JP2017025876A - 水力機械のガイドベーンおよび水力機械 - Google Patents

水力機械のガイドベーンおよび水力機械 Download PDF

Info

Publication number
JP2017025876A
JP2017025876A JP2015148052A JP2015148052A JP2017025876A JP 2017025876 A JP2017025876 A JP 2017025876A JP 2015148052 A JP2015148052 A JP 2015148052A JP 2015148052 A JP2015148052 A JP 2015148052A JP 2017025876 A JP2017025876 A JP 2017025876A
Authority
JP
Japan
Prior art keywords
inlet
outlet
guide vane
wall side
upper wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015148052A
Other languages
English (en)
Inventor
保之 榎本
Yasuyuki Enomoto
保之 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2015148052A priority Critical patent/JP2017025876A/ja
Publication of JP2017025876A publication Critical patent/JP2017025876A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Abstract

【課題】ガイドベーンの入口流れまたは出口流れの損失を低減することができる水力機械のガイドベーンを提供する。
【解決手段】実施の形態による水力機械のガイドベーン10は、中央部分13と、中央部分13の入口側に設けられた入口部分14と、を備えている。入口部分14は、入口本体部分14aと、入口本体部分14aの上壁11の側に設けられた入口上壁側部分14bと、入口本体部分14aの下壁12の側に設けられた入口下壁側部分14cと、を有している。入口上壁側部分14bの入口羽根角度θ1および入口下壁側部分14cの入口羽根角度θ2は、入口本体部分14aの入口羽根角度θ3よりもそれぞれ大きくなっている。
【選択図】図3

Description

本発明の実施の形態は、水力機械のガイドベーンおよび水力機械に関する。
従来より知られているフランシス水車の水車運転時においては、上池から水圧鉄管を通って渦巻き状のケーシングに水が流入し、ケーシングに流入した水は、ケーシングからステーベーンおよびガイドベーンを通ってランナに流入する。このランナへ流入する水によってランナが回転駆動され、ランナに主軸を介して連結された発電機が駆動され、発電が行われる。ランナに流入した水は、ランナから吸出し管を通って下池または放水路へ流出される。このような水車運転時には、ガイドベーンの開度を変えることにより、ランナに流入する水量を調整し、発電量を変化させている。
ガイドベーンは、その上側に設けられた上壁と、下側に設けられた下壁とに回動可能に支持されている。すなわち、上壁と下壁との間に形成される流路にガイドベーンが設けられている。上述したステーベーンは、ガイドベーンの上流側において、上壁と下壁とに支持され、ケーシングからの水流を整流している。このようにして、ガイドベーンは、ステーベーンにおいて整流された水流をランナへ導く整流羽根の役割を持つ。一般的に、ガイドベーンは、高さ方向において同じ水平断面形状となるように形成されている。
図10および図11に、設計点におけるステーベーンおよびガイドベーンの周りの流れの模式図を示す。このうち図10は、高さ方向中央領域における水平断面(以下中央断面と記す)における流れの様子を示している。図10に示されているように、ステーベーン30からガイドベーン40に流入する水の流れは、ガイドベーン40の入口羽根角度に沿うように流れており、ガイドベーン40の形状に沿って流れてガイドベーン40から流出してランナに流入する。ガイドベーン40から流出する流れは、ガイドベーン40の出口羽根角度に沿うように流れる。
図11は、上壁(または下壁)の側の領域における水平断面(以下、壁側断面と記す)における流れの様子を示している。この壁側断面においては、図11に示されているように、ステーベーン30からガイドベーン40に流入する水の流れは、ガイドベーン40の入口羽根角度より大きな角度で流れる。この入口流れ角度は、図10に示す中央断面における入口流れ角度より大きくなっている。
図12に、ガイドベーン40の入口流れ角度差の分布を示す。ここで、入口流れ角度差とは、各高さ位置における入口流れ角度と、高さ方向中央位置における入口流れ角度との差を意味している。図12に示されているように、中央断面における入口流れ角度よりも、壁側断面(とりわけ壁近傍の断面)における入口流れ角度が大きくなっていることがわかる。この入口流れ角度の違いにより、図11に示すような、ガイドベーン40の入口の内周側に、損失が発生する損失領域41が形成され得る。さらに、ガイドベーン40の高さ方向に二次流れが発生し、損失が増大する要因となり得る。なお、図12に示すB1は、ガイドベーン40の高さを示している。
ガイドベーン40の出口においても同様の現象がみられる。すなわち、中央断面における出口流れ角度よりも、壁側断面における出口流れ角度が大きくなっている(図8の破線参照)。この出口流れ角度の違いにより、互いに隣り合うガイドベーン40の間の流路で二次流れが発生して損失が発生し得る。さらに、高さ方向で出口流れ角度が異なる状態でガイドベーン40からの水流がランナへ流入するため、ランナ入口での損失増大につながり得る。
特許第4013356号公報
このように、ガイドベーンの入口および出口では、壁側断面における流れ角度が中央断面における流れ角度より大きくなっているため、ガイドベーンの入口流れおよび出口流れに損失が生じ得る。
本発明は、このような点を考慮してなされたものであり、ガイドベーンの入口流れまたは出口流れの損失を低減することができる水力機械のガイドベーンおよび水力機械を提供することを目的とする。
実施の形態による水力機械のガイドベーンは、上壁と、上壁に対向する下壁との間に設けられ、水車運転時にステーベーンからの水流をランナに導くためのものである。この水力機械のガイドベーンは、中央部分と、中央部分の入口側に設けられた入口部分と、を備えている。入口部分は、入口本体部分と、入口本体部分の上壁の側に設けられた入口上壁側部分と、入口本体部分の下壁の側に設けられた入口下壁側部分と、を有している。入口上壁側部分の入口羽根角度および入口下壁側部分の入口羽根角度は、入口本体部分の入口羽根角度よりもそれぞれ大きくなっている。
また、実施の形態による水力機械は、上述した水力機械のガイドベーンを備えている。
本発明によれば、ガイドベーンの入口流れまたは出口流れの損失を低減することができる。
図1は、第1の実施の形態における水力機械の全体構成を示す縦断面図である。 図2は、図1のガイドベーンを示す部分縦断面図である。 図3は、図2のガイドベーンを示す水平断面図である。 図4は、図3のガイドベーンの入口羽根角度差の分布を示す図である。 図5は、図3のガイドベーンの周りの流れであって、壁側断面における流れを説明するための模式図である。 図6は、第2の実施の形態におけるガイドベーンを示す水平断面図である。 図7は、図6のガイドベーンの出口羽根角度差の分布を示す図である。 図8は、図6のガイドベーンおよび一般的なガイドベーンの出口における出口流れ角度差の分布を示す図である。 図9は、第3の実施の形態におけるガイドベーンを示す水平断面図である。 図10は、一般的なガイドベーンの周りの流れであって、中央断面における流れを説明するための模式図である。 図11は、一般的なガイドベーンの周りの流れであって、壁側断面における流れを説明するための模式図である。 図12は、図10および図11のガイドベーンの入口における入口流れ角度差の分布を示す図である。
以下、図面を参照して本発明の実施の形態について説明する。
(第1の実施の形態)
図1乃至図5を用いて、本発明の第1の実施の形態における水力機械のガイドベーンおよび水力機械について説明する。
なお、本明細書において用いる、形状や幾何学的条件並びにそれらの程度を特定する、例えば、「平行」、「同一」等の用語等については、厳密な意味に縛られることなく、同様の機能を期待し得る程度の範囲を含めるものとしている。
ここでは、まず、水力機械のガイドベーンを備えたフランシス水車(水力機械)について説明する。
図1に示すように、フランシス水車1は、水車運転時に上池から水圧鉄管(いずれも図示せず)を通って水が流入する渦巻き状のケーシング2と、複数のステーベーン3と、複数のガイドベーン10と、ランナ4と、を備えている。
ステーベーン3は、ケーシング2に流入した水をガイドベーン10およびランナ4に導くためのものであり、周方向に所定の間隔をあけて配置され、ステーベーン3の間に水が流れる流路が形成されている。より詳細には、ステーベーン3は、後述する上壁11と下壁12とによって画定される流路内において、周方向に配列されている。このようにして、ステーベーン3は、ケーシング2からの水流をガイドベーン10に導くための整流羽根の役割を持っている。また、ステーベーン3は、上壁11および下壁12に(例えば溶接によって)連結されて支持されており、ケーシング2からの力を受ける強度部材としての役割を持っている。一般的に、ステーベーン3は、高さ方向において同じ水平断面形状となるように形成されている。
ガイドベーン10は、ステーベーン3から流入した水をランナ4に導くためのものであり、周方向に所定の間隔をあけて配置され、ガイドベーン10の間に水が流れる流路が形成されている。また、図2に示すように、各ガイドベーン10は回動可能に構成されており、各ガイドベーン10には、ガイドベーンスピンドル10aを介してガイドベーン駆動部(図示せず)が連結されている。ガイドベーンスピンドル10aの回動中心10bは、ガイドベーン10のピッチサークル10c(図3参照)上に配置されている。各ガイドベーン10が回動して開度を変えることにより、ランナ4に流入する水の流量が調整可能になっている。このようにして、後述する発電機6の発電量が調整可能になっている。
図1に示すように、ランナ4は、ケーシング2に対して回転軸線Xを中心に回転可能に構成され、水車運転時にケーシング2から流入する水によって回転駆動される。すなわち、ランナ4は、ランナ4に流入する水の圧力エネルギを回転エネルギへと変換するためのものである。
ランナ4には、主軸5を介して発電機6が連結されている。この発電機6は、水車運転時には、ランナ4の回転エネルギが伝達されて発電を行うように構成されている。
ランナ4の水車運転時の下流側には、吸出し管7が設けられている。この吸出し管7は、図示しない下池または放水路に連結されており、ランナ4を回転駆動させた水が、圧力を回復して、下池または放水路に放出されるようになっている。
なお、発電機6は、電動機としての機能をも有し、電力が供給されることによりランナ4を回転駆動するように構成されていてもよい。この場合、吸出し管7を介して下池の水を吸い上げて上池に放出させることができ、フランシス水車1を、ポンプ水車としてポンプ運転(揚水運転)することが可能になる。この際、ガイドベーン10の開度は、ポンプ揚程に応じて適切な揚水量になるように変えられる。
次に、本実施の形態によるガイドベーン10について説明する。ガイドベーン10は、水車運転時に、ステーベーン3からの水流をランナ4に導くためのものである。
図2に示すように、ガイドベーン10は、環状の上壁11と、上壁11の下方に設けられ、上壁11に対向する環状の下壁12と、の間に設けられている。そして、ガイドベーン10は、上壁11と下壁12とによって画定される流路内において、周方向に配列されている。このようにして、ガイドベーン10は、ステーベーン3からの水流をランナ4に導いている。また、上壁11と下壁12とは、互いに平行に配置されており、ガイドベーン10の高さB1が、半径方向(図2の左右方向)において同一となっている。
図2に示すように、ガイドベーン10は、中央部分13と、中央部分13より入口側(ケーシング2の側)に設けられた入口部分14と、中央部分13より出口側(ランナ4の側)に設けられた出口部分15と、を備えている。これらの中央部分13、入口部分14および出口部分15は、一体に形成され、ガイドベーン10の滑らかな翼面が形成されている。
入口部分14は、入口本体部分14aと、入口本体部分14aの上壁11の側に設けられた入口上壁側部分14bと、入口本体部分14aの下壁12の側に設けられた入口下壁側部分14cと、を有している。このうち入口本体部分14aは、ガイドベーン10の高さ方向中央領域に設けられており、入口上壁側部分14bは、入口本体部分14aの上側に、すなわち上壁11と入口本体部分14aとの間に設けられ、入口下壁側部分14cは、入口本体部分14aの下側に、すなわち下壁12と入口本体部分14aとの間に設けられている。同様に、中央部分13は、中央本体部分13aと、上壁11と中央本体部分13aとの間に設けられた中央上壁側部分13bと、下壁12と中央本体部分13aとの間に設けられた中央下壁側部分13cと、を有している。出口部分15は、出口本体部分15aと、上壁11と出口本体部分15aとの間に設けられた出口上壁側部分15bと、下壁12と出口本体部分15aとの間に設けられた出口下壁側部分15cと、を有している。
図3には、本実施の形態におけるガイドベーン10の水平断面が示されている。このうちガイドベーン10の上壁側部分(中央上壁側部分13b、入口上壁側部分14b、出口上壁側部分15b)または下壁側部分(中央下壁側部分13c、入口下壁側部分14c、出口下壁側部分15c)が実線で示されており、本体部分(中央本体部分13a、入口本体部分14a、出口本体部分15a)が破線で示されている。本実施の形態においては、入口上壁側部分14bおよび入口下壁側部分14cの断面形状は、入口本体部分14aの断面形状と相違している。中央上壁側部分13bおよび中央下壁側部分13cの断面形状は、中央本体部分13aの断面形状と同一であり、図3の断面では重なっている。同様に、出口上壁側部分15bおよび出口下壁側部分15cの断面形状は、出口本体部分15aの断面形状と同一であり、図3の断面では重なっている。このようにして本実施の形態によるガイドベーン10の入口部分14は、高さ方向で異なる形状に形成され、高さ方向で見たときに、同一断面形状で形成されていた場合には見えなかったガイドベーン10(とりわけ入口部分14)の翼面の一部が見えるようになっている。
本実施の形態においては、ガイドベーン10の入口上壁側部分14bの入口羽根角度θ1および入口下壁側部分14cの入口羽根角度θ2が、入口本体部分14aの入口羽根角度θ3より大きくなっている。ここで羽根角度とは、水平断面において、ランナ4の回転軸線Xを中心とする円弧の接線(回動中心10bにおける接線)に対するガイドベーン10の延びる方向(例えば、キャンバーライン)の角度を意味しており、ガイドベーン10の開度が大きくなる方向を正の方向としている。従って、羽根角度が小さいとは、接線方向に近づくように形成されることを意味し、羽根角度が大きいとは、半径方向に近づくように形成されることを意味している。後述する流れ角度も同様の意味で用いることとする。
このようなガイドベーン10の入口部分14の入口羽根角度について、図4を用いてより詳細に説明する。図4には、本実施の形態によるガイドベーン10の入口部分14の入口羽根角度差の分布が示されている。ここで、入口羽根角度差とは、任意の高さ位置における入口羽根角度と、高さ方向中央位置における入口羽根角度との差を意味している。
図4に示すように、本実施の形態によるガイドベーン10の入口羽根角度は、高さ方向中央領域においてはほぼ一定であるが、上壁11の側の領域および下壁12の側の領域において、中央領域における入口羽根角度より大きくなっている。このように入口羽根角度がほぼ一定の領域が入口本体部分14aに相当し、入口羽根角度が大きくなっている上壁11の側の領域および下壁12の側の領域が、入口上壁側部分14b、入口下壁側部分14cにそれぞれ相当している。入口上壁側部分14bおよび入口下壁側部分14cにおいて、入口羽根角度θ1、θ2は、上壁11または下壁12の側に向って、それぞれ徐々に大きくなるように変化している。このことにより、流れの損失の低減を図っている。
このような入口上壁側部分14bの高さをB2b、入口下壁側部分14cの高さをB2cとしたときに、B2b、B2cは、図4に示すように、
0.05×B1≦B2b≦0.15×B1、0.05×B1≦B2c≦0.2×B1
を満たしていることが好適である。このことにより、後述するように、図12に示すガイドベーン10の入口流れ角度に、ガイドベーン10の入口部分14の形状が沿うようにすることができる。なお、B2b、B2cは、後述するように、
0.05×B1≦B2b≦0.1×B1、0.05×B1≦B2c≦0.1×B1
であってもよい。
また、入口上壁側部分14bの入口羽根角度θ1と、入口本体部分14aの入口羽根角度θ3との入口羽根角度差をΔα1(図3参照)、入口下壁側部分14cの入口羽根角度θ2と、入口本体部分14aの入口羽根角度θ3との入口羽根角度差をΔα2(図3参照)としたときに、Δα1、Δα2は、
0°<Δα1<10°、0°<Δα2<10°
を満たしていることが好適である。すなわち、入口上壁側部分14bおよび入口下壁側部分14cにおいて、入口羽根角度θ1、θ2は、上壁11または下壁12の側に向って徐々に大きくなっているが、入口上壁側部分14bおよび入口下壁側部分14cにおける入口羽根角度θ1、θ2と入口羽根角度θ3との入口羽根角度差の最大値が、それぞれ10°未満であることが好適である。このことにより、後述するように、図12に示すガイドベーン10の入口流れ角度に、ガイドベーン10の入口部分14の形状が沿うようにすることができる。
次に、このような構成からなる本実施の形態の作用について、図5を用いて説明する。図5には、本実施の形態におけるフランシス水車1において、水車運転が行われている間のステーベーン3およびガイドベーン4の周囲の水の流れであって、上壁11(または下壁12)側の領域における水平断面(以下、壁側断面と記す)における水の流れが示されている。
一般的なガイドベーン40の壁側断面における入口流れは、図11に示すように、ガイドベーン40の入口羽根角度より大きな角度でガイドベーン40に流入する。これにより、ガイドベーン40の入口の内周側に、損失が発生する損失領域41が形成され得る。
これに対して本実施の形態においては、図3に示すように、ガイドベーン10の入口上壁側部分14bの入口羽根角度θ1および入口下壁側部分14cの入口羽根角度θ2を、入口本体部分14aの入口羽根角度θ3よりそれぞれ大きくしている。このことにより、図5に示すように、ガイドベーン10の入口上壁側部分14bおよび入口下壁側部分14cの形状を、ガイドベーン10に流入する流れに沿わせることができる。このため、ガイドベーン10の入口上壁側部分14bの入口流れ角度と、入口上壁側部分14の入口羽根角度との差が低減されるとともに、入口下壁側部分14cの入口流れ角度と、入口下壁側部分14cの入口羽根角度との差が低減され得る。この結果、ガイドベーン10の内周側での損失が低減され得る。
また、一般的なガイドベーン40の入口流れ角度差の分布が図12に示されている。この図12に示すように、高さ方向中央の領域における入口流れ角度よりも入口流れ角度が大きくなっている範囲は、上壁11の側の領域および下壁12の側の領域に顕著に現れていることがわかる。そして、上壁11から0.15×B1の範囲で、入口流れ角度が大きくなっているとともに、下壁12から0.2×B1の範囲で、入口流れ角度が大きくなっている。
これに対して本実施の形態では、入口上壁側部分14bの高さB2bが、0.05×B1≦B2b≦0.15×B1を満たし、入口下壁側部分14cの高さB2cが、0.05×B1≦B2c≦0.2×B1を満たしている。このことにより、高さ方向中央の領域における入口流れ角度よりも入口流れ角度が大きくなっている範囲に、入口上壁側部分14bの高さ範囲および入口下壁側部分14cの高さ範囲をそれぞれ合わせることができる。このため、入口流れの損失をより一層効果的に低減することができる。なお、入口流れ角度が大きくなっている範囲のうち中央寄りの部分では、入口流れ角度は比較的小さい。このことから、入口上壁側部分14bは、0.05×B1≦B2b≦0.1×B1を満たすように形成されていてもよい。同様に、入口下壁側部分14cは、0.05×B1≦B2c≦0.1×B1を満たすように形成されていてもよい。また、B2b、B2cを0.05×B1以上とすることにより、入口流れの損失低減の効果を効果的に得ることができる。とりわけ、図12に示す流れ場では、入口流れ角度が大きくなっている範囲の中でも入口流れ角度が比較的大きい範囲(図12の入口流れ角度差が直線状に増大している範囲)において入口流れの損失を効果的に低減し得る。
また、図12に示すように、上壁11および下壁12の側の領域における入口流れ角度差は、10°以下であることがわかる。
これに対して本実施の形態では、入口上壁側部分14bの入口羽根角度θ1と、入口本体部分14aの入口羽根角度θ3との入口羽根角度差Δα1が0°<Δα1<10°を満たし、入口下壁側部分14cの入口羽根角度θ2と、入口本体部分14aの入口羽根角度θ3との入口羽根角度差Δα2が0°<Δα2<10°を満たしている。このことにより、入口部分14での入口流れ角度に、入口上壁側部分14bの入口羽根角度θ1および入口下壁側部分14cの入口羽根角度θ2を沿わせることができる。このため、入口流れの損失をより一層効果的に低減することができる。
ところで、ガイドベーン10の開度は運転状態に応じて変化するが、ガイドベーン10の入口部分14では、上壁11および下壁12の側の領域における入口流れ角度が、高さ方向中央の領域における入口流れ角度より大きくなる現象は変わらない。このため、本実施の形態のように、ガイドベーン10の入口上壁側部分14bの入口羽根角度θ1および入口下壁側部分14cの入口羽根角度θ2を、入口本体部分14aの入口羽根角度θ3よりそれぞれ大きくすることで、広い運転範囲においてガイドベーン10の入口流れの損失を低減可能である。
このように本実施の形態によれば、ガイドベーン10の入口上壁側部分14bの入口羽根角度θ1、および入口下壁側部分14cの入口羽根角度θ2が、入口本体部分14aの入口羽根角度θ3より大きくなっている。このことにより、ガイドベーン10の入口上壁側部分14bの形状を、上壁11の側の領域においてガイドベーン10に流入する入口流れに沿わせることができるとともに、入口下壁側部分14cの入口形状を、下壁12の側の領域においてガイドベーン10に流入する入口流れに沿わせることができる。このため、ガイドベーン10の入口流れの損失を低減することができる。
(第2の実施の形態)
次に、図6乃至図8を用いて、本発明の第2の実施の形態における水力機械のガイドベーンおよび水力機械について説明する。
図6乃至図8に示す第2の実施の形態においては、出口上壁側部分の出口羽根角度および出口下壁側部分の出口羽根角度が、出口本体部分の出口羽根角度よりもそれぞれ小さい点が主に異なり、他の構成は、図1乃至図5に示す第1の実施の形態と略同一である。なお、図6乃至図8において、図1乃至図5に示す第1の実施の形態と同一部分には同一符号を付して詳細な説明は省略する。
本実施の形態におけるガイドベーン10は、図6に示すように、出口上壁側部分15bの出口羽根角度θ4および出口下壁側部分15cの出口羽根角度θ5が、出口本体部分15aの出口羽根角度θ6よりもそれぞれ小さくなっている。このようにして本実施の形態によるガイドベーン10の出口部分15は、高さ方向で異なる形状に形成され、高さ方向で見たときに、同一断面形状で形成されていた場合には見えなかったガイドベーン10(とりわけ出口部分15)の翼面の一部が見えるようになっている。
本実施の形態によるガイドベーン10の出口部分15の出口羽根角度について、図7を用いてより詳細に説明する。図7には、本実施の形態によるガイドベーン10の出口部分15の出口羽根角度差の分布が示されている。ここで、出口羽根角度差とは、各高さ位置における出口羽根角度と、高さ方向中央位置における出口羽根角度(とりわけ、出口本体部分15aにおける最大出口羽根角度)との差を意味している。
図7に示すように、本実施の形態によるガイドベーン10の出口羽根角度は、高さ方向中央領域においてはほぼ一定であるが、上壁11の側の領域および下壁12の側の領域において、中央領域における出口羽根角度より小さくなっている。このように出口羽根角度がほぼ一定の領域が出口本体部分15aに相当し、出口羽根角度が小さくなっている上壁11の側の領域および下壁12の側の領域が、出口上壁側部分15b、出口下壁側部分15cにそれぞれ相当している。出口上壁側部分15bおよび出口下壁側部分15cにおいては、出口羽根角度θ4、θ5は、上壁11または下壁12の側に向かって、それぞれ徐々に小さくなるように変化している。このことにより、流れの損失の低減を図っている。
このような出口上壁側部分15bの高さをB3b、出口下壁側部分15cの高さをB3cとしたときに、B3b、B3cは、図7に示すように、
B3b<B3c
を満たしていることが好適である。このことにより、後述するように、図8の破線で示すガイドベーン10の出口流れ角度に応じて、ガイドベーン10の出口羽根角度θ4、θ5を適切に設定することができる。
より具体的に説明すると、図7に示す形態では、出口羽根角度は、高さ方向中央位置よりも僅かに上壁11の側の高さ位置において最大となり、当該高さ位置から出口上壁側部分15bの側および出口下壁側部分15cの側に向って、徐々に小さくなるように変化している。すなわち、高さ方向中央の領域においても出口羽根角度が変化している。しかしながら、出口羽根角度差が小さい場合には、出口羽根角度差が出口流れに及ぼす影響は小さいと考えられる。そこで、例えば、出口流れに影響を及ぼし得る出口羽根角度差を−2°以下(絶対値で2°以上)と仮定し、その高さ位置を境界とすると、図7に示すように、出口上壁側部分15bの高さB3bは、0.1×B1程度となり、出口下壁側部分15cの高さB3cは、0.3×B1程度となる。このようにして、B3b<B3cが満たされるようになっている。なお、出口流れに影響を及ぼし得るか否かの出口羽根角度差の境界値は、上述の値に限られることはない。つまり、当該境界値を所望の値に設定して、出口上壁側部分15bの高さB3bと出口下壁側部分15cの高さB3cとを設定し、このようにして設定されたB3bとB3cとが、B3b<B3cを満たしていることが好適である。
また、出口上壁側部分15bの出口羽根角度θ4と、出口本体部分15aの出口羽根角度θ6との出口羽根角度差をΔβ1(図6参照)、出口下壁側部分15cの出口羽根角度θ5と、出口本体部分15aの出口羽根角度θ6との出口羽根角度差をΔβ2(図6参照)としたときに、
0°<Δβ1<20°、0°<Δβ2<20°
を満たしていることが好適である。すなわち、出口上壁側部分15bおよび出口下壁側部分15cにおいて、出口羽根角度θ4、θ5は、上壁11または下壁12の側に向って徐々に小さくなっているが、出口羽根角度θ4、θ5と出口羽根角度θ6との出口羽根角度差の最大値がそれぞれ20°よりも小さいことが好適である。このことにより、後述するように、図8の破線で示すガイドベーン10の出口流れ角度に応じて、ガイドベーン10の出口羽根角度θ4、θ5を適切に設定することができる。
さらに、上壁11から所定の距離Hの高さ位置におけるΔβ1、下壁12から当該所定の距離Hの高さ位置におけるΔβ2は、
Δβ1<Δβ2
を満たしていることが好適である。すなわち、出口下壁側部分15cのうち下壁12から所定の距離Hの高さ位置における出口羽根角度θ5は、出口上壁側部分15bのうち上壁11から当該所定の距離Hの高さ位置における出口羽根角度θ4よりも小さくなっていることが好適である。このことにより、後述するように、図8の破線で示すガイドベーン10の出口流れ角度に応じて、ガイドベーン10の出口羽根角度θ4、θ5を適切に設定することができる。
なお、本実施の形態においては、入口上壁側部分14bおよび入口下壁側部分14cの断面形状は、入口本体部分14aの断面形状と同一であり、ガイドベーン10の入口上壁側部分14bの入口羽根角度θ1および入口下壁側部分14cの入口羽根角度θ2は、入口本体部分14aの入口羽根角度θ3と同一となっている。
次に、このような構成からなる本実施の形態の作用について説明する。
一般的なガイドベーン40の壁側断面における出口流れは、図8の破線で示すように、ガイドベーン40の出口羽根角度より大きな角度でガイドベーン40から流出する。これにより、互いに隣り合うガイドベーン40の間の流路で二次流れが発生して損失が発生し得るとともに、ランナ入口での損失が増大し得る。
これに対して本実施の形態においては、図6に示すように、ガイドベーン10の出口上壁側部分15bの出口羽根角度θ4および出口下壁側部分15cの出口羽根角度θ5を、出口本体部分15aの出口羽根角度θ6よりもそれぞれ小さくしている。このことにより、図8の実線で示すように、ガイドベーン10の出口上壁側部分15bおよび出口下壁側部分15cの出口流れを、出口流れ角度が小さくなる方向に案内することができ、当該出口流れの角度を小さくすることができる。このため、出口上側部分15bの出口流れ角度と、出口本体部分15aの出口流れ角度との差が低減されるとともに、出口下側部分15cの出口流れ角度と、出口本体部分15aの出口流れ角度との差が低減され得る。この結果、ガイドベーン10の出口部分15での出口流れ角度を均一化させ得る。
また、図8の破線で示すように、一般的なガイドベーン40の高さ方向中央の領域における出口流れ角度よりも出口流れ角度が大きくなっている範囲は、上壁11の側の領域および下壁12の側の領域に顕著に現れていることがわかる。そして、上壁11の側の領域よりも、下壁12の側の領域の方が、出口流れ角度が大きい領域が広くなっている。
これに対して本実施の形態では、出口下壁側部分15cの高さB3cが、出口上壁側部分15bの高さB3bよりも大きくなっている。このことにより、高さ方向中央の領域における出口流れ角度よりも出口流れ角度が大きくなっている範囲に、出口上壁側部分15bの高さ範囲および出口下壁側部分15cの高さ範囲をそれぞれ合わせることができる。このため、ガイドベーン10の出口部分15での出口流れ角度をより一層均一化させ得る。
また、図8の破線で示すように、上壁11の側の領域における出口流れ角度差は、20°以下であり、下壁12の側の領域における出口流れ角度差は、20°以下であることがわかる。ここで、出口流れ角度差とは、各高さ位置における出口流れ角度と、出口流れ角度の最小値(高さ方向中央位置よりも僅かに上壁11の側の高さ位置における出口流れ角度)との差を意味している。
これに対して本実施の形態では、出口上壁側部分15bの出口羽根角度θ4と、出口本体部分15aの出口羽根角度θ6との出口羽根角度差Δβ1が0°<Δβ1<20°を満たし、出口下壁側部分15cの出口羽根角度θ5と、出口本体部分15aの出口羽根角度θ6との出口羽根角度差Δβ2が0°<Δβ2<20°を満たしている。このことにより、出口流れ角度に応じてガイドベーン10の出口羽根角度θ4、θ5を適切に設定することができる。このため、ガイドベーン10の出口部分15での出口流れ角度をより一層均一化させ得る。なお、Δβ1、Δβ2は、0°<Δβ1<15°、0°<Δβ2<15°を満たすようになっていてもよい。この場合においても、出口部分15での出口流れ角度をより一層均一化させることができる。
さらに、図8の破線で示すように、下壁12から所定の距離Hの高さ位置における出口流れ角度差は、上壁11から当該所定の距離Hの高さ位置における出口流れ角度差よりも大きいことがわかる。
これに対して本実施の形態では、上壁11から所定の距離Hの高さ位置における出口羽根角度差Δβ1と、下壁12から所定の距離Hの位置における出口羽根角度差Δβ2とが、Δβ1<Δβ2を満たしている。このことにより、出口流れ角度に応じてガイドベーン10の出口羽根角度θ4、θ5を適切に設定することができる。このため、ガイドベーン10の出口部分15での出口流れ角度をより一層均一化させ得る。
ところで、ガイドベーン10の開度は運転状態に応じて変化するが、ガイドベーン10の出口部分15では、上壁11および下壁12の側の領域における出口流れ角度が、高さ方向中央の領域における出口流れ角度より大きくなる現象は変わらない。このため、本実施の形態のように、ガイドベーン10の出口上壁側部分15bおよび出口下壁側部分15cの出口羽根角度θ4、θ5を、出口本体部分15aの出口羽根角度θ6よりそれぞれ小さくすることで、広い運転範囲においてガイドベーン10の出口流れでの損失を低減可能である。
このように本実施の形態によれば、ガイドベーン10の出口上壁側部分15bの出口羽根角度θ4、および出口下壁側部分15cの出口羽根角度θ5が、出口本体部分15aの出口羽根角度θ6よりそれぞれ小さくなっている。このことにより、ガイドベーン10の出口上壁側部分15bおよび出口下壁側部分15cの出口流れ角度を小さくすることができる。このため、ガイドベーン10の出口部分15での出口流れ角度を均一化させることができる。従って、互いに隣り合うガイドベーン10の間の流路での二次流れの発生による損失を抑制することができるとともに、ランナ4の入口での損失の増大を抑制することができ、その結果、ガイドベーン10の出口流れの損失を低減できる。
(第3の実施の形態)
次に、図9を用いて、本発明の第3の実施の形態における水力機械のガイドベーンおよび水力機械について説明する。
図9に示す第3の実施の形態においては、入口上壁側部分の入口羽根角度および入口下壁側部分の入口羽根角度が、入口本体部分の入口羽根角度よりもそれぞれ大きく、かつ、出口上壁側部分の出口羽根角度および出口下壁側部分の出口羽根角度が、出口本体部分の出口羽根角度よりもそれぞれ小さい点が主に異なり、他の構成は、図1乃至図5に示す第1の実施の形態および図6乃至図8に示す第2の実施の形態と略同一である。なお、図9において、図1乃至図5に示す第1の実施の形態および図6乃至図8に示す第2の実施の形態と同一部分には同一符号を付して詳細な説明は省略する。
本実施の形態におけるガイドベーン10は、図9に示すように、第1の実施の形態と同様に、ガイドベーン10の入口上壁側部分14bの入口羽根角度θ1および入口下壁側部分14cの入口羽根角度θ2が、入口本体部分14aの入口羽根角度θ3より大きくなっている。また、第2の実施の形態と同様に、出口上壁側部分15bの出口羽根角度θ4および出口下壁側部分15cの出口羽根角度θ5が、出口本体部分15aの出口羽根角度θ6よりもそれぞれ小さくなっている。すなわち、第1の実施の形態におけるガイドベーン10の入口部分14と、第2の実施の形態におけるガイドベーン10の出口部分15とを組み合わせた形態となっている。
このように本実施の形態によれば、ガイドベーン10の入口流れの損失を低減することができるとともに、出口流れの損失を低減することができる。
また、本実施の形態によれば、ガイドベーン10が閉方向(図9における反時計回りの方向)に回動して全閉となったときに、ガイドベーン10(以下、第1のガイドベーン10と記す)の出口部分15と、当該ガイドベーン10に隣り合う他のガイドベーン10(以下、第2のガイドベーン10と記す)の入口部分14との間に形成され得る隙間を低減することができる。すなわち、第1のガイドベーン10の出口部分15のうち出口上壁側部分15bおよび出口下壁側部分15cが、第2のガイドベーン10の入口部分14の側に偏心し、第2のガイドベーン10の入口部分14のうち入口上壁側部分14bおよび入口下壁側部分14cが、第1のガイドベーン10の出口部分15の側とは反対側に偏心している。このことにより、第1のガイドベーン10の出口部分15の形状と、第2のガイドベーン10の入口部分14の形状とが互いに沿うことができる。このため、第1のガイドベーン10の出口部分15と第2のガイドベーン10の入口部分14との間の隙間を低減することができる。この結果、ガイドベーン10の全閉時の漏れ流量を低減させることができる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。また、当然のことながら、本発明の要旨の範囲内で、これらの実施の形態を、部分的に適宜組み合わせることも可能である。
なお、上述した各実施の形態では、水力機械の一例としてフランシス形水車を例にとって説明したが、このことに限られることはなく、フランシス形水車以外の水力機械にも、本発明を適用することができる。また、ポンプ運転を行わない水車にも当然に適用することができる。
1:フランシス水車(水力機械)、3:ステーベーン、4:ランナ、10:ガイドベーン、11:上壁、12:下壁、13:中央部分、14:入口部分、14a:入口本体部分、14b:入口上壁側部分、14c:入口下壁側部分、15:出口部分、15a:出口本体部分、15b:出口上壁側部分、15c:出口下壁側部分、θ1〜θ3:入口羽根角度、θ4〜θ6:出口羽根角度、Δα1、Δα2:入口羽根角度差、Δβ1、Δβ2:出口羽根角度差、B1:ガイドベーンの高さ、B2b:入口上壁側部分の高さ、B2c:入口下壁側部分の高さ、B3b:出口上壁側部分の高さ、B3c:出口下壁側部分の高さ

Claims (6)

  1. 上壁と、前記上壁に対向する下壁との間に設けられ、水車運転時にステーベーンからの水流をランナに導く水力機械のガイドベーンであって、
    中央部分と、
    前記中央部分の入口側に設けられた入口部分と、を備え、
    前記入口部分は、入口本体部分と、前記入口本体部分の前記上壁の側に設けられた入口上壁側部分と、前記入口本体部分の前記下壁の側に設けられた入口下壁側部分と、を有し、
    前記入口上壁側部分の入口羽根角度および前記入口下壁側部分の入口羽根角度は、前記入口本体部分の入口羽根角度よりもそれぞれ大きいことを特徴とする水力機械のガイドベーン。
  2. 前記入口上壁側部分の高さをB2b、前記入口下壁側部分の高さをB2c、前記ガイドベーンの高さをB1としたときに、
    0.05×B1≦B2b≦0.15×B1、0.05×B1≦B2c≦0.2×B1
    を満たしていることを特徴とする請求項1に記載の水力機械のガイドベーン。
  3. 前記入口上壁側部分の入口羽根角度と、前記入口本体部分の入口羽根角度との角度差をΔα1、前記入口下壁側部分の入口羽根角度と、前記入口本体部分の入口羽根角度との角度差をΔα2としたときに、
    0°<Δα1<10°、0°<Δα2<10°
    を満たしていることを特徴とする請求項1または2に記載の水力機械のガイドベーン。
  4. 前記中央部分の出口側に設けられた出口部分を更に備え、
    前記出口部分は、出口本体部分と、前記出口本体部分の前記上壁の側に設けられた出口上壁側部分と、前記出口本体部分の前記下壁の側に設けられた出口下壁側部分と、を有し、
    前記出口上壁側部分の出口羽根角度および前記出口下壁側部分の出口羽根角度は、前記出口本体部分の出口羽根角度よりもそれぞれ小さいことを特徴とする請求項1乃至3のいずれか一項に記載の水力機械のガイドベーン。
  5. 上壁と、前記上壁に対向する下壁との間に設けられ、水車運転時にステーベーンからの水流をランナに導く水力機械のガイドベーンであって、
    中央部分と、
    前記中央部分の出口側に設けられた出口部分と、を備え、
    前記出口部分は、出口本体部分と、前記出口本体部分の前記上壁の側に設けられた出口上壁側部分と、前記出口本体部分の前記下壁の側に設けられた出口下壁側部分と、を有し、
    前記出口上壁側部分の出口羽根角度および前記出口下壁側部分の出口羽根角度は、前記出口本体部分の出口羽根角度よりもそれぞれ小さいことを特徴とする水力機械のガイドベーン。
  6. 請求項1乃至5のいずれか一項に記載の前記ガイドベーンを備えたことを特徴とする水力機械。
JP2015148052A 2015-07-27 2015-07-27 水力機械のガイドベーンおよび水力機械 Pending JP2017025876A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015148052A JP2017025876A (ja) 2015-07-27 2015-07-27 水力機械のガイドベーンおよび水力機械

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015148052A JP2017025876A (ja) 2015-07-27 2015-07-27 水力機械のガイドベーンおよび水力機械

Publications (1)

Publication Number Publication Date
JP2017025876A true JP2017025876A (ja) 2017-02-02

Family

ID=57949303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015148052A Pending JP2017025876A (ja) 2015-07-27 2015-07-27 水力機械のガイドベーンおよび水力機械

Country Status (1)

Country Link
JP (1) JP2017025876A (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5965984U (ja) * 1982-10-27 1984-05-02 三菱重工業株式会社 水車のステ−ベ−ン
JPS60182361A (ja) * 1984-02-29 1985-09-17 Hitachi Ltd 水車のガイドベ−ン
JPH03267583A (ja) * 1990-03-19 1991-11-28 Hitachi Ltd 水車のガイドベーン
JP2005140078A (ja) * 2003-11-10 2005-06-02 Toshiba Corp 水力機械
JP2012172605A (ja) * 2011-02-22 2012-09-10 Toshiba Corp 流体機械のガイドベーンおよび流体機械

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5965984U (ja) * 1982-10-27 1984-05-02 三菱重工業株式会社 水車のステ−ベ−ン
JPS60182361A (ja) * 1984-02-29 1985-09-17 Hitachi Ltd 水車のガイドベ−ン
JPH03267583A (ja) * 1990-03-19 1991-11-28 Hitachi Ltd 水車のガイドベーン
JP2005140078A (ja) * 2003-11-10 2005-06-02 Toshiba Corp 水力機械
JP2012172605A (ja) * 2011-02-22 2012-09-10 Toshiba Corp 流体機械のガイドベーンおよび流体機械

Similar Documents

Publication Publication Date Title
AU2013333059B2 (en) Hydraulic machine
JP6639275B2 (ja) 水力機械のガイドベーン及び水力機械
US20160160834A1 (en) Hydraulic machine
JP2007064018A (ja) フランシス形ランナ及び水力機械
JP2016050520A (ja) 水力機械
JP4703578B2 (ja) フランシス型水車
JP5641971B2 (ja) 流体機械のガイドベーンおよび流体機械
JP6450601B2 (ja) 水力機械のステーリングおよび水力機械
JP2011137407A (ja) 水車
CN109763928B (zh) 导流叶片以及流体机械
JP2017025876A (ja) 水力機械のガイドベーンおよび水力機械
JP6556486B2 (ja) ランナ及び水力機械
JP6502641B2 (ja) 水力機械のガイドベーン及びその改修方法
JP4861132B2 (ja) 水力機械のランナ及び水力機械用ランナの製造方法
JP6407763B2 (ja) 軸流水力機械のランナベーン、軸流水力機械のランナおよび軸流水力機械
JP7085406B2 (ja) 水力機械のランナおよび水力機械
JP6132708B2 (ja) 水車ランナおよび水車
JP7240303B2 (ja) 水力機械のランナおよび水力機械
JP2017190695A (ja) 水力機械のケーシング及び水力機械
JP7360357B2 (ja) ランナコーンおよび水力機械
JP2008121691A (ja) スプリッタランナおよび水力機械
JP6884672B2 (ja) 水力機械
JP2016070226A (ja) 水力機械および水力機械の運転方法
JP2019085960A (ja) 水力機械、そのランナ、カバー及び改修方法
JP6132736B2 (ja) カプラン水車

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171127

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190702

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200107