7,ST8の処理を繰り返す。
ステップST9に移行すると、算出部103は、フリーラン復帰時における目標変速比γtgtを算出する。具体的に算出部103は、車速Vと入力軸回転数Ninとの関係で表される変速マップに基づいて、フリーラン復帰時の目標変速比γtgtを算出する。変速マップの一例を図4に示す。
図4に示すように、車速Vと入力軸回転数Ninとをパラメータとする変速マップに基づいて、CVT5の変速比γが決定される。CVT5は変速マップに基づいて変速させられる。ここでは、フリーラン開始時のCVT5の変速比γが最小変速比γminである場合を例にして説明する。車両Veがフリーラン中、CVT5の変速比γは最小変速比γminに維持される。フリーラン復帰時の車速V2はフリーラン開始時の車速V1よりも低い。そのため、フリーラン復帰時におけるCVT5に対する変速制御として、CVT5をダウンシフトさせる。CVT5に対してダウンシフト制御を実行することによって、CVT5の変速比γはフリーラン開始時の最小変速比γminから目標変速比γtgtに向かって変化する。
変速比設定部104による目標変速比γtgtの決定方法として、目標入力軸回転数Ntgtを決定した後、目標入力軸回転数Ntgtと復帰条件成立時の車速V2とに基づく変速比を目標変速比γtgtとして決定することができる。目標入力軸回転数Ntgtは、エンジンストールの発生や、NV性能が低下する所定回転数よりも大きい値となる。例えば、目標入力軸回転数Ntgtは、コースト線上の入力軸回転数に決定される。コースト線とは、通常走行時にアクセル開度が零(Acc=0%)になった場合の変速線である。フリーラン復帰時の車速V2において、最小変速比γminに対応する入力軸回転数は、コースト線上の目標入力軸回転数Ntgtよりも低い。これは、フリーラン復帰時の車速V2が、最小変速比γminでコースト走行できる下限車速V3よりも小さいため(V2<V3)である。フリーラン復帰時にダウンシフト制御を実行して、入力軸回転数Ninをコースト線上の目標入力軸回転数Ntgtまで上昇させる。復帰制御部102は、プライマリ油圧シリンダ51c内のオイルを排出させてプライマリ圧Pinを低下させることによって、プライマリプーリ51のV溝幅を広くさせる。これにより、CVT5の変速比γを目標変速比γtgtに向けて増大させることができる。
続いて、図3に示すステップST10に移行すると、算出部103は、シーブ変速時間T_sfttgtを算出する。シーブ変速時間T_sfttgtは、CVT5の変速比γを、フリーラン復帰時における変速比、上述した図4においては例えば最小変速比γminから、目標変速比γtgtに変化させるための必要変速時間T_sfttgtである。この一実施形態において、フリーラン復帰時の変速比から目標変速比γtgtに変化させる際の、所定速度としてのシーブ変速速度は、NVの観点から決定されたシーブ変速速度の範囲内の上限値とする。なお、シーブ変速速度は必ずしもこの速度に限定されるものではない。続いて、図3に示すステップST11に移行すると、復帰制御部102はエンジン1を再始動させる。
次に、ステップST12に移行して判定部106は、算出部103が算出したシーブ変速時間T_sfttgtと、第2クラッチC2のプリチャージの開始から完了までの時間(プリチャージ時間)T_c2とを比較する。判定部106は、シーブ変速時間T_sfttgtがプリチャージ時間T_c2以下であるか否かを判定する。
判定部106がシーブ変速時間T_sfttgtはプリチャージ時間T_c2以下であると判定した場合(ステップST12:Yes)、ステップST13に移行する。ステップST13において走行制御部101は、第2クラッチC2を係合させるタイミングを、第1出力軸回転数Nout1と第2出力軸回転数Nout2との回転数差ΔNout(=Nout1−Nout2)が0になるタイミングに設定する。
次に、ステップST14に移行して、変速制御部105はCVT5に対するシーブ変速制御を開始する。すなわち、変速制御部105は、プライマリプーリ51およびセカンダリプーリ52の推力を制御してそれぞれのV溝幅を変化させ、CVT5に対してフリーラン復帰時の変速比から目標変速比γtgtに向けての変速比の変化を開始する。また、変速制御部105は、並行して第2クラッチC2に対するプリチャージを開始する。これにより、MOP41から第2クラッチC2に作動油が供給されてプリチャージが実行される。その後、ステップST15に移行する。
ステップST15においては、第2クラッチC2のプリチャージが完了する。この時点において、第2クラッチC2は係合状態の直前の状態になっている。ここで、ステップST12において判定部106により、シーブ変速時間T_sfttgtはプリチャージ時間T_c2以下であると判定されている。そのため、ステップST15においてプリチャージが完了した時点では、CVT5における変速が完了していることになる。
続いて、ステップST16に移行して、変速制御部105は第2クラッチC2を係合させる制御を行う。ステップST16を実行することにより、第2クラッチC2が係合し、かつエンジン1が駆動しているため、フリーランが終了する。
他方、ステップST12において判定部106が、シーブ変速時間T_sfttgtはプリチャージ時間T_c2より長いと判定した場合(ステップST12:No)、ステップST17に移行する。ステップST17において走行制御部101は、第2クラッチC2を係合させるタイミングを、第1出力軸回転数Nout1と第2出力軸回転数Nout2との回転数差ΔNoutが所定値Aになるタイミングに設定する。
次に、ステップST18に移行して、変速制御部105はステップST14と同様にしてCVT5に対するシーブ変速制御を開始する。また、変速制御部105は、並行して第2クラッチC2に対するプリチャージを開始する。その後、ステップST19に移行する。
ステップST19において判定部106は、第1出力軸回転数Nout1と第2出力軸回転数Nout2との回転数差ΔNoutが所定値A以下になるか否かの判定を行う。ここで、CVT5の各プーリ51,52は回転中であるため、第1出力軸回転数センサ33により第1出力軸回転数Nout1が検出でき、駆動輪11および出力軸7が回転中であるため、第2出力軸回転数センサ34により第2出力軸回転数Nout2を検出できる。これにより、算出部103は、回転数差ΔNoutを算出できる。判定部106が回転数差ΔNoutは所定値Aより大きいと判定している間(ステップST19:No)、ステップST19が繰り返し行われる。判定部106が回転数差ΔNoutは所定値A以下であると判定した場合(ステップST19:Yes)、ステップST20に移行する。ここで、ステップST12において判定部106により、シーブ変速時間T_sfttgtはプリチャージ時間T_c2より長いと判定されている。そのため、第2クラッチC2のプリチャージが完了した時点では、CVT5において変速比γが目標変速比γtgtに変化していない可能性が高い。
ステップST20において走行制御部101は、第2クラッチC2をスリップ状態にして係合させる制御を行う。そして、CVT5の変速比γが目標変速比γtgtになった時点で、第1出力軸回転数Nout1と第2出力軸回転数Nout2とが一致して、第2クラッチC2の係合が完了する。
ステップST16またはステップST20を実行すると復帰制御が完了する。すなわち、フリーランから復帰するとは、車両Veがフリーラン中に、ECU100がエンジン1を再始動させるとともに第2クラッチC2を係合させることである。フリーランから通常走行に復帰させることにより、この制御ルーチンが終了する。なお、上述したフリーラン制御において、第2クラッチC2を開放させたり係合させたりする代わりに、第1クラッチC1を開放させたり係合させたりすることも可能である。
(4.タイムチャート)
図5は、従来技術によるフリーラン制御を実行した場合のタイムチャートである。図5は、フリーラン中の車両Veにフリーラン復帰指示がされた時点t0から、第2クラッチC2が完全係合した時間t42の直後までを示す。図6は、この一実施形態によるフリーラン制御を実行した場合のタイムチャートである。図6は、フリーラン中の車両Veにフリーラン復帰指示がされた時点t0(図3中、ステップST9)から、第2クラッチC2が完全係合した時間t41(図3中、ステップST16,ST20)の直後までを示す。
図5に示すように、時間t0において、復帰制御部102がブレーキのオンやアクセルのオンなどのフリーラン復帰指示を検出すると、復帰制御部102はエンジン始動制御を実行し、エンジン1を再始動させる。エンジン始動制御では、スタータなどによりエンジン1をクランキングさせる。これにより、エンジン回転数Neが零から増加し始める。
エンジン始動制御が実行されてCVT5が回転し始めると、時間t1において、プライマリプーリ51とセカンダリプーリ52とが同時に回転し始める。そのため、時間t1において、タービン回転数Nt(=入力軸回転数Nin)と第1出力軸回転数Nout1とが同時に零から上昇し始める。
その後、時間t2において、エンジン1は、スタータなどによって回転させられている状態から、自立状態に移行する。自立状態とは、エンジン1の各気筒での燃焼が行われてエンジン1が自立燃焼を行って自立回転できる状態である。その際のエンジン回転数Neは自立回転数となる。また、エンジン回転数Neとタービン回転数Nt(=入力軸回転数Nin)とは同じ回転数となって増加する。なお、図5および図6においては、時間t2以降のエンジン回転数Neの線とタービン回転数Nt(=入力軸回転数Nin)の線とは同一の線により記載している。
時間t2以降において変速制御部105は、第2クラッチC2のプリチャージを開始する制御を行う。これにより、完全開放していた第2クラッチC2の油圧アクチュエータに油圧が供給され、係合要素同士のクリアランス(ギャップ)が縮められる。このとき、作動油の必要流量も、変速流量に加えて第2クラッチC2のプリチャージに必要な流量(プリチャージ用流量)分だけ増加する。第2クラッチC2のプリチャージは、時間t31の時点で完了する。
エンジン1が自立状態になると、燃料供給および点火によってエンジントルクを出力し始めるとともに、エンジン回転数Neが上昇し始める。また、時間t2から、復帰制御部102はCVT5のダウンシフト制御を開始する。ダウンシフト制御においては、プライマリ圧Pinを減少させ、かつセカンダリ圧Poutを増加させる。これにより、プライマリプーリ51のV溝幅が広がり、かつセカンダリプーリ52のV溝幅が狭まる。
ダウンシフト制御を開始することによって、CVT5の変速比γがフリーラン復帰時の変速比から目標変速比γtgtに向けて増加し始める。これに伴って、入力軸3の入力軸回転数Ninが上昇し始める。時間t2〜t42の間においてCVT5の変速比γは連続的に増加する。時間t42においてCVT5の変速比γが目標変速比γtgtに到達すると、ダウンシフト制御が完了する。
時間t42において、CVT5の変速比γが目標変速比γtgtになると、第1出力軸回転数Nout1が第2出力軸回転数Nout2と同期する。そして、時間t42において変速制御部105は、第2クラッチC2を完全係合させる。このようにして、時間t42において、フリーラン復帰制御が完了する。これにより、フリーランから通常走行への復帰が完了する。
一方、図6に示す一実施形態によるフリーラン制御においては、上述した図5に示す従来技術によるフリーラン制御と異なる制御を行う。すなわち、第2クラッチC2のプリチャージの完了後である時間t31の後、第1出力軸回転数Nout1と第2出力軸回転数Nout2との回転数差ΔNが所定値A以下になった場合(図3中、ステップST19,ST20)、第2クラッチC2をスリップ状態にして係合制御を開始する。この場合、第1出力軸回転数Nout1と第2出力軸回転数Nout2とが一致するより前の時点(時間t32)において、第2クラッチC2に対する係合制御を開始することになる。そのため、第2クラッチC2の係合が完了する時間を、図5に示す従来技術による第2クラッチC2の係合が完了する時間t42より前の時点(時間t41)にできる。
以上説明したように、本発明の一実施形態によれば、車両Veがフリーランから復帰する際に、CVT5の必要変速時間T_sfttgtが第2クラッチC2のプリチャージ時間T_c2より長い場合に、第2クラッチC2に対する係合制御を、第1出力軸回転数Nout1と第2出力軸回転数Nout2とが一致するより前の時点で開始して、第2クラッチC2をスリップ状態で係合させていることにより、フリーランの復帰応答時間を従来に比して短縮できる。
従来技術においては、NVの観点からCVT5の変速速度の上限値が決定されているため、フリーラン復帰時における変速比γと目標変速比γtgtとの差が大きい場合、復帰応答時間が長くなる問題があった。この問題に伴い、復帰応答時間に上限値が設定されていると、フリーラン復帰時における変速比γと目標変速比γtgtとの差をできる限り小さくする必要がある。そこで、フリーラン復帰時における変速比γと目標変速比γtgtとの差を小さくするために、フリーランからの復帰条件となる下限の車速を比較的大きい車速にする必要があった。また、従来技術においてCVT5の変速速度を増加させることで復帰応答時間を短縮する方法も考えられる。しかしながら、変速速度を増加させるためには、NVの観点からシーブやベルトなどに対して種々の対策を施す必要が生じ、高コスト化するという問題が新たに生じる。これに対し、上述した一実施形態においては、CVT5の必要変速時間T_sfttgtが、第2クラッチC2のプリチャージ時間T_c2より長い場合に、従来に比して復帰応答時間を短縮できるので、車両Veがフリーランから復帰する復帰条件となる車速の下限値を低下でき、燃費の相対的な低下を抑制できる。
また、車両Veがフリーランから復帰する際に、第2クラッチC2のプリチャージ時間T_c2がCVT5の必要変速時間T_sfttgt以上の場合に、CVT5の変速速度を低下させる制御を行うようにすれば、CVT5の変速に必要な作動油の流量における単位時間当たりの変速流量を低減できる。これによって、MOP41から吐出する作動油の吐出流量に関して、必要流量に対する不足流量を低減できる。従来技術の場合、作動油の必要流量が大きくなると、電動オイルポンプを駆動させて油路(いずれも図示せず)内にオイルを供給する必要が生じるため、不足流量が大きくなるほど、電動オイルポンプの大容量化、大型化が必要になった。これに対し、上述した一実施形態においては、MOP吐出流量の不足流量を低減することができるので、電動オイルポンプの大容量化、大型化を抑制できる。
以上、本発明の一実施形態について具体的に説明したが、本発明は、上述の一実施形態に限定されるものではなく、本発明の技術的思想に基づく各種の変形が可能である。例えば、上述の一実施形態において挙げた数値はあくまでも例に過ぎず、必要に応じてこれと異なる数値を用いてもよい。
1 エンジン
5 無段変速機
100 ECU
101 走行制御部
102 復帰制御部
103 算出部
104 変速比設定部
105 変速制御部
200 油圧制御装置
C2 第2クラッチ

Claims (1)

  1. 動力源と、前記動力源から入力された駆動力を変速して出力する無段変速機と、第1係合要素と第2係合要素とが係合または開放されることによって前記動力源と駆動輪との間の前記無段変速機を経由する動力伝達経路を接続または遮断するクラッチと、前記動力源によって駆動される機械式オイルポンプと、を備える車両に対して、前記車両の走行中に、所定の惰性走行の開始の条件を満たした場合に前記動力源を停止かつ前記クラッチを開放させて前記惰性走行を開始させ、前記惰性走行の継続中に前記惰性走行の終了の条件を満たした場合に、前記動力源を再始動させるとともに前記無段変速機の変速比を目標の変速比になるように変化させてから前記クラッチを係合させる制御を行う車両制御装置であって、
    前記無段変速機において、所定の変速速度で前記惰性走行からの復帰時における変速比から前記目標の変速比に変化させるために必要な必要変速時間を算出するとともに、前記クラッチをプリチャージさせるために必要なプリチャージ時間のデータが格納された時間算出部と、
    前記時間算出部が算出した前記必要変速時間が前記プリチャージ時間以下である場合、前記クラッチのプリチャージが完了後に前記クラッチの係合を開始し、前記必要変速時間が前記プリチャージ時間より大きい場合、前記クラッチの前記第1係合要素と前記第2係合要素との回転数差を検出して、前記クラッチのプリチャージが完了した後に前記回転数差が所定回転数以下になった時点で前記クラッチをスリップ状態にして係合を開始する係合制御部と、を有する
    ことを特徴とする車両制御装置。
JP2015154213A 2015-08-04 2015-08-04 車両制御装置 Active JP6394531B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015154213A JP6394531B2 (ja) 2015-08-04 2015-08-04 車両制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015154213A JP6394531B2 (ja) 2015-08-04 2015-08-04 車両制御装置

Publications (2)

Publication Number Publication Date
JP2017032100A true JP2017032100A (ja) 2017-02-09
JP6394531B2 JP6394531B2 (ja) 2018-09-26

Family

ID=57988325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015154213A Active JP6394531B2 (ja) 2015-08-04 2015-08-04 車両制御装置

Country Status (1)

Country Link
JP (1) JP6394531B2 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012225465A (ja) * 2011-04-21 2012-11-15 Toyota Motor Corp 車両制御装置
JP2013160278A (ja) * 2012-02-02 2013-08-19 Toyota Motor Corp 車両の制御装置
JP2014097773A (ja) * 2012-11-16 2014-05-29 Nissan Motor Co Ltd ハイブリッド車両の制御装置
JP2015132339A (ja) * 2014-01-14 2015-07-23 ジヤトコ株式会社 惰性走行制御装置及び惰性走行制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012225465A (ja) * 2011-04-21 2012-11-15 Toyota Motor Corp 車両制御装置
JP2013160278A (ja) * 2012-02-02 2013-08-19 Toyota Motor Corp 車両の制御装置
JP2014097773A (ja) * 2012-11-16 2014-05-29 Nissan Motor Co Ltd ハイブリッド車両の制御装置
JP2015132339A (ja) * 2014-01-14 2015-07-23 ジヤトコ株式会社 惰性走行制御装置及び惰性走行制御方法

Also Published As

Publication number Publication date
JP6394531B2 (ja) 2018-09-26

Similar Documents

Publication Publication Date Title
JP6361590B2 (ja) 車両制御装置
US8932182B2 (en) Coast stop vehicle and control method for coast stop vehicle
EP2426384B1 (en) Coast stop vehicle and control method thereof
US8771147B2 (en) Coast stop vehicle and control method thereof
JP5728422B2 (ja) ベルト式無段変速機の変速制御装置
EP2541101B1 (en) Control device for continuously variable transmission for vehicle
JP5790670B2 (ja) 車両の制御装置
JPWO2017130779A1 (ja) 車両のセーリングストップ制御方法及び制御装置
JP6584892B2 (ja) 車両のセーリングストップ制御方法及び制御装置
WO2017138194A1 (ja) 変速機構の制御方法及び制御装置
JP6197842B2 (ja) 車両制御装置
JP5513570B2 (ja) 車両制御装置
JP2017026008A (ja) 車両制御装置
JP6187548B2 (ja) 車両制御装置
JP5712331B2 (ja) エンジン自動停止車両及びその制御方法
US10724627B2 (en) Control device for vehicle and control method for vehicle
RU2723009C2 (ru) Устройство управления транспортным средством и способ управления транспортным средством
JP6394531B2 (ja) 車両制御装置
JP2017137945A (ja) 車両の制御装置、及び車両の制御方法
JP2015190602A (ja) 前後進切替装置の制御装置および制御方法
JP6459910B2 (ja) 車両制御装置
JP2017136986A (ja) 車両の制御装置、及び車両の制御方法
JP2019027497A (ja) 車両制御装置
JP6598712B2 (ja) 車両のセーリングストップ制御方法及び制御装置
JP2017137947A (ja) 車両の制御装置、及び車両の制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180813

R151 Written notification of patent or utility model registration

Ref document number: 6394531

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151