JP2017025366A - 金属皮膜形成製品の製造方法および金属皮膜形成製品 - Google Patents

金属皮膜形成製品の製造方法および金属皮膜形成製品 Download PDF

Info

Publication number
JP2017025366A
JP2017025366A JP2015143652A JP2015143652A JP2017025366A JP 2017025366 A JP2017025366 A JP 2017025366A JP 2015143652 A JP2015143652 A JP 2015143652A JP 2015143652 A JP2015143652 A JP 2015143652A JP 2017025366 A JP2017025366 A JP 2017025366A
Authority
JP
Japan
Prior art keywords
film
metal
silica
coated
fine particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015143652A
Other languages
English (en)
Inventor
前川 克廣
Katsuhiro Maekawa
克廣 前川
山崎 和彦
Kazuhiko Yamazaki
和彦 山崎
芳男 小林
Yoshio Kobayashi
芳男 小林
御田 護
Mamoru Onda
護 御田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
M&m Res Inst
M&M RESEARCH INST
Ibaraki University NUC
Original Assignee
M&m Res Inst
M&M RESEARCH INST
Ibaraki University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by M&m Res Inst, M&M RESEARCH INST, Ibaraki University NUC filed Critical M&m Res Inst
Priority to JP2015143652A priority Critical patent/JP2017025366A/ja
Publication of JP2017025366A publication Critical patent/JP2017025366A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Laminated Bodies (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

【課題】基材の機械的強度を低下することなく、簡易なプロセスで基材と金属皮膜との密着性が高い金属皮膜形成製品を提供することが可能な金属皮膜形成製品の製造方法と、該製造方法を用いて製造した金属皮膜形成製品を提供する。
【解決手段】
本発明に係る金属皮膜形成製品の製造方法は、基材の上にシリカで被覆された金属微粒子を含む分散液を塗布してシリカコート金属微粒子塗布膜を形成するシリカコート金属微粒子塗布工程と、
前記シリカコート金属微粒子塗布膜の上に前記金属微粒子を含む分散液を塗布して金属微粒子塗布膜を形成する金属微粒子塗布工程と、
前記金属微粒子塗布膜にレーザ光を照射して前記金属微粒子の焼結膜を形成するレーザ光照射工程と、を含むことを特徴とする。
【選択図】図1A

Description

本発明は、金属皮膜形成製品の製造方法および金属皮膜形成製品に係り、特に金属微粒子を用いて基材上に金属皮膜を形成する方法およびその方法を用いて製造された金属皮膜形成製品に関する。
石英などのガラス(シリカ(SiO))基材の上に直接金属(例えば、金(Au))皮膜を形成する方法としては、気相成膜法と化学めっき法が良く知られている。しかしながら、シリカ上に密着性に優れた金属皮膜を形成することは非常に難しい。例えば、化学めっきでは、石英基板の表面を弗酸水溶液で粗化してからパラジウムめっき触媒を石英表面に付与して、Auイオンの還元反応によりAuめっき皮膜を形成する。また気相成膜法では、ガラス基板上に接着層としてチタンを蒸着により成膜し、その上に蒸着によりAu膜を形成する方法が知られている。
さらに、気相成膜や化学めっき以外の石英基板へのAu膜形成方法としては、非特許文献1のように、レーザ照射で基板表面に微細な凹部を形成する手法が知られている。この文献では、APTS(3‐Aminopropyletriethoxysilane)で処理した石英基板を、塩化金酸(HAuCL)をクエン酸ナトリウム水溶液で還元して生成したAuコロイド粒子に浸漬し、石英基板上にAuナノ粒子膜を形成し、その後蒸留水で洗浄し乾燥してから、波長532nmのレーザ光をAuナノ粒子膜の表面に照射する。レーザ光はパルスレーザであり、パルス幅は6nsの短パルスレーザである。非特許文献1によれば、単パルスレーザの照射によって、Auナノ粒子の破砕と石英への微細孔の形成が同時に行われ、石英基板上に金ナノ粒子膜が定着されるとされている。
また、非特許文献2には、非特許文献1同様に波長532nm、パルス幅がnsオーダーの短パルスレーザ光を、フルエンス0.7kJ/mでガラス基板表面に照射し、ガラス基板表面に微細孔を形成し、その表面に蒸着法によりAu膜を形成する手法が開示されている。
また、特許文献1には、ガラス基板上に密着性に優れた金属配線を形成する方法が開示されている。特許文献1は、ガラス基板と金属配線の間にアミド結合を有する樹脂層を設けることを特徴としている。形成した樹脂層の上に、パラジウムめっき触媒層を処理してから、無電解めっき法により金属配線用のニッケルや銅の金属めっき層を形成する。その後、めっき金属層をフォトリソグラフィー法によりパターンエッチングして配線を形成する。アミド結合を有する樹脂層は、ポリアミック酸あるいはポリアミドエステルを塗布してから硬化させ、ポリイミド被膜層を形成することで得られる。
また、化学めっきに関し、非特許文献3がある。非特許文献3では、TSV(Through−Silicon Via)への導電性銅めっき皮膜形成において、シードメタルをスパッタリングでガラス基板に形成してから電気銅めっきを行う方法、および、チタンを含む感光性金属錯体を塗布してから露光して導電性パターンを形成し、その後パラジウムめっき触媒を付与し、無電解ニッケルめっき、無電解銅めっきなどにより、導電性めっき膜を形成する方法が開示されている。
非特許文献4では、シリカコートAuナノ粒子を石英ガラス基板の上に塗布し、その塗布膜上からNd:YAGレーザの定常波を照射してシリカコートAuナノ粒子を焼結し、石英ガラス基板上にAu焼結膜を形成している。
特開2001‐156443号公報
Shuichi Hashimoto et al.,"Mechanism Aspect of Surface Modification on Glass Substrate Assisted by Single Shot Pulsed Laser−Induced Fragmentation of Gold Nanoparticles",Journal Of Physical Chemistry,C2001,115,pp.4986‐4993. Ruixuan Yu et al.,"Effects of nanosecond‐pulsed laser irradiation on nanostructure formation on the surface of thin Au films on SiO2 glass substrates", Journal Of Applied Surface Science,289,15,Jan.2014,pp.274‐280. 春木他著、「シリコン・ガラスインターポーザへのめっき技術」、表面技術、2015年、Vol.66、No.2、pp.17‐21 山崎他著、「シリカコート金ナノ粒子のレーザ焼結による金属膜形成技術」、第27回エレクトロ二クス実装学会春季講演大会論文集、2013年、14B‐04、pp.203‐205
非特許文献1および非特許文献2に記載の方法では、石英基板に微細な孔が形成されることで、基板の機械的強度の低下を招く可能性がある。特に、基板が薄い石英基板や石英ファイバは壊れやすく、折れ易くなる可能性がある。通常、光ファイバは、曲げに対して強く加工されているが、表面に微細な孔が形成されることで、ノッチ効果により、簡単に破断する問題がある。非特許文献1における微細孔の深さは10nm程度であるが、微細な孔が密集して形成されることで、0.3mm以下の薄い石英基板や石英ファイバではクラックが形成され、より破断されやすくなる。これは、Auナノ粒子へのレーザエネルギーの集中で局所的な温度上昇が発生し、局所的に膨張するいわゆる、熱応力の発生に起因している。
特許文献1記載の方法は、ポリイミドの硬化反応熱処理の他に、湿式の化学めっき法を用いるために、成膜工程が複雑になる問題がある。また、非特許文献3も同様であり、この2つの方法はいずれも湿式のめっき方法を必要とし、多くの化学薬品を必要とする欠点がある。また工程が長く複雑であることから、必然的に高価となることを免れない。
非特許文献4は、非特許文献1および2のように基材に微細な孔を形成するものではなく、また、特許文献1および非特許文献3にように湿式法ではないため、化学薬品を必要とせず、装置およびプロセスともに簡易である。しかしながら、基材と金属皮膜との密着性については十分ではない可能性があり、更なる改善の余地がある。
従来技術の問題点をまとめると、以下のとおりである。上記非特許文献1および2では、基板の機械的強度を低下させ、また工程が複雑であることから高価となる欠点がある。また、湿式めっき法も、工程が複雑で多くの化学薬品を用いることで高価であり、めっき廃液の処理コストや水洗の排液処理による環境汚染の問題がある。また、電気めっきや化学めっきなどの湿式めっきでは、石英やガラス基材との密着性を高めるために、フッ酸水溶液を用いるが、これは基材の機械的強度低下を招く。また、蒸着などの気相成膜法では、真空中での処理となり、スパッタリングや蒸着装置などの高価な設備が必要である。
したがって、本発明の目的は、上記事情に鑑み、基材の機械的強度を低下することなく、簡易なプロセスで基材と金属皮膜との密着性が高い金属皮膜形成製品を提供することが可能な金属皮膜形成製品の製造方法と、該製造方法を用いて製造した金属皮膜形成製品を提供することにある。
本発明の一態様は、上記目的を達成するため、基材の上にシリカで被覆された金属微粒子を含む分散液を塗布してシリカコート金属微粒子塗布膜を形成するシリカコート金属微粒子塗布工程と、上記シリカコート金属微粒子塗布膜の上に上記金属微粒子を含む分散液を塗布して金属微粒子塗布膜を形成する金属微粒子塗布工程と、上記金属微粒子塗布膜にレーザ光を照射して上記金属微粒子の焼結膜を形成するレーザ光照射工程と、を含むことを特徴とする金属皮膜形成製品の製造方法を提供する。
また、本発明は、基材と、金属およびシリコンを主成分とする層と、上記金属を主成分とする層と、をこの順で積層した積層構造を含むことを特徴とする金属皮膜形成製品を提供する。
本発明によれば、基材の機械的強度を低下することなく、簡易なプロセスで基材と金属皮膜との密着性が高い金属皮膜形成製品を提供することが可能な金属皮膜形成製品の製造方法と、該製造方法を用いて製造した金属皮膜形成製品を提供することができる。
本発明に係る金属皮膜形成製品の製造方法の一例を示すフロー図である。 本発明に係る金属皮膜形成製品の製造方法の他の一例を示すフロー図である。 図1のS5における基材および各塗布膜の一例を示す断面模式図である。 本発明において用いるシリカコートAuナノ粒子インクの一例を示す写真である。 図1のS5における基材およびシリカコートAuナノ粒子を示す断面模式図である。 本発明に係る金属皮膜形成製品の一例を示す断面模式図である。 Auナノ粒子を塗布した石英基板の吸収スペクトルである。 ハーメチックパッケージ光デバイスの一例を示す断面模式図である。
石英やガラスなどの基材の主成分はケイ酸塩(シリカ)からなり、表面は熱的、化学的に非常に安定である。このため、化学薬品ではフッ酸以外の酸では溶解せず、また石英の融点は1,065℃で非常に高温であり、安定である。この安定な物性は、表面への金属皮膜の形成の点では非常に不利であり、基板表面に金属皮膜を形成する手法として、前述のように、化学薬品で粗化するか、または、気相法では、単パルスレーザ(波長:532nm)を照射して粗化した面へスパッタリングや蒸着などによって成膜することでアンカー効果によって密着性を確保する手法が一般的である。しかし、これらの従来の手法は、前述のとおり基材の機械的強度の低下を引き起こす可能性がある。
本発明者等は、基材の特徴を損なうことなく(基材の機械的強度を低下することなく)、基材の表面に密着性に優れた金属皮膜を形成する方法について鋭意検討を行った。その結果、基材上にシリカコートした金属微粒子を塗布して下地膜を形成し、該下地膜上に形成した金属微粒子塗布膜の表面にレーザ光を照射してバルク金属皮膜を形成する方法を見出した。該方法によれば、基材に微細な孔を空けることがないので基材を損傷することが無く、下地膜を介して基材と金属皮膜との密着性が高い金属皮膜形成製品を得ることができる。本発明は、該知見に基づくものである。
以下、図面を参照して本発明の実施の形態を説明する。ただし、本発明はこれらの実施形態に限定されるものでは無く、発明の要旨を変更しない範囲で適宜改良および変更を加えることが可能である。
[金属皮膜形成製品の製造方法]
図1Aは本発明に係る金属皮膜形成製品の製造方法の一例を示すフロー図であり、図1Bは本発明に係る金属皮膜形成製品の製造方法の他の一例を示すフロー図である。また、図2は図1のS5における基材および各塗布膜の一例を示す断面模式図である。以下、本発明に係る金属皮膜形成製品の製造方法について説明する。なお、以下の説明では金属微粒子(金属ナノ粒子)として金(Au)ナノ粒子を用いる場合について説明するが、本発明はこれに限定されるものではなく、銀、銅またはニッケルのナノ粒子を用いることもできる。
図1Aおよび図2に示すように、本発明に係る金属皮膜形成製品の製造方法は、基材1の表面に、シリカコートAuナノ粒子3を含む分散液を塗布してシリカコートAuナノ粒子塗布膜(下地膜)3´を形成する工程(S1:シリカコートAuナノ粒子塗布工程)と、シリカコートAuナノ粒子塗布膜3´の上にAuナノ粒子2を含む分散液を塗布してAuナノ粒子塗布膜2´を形成する工程(S3:Auナノ粒子塗布工程)と、Auナノ粒子塗布膜2´にレーザ光4を照射してAuナノ粒子を焼結してAuナノ粒子の焼結膜を得る工程(S5:レーザ光照射工程)とを有する。上記S1、S3およびS5の工程が本発明の必須の構成であるが、図1Bに示すように、S1の後にシリカコートAuナノ粒子塗布膜3´に含まれる分散剤を乾燥して除去する工程(S2:第1の乾燥工程)と、S3の後にAuナノ粒子塗布膜2´に含まれる分散剤を乾燥して除去する工程(S4:第2の乾燥工程)とを有していても良い。以下、図1Bおよび図2に基づいて各工程を詳細に説明する。
<S1:シリカコートAuナノ粒子塗布工程>
本工程では、基材1上にシリカコートAuナノ粒子3を含む分散液を塗布し、シリカコートAuナノ粒子膜(下地膜)3´を形成する。基材1の材料としては、シリカコートAuナノ粒子との親和性が高いものであれば特に限定は無いが、石英などのケイ酸塩ガラスが好ましい。また、アルミナ(Al)、窒化アルミニウム(AlN)または炭化ケイ素(SiC)等のセラミック基板を用いることもできる。基材1の形状については、特に限定は無い。本発明は、後述するように大気中でのレーザ光照射によってマスクレスで金属皮膜を形成することが可能であり、基板は平板状のものに限定されず、様々な形状の基材を用いることができる。例えば、基材がケイ酸塩ガラスである場合、平坦なガラス基板や、ガラスファイバ等の加工製品を用いることもできる。
シリカコートAuナノ粒子の製造方法としては、特に限定は無く、従来のナノ粒子コーティング技術を適用することができるが、ゾルゲル法による製造方法の一例を以下に記述する。
Auナノ粒子の原料として塩化金酸三水塩(HAuCl3HO)等の金塩、還元剤としてクエン酸ナトリウムや水素化ホウ素ナトリウム、シリカコーティングの供給材料としてTEOS(Tetraethylorthosilicate)等のシリコンアルコキシド、反応開始剤(触媒)として水酸化ナトリウム水溶液やアンモニア水、溶媒としてエタノール等のアルコールを用いる。また、Auナノ粒子とTEOSの親和性を高めるためにAPMS(aminopropyltrimethoxysilane)等のシランカップリング剤を用いる。まず、塩化金酸三水塩およびクエン酸ナトリウムを混合して還元反応によりAuナノ粒子ゾルが生成する。Auナノ粒子の生成は、粒子のプラズモン吸収により確認することができる。還元生成したAuナノ粒子ゾルにAPMS、エタノール、TEOSおよび水酸化ナトリウム水溶液を順に添加すると、ゾルゲル反応によってAuナノ粒子表面にシリカが成長析出する。
上記ゾルゲル法で最終的に沈降したシリカコートAuナノ粒子を分離して、エチルアルコールまたは水に分散してシリカコートAuナノ粒子分散液(シリカコートAuナノ粒子インク)を得ることができる。分散剤としては特に限定は無いが、エチルアルコールを用いたシリカコートAuナノ粒子のエチルアルコールインクは、基材1である石英上に自然に広がり均一な厚さの膜が得られるため、特に好ましい。
なお、シリカコートAuナノ粒子インクの製法に関する詳細は、本発明の発明者の1人が以下に詳細に記述しており、本発明において適用することができる。
参考文献1:Yoshio Kobayashi, Hiromitsu Inose, Tomohiko Nakagawa, Kohsuke Gonda, Motohiro Takeda,Noriaki Ohuchi, Atsuo Kasuya, “Control of shell thickness in silica‐coating of Au nanoparticles and their X‐ray imaging properties”, Journal of Colloid and Interfacc Science,358(2011), pp.329‐333.
図3は、本発明において用いるシリカコートAuナノ粒子インクを示す写真である。上述したゾルゲル法におけるTEOSの添加量を調整することによって、シリカコート32の厚さを制御することができる。シリカコートAuナノ粒子33の平均粒子直径(平均粒径)は、10〜30nm(10nm以上30nm以下)であることが好ましい。10nm未満であると、均一な塗布膜を得ることができない。また、30nmより大きくなると、緻密な塗布膜を得ることができない。また、コアのAuナノ粒子31の平均粒径は、上記シリカコートAuナノ粒子33の平均粒径を考慮して5〜10nmであることが好ましい。コアのAuナノ粒子31の平均粒径は、上述した還元反応におけるAuナノ粒子の還元析出時間で制御することができる。図3に示すように、シリカコート32は透明であり、コアAuナノ粒子のプラズモン吸収によって入射可視光線を吸収するため、インク30の色調は黒色である。
なお、基材1へのシリカコートAuナノ粒子3の塗布方法としては、特に限定はなく、インクジェットおよびディスペンサーなどの公知の技術を用いることができる。分散剤乾燥後のシリカコートAuナノ粒子塗布膜の膜厚は、インクの濃度、塗布する液量および後述する前処理工程の処理時間により調整することができる。インクの濃度が高く、塗布量が多く、また、前処理工程での処理時間が長いほど、シリカコートAuナノ粒子塗布膜の膜厚が大きくなる。シリカコートAuナノ粒子塗布膜の膜厚は、後述するレーザ光照射工程後に0.5〜0.9μmとなるように調整されることが好ましい。この範囲の膜厚であるときに、均一なシリカコートAuナノ粒子塗布膜を得ることができる。
また、上記S1の前に、基材1の前処理工程として、基材1を塩酸水溶液または硫酸水溶液に常温浸漬処理する処理を行っても良い。このような前処理工程を実施することで、後述するシリカコートAuナノ粒子を塗布する際の濡れ広がりを均一にすることができる。この効果を得るために、塩酸水溶液または硫酸水溶液の濃度は0.5〜1.5mol/L、浸漬時間は、1〜2minであることが好ましい。
<S2:第1の乾燥工程>
次に、シリカコートAuナノ粒子塗布膜3´に含まれる分散剤(エチルアルコール、水など)を乾燥して除去する。乾燥の条件は、特に限定は無いが、80〜150℃程度の温度で数分間加熱乾燥を行うことが好ましい。乾燥工程をこのような条件で実施することで、均一な膜が基材1上に形成される。
また、上記加熱乾燥の前に、常温(25℃)で数時間自然乾燥することが好ましい。このように、加熱乾燥前に常温で自然乾燥することで、基材1に塗布したシリカコートAuナノ粒子インクの濡れ広がりがより均一となる。
<S3:Auナノ粒子塗布工程>
次に、乾燥したシリカコートAuナノ粒子塗布膜3´上に、Auナノ粒子2を含む分散液を塗布してAuナノ粒子塗布膜2´を形成する。ここで用いるシリカコートAuナノ粒子2の塗布方法については、上記S1と同様である。
<S4:第2の乾燥工程>
次に、Auナノ粒子塗布膜2´に含まれる分散剤(エチルアルコール、水など)を乾燥して除去する。乾燥の条件は、S2と同様である。なお、第1の乾燥工程および第2の乾燥工程は、必須の工程ではなく、省略することができる。第1の乾燥工程および第2の乾燥工程を実施しなくても、後述するレーザ光照射によって分散剤を除去することができる。
<S5:レーザ光照射工程>
次に、Auナノ粒子塗布膜2´の上部からレーザ光4を照射し、Auナノ粒子2を焼結する。レーザ光4としては、波長1064nmのNd:YAGレーザビームを用いることが好ましい。
図4は、図2のシリカコートナノ粒子3を拡大した図であり、図5は、本発明に係る金属皮膜形成製品の一例を示す断面模式図である。図4に示すように、Auナノ粒子塗布膜2´を透過した透過レーザビーム5は、シリカコートAuナノ粒子3のシリカコート層7を透過する。また、他のシリカコートAuナノ粒子のシリカ表面で散乱されたレーザ光5´がコアAuナノ粒子6に透過照射され、レーザフルエンスが高まり、コアAuナノ粒子6は急激に温度上昇し溶融する。図4では、模式的に散乱光5´のみを図示しているが、実際には複数の散乱光が集光され、溶融が促進される。この結果、シリカAuナノ粒子溶融相8が基材1の上に形成される。図5に示すように、溶融して形成されたシリカAuナノ粒子溶融相8は、シリカAuナノ粒子溶融膜9となり、基材1上に形成される。このとき、シリカAuナノ粒子溶融相8は、基材1の表面にも熱を伝播して、基材1の表層を溶融する。このために、シリカAuナノ粒子溶融相8と基材1の表層は共に溶融して、界面で高い密着性が得られる。
最表層のAuナノ粒子塗布膜2´は、Nd:YAGレーザのエネルギーと、シリカAuナノ粒子溶融相8からの熱伝播の双方の作用で急激に温度が上昇して焼結し、Auナノ粒子焼結膜10となる。このとき、シリカAuナノ粒子溶融相8から熱供給されたAuナノ粒子は、Au原子が界面で相互拡散するので、Auナノ粒子焼結膜10とシリカAuナノ粒子溶融膜9はともに溶融し、高い密着性が得られる。レーザ光照射工程後の冷却により、基材1上には、溶融凝固組織を有するシリカAuナノ粒子溶融膜9およびAuナノ粒子焼結膜10の2層が高密着性の膜として形成される。
基材1として石英を用いる場合、石英の線膨張係数は0.6ppm/Kであり、Auの線膨張係数(14.2ppm/K)と比較して極めて小さい。このため、通常、石英基材上にAu膜を直接形成した場合、熱応力で容易に剥離する問題がある。これに対して、本発明では、基材1およびシリカAuナノ粒子溶融膜9の界面が、Auと石英の溶融相となっているので、この相が熱応力の緩衝層となり、Auナノ粒子焼結膜10は剥離することがない。
本発明は、上述した非特許文献1の短パルスレーザ(波長:532nm)ではなく、Nd:YAGレーザの波長帯域(1064nm)の定常波(CW波(Continuous Wave))を用いる。この波長のレーザ光を用いることで、石英やガラスを材料とする基材1の表面に微細孔欠陥を形成することなく、金属皮膜を形成できることを見出した。これは、Nd:YAGレーザの波長帯域の定常波は、パルス波でないことから、金属ナノ粒子のプラズマ化によるレーザ誘起衝撃波が生じないためである。パルス波によるレーザ誘起衝撃波の基材への影響は、下記参考文献2に詳細が記述されている。
参考文献2:鷺坂著、「レーザ誘起衝撃波の塑性加工への応用」、塑性と加工、Vol.56、No.648、pp.3‐7(2015−1)
パルスレーザ光は、瞬間的に高エネルギーを付与し、金属材料などの場合には塑性変形加工できる。これは、例えば大気中で行う場合には、大気中のガス成分のプラズマ化による急激な膨張衝撃圧力によるものである。高エネルギーレーザ光を、金属微粒子を塗布した石英やガラス基材に照射した場合には、表面の金属微粒子のプラズモン吸収により、金属微粒子は瞬間的に温度が上昇する。この結果、金属微粒子は溶融し、また一部はプラズマ化して基材に大きな衝撃を与える。また、表面に金属微粒子の塗布が無い場合でも、高フルエンスのパルスレーザが照射されると、雰囲気ガスのプラズマ衝撃波で、石英やガラス基材の表面に微細孔が形成されて損傷し、基材の機械的強度が低下する。(参考文献2)。本発明者らは、Nd:YAGレーザの波長帯域(1064nm)の定常波レーザを用いることでこの問題を解決できることを見出した。本発明は、パルス波ではなく定常波を用いるため、石英やガラス基材の表面に微細孔欠陥が生じない。
また、本発明において、あえてNd:YAGレーザの波長帯域のレーザ光を用いる理由を以下に述べる。図6は、Auナノ粒子を塗布した石英基板の吸収スペクトルである。分光光度計による吸収スペクトルを測定したデータを示す。Auナノ粒子として、ハリマ化成株式会社製金ナノ粒子ペースト(NPG‐J、平均粒径7nm)を用いた。図6に示すように、Auナノ粒子膜は、波長が532nmのグリーンレーザ帯域において70%程度の吸収率を有し、この帯域の波長を用いた場合、Auナノ粒子にレーザ光が吸収され、基材までレーザエネルギーが到達しにくくなる。このため、グリーンレーザでは厚いAuナノ粒子焼結膜の形成には不利である。一方、波長が1000nm付近の帯域では、吸収率が20%程度と低く、基材までレーザ光が到達できる。密着性に優れた金属皮膜を形成するには、塗布した金属微粒子層の下部まで完全に焼結しバルク化することが重要である。このデータから、グリーンレーザよりNd:YAGレーザの方がAuナノ粒子膜の下部まで焼結することができ、厚いAuナノ粒子焼結膜が得やすいことが分かる。
図6に示すように、Nd:YAGレーザ波長帯域のレーザを用いる場合、Auナノ粒子の吸収率が低く、Auナノ粒子膜と石英の界面までレーザ光は良く透過するが、吸収率が低いために界面の温度がグリーンレーザと比較して上昇しない問題がある。Auナノ粒子は、粒子効果により200℃程度でバルク化が開始するが、石英の融点は1065℃であり、Nd:YAGレーザの波長帯域ではこの温度まで上昇せず、Auナノ粒子焼結膜と石英の密着性が得られないが、本発明は、上述したとおり、シリカコートAuナノ粒子膜を石英基材表面に形成し、さらにその上にAuナノ粒子膜を形成してからNd:YAGレーザで焼結することによって、密着性の高い金ナノ粒子焼結膜を得ることを可能としている。なお、本発明においてレーザ光はNd:YAGレーザに限定されるものではなく、Auナノ粒子膜の吸収率が低い波長900〜1200nmのレーザ光であればよい。
なお、前述した非特許文献4は、本発明のようにシリカコートAuナノ粒子塗布膜上にAuナノ粒子塗布膜を形成し、該Auナノ粒子塗布膜にレーザ光を照射しているものではなく、シリカコートAuナノ粒子塗布膜に直接Nd:YAGレーザを照射している点で、本発明とは異なる。以上、本発明の最良の実施形態を述べたが、具体的な内容に関しては実施例で記述する。
以上の構成によって得られる本発明の効果を詳述すると、下記のとおりである。
(1)湿式めっきや気相成膜法によることなく、レーザ焼結のみで、基材に損傷を与えずに高密着性のAu膜を石英やガラス基材表面に形成することができる。
(2)石英やガラス表面を粗化するための危険で人体および環境に有害な化学薬品を用いる必要がない。
(3)高価な真空チャンバーを用いたスパッタリングなどによるチタン下地膜形成の必要がない。
(4)Au蒸着膜形成のための蒸着装置を必要としない。
(5)工程が短く単純であることから、高価な設備を必要とせず安価である。
(6)パルスグリーンレーザを用いる手法と比較して、石英やガラス基材への微細孔形成によるダメージが無く、石英やガラス基板の機械的強度低下が無い。
(7)大気中でのレーザ照射が可能であり、製造工程においてインライン化が容易である。
(8)シリカコート金ナノ粒子と金ナノ粒子の焼結が1回で済み安価なプロセスとなる。
(9)界面へのシリカ金ナノ粒子溶融相の形成により、温度サイクルにおける密着性に優れる。
[金属皮膜形成製品]
上述した図5に示すように、本発明に係る金属皮膜形成製品100は、基材1と、Auナノ粒子由来のAuおよびシリカコートAuナノ粒子由来のシリコンを主成分とする層(シリカAuナノ粒子溶融膜)9と、Auを主成分とする層(Auナノ粒子焼結膜)10とをこの順で積層した構成を含む。そして、Auおよびシリコンを主成分とする層9およびAuを主成分とする層10が、溶融凝固組織を有する。
Auおよびシリコンを主成分とする層9中のシリコン濃度は、シリカコートAuナノ粒子の平均粒径が10〜30nmm、コアAuナノ粒子の平均粒径が5〜10nmであることから算出すると、40〜80質量%となる。これは、シリカコートAuナノ粒子を下地膜として用いた本発明の金属皮膜形成製品に特徴的な組成である。
本発明に係る金属皮膜形成製品100のAuを主成分とする層10は、導電性および接着性を発現することが可能なものである。接着性を発現するものの適用例として、ハーメチックシールがある。図7は、ハーメチックパッケージ光デバイスの一例を示す断面模式図である。上述した本発明に係る金属皮膜形成製品の構成を図7のハーメチック封止部74に適用することで、封止部74の密着性に優れ、信頼性の高いハーメチックパッケージ光デバイス70を提供することが可能となる。
以上の説明において、本発明に用いる基材1の材料とした石英は、比誘電率が3.5であり、従来のガラスエポキシ基板の比誘電率5.0やポリイミドの比誘電率4.2と比較して小さく高周波伝送特性に優れることから、特にスマートフォンやタブレット端末のデータ伝送の更なる高速化に向けて有望な材料と目されている。また自動車の自動運転における制御回路に用いられる高速演算用CPUには今後欠かせない材料として海外の自動車メーカーでも開発が進んでいる。本発明はこれらの製品開発に大きく貢献可能である。
また、今後電子回路基板として有望なガラスインターポーザ(半導体デバイスとマザーボードの間に介在させる高密度配線基板)では、基板の薄型化が進むので、基板の機械的な性能劣化は大きな問題となる。本発明では基材の機械的強度を低下させることなく基材に金属皮膜を形成することができるので、基板の薄型化にも大きく貢献することができるものである。
以下、実施例に基づいて本発明をさらに具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。
実施例1では、石英基板を基材とし、石英基板の表面にシリカコートAuナノ粒子膜を下地としてAuナノ粒子焼結膜を形成し、密着性を評価した。
基材として、厚さ1.0mm、15mm角の石英基板上に、スピンコート法によって厚さ1.0μmのシリカコートAuナノ粒子膜を形成した。具体的な工程を以下に示す。
(1)前処理工程
上記石英基板を1M/L(1mol/l)の塩酸水溶液に常温で1min浸漬した。
(2)シリカコートAuナノ粒子塗布工程(S1)
前処理工程後の石英基板上にシリカコートAuナノ粒子インク(シリカコートAuナノ粒子の平均粒径:20nm、分散剤:エチルアルコール)をマイクロピペットによるキャスティング法により塗布してシリカコートAuナノ粒子塗布膜を形成した。実施例1では、乾燥後のシリカコートAuナノ粒子の膜厚が1μmになるように、インクの濃度、塗布する液量を調整した。
(3)常温乾燥工程
S1の後、常温で3h放置して自然乾燥した。この処理で石英基板表面にシリカコートAuナノ粒子が沈着した膜が形成された。
(4)第1の乾燥工程(S2)
電気炉により加熱乾燥(乾燥条件:80℃、5min)した。エチルアルコールの沸点(78.37℃)以上の温度で乾燥することで、完全にエチルアルコール分散剤を除去した(なお、シリカコートAuナノ粒子塗布膜は室内雰囲気(25℃、相対湿度50%)において水分を自然吸着するが、この水分は許容する)。
(5)Auナノ粒子塗布工程(S3)
シリカコートAuナノ粒子塗布膜上にAuナノ粒子ペースト(ハリマ化成株式会社製、品番:NPG‐J、平均粒子径:7nm)をマイクロピペットにより滴下し、スピンコーターにより均一に塗布した。塗布条件は、回転数1000rpm、1min間とし、厚さ2μmのAuナノ粒子塗布膜が形成された。
(6)第2の乾燥処理工程(S4)
電気炉により加熱乾燥(乾燥条件:100℃、1min)した。低沸点の分散剤が揮発することで、Auナノ粒子ペーストの流動性は無くなり、100℃で揮発する溶剤がなくなったAuナノ粒子塗布膜が形成された。
(7)レーザ光照射工程(S5)
S4工程で得た石英基板を、塗布面を上にして、Nd:YAGレーザ照射用XYステージ上にセットした。レーザ照射条件は、ビームスポット径:Φ0.2mm、大気中とした。S5工程の詳細は、以下のとおりである。
(イ)レーザ出力値入力、ステージ移動速度値入力
レーザ出力:13.8W、ステージ移動速度:6mm/sとし、ステージを、石英基板の一端から他端方向に直線状に一回移動(1ライン走行)させた
(ロ)レーザ照射開始、ステージ移動開始
レーザ照射とステージ移動を同時にスタートさせた
(ハ)レーザ照射停止、ステージ移動停止
レーザ照射とステージ移動は同時に自動で停止し、15mm角の石英基板の移動を約3sで完了した
(ニ)焼結完了
Auナノ粒子は、焼結後の体積減少率は90%であり、Nd:YAGレーザ照射により、塗布膜2.0μmの1/10(0.2μm)の膜厚のAu焼結膜が得ることができた。Nd:YAGレーザ照射部の約0.3mmのライン部は、Auナノ粒子のバルク化により、金色に変化した。Auナノ粒子の平均粒径は7nmなので、焼結前(バルク化前)は光のプラズモン吸収による黒色を呈するが、バルク化によりプラズモン吸収特性が消失し、金本来の色である金色となるため、Nd:YAGレーザ照射による焼結が目視で確認できる。
(8)密着性評価
次に、上記Auナノ粒子焼結膜の石英基板との密着性評価を、下記の方法で行った。
(8‐1)密着性評価(1)
(イ)アセトン含浸綿棒を準備した
(ロ)Nd:YAGレーザ照射ラインに沿って綿棒を移動させて摩擦した
(ハ)下地膜であるシリカコートAuナノ粒子膜が露出するまでを数回繰り返した
(ニ)下地膜であるシリカコートAuナノ粒子膜が露出した段階で評価終了とした
この評価試験により、実施例1のサンプルは10回までの摩擦試験に耐えることを確認した。Au膜は柔らかいために、綿棒による摩擦試験で摩耗して摩耗により下地の赤色のシリカコートAuナノ粒子膜(下地膜)が露出するが、密着性に優れる場合、下地膜が剥離することはない。下地のシリカコートAuナノ粒子膜は、コアであるAuナノ粒子の平均粒子径が10nmなので、金ナノ粒子同様プラズモン吸収による可視光の吸収が起こり、色は黒色であるがNd:YAGレーザの照射によって赤色化し、レーザ照射の影響を判定できる。
本実施例では、赤色化したシリカコートAuナノ粒子膜は綿棒で摩擦しても摩耗することがなく、また石英基板からの剥離を生ずることはなかった。
一方、シリカコートAuナノ粒子塗布工程を実施しなかったこと以外は上記実施例1と同様にして作製したサンプル(比較例1)について摩擦試験を行ったところ、1回の摩擦で石英基板からAuナノ粒子焼結膜の剥離が生じた。この結果から、シリカコートAuナノ粒子膜が、基材とAu焼結膜の高い密着性を実現することが示された。
(8‐2)密着性評価(2)
(イ)粘着テープ(粘着力:3N/10mm)を準備した
(ロ)粘着テープをAuナノ粒子焼結膜に貼り、引き剥がした。
(ハ)下地膜であるシリカコートAuナノ粒子膜が露出するまでを数回繰り返した
(ニ)下地膜であるシリカコートAuナノ粒子膜が露出した段階で評価終了とした
この評価試験により、実施例1のサンプルは10回までの引き剥がし試験に耐えることを確認した。
一方、シリカコートAuナノ粒子塗布工程を実施しなかったこと以外は上記実施例1と同様にして作製したサンプル(比較例1)について摩擦試験を行ったところ、1回の引き剥がしで石英基板からAuナノ粒子焼結膜の剥離が生じた。この結果においても、シリカコートAuナノ粒子膜が、基材とAu焼結膜の高い密着性を実現することが示された。
実施例2では、光ファイバに用いられる石英ファイバを基材とし、石英ファイバの表面にシリカコートAuナノ粒子膜を下地としたAuナノ粒子焼結膜を形成し、密着性(ハーメチックシール接合性)を評価した。石英ファイバとして、樹脂被覆を含む外径がΦ0.25mm、石英ファイバ径Φ0.13mmのものを用いた。実験には表面の樹脂被覆層を剥離して、石英ファイバを露出させたものを用いた。
この石英ファイバの表面に、キャスティング法により、厚さ1.0μmのシリカコートAuナノ粒子膜を形成した。この手順を以下に示す。
(1)前処理工程
上記石英ファイバを1M/Lの塩酸水溶液に常温で1min浸漬した。
(2)シリカコートAuナノ粒子塗布工程(S1)
前処理工程後の石英ファイバ表面にシリカコートAuナノ粒子インク(シリカコートAuナノ粒子の平均粒径:20nm、分散剤:エチルアルコール)をキャスティング法により塗布した。マイクロピペットを用いて一定液量のシリカコートAuナノ粒子分散液を、30°程度傾斜させた石英ファイバ表面に掛け上から下へ流すことで形成した。この方法により、シリカコート金ナノ粒子のエチルアルコール分散液は、石英ファイバ上に全体に自然に流下し、均一な厚さの膜が得られる。実施例2では、乾燥後のシリカコートAuナノ粒子の膜厚が1μmになるように、インクの濃度、塗布する液量を調整した。
(3)常温乾燥工程
S1の後、常温で3h放置して自然乾燥した。この処理で石英基板表面にシリカコートAuナノ粒子が沈着し、膜が形成された。
(4)第1の乾燥工程(S2)
電気炉により加熱乾燥した(乾燥条件:80℃、5min)。エチルアルコールの沸点以上の温度で乾燥することで、完全にエチルアルコール溶剤を除去し、シリカコートAuナノ粒子塗布膜が形成された(なお、シリカコートAuナノ粒子塗布膜は室内雰囲気(25℃、相対湿度50%)において水分を自然吸着するが、この水分は許容する)。
(5)Auナノ粒子塗布工程(S3)
シリカコートAuナノ粒子塗布膜を形成した石英ファイバ表面に、Auナノ粒子ペースト(ハリマ化成株式会社製、品番:NPG‐J、平均粒子径:7nm)を浸漬法により塗布した。実施例2では浸漬時間を5minとした。なお、浸漬時間および浸漬後の引き上げ速度により膜厚に差は生ずることはほとんど無い。
(6)第2の乾燥処理工程(S4)
ホットプレート上で、片面ずつ交互に加熱乾燥(乾燥条件:100℃、1min)した。低沸点の分散剤が揮発することで、Auナノ粒子ペーストの流動性は無くなり、100℃で揮発する溶剤がなくなったAuナノ粒子ペーストの塗布膜が石英ファイバ表面に形成された。
(7)レーザ光照射工程(S5)
S4工程で得た石英ファイバに対して、石英ファイバを、Nd:YAGレーザ照射用XYステージ上にセットした。レーザ照射条件は、ビームスポット径:Φ0.2mm、大気中とした。S5工程の詳細は、以下のとおりである。
(イ)レーザ出力値入力、ステージ移動速度値入力
レーザ出力:2.5W、ステージ移動速度:5mm/sとし、ステージを石ファイバの先端から直線状に5mm移動させた
(ロ)レーザ照射開始、ステージ移動開始
レーザ照射とステージ移動を同時にスタートさせた
(ハ)レーザ照射停止、ステージ移動停止
レーザ照射とステージ移動は同時に自動で停止し、石英ファイバの移動を約1sで完了した
(ニ)焼結完了
NPG‐JAuナノ粒子は、焼結後の体積減少率は90%であり、Nd:YAGレーザ照射により、塗布膜2.0μmの1/10(0.2μm)の膜厚のAu焼結膜が得ることができた。Nd:YAGレーザ照射部は、ファイバの全周が、Auナノ粒子のバルク化により、金色に変化した。Auナノ粒子の平均粒径は7nmなので、焼結前(バルク化前)は光のプラズモン吸収による黒色を呈するが、バルク化によりプラズモン吸収特性が消失し、金本来の色である金色となるため、Nd:YAGレーザ照射による焼結が目視で確認することができる。
次に、Nd:YAGレーザ照射によるAuナノ粒子焼結膜の石英ファイバとのハーメチックシール接合性(はんだ接合強度)の測定を下記の手順により行った。
(イ)ホットプレート上の銅板(厚さ0.1mm)上に、上記石英ファイバを設置する
(ロ)石英ファイバのAu焼結膜上に、鉛フリーはんだペースト(Cu0.5mass%‐Ag2.96mass%‐Sn86.9mass%,フラックス11.9mass%)をファイバ長さ2mmの範囲に一定量塗布した
(ハ)ホットプレートの温度を大気中で230℃まで昇温した
(ニ)昇温後1min保持し、はんだペーストをリフローさせた
(ホ)引張強度試験機によりはんだ付け接合強度を測定した
この評価試験により、実施例2のサンプルは0.34Kgfの接合強度が得られた。はんだ付け部の試験箇所は、シリカコートAuナノ粒子下地膜が露出したが、石英ファイバ面の露出はなかった。従って、上記接合強度は、はんだとシリカコートAuナノ粒子界面の接合強度である。
一方、シリカコートAuナノ粒子塗布工程を実施しなかったこと以外は上記実施例1と同様にして作製したサンプル(比較例2)について上記と同様の評価を行ったところ、鉛フリーはんだは石英ファイバ上に濡れ広がらず、接合強度は0Kgfであった。
以上説明したように、本発明によれば、基材の機械的強度を低下させることなく、簡易なプロセスで基材と金属皮膜との密着性が高い金属皮膜形成製品を提供することが可能な金属皮膜形成製品の製造方法と、該製造方法を用いて製造した金属皮膜形成製品を提供することができることが実証された。
なお、上記した実施例は、本発明の理解を助けるために具体的に説明したものであり、本発明は、説明した全ての構成を備えることに限定されるものではない。例えば、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。さらに、各実施例の構成の一部について、削除・他の構成に置換・他の構成の追加をすることが可能である。
1…基材、2…金属微粒子、2´…金属微粒子塗布膜、3…シリカコート金属微粒子、3´…シリカコート金属微粒子塗布膜、4…レーザ光(Nd:YAGレーザビーム)、5…透過レーザビーム、5´…散乱されたレーザ光(散乱レーザビーム)、6…コア金属微粒子、7…シリカコート層、8…シリカ金属微粒子溶融相、9…シリカAuナノ粒子溶融膜、10…Auナノ粒子焼結膜、30…シリカコート金属微粒子インク、31…コア金属微粒子、32…シリカコート、33…シリカコート金属微粒子、34…分散剤、70…ハーメチックパッケージ光デバイス、71…受光器、72…パッケージ、73…屈折率分布レンズ、74…ハーメチック封止部、75…被覆樹脂、76…光ファイバコア、77…メタライズ層。

Claims (19)

  1. 基材の上にシリカで被覆された金属微粒子を含む分散液を塗布してシリカコート金属微粒子塗布膜を形成するシリカコート金属微粒子塗布工程と、
    前記シリカコート金属微粒子塗布膜の上に前記金属微粒子を含む分散液を塗布して金属微粒子塗布膜を形成する金属微粒子塗布工程と、
    前記金属微粒子塗布膜にレーザ光を照射して前記金属微粒子の焼結膜を形成するレーザ光照射工程と、を含むことを特徴とする金属皮膜形成製品の製造方法。
  2. さらに、前記金属微粒子塗布工程の前に、前記シリカコート金属微粒子塗布膜に含まれる分散剤を除去する第1の乾燥工程と、前記レーザ光照射工程の前に、前記金属微粒子塗布膜に含まれる分散剤を除去する第2の乾燥工程と、を含むことを特徴とする請求項1記載の金属皮膜形成製品の製造方法。
  3. さらに、前記シリカコート金属微粒子塗布工程の前に、前記基材を塩酸水溶液または硫酸水溶液中に浸漬する前処理工程を含むことを特徴とする請求項1または2に記載の金属皮膜形成製品の製造方法。
  4. 前記基材が、ケイ酸塩ガラス、アルミナ、窒化アルミニウムまたは炭化ケイ素のいずれかであることを特徴とする請求項1ないし3のいずれか1項に記載の金属皮膜形成製品の製造方法。
  5. 前記金属微粒子が、金、銀、銅またはニッケルのナノ粒子であることを特徴とする請求項1ないし4のいずれか1項に記載の金属皮膜形成製品の製造方法。
  6. 前記基材がケイ酸塩を主成分とするガラス基板またはガラス加工製品であり、前記金属微粒子が金ナノ粒子であることを特徴とする請求項1ないし5のいずれか1項に記載の金属皮膜形成製品の製造方法。
  7. 前記ガラス加工製品がガラスファイバであることを特徴とする請求項6記載の金属皮膜形成製品の製造方法。
  8. 前記レーザ光の波長が900〜1200nmであることを特徴とする請求項1ないし7のいずれか1項に記載の金属皮膜形成製品の製造方法。
  9. 前記レーザ光がNd:YAGレーザの定常波であることを特徴とする請求項1ないし8のいずれか1項に記載の金属皮膜形成製品の製造方法。
  10. さらに、前記シリカコート金属微粒子塗布工程の前に、前記シリカコート金属微粒子を作製するシリカコート金属微粒子作製工程を有し、
    前記シリカコート金属微粒子作製工程において、塩化金酸およびクエン酸ナトリウム水溶液にアミノプロピルトリメトキシシランを添加し、テトラエトキシシランとのゾルゲル反応によりシリカコート金ナノ粒子を作製することを特徴とする請求項1ないし9のいずれか1項に記載の金属皮膜形成製品の製造方法。
  11. 基材と、金属およびシリコンを主成分とする層と、前記金属を主成分とする層と、をこの順で積層した積層構造を含むことを特徴とする金属皮膜形成製品。
  12. 前記金属およびシリコンを主成分とする層および前記金属を主成分とする層が溶融凝固組織を有することを特徴とする請求項11記載の金属皮膜形成製品。
  13. 前記金属およびシリコンを主成分とする層における前記シリコンの濃度が40〜80質量%であることを特徴とする請求項11または12に記載の金属皮膜形成製品。
  14. 前記基材と前記金属およびシリコンを主成分とする層との界面および前記金属およびシリコンを主成分とする層と前記金属を主成分とする層との界面が溶融膜を形成していることを特徴とする請求項11ないし13のいずれか1項に記載の金属皮膜形成製品。
  15. 前記基材が、ケイ酸塩ガラス、アルミナ、窒化アルミニウムまたは炭化ケイ素のいずれかであることを特徴とする請求項11ないし14のいずれか1項に記載の金属皮膜形成製品。
  16. 前記金属が、金、銀、銅またはニッケルであることを特徴とする請求項11ないし15のいずれか1項に記載の金属皮膜形成製品。
  17. 前記基材がケイ酸塩を主成分とするガラス基板またはガラス加工製品であり、前記金属が金であることを特徴とする請求項11ないし16のいずれか1項に記載の金属皮膜形成製品。
  18. 前記ガラス加工製品がガラスファイバであることを特徴とする請求項17記載の金属皮膜形成製品。
  19. 前記金属皮膜形成製品がハーメチックシールであることを特徴とする請求項11ないし18のいずれか1項に記載の金属皮膜形成製品。
JP2015143652A 2015-07-21 2015-07-21 金属皮膜形成製品の製造方法および金属皮膜形成製品 Pending JP2017025366A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015143652A JP2017025366A (ja) 2015-07-21 2015-07-21 金属皮膜形成製品の製造方法および金属皮膜形成製品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015143652A JP2017025366A (ja) 2015-07-21 2015-07-21 金属皮膜形成製品の製造方法および金属皮膜形成製品

Publications (1)

Publication Number Publication Date
JP2017025366A true JP2017025366A (ja) 2017-02-02

Family

ID=57949010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015143652A Pending JP2017025366A (ja) 2015-07-21 2015-07-21 金属皮膜形成製品の製造方法および金属皮膜形成製品

Country Status (1)

Country Link
JP (1) JP2017025366A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018196850A (ja) * 2017-05-23 2018-12-13 旭化成株式会社 抗菌抗カビ性部材の製造方法
CN110431106A (zh) * 2017-03-24 2019-11-08 维纳米技术公司 脉冲发光二极管烧结

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110431106A (zh) * 2017-03-24 2019-11-08 维纳米技术公司 脉冲发光二极管烧结
JP2020517091A (ja) * 2017-03-24 2020-06-11 ナノ−ディメンション テクノロジーズ,リミテッド パルス発光ダイオードの焼結
JP2018196850A (ja) * 2017-05-23 2018-12-13 旭化成株式会社 抗菌抗カビ性部材の製造方法

Similar Documents

Publication Publication Date Title
TWI708352B (zh) 配線電路基板之製造方法及半導體裝置之製造方法
KR102280653B1 (ko) 전자 부품 탑재 기판 및 그 제조 방법
JP5740389B2 (ja) 光焼結及び/またはレーザー焼結を強化するためのバッファ層
JP4695148B2 (ja) 半導体装置及びその製造方法
JPWO2003007370A1 (ja) 配線ガラス基板およびその製造方法ならびに配線ガラス基板に用いられる導電性ペーストおよび半導体モジュールならびに配線基板および導体形成方法
WO2013146504A1 (ja) ダイボンド用導電性ペースト及び該導電性ペーストによるダイボンド方法
JP2008153470A (ja) 半導体装置および半導体装置の製造方法
JP6672859B2 (ja) 配線回路基板用のコア基板の製造方法、配線回路基板の製造方法、および半導体装置の製造方法
JP6400501B2 (ja) 金属−セラミックス回路基板の製造方法
TW201325330A (zh) 配線基板及其製造方法以及半導體裝置
US20130001803A1 (en) Method for attaching a metal surface to a carrier, a method for attaching a chip to a chip carrier, a chip-packaging module and a packaging module
JP7070971B2 (ja) ランダムに構成されるボイドを有するナノ粒子層により高められた接着
JP2009176926A (ja) 貫通配線基板及びその製造方法
WO2006126527A1 (ja) 銀被覆ボールおよびその製造方法
JP2017025366A (ja) 金属皮膜形成製品の製造方法および金属皮膜形成製品
KR101215644B1 (ko) 반도체 칩, 반도체 패키지 및 반도체 칩 제조방법
JP2018085412A (ja) 貫通電極基板及びその製造方法
JP2011228511A (ja) 半導体デバイス貫通電極用のガラス基板およびその製造方法
TW201104767A (en) Semiconductor package with NSMD type solder mask and method for manufacturing the same
TWI327452B (en) Process for manufacturing a wiring substrate
JP2016058483A (ja) インターポーザー、半導体装置及び半導体装置の製造方法
JP2006165137A (ja) 貫通電極付基板およびその製造方法
JP2007019144A (ja) バンプ及びバンプの形成方法
WO2018042918A1 (ja) 配線基板及びその製造方法
JP5672106B2 (ja) 配線基板及び配線基板の製造方法